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Generalized Covariance Functions in Estimation!

Peter K. Kitanidis®

[ discuss the role of generalized covariance functions in best linear unbiased estimation and methods
Jor their selection. It is shown thal the experimental variogram {or covariance function) of the
detrended data can be used io oblain a preliminary estimate of the generalized covariance function
without iterations and [ discuss the advaniages of other parameter estimation methods,

KEY WORDS: geostatistics, linear model, best linear unbiased estimation, ¢xperimental vario-
gram, restricted maximum likelihood.

INTRODUCTION

The generalized covariance function or GCF (Matheron, 1973) is considered an
esoteric concept (Journel, 1986) and its practical significance in geostatistical
model development and parametcr estimation is not recognized everywhere. One
often hears from practitioners that GCF's are hard to grasp or work with; it has
been suggested that one should not used models with variable mean because of
difficulties in estimating generalized covariance functions; and the question of
whether one should use ‘‘uriversal kriging’” or ‘‘kriging with generalized co-
variances’’ is still debated. This confusion is somewhat hard to explain consid-
ering that the generalized covariance function is a natural extension of the ami-
able and familiar to geostatisticians variogram.

The significance of the generalized covariance function idea in stochastic
processes, particularly in the role of describing stationary-increment or high-
order intrinsic functions, has been discussed in other works. In contrast, I am
concerned with fitting empirical models to data for estimation purposes. In this
work, [ will present my views on GCFs such as my belief that a more descriptive
name for the generalized covariance function would have been simplified co-
variance function. I will show that having a variable mean facilitates the job of
finding the covariance that is needed in kriging, contrary to a widely held belief.
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Finally, I will discuss parameter estimation methods including variogram anal-
ysis of detrended data.

THE MODEL

In linear geostatistics, the regionalized variable z{x) is modeled as the sum
of a deterministic pan, called the drift or the mean function, and a zero-mean
stochastic process:

P
200 = X Bfi0) + e(x) (h

where z(x) is the regionalized or field variable at location index (i.e., array of
coordinates) x; Sy, k = 1, ..., p, are the drift coefficients; f,(x), k =1, . . .,
p, arc base functions of the location index; and e(x) is a zero-mean stochastic
process.

Starting with this basic model, the common approach in geostatistics, as
in other branches of applied statistics, is to view the drift coefficients as constant
but unknown values and the base functions as preassigned. (In practice, the base
functions are selected as part of the model). The stochastic process e(x) is
characterized through the two-point covariance function

Efe(x)e(x')] = R(x, x’[6) 2

where E[ ] stands for cxpected value and R is a known expression for the co-
variance function with parameters #. In practice, the covariance function is
usually assumed to depend only on the separation distance |x — x'[. It is
emphasized, however, that stationarity of one form or another is not presumed
in our discussion of the generalized covariance function idea.

We will facilitate the analysis by using a compact vector notation that is
customary in statistics (Kitanidis, 1987). Assuming that we have a batch of
measurements of variable z(x) at locations x,, X,, ..., Xx,, let:

2(x))

. 2(%)
z = n X I vector of the data, ie.,z =

z(x,)

m = s X | mean of z, i.c., the ith element of m is the expected value of the
process at location x;, and Q = r X n covariance matrix of z, i.e., the jjth
element of Q is the covariance between z(x,) and z(x,).

From Eqg. (1),
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m = E[z] = X8 (3}

where X is an # X p matrix of known coefficients (which are usually tied to
the locations of the measurements) and § is the p x [ vector of the unknown
coeflicients of the mean, also known as drift coefficients. The covariance matrix
is a function of some parameters 8,

Q=Q® {4)

For illustration, consider the stationary isotropic case (i.e., the expected value
is constant and the two-point covariance depends only on the separation distance
between these two points) with exponential covariance function. Then, p = 1,
3 = the constant mean of the intrinsic function, and

1

The ijth element of Q is 6, exp (—|x; = x]|/8y), where 8, is the varance
parameter and &, is the length parameter. Another example is given in Appendix
B.

