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Stokes Flow in a Slowly Varying
Two-Dimensional Periodic Pore
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Abstract. This article presents a series solution to the velocity in a two-dimensional long sinusoidal
channel. The approach is based on a stream function formulation of the Stokes problem and a series
expansion in terms of the width to the length ratio, which is considered small. Results show how
immobile zones may appear and even flow separation and nonturbulent eddies, even in the absence
of prima facie dead-end pores. It is shown that the flow tends to concentrate in strips connecting pore
throats.
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1. Introduction

Hydrogeologists and environmental engineers are typically interested in flow and
transport at scales much larger than that of a single pore. For most applications, the
smallest scale of interest is Darcy’s scale where the pore structure is not resolved
and the porous medium is regarded as a continuum. At that scale, flow is described
through an equation based on Darcy’s law and mass transport through the advection-
dispersion-reaction equation; both equations are satisfied by bulk-averaged fluxes
(e.g., Bear, 1972; Freeze and Cherry, 1979).

However, cognizance of flow and transport mechanisms at the pore scale is
often essential in achieving a better grasp of phenomena observed at larger scales.
A case in point is the presence of zones of immobile water which may impose mass
transfer limitations and thus affect reaction rates, advective mass transport rates,
and dispersive mixing (e.g., Dykaar and Kitanidis, 1996). There is considerable
interest in understanding how immobile zones may be created and how flow may be
reversed in ‘dead end’ pores and in fissures. The geometry of actual porous media
is very complex and the solution of the Navier–Stokes equations or even the Stokes
equations in so complicated flow domains is a formidable task. However, simplified
geometries are useful in shedding light on processes (e.g., Edwards et al., 1991) and
in scaling up the equations to the Darcy scale (Brenner and Edwards, 1993). In most
cases, numerical methods need to be employed (e.g., Pozrikidis, 1987; Edwards
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et al., 1991; Chen et al., 1994). However, approximate analytical solutions have
also been developed (e.g., Hasegawa and Izuchi, 1983) using a variety of methods.

In this work, we will compute Stokes flow in a long two-dimensional pore or
fracture using a series approximation, which avoids the spatial discretization which
is needed in the applications of finite differences, finite elements, and boundary
elements. The method to be presented is similar to the perturbation approach of
Hasegawa and Izuchi (1983) but differs from it in two respects:

� It follows a more systematic and rigorous rescaling method in order to for-
mulate the sequence of equations that need to be solved to obtain sequentially
terms in the series.

� It uses an auxiliary condition based on an energy argument, that is physically
intuitive and precise, unlike the reasonable but ad hoc auxiliary condition used
by Hasegawa and Izuchi (1983).

2. Problem Formulation

We consider a channel that is two-dimensional and symmetric about the straight
axis. The width of the channel is a smooth periodic function, such as

w(x) = �w + 2a sin
�

2�
x

L

�
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and the half-width is
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2
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2�
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L

�
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where �w is the average width and �w + 2a is the maximum width, a < �w=2. The
fluid is incompressible and the flow is steady and periodic.

The governing equations are incompressibility and Stokes equations
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where u and v are flow velocities in the direction of flow x and y, respectively; p
is the dynamic pressure, which is related to the hydraulic head � through p = �g�;
and � is the viscosity coefficient. As is well known, the Stokes equations are
obtained from the Navier–Stokes equations when the flow is slow, i.e. the Reynolds
number is small. This condition is met in most flows in porous media. Excellent
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references on the subject are Happel and Brenner (1983), who also provide a
historical perspective, and Pozrikidis (1992).

Introduce the stream function

u =
@	

@y
; v = �

@	

@x
: (6)

Inserting in the governing equations and after elimination of the pressure term, we
find that the stream function satisfies the biharmonic equation (ibid.):

r
4	 =

@4	

@x4 + 2
@4	

@x2@2y
+

@4	

@y4 = 0: (7)

Mathematically, the problem is reduced to solving the biharmonic.
Boundary conditions include the no-flux and no-slip conditions on the solid

boundary. In search of additional auxiliary conditions, we will make use of the
periodicity.

p(x+ L; y) = p(x; y) + �p; (8)

u(x+ L; y) = u(x; y); v(x+ L; y) = v(x; y);

	(x+ L; y) = 	(x; y);
(9)

where the drop per period is �p < 0. Application of the energy equation within a
periodic cell yieldsZ
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The meaning of Equation (10) is that the viscous dissipation within the unit cell,
is equal to the work done by surface forces on the control volume (e.g., Kundu,
1990). Equation (10) is the auxiliary condition that we will use later. Application
of (10) is a key difference form previous work (Hasegawa and Izuchi, 1983) which
used an ad hoc condition.

Also, for future reference, we will define �Q as the discharge that would take
place in a channel with uniform width �w

�Q = �
�w3

12�
�p

L
: (12)
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This cubic law is the result of the classic plane Poiseuille flow problem of fluid
mechanics (Happel and Brenner, 1983, p. 34). Regarding the use of the cubic law
for flow through single fractures, see Gale et al. (1985), Hull et al. (1987), Raven,
et al. (1988).

