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Introduction

Among the challenges facing hydrogeologists are to
{2) predict where the contaminants are and where they

are going and (b) to design effective remediation schemes.

To meet these challenges, they must analyze data in or-
der to estimate the parameters of geologic formations
that affect the flow of water or the transport of chem-
icals. However, because these parameters vary in com-
plicated and insufficiently understocd ways, estimates
are usually approximate and hard to obtain. Statisti-
cal methods are helpful in selecting the “best” possible
estimate given the information and in evaluating the
confidence bounds associated with this estimate. Fur-
thermore, they can be used to evaluate the prediction
uncertainty and are thus valuable in assessing manage-
ment strategies and monitoring plans.

Geostatistics started (Matheron, 1971) with simple
and practical linear methods for the estimation of spa-
tial functions from scattered observations. Many of
the original applications were in the mining industry.
By the early nineties, geostatistics has been applied in
most areas of earth sciences. Hydrogeology has possibly
been the most productive field of application where geo-
statistics has been combined with groundwater models,
adjusted for geophysical methods, used in solving up-
scaling problems, and been the cornerstone in analyzing
prediction uncertainty. Furthermore, geostatistics now
consists of more than one schools. Some researchers are
introducing methods for the improvement of linear geo-
statistics while others question the premises of linear
geostatistics and seek alternative methods.

The focus of this review is on geostatistical inference
in hydrogeology, thus excluding problems of upscaling
(“effective parameters”) or network design, unless they
involve data analysis. The reader may want to consult
also the following recent review papers. Rouhani et al.
(1990a, 1990b) review geostatistics in geohydrology and
include tutorial sections as well as extensive literature
reviews. Loaiciga et al. (1992) review the literature on
groundwater quality monitoring network design, includ-
ing geostatistical methods. Kitanidis {1393b) presents
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hinear geostatistical practices. Among new books, the
recent book of Cressie (1991) has extensive coverage
of geostatistics and Gelhar (1993) covers the stochastic
perturbation-spectral approach in groundwater model-
ing.

Methodologies

While originally the attitude in geostatistics used to
be “all that matters is the experimental variogram (the
average square difference between measured values as a
function of the distance separating the measurements)”,
most practitioners now accept that the experimental
variogram is an estimate of the underlying “model” var-
iogram and that this estimate is in fact fraught with
error. Shafer and Varljen (1990) describe a resampling
method to approximate the confidence Limits on var-
iograms obtained experimentally as done in practice.
Data resampling schemes, such as the bootstrap and the
Jackknife, are conceptually simple but computationally
intensive methods that have the advantage over classical
parametric methods that they use directly the experi-
mental distribution. Demonstrating rigotously that the
method accomplishes the set objective may be rather
tricky. Tn this particular application, # is not irnmedi-
ately clear what effect the spatial correlation in the ob-
servations would have on the representativeness of the
error bounds computed in the proposed method. How-
ever, the authors confirm through multiple-realization
Monte Carlo experiments that the method they pro-
posed give accurate estimates for the error bounds of
the variogram even for a single realization. Farrel et al.
(1994) utilized this approach in a geostatistical analysis
of the Borden data (Sudicky, 1976).

While the classical approach has been to infer var-
iograms from the experimental variogram, an alterna-
tive approach has been to determine variograms from
cross-validation, least squares, or restricted maximum
likelihood. Orthonormal residuals (Kitanidis, 1991) are
differences between kriging estimates and observed val-
ues that are useful in variogram estimation and in di-
agnostic checking of the model. Kriging is an algorithm
to obtain an estimate of a spatial variable at a point
from other observations and the structure of the spa-
tial variable (typically represented by the variogram).
The same work showed the relation between the cross-
validation method based on the orthonormal residuals
and the restricted maximum likelihood parameter esti-
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mation method. Another work (Van der Linde, 1993}
showed theoretically the relation between the intuitive
least squares estimation approach (Delfiner, 1976) with
the more general quadratic unbiased estimation method
(Kitanidis, 1985a) and recommended the latter as a
method for estimation of parameters of generalized co-
variance functions. Dietrich and Osborn (1991) pre-
sented a method for the calculation of variogram param-
eter estimates using the restricted maximum likelihocod
approach.

On the topic of diagnostic checking, Chistensen et al.
(1990b, 1992, 1993) adapted techniques from linear sta-
tistical inference to determine influential observations.
Validation or diagnostic checking, defined as “system-
atic checking of the fitted model in its relation to the
data” with intent to reveal mode! inadequacies or influ-
ential data, has been neglected for too long in geosta-
tistical inference. Consequently, research in this area is
important and should continue in order to bring geo-
statistics in step with other fields of applied statistical
modeling.

