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Pore-scale dilution of conservative solutes: An example
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Abstract.

We simulate flow and transport of a conservative nonsorbing tracer in an

idealized periodic pore channel using finite element techniques. The concentration is
computed; then the slowly varying concentration mean, variance, coefficient of variation,
and reactor ratio are calculated through averaging over every cell. The coefficient of
variation and reactor ratio are related and quantify the degree of dilution. Then a novel
methodology is developed for the evaluation of macroscopic parameters (homogenization),
including the variance decay coefficient, which measures the rate with which small-scale
concentration fluctuations tend to diminish, and the large-time coefficient of
proportionality between the concentration variance and the square of the mean
concentration variance. The methodology is based on the solution of a steady advection-
dispersion problem in a single cell (which acts as a representative elementary volume); the
computed result is then integrated in order to compute the macroscopic parameters.
These parameters are compared with the parameters computed through direct simulation
on a cell-by-cell basis, and they are found to be in reasonably good agreement. When the
macroscopic parameters are used in the macroscopic equations, they produce estimates of
the concentration mean and variance that are in agreement with the results of direct

simulation.

1. Introduction

Laboratory-scale dispersion of solutes in porous media has
been studied extensively (see Bear [1972] for review), but the
topic remains interesting from a practical and theoretical
standpoint [Mei, 1992]. The need to understand dilution, mix-
ing, and reactions limited by the rate of diffusion at the pore
scale provides new reasons and a new perspective for studying
dispersive transport. Also, advances in theories of upscaling
(known also as homogenization) and improvements in compu-
tational capabilities provide new opportunities for process un-
derstanding.

Most research on dispersive transport has focused on the
description of the slowly varying mean concentration that is
obtained by averaging out microscopic variability. Particular
attention has been given to finding the dispersion coefficient
that quantifies the rate of spreading of the mean concentra-
tion. The literature on the subject is vast, with the books by
Dagan [1989], Gelhar [1993], and Brenner and Edwards [1993]
providing overviews of selected approaches. Much less atten-
tion has been given to the question of small-scale variability
about the large-scale mean concentration. How uniform is the
concentration at the small scale? This question is related to the
important processes of solute dilution and mixing, which can-
not be studied solely by a quantification of the rate of spread-
ing of the mean concentration. A solute plume may spread out,
but the concentration may vary dramatically at the small scale.
The mean concentration does not distinguish between concen-
tration distributions that are uniform at the small scale and
those that are patches of high and low concentrations. In hy-
drogeology this issue has been studied for large-scale trans-
port, and some of these works will be reviewed in section 7.

This study focuses on pore-scale transport of conservative
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solutes and its scaling up to the laboratory (or Darcy) scale.
Through theoretical analysis and numerical simulations, we
examine differences between dilution and spreading and how
to quantify the evolution of concentration nonuniformity. In
order to gain insight into these problems, we will consider an
idealized geometry, although the approach is general.

2. Background

Typically, flow in pores is sufficiently slow and close to solid
boundaries for the inertia terms in the Navier-Stokes equations
to become negligible compared to viscous and pressure-
difference terms. Also, the system reacts to an external impetus
fast enough for time derivatives to be neglected. Thus, in the
two-dimensional case that will be considered here, the flow
satisfies the incompressibility and two momentum-conserva-
tion equations, known as the (steady) Stokes equations:
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where u and v are flow velocities in directions x and y, respec-
tively, ¢ is the hydraulic head, and v is the kinematic viscosity
coefficient. (The dynamic pressure p can be found from the
hydraulic head through p = pg¢, where p is fluid density and
¢ is acceleration of gravity.) The Stokes equations are obtained
from the Navier-Stokes equations when the Reynolds number
is small. Excellent references on the classic Stokes problem are
Happel and Brenner [1983], who also provide a historical per-
spective, and Pozrikidis [1992].

