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Abstract: Macrodispersion is spreading of a substanee induced by spatial variations in
local advective velocity at field scales. Consider the case that the steady-state seepage
velocity and the local dispersion coefficients in & heterogeneous formation may be modeled
as periodic in all directions in an unbounded domain. The equations satisfied by the first two
spatial moments of the concentration are derived for the case of & canservative non-reacting
solute. It is shown that the moments can be calculated from the solution of well-defined
deterministic boundary value problems. Then, it is described how the rate of increase of
the first two moments can be calculated at large times using a Taylor-Aris analysis as
generalized by Brenner. It is demonstrated that the second-order tensor of macrodispersion
(or effective dispersion) can be computed through the solution of steady-state boundary-
value problems followed by the determination of volume averages. The analysis is based
solely on volume averaging and is not limited by the assumption that the fluctuations are
small. The large-time results are valid when the system is in a form of equilibrium in which
a tagged particle samples all locations in an appropriately defined “phase space” with equal
probahility.
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1 Introduction ,

Macrodispersion, or spreading due to variability in local advective velocity, has at-
tracted much attention recently in the geohydrologic Literature. It has been studied
in the works of Gelhar et al. (1979), Gelhar and Axness (1983), Gelhar (1986), Da-
gan (1082, 1984, 1987), Schwarz (1977), Smith and Schwarz (1980), Matheron and
DeMarsily (1980), Dieulin et al. (1981), Spesito et al. (1986), Neuman et al. {1987),
and Kitanidis (1988), to mention some of the most relevant articles. {Additional
references can be found in the recent book of Dagan (1989), Cushman (1990), and
the review paper of Wheatcraft and Cushman (1991).) These works have shed light
on the mechanism of macrodispersion, have explained the large rates of speading ob-
served in heterogeneous formations at field scales, and have suggested methods for
the calculation of rates of speading from statistics of spatial vaniability of velocity or
conductivity.



Most of the work on macrodispersion has dealt with “random media”, i.e., disor-
dered media with statistically specifted parameters. Bowever, the quantitative analy-
sis of macroscopic transport properties in such media is fraught with difficulties. The
most commonly used methods are Monte Carlo simulations and small-perturbation
(or first-order) approximations. The former can be extremely expensive and yields
results which cannot be readily generalized to_cases with attributes different from. . .

those of the specific experiment. The latter is applicable to cases with small variance.
No computationally efficient method is available to calculate macrodispersivities for
all variances.

This paper is perhaps most closely related to the works of Gelhar et al. {1979),
Gelhar and Axmess (1983), and Neuman et al. (1987). These works have computed the
large-time macroscopic dispersion coefficients for stationary varability of advective
velocity using ensemble averaging and assuming small fluctuations. Cushman {1983)
disputed on theoretical grounds the validity of the small-perturbation approach. Nu-
merical experiments for a simple case have indicated that the underlying assumption
in the small-perturbation assumption may lead to incorrect results when the variance
of the velocity is not actually small (Kitanidis, 1988). According to Dagan (1989, p.
335) the applicability of the small-perturbation approach is limited to small values
of the variance of log-conductivity and the “development of an adequate nonlinear
theory or effictent numerical procedures is a challenging topic for future research.”

The present work is an attempt to develop such a theory. A major objective was
to reduce the problem into a form which allows the application of efficient numerical
methods for the computation of macroseopic transport coefficients. Following an an-
alytical approach, it is shown that the computation can be reduced to the solution
of an elliptic boundary value problem and an integration. Another objective was to
develop a better physical insight into what these macrodispertion coefficients really
mean by adopting a volume-averaging approach instead of the usual ensemble aver.
aging approach. I believe that the volumec-averaging approach offers insights which
are impossible with other available methods.

In modeling macrodispersion, the important feature is spatial variability of the
local advective velocity at the Darcy scale. Most works adopt two basic assumptions.
The first assumption is that this velocity varies from point to point but, in a sense,
repeats itsel{ in space (“translational invariance”). The second assumption is that the
length scale of velocity fluctuations is much smaller than the field scale (“disparity of
scales”). When velocity variability is represented through the formalism of stationary
rando fields, this repetition is of a statistical nature. Thus, volume averages of
stationary parameters are not constant and independent of the location unless the
volume tends to infinity. The stationary model is quite general and has rightfully
been adopted in the above mentioned works. However, this generality comes at a
cost. The main difficulty, as I see it, is that there is no finite volume that could serve
as a “phase space”, in the sense of classical statistical mechanics (see Reif (1967)).
As a consequence: (a) The derivation of the equations satisfied by the macroscopic
transport coefficients is rather cumbersome; (b) numerical methods are not well suited
for problems defined over infinite domains. A way to deal with both difficulties is to
temporarily replace the stationary functions with periodic functions. Once the result
has been obtained through volume-averaging over a finite volume, it can be extended
from the periodic to the stationary model by taking the limit of the volume to infinity.
In terms of the application of numerical methods, the results may be approximated to
any desirable degree of accuracy by sufficiently increasing the period. This approach
has been adopted for different but related problems (Van Lent and Kitanidis, 1989;
Kitanidis, 1990).



e N I_...-..‘_--K-;-.‘-\--\_.‘_.__-‘.'-_{:-.Z.-.ﬁ‘:.__.