The relation between generalized and actual covari-
ance functions was discussed in Kitanidis (1993). The
author concluded that variogram analysis of detrended
data is appropriate as long as it is clear that the objec-
tive is to determine the generalized covariance function
(1.e., the part of the second moment that is relevant in
Best Linear Unbiased Estimation.) On a related issue,
it was confirmed (Christensen, 1990a) that “universal
kriging” and “kriging with generalized covariance func-
tions” is effectively the same procedure.

Rajaram and McLaughlin (1990) discuss a procedure
in which the large-scale variability is described with
a different spectrum {or covariance function) ihan the
small-scale variability and the objective is to identify
the large-scale trend.

There were relatively few papers employing Bayesian
methods. (In this approach to inference, Bayes rule
plays an important role and unknowns are locked upon
as random variables, see Savage, 1962.) Van Tonder
(1990) discussed the use of prior information in the
estimation of water levels using Bayesian techniques.
Butchet et al. (1991) proposed a parametric empirical
Bayes method for the estimation of spatial functions.
The method allows the utilization of prior information,
such as from other “similar” sites.

Whereas the emphasis of geostatistics has beenon
spatial variability, hydrogeologic variables may fluctu-
ate in time as well as in space. Rouhani and Myers
(1990) and Rouhani and Wackernagel (1990) discussed
how to model variables that vary in time as well as in
space, within the classical “geostatistical” framework
using empirically derived variograms.

The concept of entropy has started receiving a mod-
icum of the attention it deserves in the context of geo-
statistical inference. Woodbury and Ulrych (1993) dis-
cussed the principle of maximum entropy and (in its less
known gencralization “minimum relative entropy”™) as
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a standard for assigning prior probability distributions
to unknown parameters. Similar ideas were presented
for the inverse problem of groundwater modeling in Ki-
tanidis (1985b). Journel and Deutsch (1993) discussed
entropy of a spatial function as a measure of spatial dis-
order and used it as a medium to discuss limitations of
the model of the random field with “multi-Gaussian”
distribution. They argued that realization of such a
random field are characterized by a high degree of dis-
order, because the maximum-entropy distribution for a
given covariance function is the Gaussian. In particu-
lar, they illustrated that realizations from the Gaussian
distribution lack connectivity at high or low values and
then conjectured that the Gaussian model is inappro-
priate because it cannot describe preferential flow paths
or barriers. The authors did not discuss the effect that
accounting for observations might have on blurring the
distinction between the predictions made by Gaussian
and non-Gaussian models.

Applications

Woodbuty and Sudicky {1991) reanalyzed the hy-
draulic conductivity data at the Borden aquifer (Su-
dicky, 1986) in Ontario, Canada. They examined how
various assumptions and methodclogies affect the val-
ues of inferred parameters. They concluded that the
data cannot discredit either the assumption of a normal
distribution or the assumption of an exponential distri-
bution for the log-conductivity, This conclusion was
based on the analysis of a smalt sample of 100 observa-
tions randomly drawn from a data set of 1188 and ne-
glecting whatever spatial dependence there might have
been. They used the classical method to construct the
experimental variogram, after removal of outliers (low
logconductivity values). Then, through nonlinear least
squares, they fitted to the experimental variogram a
parametric expression for the variogram model and used
an ad hoc method to evaluate the covariance matrix of
estimation errors of the parameters. They found what
they considered significantly different parameter esti-
mates from those of Sudicky (1986). They used these
parameters to predict how the tracer spatial moments
change over time, using the stochastic macrodispersion
theory of Dagan (1982, 1987). An important conclu-
sion was that uncertainty in the values of geostatisti-
cal parameters can lead to substantial uncertainty in
the prediction of macroedispersion in a heterogeneous
aquifer. They concluded that even large-scale simula-
tions using macroscopic parameters should be treated
in a stochastic framework, due to inability to estimate
with certainty the parameters that control the effective
(“macroscopic”) parameters.

Desbarats and Srivastava (1991) took a transmissiv-
ity function artificially generated over a domain without
the Gaussian assumption and then solved the steady
groundwater flow equations to obtain the distribution
of head and specific discharge. The results of these sim-
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ulations were compared with theoretical predictions us-
ing a second moment characterization of the conductiv-
ity field. The simulated field had a log-transmissivity
variance of around 1, but embodied features that are
perceived as “non-Gaussian”, such as spatial continu-
ity of extreme values, a bimodal histogram, strong di-
rectional anisotropy, and nested scales of heterogeneity.
The results of Desbarats and Srivastava (1991) showed
reasonable agreement with the predictions of “ensemble
theoretic models based on perturbation developments”
with respect to head covariance (Mizell et al., 1982, Ru-
bin and Dagan, 1988), cross covariance between head
and log-transmissivity (Dagan, 1984, 1985b, Rubin and
Dagan, 1988), effective transmissivity (Gelhar and Ax-
ness, 1983), and transport (Dagan, 1982, 1984, Gelhar
and Axness, 1983, Neuman et al., 1987).