These equations are linear, which means that if (u, v, ¢) is
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Table 1. Definition of Dimensionless Variables and
Parameters

Dimensionless

Variable Definition

Xy x/w

Ya yiw

Uy, ulu

Uy ulu

L L/w

ay alw

Pe uw/D

a solution (i.e., satisfies the governing equations and the no-
flux and no-slip conditions on the solid boundaries), then (au,
av, a¢ + b) is also a solution for the arbitrary scalars a and
b. When the hydraulic-head gradient is multiplied by a factor,
the flow velocity is multiplied by the same factor, which leads
to Darcy’s law: the specific discharge is proportional to the
head gradient. In applications we represent groundwater flow
at the Darcy scale; that is to say, we replace the porous medium
with a continuum where the pore-solid distribution is not re-
solved and the velocity and head distribution within the pores
is averaged.

Consider the transport of a conservative tracer in a steady
state velocity field that satisfies the incompressibility condition.
The concentration, defined in the liquid phase of the medium,
satisfies

a%c
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where ¢ is the solute concentration, ¢ is time, and D is the
molecular diffusion coefficient.

Velocity fluctuations at the scale of pores cause a swarm of
solute particles to spread about their mean position. This
spreading is described at the Darcy scale through dispersion
coefficients. A dispersion coefficient is defined roughly as one-
half the rate of increase of the average square distance of
particles from their mean location. Dispersion, particularly in
the direction of flow (longitudinal dispersion) that is the focus
of this work, has been the subject of considerable experimental
and theoretical work. Our emphasis here will be not on dis-
persion but on small-scale variability of concentration.

Theories of upscaling usually consider media that possess
some form of translational invariance (i.e., properties recur in
space) such as periodic media and almost periodic media,
including stationary random media. Periodic models are par-
ticularly popular, such as those given by Bensoussan et al.
[1978], Brenner [1980], and Mei [1992]. According to Mei [1992,
p.273], “ ... the periodic model is distinguished by the fact that
it can be dealt with most rigorously, without additional heuris-
tic assumptions to simplify the mathematics.” Additionally,
periodic models are ideal for analyzing the results of numerical
experiments because mean values are computed exactly
through averaging over one period.

3. Problem Formulation

Consider a channel, formed by a sequence of pores, that is
two-dimensional and symmetric about the straight axis [Dykaar
and Kitanidis, 1996]. The width of the channel is a periodic
function:
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w(x) = W + 2a sin (277%) (5)

where w is the average width and w + 2a is the maximum
width, @ < w/2. The fluid is incompressible, and the flow is
steady and periodic. The velocity distribution u/iz, where  is
the mean velocity, for a given geometry is not dependent on .
In this work, this velocity distribution will be considered given,
computed for a given geometry using a finite element Stokes
solver [Cao and Kitanidis, 1998a].

Next, render the advection-dispersion equation in dimen-
sionless form by selecting w as unit length and w?/D as unit
time. The relation between the dimensionless and dimensional
quantities is given in Table 1. In practical applications the
diffusion coefficient is relatively constant, being of the order of
10~ m?%/s for most chemicals of interest. It is the geometry and
the spatial scales of the medium and the groundwater linear
velocity that may vary over orders of magnitude. The dimen-
sionless groups of parameters L/w, a/w, and Peclet number,
Pe = uw/D, may take a wide range of values.

Equations are then rewritten in terms of dimensionless
quantities (from this point on the index d will be implied but
not explicitly written):

X
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where a < 1/2, and
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4. Dispersion and Dilution

Macroscopic descriptions that use Darcy-scale parameters
such as the intrinsic permeability and the dispersivity for the
prediction of a smoothly varying concentration ¢ are undoubt-
edly valuable. However, in many cases it is important to gain an
appreciation for the difference between the smooth ¢ de-
scribed by macroscopic models and the more variable ¢ re-
solved at the relatively microscopic scale (within a pore, in our
case). Large difference indicates incomplete dilution, due to
the slow rate of diffusion that allows concentration gradients to
be sustained at the small scale. Such gradients can be pro-
nounced in the case of reactive solutes subject to heteroge-
neous reaction, such as solute transformation in thin biofilms
attached to the walls. In the case of conservative solutes, dif-
fusion-controlled gradients are pronounced at the front and
back of an advancing solute plume. The gradients are steeper
when the Peclet number is large, i.e., when advection is much
faster than diffusion.