2.5-'_'“-—._.—-"'—'“-—.____.—/"_'“-—-__—4 M ’

e ——— ] v — i
e e NI o T R R '_.///:
O N | [ ———
2 : :
H
[

x2 b e E
-5 Xe: - v
N——— b :
-.-W . :
| et T T o
T e N i S H
o~ e~ ] Lme— = - - e e
L— —  —— ] H H
O8p _ —m —— L/ Pt s s e i {
e N e
0O 5 0 15 2 25 X R vy
X1 X1
Figure 1 Figure 2

Figure 1. Streamlines in a hypothetical periodic medium. The period in the z, direction
is 10 and in the z, direction is 1

Figure 2. Velocity vectors showing the movement of particles within the phase space

In this paper, the equations satisfied by the macrodispersion coefficients are de-
rived for a formation with periodic parameters. Volume-averaging methods on peri-
odic media have found many applications in heterogeneous porous media. Examples
(containing many references) are the works of Whitaker (1967), Plumb and Whitaker
(1988), and Bear and Bachmat (1990). The model adopted in the present work is
similar to the one previously adopted by Bhattacharya (1985) and Gupta and Bhat-
tacharya (1986) but the derivation and the physical meaning are different and the
result is more general since it accounts for variability in local dispersion coeflicients.
In another paper, the results are extended to the cases of stationary random media.

2 The problem
2.1 Velocity and local dispersion coefficients

Consider steady flow with seepage velocity which is a periodic function in all three
directions. Let ; be the period in direction . That is,

u(A’l,A’Q,Xs) = U(Xl+m111,X2+m212,X3+m313) (1)

where u = (u;,us,us) is the vector of seepage velocity (specific discharge over effec-
tive porosity); X = (X, X3, Xa) are the spatial coordinates in a global Cartesian
coordinate system, and my , my , and my are integers. Figure 1. depicts the stream-
lines in a periodic medium. The analysis is carried ont for a three-dimensional flow
dormain but also applies to two-dimensional flow, Furthermore, the velocity function
is continuous and satisfies the condition:

Ju, Ou; Ouy
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This last assumption is commenly made in dispersion studies (e.g., Gelhar and Ax-
ness, 1083). For example, this condition is satisfied from continuity of an incompress-
ible Huid in a porous formation of constant porosity. In this paper, this condition is
important only in determining the large-time behavior.

Consider now that we superimpose a rectangular grid with spacing § in direction
i. The grid subdivides the domain into elements, each shaped like a rectangular

(2)
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parallelepiped with lengths of sides I,, I , and I; . Assuming that the origin of the
global coordinate system coincides with the center of symmetry of an element, the
coordinates of the center of any element are ( nady, ﬂglg, nyly ) where ny, nz, ny =
«—2, =1, 0, 1, 2, ... Consequently, each elemexnt is identified with a triplet of
integers ('l’l.l, na, N3 ), or n.

For the sake of convenience, a system of loca.l coord.mates ( z1, Z31, =3 ) will be
intrad

HiTodw 18 @l & cenler o
the clement and the three axes are parallel to the axes of the global system. Now
each point with global coordinates X = (X, X, X3 ) can be represented as
(n, x) = (ny, na, na, 2y, 23, z3) wheren = (n;, n;, n3) specifies the element and
X = (%1, %z, #a) specifies the location within the element. The relation between
global and local coordinates is given by

X = nli4z, 1= 1,23 3)

where, in this work, n;, n;, n; are always integers and z;, z;, and z; always satisfy
the conditions —Il/2 < Iy < 11/2 —13/2 < Iy S < 11/2 and —'13/2 < T3 S < 13/2

Consider now a point on the interface of elements {n,, ny, n,) and (n1+1, nz, nj).
From continuity of the velocity,

u(ny, ng, ng, L/2, 22, z3) = uw(ny +1, na, na, =42, z;, z3) ()
Similarly, on the interface of elements (ny, na, n3) and (2, n3 + 1, ny),

u(ny, ny, n3, 21, /2, z3) = u(ny, 12+ 1, ns, 21, ~l/2, 3, z34) (5)
and, at the interface of elements (ny, na, n3) and (n;, ng, ng +1),

u(ny, ny, na, 21, 2z, 3/2) = u(ny, ng, n3+1, ), 2,, ~l/2) (6)

The velocity at local coordinates x is the same for all elements, because of the
periodicity of the velocity function. Thus, we may suppress the dependence of velocity
on the number of the element and show only the dependence on the local coordinates

u{n,, ny, na, Ty, T3, z3) = u{z, T2, z3) (7
where the following conditions are due to continuity

u(ly/2, za, xa) = u(=1,/2, 23, z3);  u(zi, Lf2, z3) = u(zy, —1/2, z;);
u(z), £z, 12/2)

U(tl, T2, —[3/2) (8)

We will refer to such conditions as the requirements of symmetry.

Because of equations (8) and mass conservation, it is straightforward to verify
that

12/2  ply/2 Iaf2 ply/f2
f [ l /2 Za, Ig)dt;d:g = / / U 21, ra, tg)d;ﬂ;dla
Izls Iyls h/1

-2/ 13/2 ~l3/2

= [llzlajyul(zh Ty, Ta, }dx = ﬁl (9)
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where V is the volume of an element, dx stands for dz, dzr; dza, and™fi, is the average
velocity in the z, direction. This result allows the substitution of areal averages of
velocity by volume averages. Similar relations hold for u; and us.

The microdispersion (or local-dispersion) coefficients is also assumed periodic,
with the same periods as the seepage velocity.

2.2 UoncenlIralion

Let o(X:, X3, Xa, t) or, in local coordinates, o(ny, n2, n3, T1, T3, Za, t) be the
concentration of a conservative-nonreactive solute. For the sake of convenience and
without loss of generality, consider that the solute has unit "mass” over the infinite
domain V., i.e,,

L o X, X = 1 (10)

In this case, the concentration function can also be interpretcd as the probability
density function of the location occupied by a tagged particle at time .