GCF AS SIMPLIFIED COVARIANCE

It is well known (Matheron, 1971, p. 194) that in ordinary kriging with
constant mean one only needs to known the covariance function R within a
constant. For example, kriging will generate the same result whether one uses:

2 h
R(h) = o” exp (—;) (5)
where & is the separation distance, or
; h
Rl = o° exp ~7 +a (6)

where a is an arbitrary constant. Formally, the reason the constant does not
matter is the unbiasedness constraint; that is, the requirement that the expected
value of estimation error should be zero for any numerical value of the unknown
mean. Intuitively, adding constant a to the covariance function is the same as
adding to the process a zero-mean random scalar with variance a; since by
design the estimation error in kriging is unaffected by the addition to z of a
constant, & has no effect. Thus, a whole family of functions are indistinguishable
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from the true covariance function for purposes of ordinary kriging (for example,
Eq. (5) and (6) are the same for purposes of kriging). It is useful 1o picture that
cach of the many possible functions consists of a common part (or kernel) and
a constant, C, which differentiates one function from another but which is in-
conscquential:

Rhy=K@H) + C (7)

We call K(h) the generalized covariance function. In practice, one can use for
K(h) any of the many functions which differ by a constant. That is, it does not
really maiter whether one calls the expression of Eq. (5) or (6) a generatized
covariance function.

The important point is that for purposes of ordinary kriging one docs not
need to worry about finding the whole covariance function but only its essential
part, the GCF. From an estimation viewpoint, this is good news since one has
to infer less.

In ordinary kriging, wc limit our attention to intrinsic functions and work
with the variogram. However, as shown in Appendix A, the variogram is minus
a GCF,

y(h) = —Kh) (8)

Universal kriging is a generalization of ordinary kriging. The regionalized
variable is now represented as the sum of a deterministic function and a sto-
chastic process with zero mean. The deterministic part is the summation of
preassigned functions with unknown cocfficients, as given in Eq. (1}. The num-
ber of unbiasedness constraints is equal to the number of unknown coecfficients.
The more the unbiasedness constraints, the more the variability among the co-
variance functions that behave exactly the same. For example, for linear drift,
the covanance function

i
R(h) = o” exp (—7> + a, + a,i 9
where a; and a, are arbitraty constants, is the same for purposes of kriging with
5 h
Rih) = 0% exp _f (10)

This result is presented, for the suke of completeness, in Appendix B.

Thus, by adding mote unbiasedness constraints, we end up with more
freedom in choosing a covariance function compared to the constant-mean case.
We now need to know only some of the terms that form the covariance function.
We can write:

R{my = K(h) + C{h) (1)
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where K(h) is the essential part, or GCF, and C(h) is the redundant part.
Equation (11), which expresses that the GCF is the essential part of the co-
variance function, is useful in understanding kriging with unknown drift coef-
ficients and related covariance estimation methods.

Generally, by introducing more terms in the deterministic part of the model,
we move more terms from the essential part to the redundant part. The reason
is plain: By describing more of the variability through a detenministic function,
we reduce the importance of the covariance function (which describes the sto-
chastic part). At the limit, when all structured variability is described through
a deterministic function, the GCF is a simple pure nugget effect.

[ emphasize that I am not advocating that one should use a variable-mean
model when there are no good reasons for doing so. Use of the modeling
assumption to describe some of the variability through a deterministic function
(variable mean) leads to sharper predictions (i.e., with smaller mean square
crror) than if all vanability is described through the stochastic term. However,
being a stronger assumption, it requires a more convincing justification and
should be used only when appropriate. The point I am making is that one should
not avoid variable-mean models only because of difficulties in estimating the
covariance fanction. If anything, the opposite is true. Our work in model de-
velopment and fitting is generally made easier when we realize that we seek the
generalized rather than the ordinary covariance function.

DATA DETRENDING

We turn our attention now to the problem of determining the covariance.
In ordinary kriging (with constant mean) most practitioners graphically fit an
equation to the experimental variogram. The same approach has been extended
to universal kriging by using the detrended data, i.e., the original data from
which the fitted drift has been subtracted. This approach has been criticized
(Armstrong, 1984) because the variogram of the detrended data is different from
the varjogram of the original stochastic process and dependent on the method
of detrending. It is well known (Starks and Fang, 1982) that the presence of a
drift distorts the experimental variogram.

We will confirm here that indeed the detrended data has a different co-
vatiance function (or variogram) from the onginal process. However, we will
show rigorously that the original and the detrended data have the same GCF.

In matrix notation, we will consider the general least squares criterion of
agreement between the data and the trend:

z-XBH'A ' @z -XP (12)

where A is a symmetric matrix (satisfying appropriate positive definiteness re-
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quirements so that the criterion has a unique minimum). The values of the drift
coefficients that minimize this fitting criterion are:

B=XATX) 'X"A™'z (13)

Then, we form the detrended data, i.e., the original data minus the drift
using the fitted coefficients

;=72 X = (I - XXA'X)"'X"A Y2 (14)
We will compute the mean and covariance of the detrended data or resid-
vals. Taking expectations:
Elz = - X(X'AT'X) 'X'A"YE[z]
=0 - XX'A'X)'X"'AHYXE =0 (13)

after using Eq. {3). Thus, the expected value of the residuals is zero.
The covariance of the residuals is:

Q, = Elzg(z)" = d = XX'A'X)'X"A™ )
E[(z - Xf)(z — XB)1I - A™'XX"A7'X)"'X")
=1 -XX'ATX)T'X'ATNQA - ATXXTAT'X) 'K
=Q - XX'ATX)T'X'AT'Q - QAT'XX"A'X)'X”
+ XX'ATX)TXTATIQAT X (XTATIX) !XT (16)
Thus, the covariance matrix of the detrended residuals is not Q, the co-
variance matrix of the original data (for example, the rank of matrix Q is
gencrally n whereas the rank of Q; is not higher than n — p). This holds truc

even if the covariance were somchow known so that we could choose A = Q
in which case the expression would simplify:

Elz,(z)1 = Q - X(X'Q™'X)"'X" £ Q (17

Thus, as previously noticed by muny other investigators, the covariance
matrix of the detrended data is not the same with the covariance matrix of the
original data.

However, the difference is in the nonessential part. To remove the non-
essential part, form authorized (or generalized) increments by multiplying the
detrended data by any matrix G such that

GX =0 (18)
The covariance matrix of the Gz, is GQ,G’; using Eq. (16),
GQG" = GQGT (19)
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Thus, the original and the detrended data have the same generalized co-
variance function. The practical significance of this result is that: The experi-
mental covariance (or variogram) of the detrended data can be used to estimatc
the generalized (not the ordinary) covariance function.

Since the original and the detrended data share the same generalized co-
variance, one may ask what are the advantages of using the detrended data
instead of the original data in experimental variogram analysis. The answer is
that, when the original data is used, the trend swamps the experimental vario-
gram making the fob of inferring the generalized covariance function even more
difficult, Detrending is helptul because it removes much of the redundant (drift
rclated) variability in the experimental variogram revealing the peneralized co-
variance function.

The simplest and most computationally efficient approach is to detrend
using ordinary least squarcs. That is, take A equal to the identity matrix, 1, in
which case the detrended data can be computed from:

2,=z— X3 =(I-XX'X)'X"z (20)

In other words, the familiar method of fitting an equation to the experi-
mental variogram is applicable in the variable-mean case as it is in the constant-
mean case. However, as well known, this procedure is subjective and there are
good chances that different analysts will fit different models to the same data.
Nevertheless, onc can use this approach to obtain a preliminary estimate of the
generalized covariance function without concern about the distortion which is
limited to the redundant part of the covariance function.

Another, and in my opinion more cbjective and promising, approach for
estimating generalized covariance functions is to use Restricted maximum
Likelihood and related techniques (see review in Kitanidis, 1987). The idea is
to adjust the parameters so that the square difference between observations and
model predictions is as small as possible (Kitanidis, 1991).

AN APPLICATION

We will analyze hydraulic head data from the Jordan aquifer, in lIowa
(Hocksema and Kitanidis, 1984). The location of the measurements is shown
on Fig. 1. As is often the case with hydravlic head in deep aguifers at a regional
scale, the data indicate an approximate linear drift. The nodes of the cxperi-
mental variogram of the data are shown on Fig. 2. Based on statistical arguments
as well as hydrogeologic information additional to the data set, it was deemed
appropriate to try a variable mean model with:

mxy, x) = By + Baxy + Bix, 2n

where x,, x, are spatial coordinates and §,, 8,, 85 are constant buf{ unknown
coeflicients.
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Fig. 2. Experimental (semi)variogram of original data.
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The experimental variogram of the original data, Fig. 2, is not very helpful
because it suggests a quadratic power model. However, an b term is redundant
in universal kriging with a linear drift, Eq. (21). The problem is that the drift
has swamped the variability of the stochastic part in the experimental variogram .
For this reason, the data were detrended and the variogram was plotied in Fig.
3. It appears that an exponential variogram might be appropriate. This corre-
sponds to the following generalized covariance function:

K(h) = 0, exp (—h/8,) (22)

where A is separation distance and 8,, #, are positive parameters. The parameters
can be fitted graphically from the experimental variogram but the procedure is
somewhat subjective.