These points can be illustrated through the following exam-
ple. Consider the case that a/w = 0.45 and L/w = 1.5. The
solution to the Stokes problem and the advection dispersion
equation was obtained numerically through finite element
analysis (the details of the methodology are given by Cao and
Kitanidis [1998a, b]). The grid used in the flow computations is
shown in Figure 1. Only the upper half is shown, the lower half
being the mirror image of the upper half. The streamlines are
shown in Figure 2. The values of the stream function have been
normalized so that the total flow is 1. The streamline that
corresponds to stream function value ¥ = ( separates the
main-flow zone from a holdup or backwater zone. In the main-
flow zone, one eighth of the discharge passes between two
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Figure 1. Finite element grid for upper half of unit cell.

consecutive plotted streamlines, as indicated by the values of
the stream function shown in Figure 2. It is obvious that most
of the flow is concentrated near the center of the pore. In the
backwater zone the water rotates slowly compared with the
main flow, as indicated by closed streamlines plotted for small
differences between the values of the stream function. A solute
can cross the line between the main-flow and backwater zones
only through diffusion.

Next, consider solute transport. Initially, the concentration is
zero everywhere; then, at ¢+ > 0, the concentration ¢ = 1 is
imposed at x = 0. We will present results for Pe = 25 and at
(dimensionless) time ¢ = 1; this time is sufficiently large, in
this case, for the asymptotic results of homogenization theory
to be applicable. Figure 3 shows the isoconcentration lines for
concentration values from 0 to 1 with intervals of 0.02. In the
first six cells the solute is practically fully mixed, and the con-
centration is ~1 everywhere in the cell. After the 27th cell the
concentration remains practically zero, not yet having experi-
enced the influx of mass. The highest concentration gradients
in the transverse direction are approximately in the same cells
where the gradients are also highest in the longitudinal direc-
tion (around the seventeenth cell, appearing as the first cell in
the third row in Figure 3). In these cells the mixing is incom-
plete with considerable differences between the concentration
at the walls and at the center of the pore cavity.

For each cell of the periodic medium the mean concentra-
tion (at time ¢) is

Figure 2. Streamlines for upper half of unit cell.
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Figure 3. Isoconcentration lines for Pe = 25.

c= Il/f c(x,y)dVv 8

where V' is the volume of a cell, which is plotted in Figure 4 as
a solid line. (The dashed line is computed from a one-
dimensional model using homogenized parameters, as de-
scribed in section 6.) When dilution or concentration uncer-
tainty is an issue, it is important to supply information about
the concentration fluctuation about the mean,

¢'=c—c )

Figure 4. Concentration mean: direct simulation (solid line)
and analytic solution (dashed line).
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Figure 5. Concentration variance: direct simulation (solid
line) and analytic solution (dashed line).

Concentration variability within the cell may be quantified
through the concentration variance,

1
si= f (e (x, )V (10)

For the computation of volume averages of concentration fluc-
tuations, the mean concentration within a cell is approximated
by a linear function of x, i.e., within cell i,

—X;

B B X
c'(x,y)=clx,y) = ¢ = (C—¢i) 5y (1)
where ¢, is the concentration mean in cell i and X, is the
coordinate of the center of cell i.

The concentration coefficient of variation is defined as

Cy= (12)

o 8

The coefficient of variation is a measure of the relative non-
uniformity of the concentration within a cell (small-scale vari-
ability), and it is directly related to the degree of dilution
within a cell [Kapoor and Kitanidis, 1996]: the smaller the C,
the more complete the dilution within the cell. As seen in
Figures 4-6, ¢, o2, and C,, vary slowly in the longitudinal
dimension, as is expected from mean quantities. The maximum
concentration variance is where the mean concentration has

Figure 6. Concentration coefficient of variation from direct
simulation.
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the steepest gradient. The coefficient of variation increases
toward the front edge of the plume, where the chemical had
the least time to dilute.