The solute is advected by the moving fluid and at the same time undergoes mi-
crodispersion. This microdispersioa (or laboratory-scale dispersion) can be described
qualitatively as spreading due to wandering of the solute particles in tortuous flow
paths as well as velocity variations from the shear effect induced by the soil matrix
(see Fried, 1975, p. 7, Freeze and Cherry, 1979, p. 75). That is, microdispersion is
induced by pore-scale variations of fluid velocity as well as Brownian motion. It is
assumed that at the Darcy scale, which is much larger than that of the pores but
small than the scale of the heterogeneities of the medium, microdispersion (including
the usually less important molecular diffusion) is a Fickian process with dispersion
second-order tensor D,

Within each element, the conservation equation can be written in the familiar
form, known as the advection-dispersion equation,

%-}—V-(uc)—v-(Vc) =0 (11)
where V is the vector differential operator V= (8/8=,, 8/8z,, 8/0z3)7, with
respect to the local coordinates. V- denotes the divergence of the 3-dimensional vec-
tor which follows. For example, ¥ -u = 0Ou,/8z, + Bua/8z; + dua/fz;. V not
followed by a dot indicates the gradient of the scalar quantity which follows. For ex-
ample, V¢, where is a scalar, is the 3-dimensional vector (8¢/0zy, ¢/, 8efBz3)T.
Equation (11) has assumed that u and D are not affected by ¢ (i.e., the flow and the
microdispersion are not affected by the concentration). Also that no mass is added
or subiracted after the initial time,

Equation (11) is satisfied in the interior of each element. At the interface of two
adjacent elements, it is required that the flux across the interface should be the same
no matler what system of local coordinates it is calculated in. Consider the interface
between elements (n,, nq, n3) and (ny + 1, na, n3). The advective flux across the
interface at any point 1s

i {1/2, 13, wa)e{ny, na, na, L/2, z3, 73, 1)
= uy(—1/2, 23, T3)e{m + 1, nyy my, ~0/2, 22, T3, 1) (12a)

which, given {8), means that the concentration must be continuous at the interface

e g g Ty AT W,y R W S " T WK
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C(nll ni, Na, z]/zi L2, Ta, t) = C(?T'l + 11 Tz, N3, —11/2: T2, T3, t) (12b)
Similarly, at the other two interfaces:

c(nh iz, T3, I1, [2/2v T3, t) = C(ﬂl, 2 +1: Ry, T, _11/23 I3, t) (13)
Cl'ﬂ-], Ra, T3, T1, T2, ‘3/2! t} = C(ﬂ-l, na, ﬂ3+ 1! Ty, T3, _13/21 t) (14)

It is also required that the dispersive flux is the same. Thus, the gradient of the
concentration on each interface must be continnous:

dc dc

5’; Im, ny, ny, 1/2, 23, 23, & glﬂrﬂ‘ ng, ny, =l /2, 2y, 2y, t (15)

dc e

E |m. ny, ny, w1, 13/2, 29, 8 = b?lﬂh ng+l, ny, =y, —i3/2 =y, ¢ (16)
1 1

dc e

glm. na, my, T, #3, /2, 8 T %lﬂx. ny, nytl, =y, o2, =2, 2 (17)

where 1 takes the values 1, 2, or 3. Finally, the concentration at very large distances
from the origin vanishes:

¢(ny, na, ma, %1, Ta, T, t) = 0 a5 ny, 0y, Nz — oo (18)

It will be assumed that the rate of decrease is such that all spaiial moments can be
defined.

3 Spatial moments

Determining the concentration is diffcult when the seepage velocity is spatially vari-
able. A general method first proposed by Aris (1956) and used in pumerous studies
(e.g., Barton, 1983; Giiven et al,, 1984, Brenner, 1980a, 1980b, 1982a, 1982b) is to
deal with spatial moments of ¢. Actually, we will deal with two types of moments,
local and global.

Local moments depend on the vector of local coonrdinates as well as on time. The
zero-order moment is a scalar defined as the sum of concentrations at all points with
local coordinates z,

a(x,t) = Zc(n,x,t) (19)
n

where =, is shorthand notation for the triple summation ¥7__ ¥ ___ ¥>__ .

According to the interpretation of ¢ as a pdf, a(x,t) is the probability that at time {

a tagged particle occupies a location with local coordinates x.

The first moment is a three-dimensional vector b(x, t) whose 1" element is defined
as follows:

b, = (b{(x.t)); = Z(n.-l.—)c(n,x,t) (20)

o

For example,

bl = llEnlC(nll Ng, N3, £, Iy, I3, t) (21)
o



The second moment is a 3x3 symmetrical tensor whose ij** element is defined as
follows

e

Cii = (Clx, b)) = g(nsh)(ﬂﬂj)dnaxvt) ) (22)
Eor pvnmp]n’

Cu = Ifzn:nfc(m, ny, na, T1, Tz, I3, 1) (23)
and

Cr = z,l,);nln,c(nl, N2, B3, T1, Tz, T3, t) (24)

and so on. Higher moments could be defined in a similar way but they will not be
required in this analysis.

Global moments are defined from the intergral of local moments over the local
coordinates. That is,

aft) = fv a(x,t)dx ; B(t) = fv b(x,t)dx ; and T(t)= j; Clx,t)dx  (25-2)

Consider the physical meaning of the global moments. For each element n, define
¢ as

&n,t) = fvc(n,x,t)dx (28)

This is the "mass” of solute in element n at time ¢ and can be interpreted as the
probability that a tagged particle is in element n at time ¢. If this mass or probability
is assumed concentrated at the center of the element, then «, 3, T are the spatial
moments. The zero moment, o, represents the total mass and is equal to 1 at all
times (see Equation 10). The first moment, B(t), is the vector of coordinates of the
centroid (center of mass) of the plume and can be wrilten

B(t) = Y &n,t)X(n) (29)

n

where X(n) is the vector of global coordinates of the center of element n.