Desbarats and Bachu (1994) presented a geostatisti-
cal analysis of hydraulic conductivity from the core scale
to the well scale and to the basin scale, for a sandstone
hydrostratigraphic unit in Canada. The study provides
insights into the spatial structure of hydraulic conduc-
tivity in a hierarchy of scales. It also studies upscaling
from local conductivity to local transmissivity (upscal-
ing through integration over the vertical direction) and
from local transmissivity to global or macroscopic trans-
missivity.

Keidser and Rosbjerg (1991) presented a comparison
of four inverse approaches on a synthetically generated
case. The four methods, which differ in the param-
eterization, were evaluated with respect to prediction
accuracy of simulated flow and transport. It is hard
to draw conclusions from this study, however, because
the results may be a consequence of some unconven-
tional steps taken in the implementation of these proce-
dures. For example, in one of the methods, a quadratic
drift with many parameters was used to represent the
large-scale variability in logtransmissivity, despite the
scarcity of data and the lack of any supporting evidence
that such a drift would be a successful representation of
spatial variability. As is unfortunately not uncommon,
diagnostic checking was neglected and the principle of
parsimony or Occam’s razor (“use the simplest empiri-
cal model consistent with the observations”, see Tuckey,
1961) was overlooked.

Hoeksema and Clapp (1990) used the stochastic ap-
proach to the inverse problem but, in order to derive
second moments of the head, they used the method of
Meonte Carlo simulations instead of first-order analysis
(Hoeksema and Kitanidis, 1984). The linear estimator
was still used. Monte Carlo simulations, if properly car-
ried out, is a more accurate method for the derivation
of the second moments. As the cost of computations
drops, its usefulness is bound to increase.

Sun and Yeh (1992) presented a method for the so-
lution of the inverse problem (estimation of transmis-
sivity using the hydraulic head) under transient condr
tions. In the determination of covariance functions, the
adjoint state equation of the differential equation satis-

fied by the head perturbation was implemented. (The
adjoint state equations provide a computationally effi-
cient meathod to compute sensitivity coefficients, see
Neuman, 1980.) They concluded that the utilization
of head. observations simultaneously at all observation
times produced much better results than a previously
used approach in which parameters were estimated sep-
arately at each time period and then results were aver-
aged. The method of Sun and Yeh (1992) is more effi-
cient in data utilization but has a high computational
cost, associated with inverting large measurement co-
variance matrices. A more efficient computationally
method might have been to decompose the problem
in stages, as done in the Kalman filtering literature
(Schweppe, 1973). The paper also presents a first-order
(linearized) method to predict the variance of prediction
errors.

Lee and Kitanidis (1991) had to solve a similar es-
timation problem in developing a method for the opti-
mization of monitoring and remediation at a contam-
inated site. The method combined first-order analysis
and sequential estimation (Kalman filtering) which is in
principle more efficient computationally than simulta-
neous estitnation. However, a very coarse grid was used
in the simulations. Van Geer et al. (1991) implement a
Kalman filtering as a method to update update ground-
water flow predictions as observations of head become
available over time. The updating in Kalman filtering
is the same as the condictioning or kriging in ordinary
geostatistics but it is done sequentially in “real time”.
Zhou et al. (1991} applied this model in the design of
a monitoring network.

LaVenue and Pickens (1992) presented a methodol-
ogy for the solution of the inverse problem following the
pilots points approach. In this, transmissivity values at
selected points, called pilot points, were fixed to match
head and other data. The pilot points were then treated
as observation points. The authors found the effect of
changes in the transmissivity through the ad)oint-state
equations. The locations that are most influential on
the data were selected as the pilot points. Kriging was
used to condition on all real or pilot-points transmissiv-
ity observations. This interesting method of solving the
inverse problem appears quite general, not limited by
small-perturbation or probabilistic assumptions. How-
ever, it is ad hoc and seems that it effectively uses a
large number of adjustable parameters (the transmis-
sivities at pilot points) to reproduce the head data. It
is not clear in what sense the mean square estimation
errors computed in this method are realistic.

Rubin (1991a, 1991b, 1991c) described methods for
using solute concentration observations to predict con-
centrations at other other points and times. Harvey and
Gorelick (1994) presented a method for the sequential
conditioning on observations of local conductivity, hy-
draulic head, and solute arrival time.

Most studies use hydrogeologic data obtained in wells
or in laboratory tests. However, geophysical exploration
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methods hold promise as valuable tools for site charac-
terization. Geophysical exploration data, such as seis-
mic data, must somehow be integrated with other data
to yield better estimates of the parameters that affect
groundwater flow and mass transport. Geostatistics
provides an ideal framework and some important steps
have already been made. Rubin et al. (1992) used seis-
mic velocities to compute maximum likelihood conduc-
tivity estimates and demonstrated the potential bepe-
fits from the use of seismic data. Copty et al. (1993)
presented a Bayesian updating procedure to infer con-
ductivity distributions from conductivity, pore pressure,
and seismic velocity data.