Another measure of variability or dilution is given through a
reactor ratio [Kitanidis, 1994]. Here we will define a reactor
ratio for each cell, an approach that differs from the approach
of Kitanidis [1994]. In an intuitive sense, the reactor ratio is the
ratio of effective volume occupied by the solute in a pore to the
total pore volume. Values of M near 1 indicate complete di-
lution whereas values near 0 indicate that the solute mass is
nonuniformly distributed within the pore. Noting that the total
mass within each cell is ¢V, the reactor ratio in each cell is

1 c(x, c(x,
M=t exp _f (}Om (x,y)
14

a3

Vv cV
which, for the case at hand, can be written as

1 c(x,
M = exp f (_y)ln
14

v z dv

c(x,y)
z (14)

M is computed over every cell, and its values are plotted in
Figure 7. It is practically 1 in the first 10 cells and decreases
toward the front end of the plume. Both C, and M suggest that
the dilution is poor at the front of the breakthrough curve.

Kapoor and Kitanidis [1996] developed an approximate re-
lation between the coefficient of variation and the reactor ratio
based on a low-order expansion. Adapting their approach,

c c+c' c+c' ¢’ 1 /c"\?
ln - = — 11’1 — ~—+ | =
c c c c 2\¢c

which is a reasonable approximation when |c¢'/¢| << 1. Then

CZ
Mxexp[—fy]

(15)

YIS

5 (16)

This relation is reasonably accurate, as Figure 7 indicates,
because the coefficient of variation is small in our example.

5. Macroscopic Description

In hydrogeologic practice, it is not possible and usually not
necessary to obtain a detailed pore-scale description of flow

Figure 7. Concentration reactor ratio from direct simulation
(solid line) and estimate from coefficient of variation (dashed
line).
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Figure 8. Estimate of the rate of dispersive transport from
direct simulation.

and transport over large regions. The common approach is to
work with a slowly variable (mean) concentration. It is known
that the mean concentration for the problem at hand satisfies
the advection-dispersion equation with constant coefficients,

_ 9%
(17

where Pe is the mean velocity (in nondimensional terms) and
D is the dispersion coefficient (which can be much larger than
the molecular diffusion coefficient, which is 1 after nondimen-
sionalization). The dispersion coefficient measures the corre-
lation between velocity and concentration fluctuations. An es-
timate of the dispersion coefficient in each cell can be
computed as follows:

_ 1 1 ac’
D = e Vf [Peu’c’—ﬁ] dv+1 (18)
- y
1 1 ac\? ac\?
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It is emphasized that this is just an estimate computed under
the assumption of periodic boundary conditions of concentra-
tion within every cell (see Appendix). In reality, the periodicity
condition becomes valid only at very large times, and our
approximation affects the estimate of macroscopic parameters.
Additionally, there are numerical errors associated with the
direct simulation of small-scale concentration fluctuations.
Note that the estimated D depends on derivatives of concen-
tration and thus is affected by errors in computing small-scale
concentration fluctuations. Nevertheless, the estimates are in-
dicative of the rates of dispersive transport at a point in time.
The estimates are plotted in Figure 8. The estimates of D vary
from cell to cell, but these differences diminish slowly as time
passes, and the mass spreads over many cells. Note that values
of D cannot be computed through direct simulation in cells
where the gradient of the mean concentration is practically zero.

Equation (17) has attracted most of the attention in upscal-
ing and has been derived through many different methods.
However, anyone interested in dilution or concentration un-
certainty should evaluate the concentration variance. Accord-
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ing to the theory of Kapoor and Gelhar [1994a, b], the concen-
tration variance satisfies

aa§.+P do? Daza‘z'—z[) . ac\?
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14

where the integral indicates averaging over a cell. Equation
(20) was obtained by performing ensemble averaging and uti-
lizing closure approximations, such as that the dispersive flux
of ¢’? should be Fickian with the same dispersion coefficient as
the dispersive flux of ¢. Their development was within the
context of the small variations of velocity about the mean
velocity.

Equation (20) states that o2 is a scalar quantity that is
advected, with the same mean velocity as the mean concentra-
tion; dispersed, with dispersion coefficient D, like the mean
concentration; generated owing to the stirring action of vari-
able velocity, represented macroscopically by the product of
the dispersion coefficient D with the square gradient of the
mean concentration; and destroyed owing to the action of
diffusion and the presence of small-scale fluctuations of con-
centration.