The second moment is the tensor of the mean square displacements about the
origin of the global coordinate sysiem and can be written

() = ¥ &n,)X(n)X(n)" (30)

To measure the spreading of the plume about the center of mass of the plume, define
the central second global moment

Alt) = Y &n.t)(X(n) - B)(X(n) - B(t)T = T(t) - BOBEH)" (31

It is important to keep in mind that the global moments are defined for concen-
tration after averaging within each element. The implications of this averaging will
be discussed later.

4 Equations satisfied by the local moments

First off, we obtain the equations satisfied by the local moments. For fized z, sum-
mation over all elements gives:

R gy e g
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Enj{% +V-(uc) -V -(DVe)} = 0 (32)

Since neither u nor D depends on n and V is with respect to local coordinates,

gi(z c(n,x,t))+V-(ch(n,x,tj)—V-(DVZc(n,x,t)) =10 (33) |
Ja
E-{-V-(ua)fvl(DVa) =0 (34)

a(x,t) satisfies partial differential equation (34) and the following boundary condi-
tions:

a(li/2, z2, T3, t) = a(—h/2, 74, 24, 1) (35)
a(zlr !2/211 Z3, t) = a(zla _12/2r T3y t) (36)
ﬂ(zl, z2, 13/2, t) = a(zy, T, —13/2, t) (37)
da Ja

b?jh/?. z3, 23, ¢ = 'é;_l_l—h/l ®, 2y, t (38)
Ja da

a_z;lzl, i3/2, x5, t = 5’;;!11, ~lI3/2, =y, t (39)
and

da da

6—3_.|n' T2, af2,t = a’:in. z3, —laf2, ¢ (40)

where ¢ = 1,2,3. These conditions are obtained through summation ever n. Proofs
are given in Appendix A.

To determine the equation satisfied by the components of the first local moment,
we follow a similar procedure. For the first component, we find that b, satisfies exactly
the same form of a differential equation as a:

b
6—;+V-(1161)—V‘(Vb1) =0 {41)

but with different boundary conditions:

bl(llfg, Iz, L3, t) = bl(_tl/za L2y T3, t) _ﬂ'(_ll/zﬁ L2, La, t)tl (42)

bl(Il’ 12/2: T3, t) = 61(31, _[2/21 T3, t) (43)
bl(zla Iy, 13/2: t) = bl(zls T2, _23/21 t) (44)
ab ab Ja

E}‘_L{,,’z. 1, 22, t T é";l:l-f,/z. 3, za,t T a_xl_l—lu’?. T3, Ty, fl‘ (45)
db, ab,

5z Ez., L2, 23, 0 = 9z [21. —13/2 =z, t (46)
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b ab
a_;lzl, zz, /2, ¢ = a_;lﬂx;, -l f2, ¢t (47)

By analogy, the partial differential equation and the boundary conditions which

cw —————

Thust be satishicd by b; and by can be obtained.
Now consider the second local moment. Each of its elements, C;;, satisfies

ac,;
at

with given boundary conditions. Consider, first, the case of Cy;.

Ciufli/2, z3, 23, 1) = Cu(=h/2, z2, =3, t) — 2b(—11/2, =2, =3, t)Is

+ V- (uCy) - V- (VCy) = 0 (48)

+(I(-*l1/2, Ty, £3, t)l: (49)
Culzy, 1/2, 73, t) = Culzy, ~h/2, za, £) (50)
Culzy, =2, 13/2, t) = Cufzy, 22 —1/2, t) (51)
ac ac b da

a_zl‘lll”’I, Ty, z3, t — _a;{ll—h/?, xg, 23, t 25";1‘"—1”'2, T3, T3, tll + 52—‘&—11/2, Ty, T3, !lf(sz)
8Cn ac

B—:'lx., L2, 2y, ¢ = E};‘h,. —12/2, =y, ¢ (53)
ac ac

—5;1‘_1\“, man dyf2 e = BTI,”"’ a3, —ly/2, 1t (54)

By analogy, we obtain the boundary value problems for the other diagonal elements.
The boundary conditions for Cy; are:

Cialli/2, 22, 23, t} = Cra(=h/2, za, 25, ) — ba{—11/2, 22, z4, t}]i (55)
Cralzy, 13/2, 23, t) = Cua(z1, ~1a/2, 23, £) — ba(z1, —12/2, 23, t), {56)
012(31, Z2, 13/21 t) = Clz(zh Tz, ""[3/2y t) (57)
ac ac 8b

Ef‘z‘h./z, Ty, T3, L = E;Il—zl-h/z. EZTOE TV B _6“;1:_{—‘1/2. w1, 3, !l‘ (58)
ac ac ab

fdr-lzh., Hi2 et = -éfﬁzl. /7 ozy 1 — 5’§|zl. —taf2, =, k2 (59)
ac ac

6—;21;,. 2. a2, ¢ = Eﬁh., 2q, =ly/2, t (60)

Similarly for all other off-diagonal elements of the second-moment tenser C.

5 Equations for rates of change of the global moments

From Equation (34)

e ——
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./;{% + V- (ua) - V. (DVa)}ldx = 0 (61)
Integrating each term and using the divergence theorem,

B = [ v.[-Va+(Vallix = [[-ue+ (V) nds (62)
Tl IV B

o
where 5§ is the surface wich surrounds the parallelepipedal element, 1 i5 a unit vector
normal io the surface and pointed outward, and 45 is an infinitesimal area on the
surface which surrounds the clement. Because of symmetry in u(x), D, a(x,t), and
Va on the boundary, this integral vanishes and we obtain that

da

- =0 (63)

This result was anticipated sinece, according to Equation (11}, no mass is added to or
subtracted from the system after the initial time.