There is now considerable excitement in the hydroge-
ologic community about the use of non-Gaussian stochas-
tic approaches. Although I find that most arguments
against “Gaussian” methods are flimsy, there are some
good reasons for seeking alternatives to Gaussian tech-
niques. Geological information or intuition is not de-
scribed well through covariance functions or variograms
and the realizations of Gaussian random fields may look
“too fuzzy” and “too disordered”. Rubin and Journel
(1991) review indicator kriging and provide an exam-
ple where they examine the effects on solule transport.
Suro-Perez and Journel (1991) presented a method that
combines elements from indicator kriging and principal
component analysis.

In McKinney and Loucks (1992), the kriging variance
of conductivity estimates was used as a measure of the
parameter uncertainty in a first-order second-moment
calculation of the uncertainty in model predicted con-
taminant concentrations. The focus of this research was
to improve the design of a monitoring network. Russo
and Bouton (1992) presented a geostatistical analysis of
spatial variability in unsaturated flow parameters.

Brannan and Hazelow (1993) presented a method for
generating realizations of a conductivity field that can
capture characteristics at two different scales, such as
laboratory and field scales. The method is about repre-
senting large- and small-scale statistical characteristics
of the conductivity defined over the smaller scale and
the issue of the relation between conductivities defined
at different scales (“upscaling problem”) is apparently
not addressed.

Several innovative methods have been proposed. Rizzo
and Dougherty (1994) treated the estimation of a spa-
tial function as a problem of “pattern completion” that
they approached through artificial neural networks. They
called their approach “neural kriging”. This method
does not require the explicit estimation of a covariance
function, but the analogous phase of training the neural
network making it capable of predictions. The authors
provided an example that compared results from neural
kriging to the results from ordinary kriging using quan-
tized measurements. There is clearly need for additional
tests but the presented results were encouraging and the
authors envisioned extensions.

Conclusions

In the last few years, the hydrogeologic community
has been exploring the use of geostatistics. As is to be
expected in any new field, there have been examples of
misapplication of methodologies and the reader often
encounters in the literature conflicting statements and
claims. There is no scarcity of sophisticated techniques
but their use is not always tempered with a basic un-
derstanding of statistical methodology and the use of
plain common sense. Widespread slips are using mod-
els with too many parameters, confusing fitting with
prediction, confusing simulation with prediction, using
an unnecessarily complex empirical model, neglecting
to check whether the empirical model is consistent with
the data, using a method outside of its intended scope,
and adopting inconsistent assumptions.

Nevertheless, significant progress has been made and
hydrogeologists now have a better grasp of the scope
of geostatistics as well as of statistics in general than
ever before. In fact, not only is geostatistical research
vibrant and exciting but hydrogeology is leading the
way on many fronts by proposing and testing innova-
tive methodologies. Summarizing, some of the most
important areas of current and needed research are:

o Improvement of linear geostatistics, which include
adjustments of methods from analysis of variance,
time series, regression, and Kalman filtering. The
trend is to recognize gradually that many success-
ful methods that appear under different names
in different fields are basically the same. At the
same time, it is hoped that geostatistics will re-
main pragmatic and focused on the analysis of
geophysical data.

® Development of nonparametric and resampling es-
timation methods. Such methods could be quite
useful because they would allow the analysis to
proceed without hypotheses concerning distribu-
tions or specific values of statistical parameters.
So far, such methods have been found useful in
relatively simple problems but this is an impor-
tant area of current research in statistics [see Lall,
this volume}.

» Development of Bayesian methods. Usually, the
error associated with parameter estimation is quite
large. In some cases, the uncertainty in the pa-
rameters affects the predictions significantly.
Bayesian methods can be used to account for the
effect of parameter uncertainty and to incorporate
imformation from other sources.

® Development of methods that utilize geological
and other information. Important steps have been
made but the emphasis so far has been on stochas-
tic simulation and less on estimation, i.e., how to
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extract the information from the data. Problems
of parameter estimation and model validation are
much more challenging than in linear geostatis-
tics.

s Development of nonlinear and nonGaussian esti-
mators in the utilization of the groundwater flow
and transport equations. The mathematical prob-
lems are quite challenging but estimation can be
improved by considering the mechanics of flow
and transport. The real chalienge will be how to
strike the right balance between practicality and
exactitude.

e Combination of information from all sources of
data, including geophysical and tracer data, prin-
ciples of flow and tranport, and geological undet-
standing.

» There is a need for amalgamation of geostatisti-
cal estimation methods with “upscaling” methods
which recognize the differences between parame-
ters or obervations that are defined at different
scales.
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