Furthermore, Kapoor and Gelhar [1994a, b] proposed that
the variance decay term is first order, i.e.,

2 ac’\* [ac'\?

‘Vf[@m>+(w)+2
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They argued that the variance decay coefficient y is applicable
over the whole domain, and they developed an approximate
formula that shows the dependence of x on diffusion and local
variability of velocity. This theory was found to be in good
agreement with the results of numerical experiments by Kapoor
and Kitanidis [1996]. However, their formula for determination
of x is not directly applicable here (since they averaged from
one Darcy continuum to another more macroscopic Darcy
continuum, whereas we average from a liquid-solid medium to
a Darcy continuum), and it also assumes small fluctuations of
velocity.

Figure 9 plots an estimate of y in every cell, numerically
computed using (21). Note that estimation is not possible at

ac’ ac’ dV = 2 (1
Ix ay - XO. ( )

Figure 9. Estimate of the rate of variance dissipation from
direct simulation.
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Figure 10. Estimate of the variance coefficient from direct
simulation.

the edges, where both the variance and the variance dissipation
are almost zero. The estimates of y in Figure 9 are indicative
of the rate of variance dissipation at a certain point in time.
Indeed, the inverse of y represents a characteristic time for the
decay of variance, whether or not (21) is strictly valid with a
constant x. One interesting conclusion from Figure 9 is that
Xx => 1, which means that it is considerably higher than if
dilution relied only on molecular diffusion. This confirms that
even dilution at a single irregular channel is facilitated by the
flow, being the result of the interaction of velocity distribution
with diffusion. For the case at hand, dilution is enhanced at the
necks of the pores where streamlines converge and it is easier
for mass to traverse streamlines through diffusion. On the
other hand, the boundary between the holdup and main-flow
zones can be crossed only through diffusion, which means that
the value of the diffusion coefficient does have an impact on
the variance decay coefficient.

At sufficiently large times, the last two terms in (20) should
dominate [Vomvoris and Gelhar, 1990; Kapoor and Gelhar,
1994a, b], and thus we may define another macroscopic pa-
rameter, the variance coefficient:

a;

= (ac/ox)?

(22)
The estimate of « that is numerically computed in every cell is
plotted in Figure 10, except at the edges, where « cannot be
computed through direct simulation because both the numer-
ator and denominator are zero.

6. Volume Averaging Over a Single Cell

The detailed description of the microscopic concentration ¢
over a large domain is generally computationally impractical, if
not infeasible. One of the reasons is that the grid must be fine
enough for the grid Peclet number to be ~1. Because of these
difficulties, a methodology is needed for computing the mac-
roscopic variables ¢ and o without having to compute the
microscopic variable ¢ over the whole domain. The concentra-
tion mean satisfies (17) and according to the formulation of
Kapoor and Gelhar [1994a, b], the concentration variance satisfies

do? aor  _ 9%’

_ ac\?
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(23)

Equations (17) and (23) involve three macroscopic variables:
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the mean velocity &, the dispersion coefficient D, and the
variance decay coefficient y. For a periodic medium these
macroscopic variables may be computed from a single period,
which serves as a representative elementary volume.

The problem can be treated rigorously using the approaches
of Bensoussan et al. [1978], Brenner and Edwards [1993], etc.,
as, for example, done for macrodispersion by Kitanidis [1992].
Here we will opt for a more physical approach based on a
representative elementary volume argument, which is ex-
plained in the Appendix. However, our approach leads to the
same results as the method of moments [Brenner, 1980] and the
method of multiple scales [Mei, 1992], at least for the disper-
sion coefficient that these works have studied.

In the region where the mean concentration slope varies
almost linearly, the distribution of the mass is similar in some
sense, as is indicated in Figure 3. This similarity would become
easier to see if we were to plot the results as follows: Within
every cell, plot c(x, y) — ¢(x)/|oc/dx|, which is the concen-
tration minus the average concentration (which should vary
linearly over the cell), and normalize by the gradient of the
average concentration. The plot thus obtained should be sim-
ilar from cell to cell. This similarity will be used to introduce a
representative elementary volume equal to a single cell subject
to unit concentration gradient.