In a similar fashion, the rate of increase of §;, the first element of the first moment,
is

% = -/;[m-(ubl) +(DVb)] - ndS

{2/2 1312
/ / [—ul(—ll/Z, Iz, 1:3){61(ll/2, £z, T3, t)

=172 iy /2

ab ab
( {l/2 T3y T3, t)}+zD1‘{ 1l|1:|/2 zz, x5, t T 1| 11/2, 2y, x4, l}]dz1d$3

i=1

02/2  ph/2
jhfl Mz[ut(—h/zr331;-!“—3)'1(—’1/2?152,zayt) —di - Val_j, j2.0; 0y aldz2dzs  (64)

where d; is the vector formed by the first column of the microdispersion tensor D.
Note that D is symmetric.
Similarly for the other components:

dﬂz 1/2 f:ﬂ
=l j e [ [ua(z1, —12/2, za)a(ze, ~12/2,23) — Bz - Vale, 1y /2,20 dz1d24(65)

and

43, Lt iz
T 3./: /2'[‘ f (walzy, 22, —1a/2)a{z;, 22, ~13/2) ~ dy - Val,y, 2.1, /24]dz1dz,(66)

What is particularly interesting is that the rate of increase of the first global moment
depends only on the zeto local moment. The same is true in the analysis of the
problem examined in the classical works of Taylor (1953) and Aris (1956).

Consider now the second moment. The rate of increase of T';; is

T~ [1-Cu) + (VG -ndS

/2 rh/?
= [ [ lmn(=h/2 zm m{Cah/2, =, 2, t) = Cul=h/2, 22, 25, 1)}

13/2 iy/2



2 oc ac.
+Z Dlo{ a - hl/: T3, 23, b a ul—hfz, =3, =1, g}]d$1d$3 -
i=1

1:/2  plaf2 2
f [ [ul(—11/2, L2, 33){21151(""1/2, Iy, Ta, t) —Ila(—ll/Z, L2, Ta, t)}

{3/2 4 -13/2

——p © ——

dy - V(=2by1y + al})| 1,2, a3, 2, oJdZ2dzg (67}

For rate of increase of T';;

dl"
T = [I-uCw) +(DVCy)] nds

2 :,/z
/r j2d—tas2 "“1 —0/2, z3, 33){012(11/2; L2, I3, t)—Cu(—llfz' Ly, T3, t)}
3 : |

ac. ac
+ZD1| 12'11/2 z3, T3, ¢t 12' —13/2, za, =3, :}]dﬁzdxa

/2 13[2
j j [~uz(z1, —b/2, 23){Cralz1, ha/2, 23, t) — Cua{2r, —1a/2, 23, )}

LW/2d-13/2

ac ac
+ZDZI tzlll Iaf2, =y, t — lzll‘i =i /2 =, l}]daldza

13/2 Is/2
j [w—4/2, 20, 23)lhba(—11/2, 25, 25, t) — hhdy - Vb2|_t, j2,2, .25 e]dZ2dTa

/24 =ly/2

/2 13/2
/‘ lzft I 'Ll,z Zl,—lg/z 33)125](3],—11/2 Z3, )— Izdz : Vb1'zlI_[=/2I=’,¢]dzld23(68)

In a similar fashion, we obtain the equations for all other elements.

6 Large-time behavior

As the solute plume spreads, the distribution a(x, t} gradually becomes more uni-
form as the tagged particle becomes equally likely to be at any point in the phase
space which, in our case, is defined as a representative elementary volume. (We use
the term “phase space™ for iwo reasons, First, to underline its difference from the
unbounded geometric space which contains the particles. Second, to point out that
the elementary volume plays a role similar to the phase space of statistical mechanics.
Of course, in the classical approximation in statistical mechanics the phase space is
defined as the cartesian multidimensional space whose axes are labeled by all the
coordinates and momenta describing the sysiem (Reif, 1967, p. 256). For the prob-
lem at hand, however, the momentum of a particle is not needed. J. H. Cushman
(personal communication} disagreeed with the use of the term "phase space” in this
context and suggested the use of the term "configuration space.”}

One may indeed verify that the steady-state solution to the boundary value prob-
lem of Eqs (34) through (40) is
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Figure 3. (a) Example of the pre-asymptotic distribution of 200 selute particles in the
phase space. (b) The distribution of 200 particles in the phase space at a large time
{Equilibrium)

which means that x, the local coordinate of the location occupied by a market particle,
is uniformly distributed. Note that this solution might not be neccessarily valid if the
condition V -u = 0 were not satisfied.

One way to visualize the meaning of equations (34)-(40}) is by considering the
movement of a tagged particle within the box that we called the phase space. This
particle moves with advective velocity u(x} and is subjected to random Brownian
motion with dispersion temsor D(x), where x is the location of the particle in the
box (which coincides with the local coordinate of the particle as it moves in space.)
What is interesting about the box is that a particle which passes through the wall at
a certain point immediately reappears on the opposite wall! (See Figure 2.) Thus,
the system can be described as closed (Kitter and Kroemer, 1980, p. 29) or isolated
(Reif, 1967, p. 50) with no mass being gained or lost to the surroundings.

Even if at time t, most of the particles are found congregated around a point within
the box (Figure 3a), given enough time these particles will spread out within the box
so that the distribution of the particles will become approximately uniform (Figure
3b), the maximum-entropy distribution for the phase space. When this happens, we
say that the system is in equilibrium. Taylor {(1953) postulated for a similar problem
that equilibrium will be reached independently of the initial condition; the work of
Aris (1956) confirmed that the assumption was correct by formally computing the
zero local moment.