An exact analytic solution is probably impossible to obtain but approximations
can be obtained for a long channel in a series in terms of the small dimensionless
parameter

� =
�w

L
: (13)

The idea is to take advantage of the fact that variation in the direction of flow x is
slow compared to variation in the orthogonal direction y.

3. Nondimensionalization

First, we make all distances dimensionless by dividing all lengths by �w. (This is
equivalent to selecting as unit length �w.) We make discharge and stream-function
values dimensionless by dividing them by �Q. To keep the notation simple, we will
use the same symbols for the dimensionless variables, except that �w is replaced by
1. Just keep in mind that after this point, all variables are dimensionless.

With nondimensional variables, the governing equation has the same form (7)
and the auxiliary condition becomes:

1
6L

Z L

0

Z h

�h

� dx dy = Q: (14)

4. Rescaling

Note that x varies from 0 to L and y varies from �h to h. The next crucial step is
to introduce the rescaled variables (e.g., Hinch, 1991)
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= �x; � =

y

h(�)
=

y

h(�x)
(15)

(note that � is indeed equal to the ratio �w=L), where

h(�) = 1
2 + a sin(2��) (16)

and we seek the stream function in terms of the rescaled variables, i.e., we seek
	(�; �).

	 = 	0 + �	1 + �2	2 + � � � ; (17)

where 	i are functions of � and � to be found. Applying to Equation (7) and
auxiliary conditions and separating terms of the same order of �, we will obtain a
sequence of boundary-value problems.
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The auxiliary condition using the rescaled variables is

1
6
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h(�)� d� d� = Q: (18)

5. Zero-Order Terms

Keeping terms of zero order in (7)
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3: (20)

The no slip boundary conditions are @	0=@� = 0 at � = �1. We also specify that
total flux is Q0, to be found later, so that 	0 = �Q0=2 at � = �
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2 . Thus
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We then use the auxiliary condition (10) keeping terms of zero order:
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This zero-order solution already captures many important characteristics. The
streamlines adjust to the wavy wall, consistent with the results of numerical models
(Pozrikidis, 1987). The solution also clearly demonstrates that the sinuosity of the
channel lowers the discharge?, ceteris paribus. The reason is that the increase
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in viscous dissipation near channel throats is much larger than the decrease in
channel hollows. It is worth noting that the zero-order solution is essentially the
same approximation used in the well known ‘lubrication theory’ (Zimmerman et al.,
1991, review the applicability of this approach to flow in fractures). However, this
approximation does not capture the possibility of flow reversal in wall cavities, a
phenomenon that has been observed in numerical and experimental studies.

6. Second-Order Terms

The first-order terms vanish and we proceed to the second-order terms. The bihar-
monic reduces to:
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or, after simplifications
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Integrating the differential equation
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Solution is fC3 = 0; C1 = 0; C4 = �
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Equating the second-order terms in the auxiliary condition, we obtain
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7. Fourth-Order Terms

Following the same procedure as in the previous two cases, we obtain the solution:
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Then, the auxiliary condition is used to compute the fourth-order discharge term
Q4.
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Simplifying
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8. Summary

Compute the integrals
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and the total flux is

Q ' Q0 + �2Q2 + �4Q4:

The stream functions are
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9. Results

Consider, first, the case that the normalized amplitude is a= �w = 0:4 and the
normalized length is L= �w = 5. The stream lines are shown in Figure 1 with solid
lines delineating stream tubes that convey 1

8 of total flow. For added resolution
near the wall, dotted lines delineate stream tubes with 1

40 of the flow. The average
velocity in each tube being inversely proportional to the width of the tube, it is
clear from this figure that the flow in a sizeable region near the wall in the hollow
part of the pore is much lower than the mean flow velocity. Advective transport
and mixing in this region is low. At the throat (narrow part) of the pore, it is worth
noting that the flow is shooting through at a high velocity near the center of the
channel.

tipm1211.tex; 7/02/1997; 9:32; v.5; p.8



STOKES FLOW IN A SLOWLY VARYING TWO-DIMENSIONAL PERIODIC PORE 97

Figure 1. Stream lines for a= �w = 0:4 and l= �w = 5.

Figure 2. Stream lines for a= �w = 0:4 and l= �w = 2:5.

As the length to width ratio decreases, the immobile zone grows in size. At some
value, stagnation points appear on the well and flow separation occurs. Consider,
for example, a= �w = 0:4 and L= �w = 2:5. As the stream lines depicted in Figure 2
demonstrate, most of the flow takes place within a canal from one pore throat to
the next. In the rest of the pore space the water flows much more slowly, forming
what is practically an immobile zone, despite the fact that the pore does not appear
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as ‘dead end’. The vortices indicated in Figure 2 by the closed streamlines are
nonturbulent: the form of each vortex depends only on the pore geometry and the
velocity is proportional to the average flow velocity. Although the velocity in the
eddies is much smaller than the mean velocity, these eddies may increase the mixing
in the immobile zone and enhance the effective reaction rate in diffusion limited
heterogeneous reactions, such as in the case of biofilms (Dykaar and Kitanidis,
1996).
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