Consider a unit cell and impose a unit mean-concentration
gradient plus a time-variant term plus a steady state periodic
fluctuation at the two ends. That is,

c(0,y) =Pet+ L + f(0,y) x=0 (24)

c(L,y)=Pet+f(L,y) x=1L (25)
The time-variant term Pet is required because the net advec-
tive flux tends to increase the amount of mass stored in the cell
and to raise over time the value of concentration within the
cell; the Pe t term is thus needed in order to maintain a unit
average gradient within the cell.

A trial form of solution to the advection-dispersion (7) is
then

c(x,y,t) =Pet+ F(x,y)=Pet+L —x+f(x,y) (26)
where f is a periodic function with zero mean. This solution
satisfies the boundary conditions. Substituting the trial solution
into (7), the governing advection-dispersion equation, and fur-
ther simplifying it, we obtain

aF IF  9’F  9°F

Peu —+Pev———5—->

ax ay ok a2 Fe

(27)

subject to no-flux boundary conditions on the solid boundary
and periodic plus unit gradient boundary conditions at the
openings of the unit cell. Once this problem is solved and F is
known, the deviation from the mean concentration may be
computed,

fix,y) =F(x,y) +x—L (28)

where f has zero mean volume average.

Thus the problem is reduced to solving a steady advection-
dispersion problem over a single unit cell. This problem is
solved numerically, but the computational cost is much lower
than the cost of solving over many cells a time-variant advec-
tion-dispersion problem.

The mean velocity & is the spatial average of the velocity
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over the unit cell, Pe. The dispersion coefficient D is given by
computing a volume average over the unit cell:

D=Il/f [Peu’ff%] dv +1
v [ LG+ (5) ]

where V' is the volume of the unit cell and u” = u — 1 is the
velocity fluctuation. The variance decay coefficient of Kapoor
and Gelhar [1994a, b] should be

2y [ [G) () ]

(29)

X = . (30)
- 2
% f frav
Additionally, the large-time concentration variance should be
— 1 2 d
a=q frdv (31)

Thus the needed macroscopic variables are found from com-
putations in a single cell and can thus be obtained much more
efficiently and accurately than through direct simulation of
transport over large domains. The values obtained are D =
22.9, x = 32.2, and a = 1.26. The differences from the values
computed from analysis in each cell must be due to the influ-
ence of the source, the finite size of the plume, and numerical
errors associated with the direct simulation. Additionally, note
that « should be related to the other two coefficients through
a = 2(D — 1)/x; introducing the values of D = 22.9 and
x = 32.2 into this equation, we obtain « = 1.36, a value 8%
larger than the independently computed 1.26.

In Figure 4 the concentration mean computed from direct
simulation is compared with the concentration computed from
the solution to (17), the one-dimensional transport equation,
using the parameters obtained from homogenization. The so-
lution is [from Fried, 1975, p. 60]

x — Pet
2Dt )

1
c(x, t) = 5 [erfc <
\r

Pex x + Pet
+CXp T erfc W

The solution from the homogenization is in good agreement
with the solution from the direct simulation, even though the
former was computed at a small fraction of the cost of the
latter. This confirms that the macroscopic dispersion coeffi-
cient D was properly computed through homogenization.

In Figure 5 the concentration variance from direct simula-
tion is compared with the concentration variance obtained
using (22). In this case, because the variance decays quickly, we
expect that the transport of variance should diminish and that
the production of variance due to velocity variations should
locally balance the decay of variance due to diffusion, hence
(22). The agreement between the computed and predicted
values is satisfactory.

(32)
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7. Discussion and Conclusions

It is well known that dilution follows advective-dominated
spreading. Small-scale variability in velocity distorts the isocon-
centration lines, causing a plume to become less regular; the
irregularities then tend to be smoothed through the action of
diffusion. In problems where dilution or concentration uncer-
tainty are important, it is not sufficient to find a mean concen-
tration, but it is needed to compute a measure of small-scale
variability of concentration, such as the coefficient of variation.