Another approach is to select 8, which minimizes the prediction error and
#, from the mean square error of estimation in the method of orthonormal
residuals (see Kitanidis, 1991, p. 752). This method leads to best estimates 9,
= 4228, 8, = 6. Values of 8, in the range 5-7 provide essentially equally good
fits. On Fig. 4, the continuous line represents the fitted model and is shown to
be in agreement with the experimental variogram. Note that the apparent dis-
crepancy between the model and the experimental variogram at large lags is of
no concern for two reasons: First, the sampling error associated with the ex-
perimental variogram at large lags is so large that it would be inappropriate to
modify the model to abstain better reproduction of the experimental variogram
at large distances. Second, variograms that differ by a quadratic function are
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Fig. 3. Experimental variogram of detrended daia.
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Fig. 4. Experimental variogram and fitted equation (exporential GCF).

practically the same for purposes of estimation when a linear drift is included
in the model (see Eq. (9)).

DISCUSSION

The concept of generalized covariances is not limited to a particular model,
such as intrinsic functions of order £, or form, such as polynomial generalized
covariance function. It 15 an idea underlying any best linear unbiased estimator
based on the linear model with unknown coeflicients (see Eq. (1)}. This involves
all common cases of linear geostatistics including ordinary and universal kriging
and co-kriging.

In linear geostatistics, spatial variability is descnbed through the drift (mcan
function) and the covariance function. The drift is the sum of known functions
multiplied by constant but unknown coefficients. The best linear unbiased es-
timator is a linear function of the observations with weights selected so that: (a)
the mean estimation error is zero for any values of the drift coefficients, and (b)
the mean square error is as small as possible, Restrictions imposed to eliminate
the unknown coefficients due to the first requirement make part of the covariance
function redundant. That is, the covariance can be written as the sum of an
essential part, called generalized covariance function, and a redunclant part which
can be neglected for purposes of best linear unbiased estimation.

Thus, the generalized covanance function is a simplified version of the
customary covariance function and is obtained by neglecting redundant terms.
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The larger the part of the spatial variability that is described through the deter-
ministic term, the simpler the generalized covariance that is needed and the less
sensitive the predictions on the covariance that is used. In this sense, the job of
selecting a covariance function for predictive purposes is casier when the mean
is variable. Therefore, one should not shy away from using variable-mean models
only out of concern for difficulties associated with generalized covariance func-
tions.

A preliminary estimate of the gencralized covariance can be obtained
through the familiar method of fitting an equation to the cxperimental variogram
of the detrended data. It has been shown here that the original data and the
propetly detrended data share the same generalized covariance, even though
their ordinary covariances differ. Thus, one can detrend the data and then glean
the generalized covariance function from the experimental variogram of the
detrended data. This estimatec may be suflicient for some applications or may
be improved by using other parameter estimation techniques that seek to opti-
mize the fit of the model to the data.

Consequently, I see no reason to perpetuate the distinction between *“uni-
versal kriging’® and ‘‘kriging with generalized covariances.”” Tt is known (for
example, see Chistensen, 1990) although perhaps not widely understood that as
best linear unbjased estimators, the two methods are the same, Some practi-
tioners differentiate between the two methods on the basis of how parameters
are estimated. Universal kriging is associated with estimation using the expo-
nential variogram of the detrended data whereas kriging with generalized co-
variances is associated with other estimation algorithms, such as that of Delfiner
(1976) and Kitanidis (1983). However, we have seen here that even this dis-
tinction is not important because the parameter estimation approach associated
with ‘‘universal kriging’* is appropriate (in the sense that it is appropriate in the
constant mean case) only if interpreted as estimation of generalized covariance!

APPENDIX A
As well known, a process z{x) is intrinsic if
E[z(x) — z(x")] = 0 (23)
2 Elz(®) — 2 = y(x — x) (24)

for any two points x and x’, where A is known as the semivariogram (or just
plain variogram).

A process is stationary if it has constant mean and the covariance function
depends only on the scparation vector:

Elz(x)] = E[z(x)] = m (25)
Elz(x) — m)(z(x") — m)] = R(x — x) {26)
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for any two points with location indexes x and x', where m is the mean of the
process (the expectation at any point) and R 1s the covariance function.

Let us bricfly discuss the relation between intrinsic and stationary functions
while at the same time showing the relation between the covariance, the gen-
eralized covariance, and the variogram. It is instructive to start with the class
of stationary functions and show how it can be extended to the class of intrinsic
functions. If x(x) is a stationary function, we can rewrite Eq. (25) and (26) to
climinate

Elz(x)y — z(x)] = 0 27
E[z(x) — m) (z(x') — m)] = E[z)z(x) — z(0)m — z(x"ym + n’]

il

E(~7 (z(x) — z(x")y’

+ 1z(x)* + 3z(x')’ — z(X)m ~ z(X)m + mA)

= =3 E[z(®) — z(x)*] + R(0) (28)
However, from Eqs. (24), (26), and (28), we obtain:
Rx —x)Y= —y(x - x") + R(® (29)

From this equation, because R(0) (variance or sill} is a constant, one can see
that —y(x — x') serves as a generalized covariance function and can be used
in kriging instead of the covariance function even if the process is stationary.