It is of great practical importance to compute the relazation time which needs to
elapse before equilibrium is reached. This can be computed by solving (34)-(40) with
initial condition a unit-mass point injection and determining the time that is needed
for a{x, t) to become approximately uniform. Nevertheless, a rough estimate of the re-
laxation time can be obtained from a simple argument (Taylor, 1953, Chatwin, 1970).
The relaxation time is the time it takes a marked particle to diffuse throughont the
length of the box which is approximately I?/D, where [ is the size of the box and D is
the local dispersion coefficient. Thus, the local dispersion coefficient is a critical fac-
tar in determining the relaxation time required for the asymptotic results to becomce
valid. Indeed, ever when D does not appreciably affect the value of macrodispersion
coefficients, as shown correctly for large Peclet numbers and small variances in the
works of Geihar and Axness (1983), Dagan (1984), and Neuman et al. (1987), there is
no escaping the fact that it may decide whether the large time results are applicable
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or not. Without local dispersion, it is questionable whether equilibrium is reached
or maintained and the transport of a given plume at finite times cannot be eagily
predicted from macroscopic transport coefficients, as indicated in the simulations of
Smith and Schwarz (1980). They found that the effective dispersion_coefficients in a
given formation varies erratically with time and is very sensitive to small changes in
the local arrangement of conductivity elements (the “microstructure”.)

Fvenrthoughtheretaxation tithe needed for the asympotic Tesult to be valid can
be long, these results are applicable at early times as predictions with incomplete
information. In statistical mechanics, Jaynes {1985} has vigorously argued that such
upscaling methods should be regarded “as representing, not mechanical prediction
from the equations of motion, but only the process of inference (make the best pre-
dictions you can from the information you have) ...” (ibid., p. 25). Thus, ever if
the asymptotic domain has not been reached, the asymptotic results (velocity and
marodispersion) are the best predictions possible in the absense of information about
the location and size of the plume. In this case, it is appropriate to assume that
the location of a tagged particie in the phase space is uniformly distributed not be-
cause enough time has clapsed but because this distribution expresses our state of
uncertainty about the location of this particle. However, better predictions may be
obtained which use additional information.

Once a{x, t) is determined, we can calculate the rate of change of &

48, 1 fhiz gha/2 .
—d-[,- = ET ,/; /2_/’f 1 ul(—11/2, Tz, :L‘g)dz‘zdx;; = i (70)
243 Y- =l

and analogous relations for 5‘%4 and é.%’-,

Thus the centroid of the plume moves with the (spatially) average velocity:

43 1
mo_ 9 d 71
“ dt III;I;.[VU()C) x (71)

The first local moment can now be determined from the solution of a boundary value
problem, Equations (41) through (47). Starting with by, one may verify that at large
times

bi(Ih Iy, Ia, t) = {Constant + 'E1t — I + gl(zl, s, 23)}/!112[3 [72)
Then, Equations (41)-(47) simplify as follows:
u-Vgy -V (DVg} = u; - V-dy (73)

subject to the symmetrical boundary conditions:

n(lh/2, 22, za) = qi(=L/2, 23, 2a} (74)
iz, b2 ry) = gi{zy, —12/2, za) (75)
gil{zy, 22, 14/2) = gl(Ih z3, ~1a/2) (76)
d O -
“59;1?:”2, Tr w1y ﬁ!—ll/z‘ 23, =3 (77)
g 5

Sy = ,—gl|=,, —ta/t, =y (78)

~  iry i3/2,
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ag; 35]1

o m b = golam s (79)
In the trivial case that up(z) = uy(z) — @i, vanishes and the microdispersion tensor
is constant, the solution is obviously g; = 0. The same is approximately true when
the microdispersion dominates in the sense thai )
| D[] (80)

Otherwise, the solution depends on the form of the spatially variable velocity and
is affected by the mean velocity and the microdispersion coefficients. It can be ob-
tained after integration using analytical or numerical techniques. Such methods are
developed elsewhere.

The rate of increase of I';; may be written as follows:
dlyy
dt
after substituting areal by volume averages as shown in Appendix B, Then, from the

definition of the second central moment and substituting in terms of gy

- Zﬁ,Lb,dx + 2fv(u;b, —d; - Vb )dx (81)

dA ,
B = bl [ (e +01) - dy - V(-2 +g)ldx
dt v
= 2Lbl, fviuigl —dy - Vgijdx + 2Dy, (82)
where D, is the spatial average of [;; and we made use of fruizidx = 0 as a

consequence of Equation (2}.
In general the result is
ldAij
2 dt

1 oy
b3 2y Laly fv[u,g, di- Vg; +ujq ~ d; - Vgildx + D, (83)

where D™ is the three-dimensional second-order tensor of macrodispersion.

7 Discussion

The Taylor method for the analysis of dispersion was oniginally proposed for rectilinear
flow in pipes, between plates, or in perfectly stratified media (Taylor, 1953, Aris,
1956, Giiven et al., 1984, Hatton and Lightfoot, 1984, and Valocchi, 1989). Taylor
(1953) studied the transport of a solute which is injected into a pipe through which
a fluid is fiowing. He found that the cross-sectional average concentration, which
varies along the pipe axis, eventually satisfies an advection-dispersion equation with
constant coefficients, which he computed. A landmark in the development of this
method was the introduction by Aris (1956) of the method of moments. More recently,
the important works of Horn (1971) and particularly Brenner {1980a and 1982a) have
pointed out that the basic ideas in Taylor’s approach ate applicable in a much wider
context for the derivation of effective or macroscopic transport coeffocients. For
example, this generalized Taylor-Arns-Brenner method can deal with the problem
of effective conductivity in gradually varying two- or three-dimensional flow in a
formation with stationary conductivity (Kitanidis, 1990.)

This work has applicd the same approach to determine the macrodispersion co-

efficients in fully three dimensional flow with seepage velocity and microdispersion
coefficients which are periodic in all directions. An important feature of the approach
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is the distinction between “local” and “global” moments. The local moments can be
determined sequentially solving boundary value-problems. First the zero local mo-
ment is determined, then the first, and s0 on. Next, the rate of increase of the nt*
global moment is found to depend on the first 5= 1 local moments. The first global
moment represents the position of the centroid of spatially averaged over one elemen-

.

econd moment the spreading
(in a mean square sense) of this concentration. The macrodispersion tensor is defined
as half the time rate of increase of the second moment.