Concentration variability has been studied previously, and a
brief review of available methods will be attempted here. Al-
though these works refer to upscaling from a local-scale con-
tinuum to a regional-scale continuum, their problem is practi-
cally identical with the problem examined in this paper if we
make the following substitutions: local dispersion instead of
diffusion and macrodispersion instead of dispersion. Dagan
[1982, 1990] computed the concentration variance following a
simple and intuitive Lagrangian approach, which, however,
neglected the smoothing effect of local diffusive processes. As
a result, this approach tends to overestimate as concentration
variance and, a fortiori, the concentration coefficient of varia-
tion that is relevant in the description of dilution. Kabala and
Sposito [1994] also considered cases with zero local dispersion.
The approach of Vomvoris and Gelhar [1990] predicts that the
concentration variance is proportional to the square of the
mean concentration; this conclusion appears valid at asymp-
totically large times. In fact, in the example presented in this
work, the concentration variance becomes proportional to the
square of the mean-concentration slope quite early, owing to
the large rate of variance decay. The approach of Graham and
McLaughlin [1989] is numerical small perturbation, and it ac-
counts for the decay of variance due to diffusion but does not
account for dispersion of variance due to small-scale variability
of velocity. A similar approach has been followed by Neuman
[1993] using an analytic integral-equation methodology.

The crucial issue is to determine the rate of decay of con-
centration nonuniformity. Kapoor and Gelhar [1994a, b] intro-
duced the variance decay coefficient, a macroscopic coefficient.
They presented a methodology that leads to an equation that
intends to include all important mechanisms (see equation
(23)) and that estimates the macroscopic parameters within
the context of small-perturbation analysis. That work was ex-
tended and related to the problem of dilution by Kapoor and
Kitanidis [1996].

In this work, we have focused on a concrete example of
dilution at the small scale, and we have illustrated through
numerical experiments and mathematical analysis the mecha-
nisms that determine dilution and the methods to describe
them. We have introduced a novel approach to compute the
variance decay coefficient as well as the coefficient of propor-
tionality between the concentration variance and the square of
the mean-concentration slope. This approach is not limited by
small-variance assumptions but requires the solution of a
steady advection-dispersion equation over a single cell, which
for a periodic medium serves as a representative elementary
volume.

The macroscopic parameters computed from homogeniza-
tion using the single cell were found to be close to the param-
eters estimated through averaging of results of direct simula-
tion in a number of cells. The differences are partially justified
by approximations made to estimate macroscopic parameters
in each cell and by numerical errors in direct simulation. The
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results of homogenization were apparently satisfactory because
using them in the macroscopic equations yielded good predic-
tions of the concentration mean and variance; these predic-
tions were evaluated by comparison with results obtained
through direct simulation of concentration at the pore scale
followed by cell averaging. However, finding the macroscopic
parameters and solving the macroscopic equations is much
more practical than direct simulation of concentration at the
microscopic scale.

Appendix

Consider the transport of a conservative solute (an ideal
tracer) in the channel, as is shown in Figure 3. Consider part of
the tube, volume ¥/, and pose the following problem: Relate
the total mass flux in V" to the mean velocity and mean con-
centration gradient. The flux of solute mass may be distin-
guished into advective and dispersive. One expects that (1) the
advective flux is approximately proportional to the mean ve-
locity and (2) the dispersive flux is approximately proportional
to the mean concentration gradient, where the coefficient of
proportionality defines the dispersion coefficient. For example,
the dispersive mass flux generally depends not just on the mean
concentration gradient but also on the conditions at the bound-
ary of V. Under certain conditions the effect of the boundary
conditions is negligible.

We will take here as V7 a unit cell of the periodic medium
(i.e., a volume between x = 0 andx = L). The concentration
satisfies (4) with periodic velocities # and v and constant D.
We will focus on the case that the boundary conditions for
concentration on the fluid boundaries are periodic.