Furthermore, since the value of the constant does not maiter, we can cxtend
the class of stationary functions to include cases where this vaniance is arbitrarily
large. Thus, we obtain the class of the intrinsic functions that includes stationary
functions with finite sill as well as stationary-increment functions (such as
Brownian motions) with unbounded variance.

APPENDIX 8

We will consider a spatial function z defined on two dimensions {x, y) that
is modeled as a sum of a linear trend and a zero-mean stochastic process:
20, y) = B + Box + + By + elx, y) (30)

where x and y are spatial coordinates, 8, 8., and 85 are unknown drift coctli-
cients, and ¢ is a known zero-mean stochastic process with covariance function:

h
R(h) = % exp (—E) (3D

where B = (x — ¥’ + (y — y')* is distance and o7, [ are parameters.
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Note that if n observations are available, then

i X1 ¥
Lx»n
X = (32)
I x, v,
Given these observations (which we will denote by z;, 7, ..., z,) we

want to estimate z,,, the value of z at location (x,, y,). Limiting our attention to
linear estimators,

2{) = h!'ZJ (33 )

our task is to select h, A5, . . . , A,. We will enforce the unbiasedness condition,
i.e., that the expected value of the estimation error should be zero,

E|:E| h,‘Z,‘ - Zn—l =0 (34)

Using Eq. {30),

=

NGB+ Gox; + Bay + elx, yi)

i
i=1

= (B + Box, + B3y, + elx,, yg))] =0 (35

il

or, using that ¢ is a zero-mean process and rearranging terms,
(E N - 1)61 + (L‘ N, ~x,,)62 + (Z Ay = yo>ﬁa =0 (36)
i=1 i=t i=1

The only way to guarantee that this expression will be zero for any value of 8,,
B3,, and 85 is to enforce the unbiasedness constraints:

2 n =1 (37)
i=1
‘E| ANE = X, (38)
=
Z ANy =, (39)

i=1

Next, we compute the mean square error:
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[ 2
MSE = E[( X Nz - zﬂ) } (40)
\i=1
Making use of the unbiasedness constraints,

MSE

il

n 27
E[( L Mz - Elz)) - G, - E[zo])> J

2 % MAR(y) = 2 I NR(y,) + R(O) @l
i=bj= i=

where h; is the distance between the locations of measurements i and j and #,,
1s the distance between the locations of measurement i and the unknown. Using
the method of the Lagrange multipliers, the solution that minimizes the mean
square error subject to unbiasedness constraints given by solving the system of
n + 3 equations with n + 3 unknowns (A, Ay, ... . N, 2y, 75, 23):

‘Zl MR + vy + vx; + vy, = R,y fori=1,2,...,n (42)
=

combined with Eqs. (37)-(39).
We can now verify that, due to the unbiasedness constraint, the MSE is

the same whether onc uscs R(h) or R(E) + a; + a,h’, where a, and a, are
arbitrary coefficients.

MSE

I
!\ [‘_\/_}a

23 ANIR(E) + ay + aphl]
— 2 2 N[R(h) + a + add)] + R(D)
i=1

Z ARG — 2 2, NR{R) + R(D) (43)

Il
||M.~.

The proot follows:

E Z MNha — 2 Z Nay = [(Z x)(Z 7\,.) —2(& )\j)-‘al =0

i=1,=1 =1

and
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Z LMaz ZZ)\az

i=1j=1

J-E

22NN = )+ (= )

-2 2:-;] AJ"((xii - ’xu)z + (yl - y(J)z)Ja2

[Z 2 )\)\(x2 +x;’—2xixj+y,-2+yf—2Y,y;)

i=1j=1

-2 E )\(XQ +X ""2x.x +y, +yo_2y,yu)-‘az =0 (44)

i=1
Wc will show that the bracketed expression is zero. This expression can be

simplified:
IPWe +y?)(2[}\,) + (Z)\) 2 )\(xf + yj)
i=1 J= i=1

- 2(_il)\,x,>(_él?\j.:g) - z(L ,y,)(Z)\ )
i= J= =
-2 ét:l )\i(xlz + }’,2) + 4(‘§I )\nx:)xo

+ 4( Z )\fyr')y() - 2(2 kl)(x{z) + y(l))
i=1 i=1
20— 22 — 2 2NOE 4 D) + 42 4 4y
=1

=2 2N +y) -
il

— 205+ ) =0 (45)

Therefore, adding to the covariance function the term a, + a,h* has no

effect on the mean square error or the associated kriging equations
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