The key result of this analysis is that the macrodispersion tensor is given by
volume averages, equation (83). To compute this expression, one needs to calculate
first » auxiliary functions (n =dimension of flow domain), which can be obtained
from the solution of n elliptic boundary value problems (Equations 74-80). Note that
the microdispersion coefficient not only affects the value of the auxiliary functions
but also appears as an additive term in the final result. Most previous works either
neglected this term or added it after the analysis was completed.

This derivation did not assume small perturbations, steady state in the concentra-
tions, or linearly varying concentration mean (Gelhar and Axness, 1983). No ensemble
averaging is involved in this analysis. The expression is valid for any onientation of
the mean velocity.

The results of this analysis are in general agreement with those of Bhattacharya
(1985), who followed a completely different method, requiring significantly more ad-
vanced mathematics. By contrast, the method of moments required only classical
caleulus. The present analysis is also more general, accounting for spatial variability
in the dispersion coefficienis. Furthermore, I believe that there is a difference in the
interpretation of the results of the two methods. In the Taylor-Aris-Brenner method
we have not attempted to show that the "point” values of concentration, (X, t),
necessarily satisfy the classical advection-dispersion (AD) equation with constant co-
efficients. The reason is that at scales smaller than the spatial periodicity, velocity
variations tend to distort the concentration distribution in areas with a distribution
gradient. (See Frind et al., 1987, who simulated transport in a formation statistically
similar to the Borden site, Sudicky, 1986, and Freyberg, 1986.) Thus, at times of
interest in applications, ] see no reason to believe that the AD with constant coefi-
cients is satisfied by (X, t), especially near the edges of the plume. Bhattacharya
has focused on very large times and has shown that the concentration ¢ does satisfy
the classical AD equation. [ believe that this will happen only when so much time
has elapsed that all concentration gradients have practically vanished.

This work has focused on ¢, the concentration averaged over one elementary vol-
ume or one periodicity cycle. This way, local variability in concentration has been
averaged out. However, as the plume spreads over a larger volume, this vanability
becomes less important and in some applications neglecting it may be justified. The
rate of movement of the centroid was found to be equal to the spatial average velocity.
Also an expression for the effective dispersion tensor, defined as half the rate of the
increase of the spatial covariance was developed.

The conditions which must be met for this result to be valid:

(i) The velocity must satisfy Equation (2). This is the case for incompressible
fluid and practically constant porosity. If this condition is not met, the prob-
lem becomes somewhat more complicated because one needs to solve one more
differential equation to determine the probability with which a tagged particle
samples a velocity. Furthermore, the effective velocity may not be equal to the
average velocity.
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(it) The plume must be spread ot enough that all velocities are sampled with
the same frequency with which they are encountered in space. Actually, this
does not necessarily require that a long period must elapse, unless the initial
injection was over 2 volume much smaller than that of an elementary volume.
Furthermore, I have argued thai the resuits are applicable at early times as best

predictions in the absense of any information about the location and size of the
plume. {Of course, better predictions are generally possible if more information
is available. For example: If it is known that the plume is concentrated in
a high-velocity part of the flow domain, then the predicted effective velocity
should be larger than the one predicted by the asymptotic theory. Also, if
the plume is very small in extent and covers an area of relatively uniform flow
velocity, the rate of spreading should be smaller than the one predicted by the
asymptotic theory.)

When these conditions are satisfied and, at least as far as the first two spatial
moments are concerned, the further evolution of the spatially averaged concentra-
tion may be modeled with the classical advection-dispersion equation with constant
coefficients:

L "

5;+u VE-V-(D"VE) = 0 {84)
However, it must be noted that Equation (84) may be valid before the plume assumes
a Gaussian shape. Chatwin (1970) has argued that at early times after the injection
velocity fluctuations tend to distort the plume into an asymmetric shape and Aris
(1956) has suggested that skewness introduced at any time lingers on, decaying very
slowly. Thus, at the experiment conducted at Borden, Ontario, (Freyberg, 1986) the
plume is highly non-Gaussian even after it has spread over many correlation lengths
of the velocity fluctuations.

Theoretical analyses based on volume averaging complement stochastic analyses.
The former are particularly relevant to the interpretation of the results of field ex-
periments such as the one at Borden. For example, the analysis developed in this
paper has shown the need for spatial averaging of measured concentration (before
comparing with the predictions of the macrodispersion theory) to remove local-scale
variability; and has highlighted the crucial role of local dispersion in determining how
quickly the large-time results become valid.
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Appendix A Boundary conditions for equations satisfied by the local mo-
ments

This Appendix describes how the results of Section 4 were obtained.
From (12)

Zc(ﬂh ng, na, 1/2, 22, 23, t) = Y clni+ 1, ny, ma, ~1i/2, 22, 23, 1) (A-1)

we obtain (35). The other boundary conditions for a(x, t) are obtained in similar fashion.
From equation (11)

8
3 a_: +V-(uc) - V- (DVe) Xy(n) = 0 (A.2)
n
where, X1{n) = nili. As a consequence, b; satisfies exactly the same form of a differential

equation as a but with different boundary conditions. From (12)

Y clni, m2, n3, /2, 22, 23, t)rly = Yoe(mi+ 1, na, ny, —h(2, =3, 73, t)(m + 1)

n n

—ZC(H1 + 11 nz2, N3, _[1."2) T2y T3, t)ll (AS)
n

so that (42) follows. At the interface which is perpendicular to direction 2:

Y elny, nay ng, 24y 12/2, 23, thmb = S oe(ny, na+ 1, ng, 21, =l/2, 73, il (A4)
n n
which is (43). Similarly at the other interface.