Consider the solution

c(x,y, t)=—J[at + F(x,y)] +¢ (33)

where J is the macroscopic solute concentration gradient (dc/
dx); c¢ is the macroscopic concentration; both J and ¢ are
considered constant within V; F is steady, satisfies the periodic
condition on the fluid boundary,

and satisfies the no-flux condition on solid boundaries. Note
that the trial solution satisfies all boundary conditions and the
governing equation (4) provided that F satisfies

oF oF 9°F

a’F
ax> 7 ay

7= U (35)

Equation (35) is derived through substitution of trial solution
(33) into (4).

Equation (35) is interpreted as an advection-dispersion
equation with a uniform distributed sink. Let the flux through
the channel be Q. Then net “mass” influx (treating F as a
concentration) into the volume through the boundaries is QL,
and net mass loss through the distributed sink is —#}". How-
ever, note that L/iz = V/Q is the mean residence time of water
in V. Thus the net influx into V' is zero,

QL —uV =20 (36)
which, by the way, is required for (35) to have a solution.

Notice that solving (35) with its boundary condition specifies
F within a constant. It is convenient to select the constant so
that we may write
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F(x,y) =f(x,y) + L —x (37)
where the volume average of the fluctuation f is zero.
Consider the flux at any point within V/,
ac
ux, y)e(x,y) =D o =q.+ qu (38)
where
q. = u(x, y)[c —J(at + L —x)] (39)
and
of
qa= ~Julx, y) f(x,y) +JD{ 7 =1 (40)

The first term, ¢, is advective flux strictly associated with the
mean flow because it is unaffected by velocity fluctuations and
diffusion. The volume average of ¢, is

Il/ff u(x,y)lc =J@t +L —x)]dxdy

Q

:Vf[af(aHLx)]dx (41)

and thus is directly proportional to the discharge.

The second term, ¢, is dispersive flux because it is unaf-
fected by mean velocity but vanishes when there are no velocity
fluctuations and the diffusion coefficient is zero. The volume
average of the dispersive flux is

1 J
V”qddx dy = —V”u'<x,y>f<x,y> dx dy

JD (af 1>d i
Ty e ) e
V

where u’ is the velocity fluctuation from its volume average.
Macroscopically, this volume average should be proportional
to the macroscopic concentration gradient and a dispersion

coefficient D,
1 _
% qadx dy = —DJ
14
Thus

_ 1 , D of
D=fou(%Wﬂmwdmy—yff<mfﬂ>ﬂdy

(44)

(42)

(43)

Equation (44) was obtained by considering a unit cell as a
representative elementary volume subject to periodic bound-
ary conditions and by performing volume averaging to deter-
mine the dispersion coefficient.

The same formula can be obtained using other procedures
that give additional insights into the meaning of the results or
the conditions for their applicability. The method of moments
[Brenner, 1980] involves averaging over many cells, leading to
periodic boundary conditions. The method of multiple scales
[Mei, 1992] shows that at large times the microscopic concen-
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tration fluctuations tend to become periodic with period L,
which is consistent with the results of our direct simulation (see
Figure 3). For details on these important methods, see refer-
ences. The method presented here is more intuitive and sim-
pler to derive than the more formal methods of moments and
multiple scales.

The microscopic fluctuations are —Jf(x, y), and thus the
concentration variance over the single cell is

03=szff2(x,y) dx dy

Similarly, one may compute microscales of Kapoor and Gelhar
[1994a] to find their variance decay coefficient,

() (2
Il/ffde

Equations (44)—(46) for the macroscopic parameters may be
used for the following purposes: (1) for the determination of
macroscopic parameters (i.e., upscaling or homogenization) by
solving a steady partial differential equation in a single cell
followed by volume averaging and (2) to estimate macroscopic
parameters in every cell in the actual transport computed
through direct simulation. In this case, f is approximated by
actual concentration fluctuation normalized by the mean-
concentration gradient, ¢'/—(dc/dx). The results should be
viewed as approximate because these formulae assume peri-
odic boundary conditions for the concentration in every cell,
which is not a valid assumption except at very large times after
an impetus has been introduced.

(45)

]dV
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