Additional boundary conditions for b; are obtained from the condiiions for the concen.
tration derivatives. From (15):
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dc .

emly

|n na, ny, 01/2 23, 23
BZ' 1, By T3, 1 v v
bfn !

c e
= _In +1, »1, ny, =13 /2, =3, =y, l("’l + 1)‘1 - _lrl +1, n3, ny, —h /2, 2. 23, ll (A's}
; gz, Mt m ny, =1 {2, =3, &3 ;63; 141, n2, ny, —h 2. 33, L

which is (45). The same procedure can be used at the other two interfaces to find (46) and
(47).
Now consider Cy;. From (12)

Z c(ny, nz,na, 1172, 22, z35, )Nl = Z e(m + 1,m2,n5, —11/2, 22, 25, E)(m + 128

n n

-2 Z c(ny +1,na,m3, —h /2, 22,23, t)(ny + 1)1: + z e(ny + 1,19, m3, 11 /2, :::,z;;,t)lf(A.ﬁ)
n n

which is (49)

At the interface which is perpendicular to direction 2:
Zc(nl, ng, N3, 1, 12/2, T3, t)nflf = Zc(n,, ny + 1, ng, 21, ~l/2, a3, t)n"{lf (A.T)
i I
Hence (50) and {51).

From (15}:

fc 2y2 B¢ 251
Z 5?!"1. ny, ny, Lif2, x3, 23, 1"1’1 = E "é;:ln|+1, ny, ny, =N /2, 23, 23, t(nl + 1) 11

n

n 1
c 2 dc 2
—22 a_$|n;+1. ng, ny, ~ /2, x3, ®y, *(nl + 1)11 + z E;i“l+1' na, ma =h/2, 52, 2, 01 (AS)
n 1 n ]

which is Equation (52}.
Same procedure at the other interfaces to find (53) and {54). Consider, next, the case
of Cq12. From (12)

3 efn nzy may 120 22, 23, mbiml

n

= Zﬂ(ﬂl + 1, ng, ma, —O/2, 72, T3, t)(m + Diimalz
n

_Zc(nl + 1, na, ng, ‘15/2! Tz, Ia, 1)11’1212 (Ag)
n

At the interface which is perpendicular to direction 2:

N e(ry,ngana, 13/ 2,25, timbingly = S e(nyma + 1, ma, 2, ~2/2, 23, Hrahinz + 1)
n n

- ZC(T![, Ny l- 1, ngz, T, —12/2, T3, t)nlhh (Al())
n
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At the remaining interface we find the requirement of symmetry. The same procedure with
the derivatives. -

Appendix B Relation hbetween some surface and volume integrals at large
time

From equation (41), apply the divergence theorem—over—the—votmme =72 X F < I,

—l2/2 < 2y $13/2, —l3/2 < z3 < 13/, where z; < I,/2:
L2 rla/2
/ /: j’ abl dzldzzdza
Lrd-tyyedotyyn Ot

I3/2 {3 /2
f [ [(mdr = dy+ ¥b1)|_yyj2 — (waby ~ d, - Vby)|,, |degdzs
12 dutyr2

1 /2
f /J‘ Musbs ~ &2 T — (s = bfdy - Vb )l ol s
1 3

z,/z
+f f ((uaby = ds - Vby)l_ty/2 — (usby — d - Wbyl lderdzs = 0 (B.1)
/2 d-13/2

because of (43), {44), (46), and (47).
At large times, from Equation {73)

la/2 rly/2
f: / / (usby ~ dy - Uby)|_y, joldz2dzs
22

13/2 plsj2 1z
[ / ((u1by = dy - Fby)\,, Jdzadzs + (= + (B.2)
/24 -1y2 2 4

Integrating z, from —I,/2 to I, /2

13/2 J;f!
f [ U.]b] - dl . Vb])!_h /z]dxzdla

12/2 Iy /2
Wiz pla/2 phy/2 1

/ /2 f[ jz/’t /z[ulbg - (11 - Vbl]dz;dzgdz;; + 511‘&! (B.S)
4 z 3

13/2 1y/2
/ / by - d; - Vb, |dzdzs

i2/24=1y/2
hLi/2 i/2 /2
f f f [wby — d - Vbyldz,dzydzs — 2 (B.4)
/20 =la/2d-1y/2

which allows the substitntion in equation (81) of a surface integral by a volume integral.
Similar relations hold for (uaby — d - Vby) (uaby — ds - Vby).

Now consider

1y/2 i3/2 (9b
f / ] _——dxldzzd:rg
Lrad e doy e Ot
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A

/2 b2 .
L f241 /:[(ulb2 =i V)2 - {urbz — dy - Vb )ly, |dz,dzs

" /2
[ L f b = 3 V)i~ (saby = da - Fba)lysldnrdzs

I hf2
+ -/‘ 1 f{ /2[(11361 —_ d3 - Vbz)i-i,/z - (ugbz bt d3 . Vb2)|l;[1]dzld:2
EN Is/2
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At large times, from Equations {69) and (72)

/2 plaf2 l3/2 pha/2
f / [(ulbz - dl. - Vbz)l_,il‘z]dzzdl‘g = f f {(ulbg - d] * Vbz)[‘l]dzgdza(B.ﬁ)
~igftd=13/2 —hizd-lsf2
Integrating z; from -1, /2 to {,/2
13/2 iy /2
N f [({uiby — dy - Wha)|y2]d2adzs
—l3 /241y {2
2 plyf2 /2
= {ulbl - dl . vl?l]dzldtzd:ta (BT}
SUTEE UV BT

which allows the substitution of the surface integral by a volume integral.
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