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Abstract

In this paper, a stochastic flamelet approach is used to model autoignition in an initially non-premixed
medium in isotropic and decaying turbulence, using a one-step irreversible reaction. This configuration cor-
responds to the DNS data from Sreedhara and Lakshmisha [Proc. Combust. Inst. 29 (2002) 2069]. The sys-
tem can be described by the flamelet equations for the temperature and fuel mass fraction, where the scalar
dissipation rate appears as a stochastic parameter. In a turbulent flow, fluctuations of this scalar have a
strong impact on autoignition. Assuming a log normal distribution, a stochastic differential equation
(SDE) can be derived for the scalar dissipation rate. The decay rate of the mean dissipation rate is taken
from the DNS. The DNS data suggest that the normalized variance is close to unity but depends upon the
Reynolds number. The flamelet equations for the temperature and fuel mass fraction, and the stochastic
differential equation are coupled and solved numerically. The effects of the turbulence are discussed,
and the results are compared with the DNS database. The model reproduces the conditional mean temper-

ature profiles and the ignition delay times with good accuracy.
© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Substantial research efforts are presently de-
voted to improving the performance of automo-
tive engines. Most engines (spark-ignition and
diesel engines) show a trade-off between efficiency
and low emissions. Therefore, new concepts such
as homogeneous-charge compression-ignition
(HCCI) engines have been developed. In both die-
sel and HCCI engines, local inhomogeneities in
the flow field play a key role during the autoigni-
tion process. These inhomogeneities manifest in
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the scalar dissipation rate, which in a diesel engine
is very high after start of injection, but strongly
decreases with time due to the turbulent mixing
process. This unsteady development of the scalar
dissipation rate characterizes the autoignition pro-
cess. In HCCI engines, mixture inhomogeneities
are not as strong, but are often deliberately en-
forced to control the heat release rate. With a bet-
ter understanding of the autoignition process,
more advanced control strategies might be possi-
ble. The present work intends to provide a model
that accounts for the effects of these local inhomo-
geneities, mixing, and mixing rate fluctuations on
autoignition.

Many studies have been performed to investi-
gate the effect of mixing rate fluctuations on
autoignition in non-premixed turbulent media.
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These involve 3D isotropic decaying turbulence
[1,2], counterflow diffusion flames with strain rate
oscillations [3.4], 2D turbulent mixing layers [5],
2D turbulent non-homogeneous mixtures [6],
and others. With these direct numerical simula-
tions (DNS), the main features of autoignition
problems have been investigated. From these
studies, it has been found that the scalar dissipa-
tion rate plays a very important role in the autoig-
nition process, and that ignition spots appear
where two conditions are satisfied: the mixture
fraction is close to the most reactive value Zyg,
and the scalar dissipation rate is low.

However, such computations are very expen-
sive in terms of resources and time. Furthermore,
complex geometries certainly cannot be consid-
ered in DNS. Several methods have been devel-
oped to model autoignition in non-premixed
turbulent media. The conditional moment closure
model (CMC) [7] has first been used by Baritaud
and co-workers [8] to model autoignition. Similar
to Linan and Crespo [9], they found that the most
reactive mixture fraction during autoignition is
different from the stoichiometric mixture fraction.
In a more recent work, Sreedhara and Laksh-
misha [10] used both first and second order condi-
tional moment closure to model autoignition.
They found that these two closure methods yield
qualitatively similar predictions of the tempera-
ture profile. This is a surprising result, since it
has been found in other studies [4,11] that mixing
rate fluctuations are very important for the
description of autoignition. In conditional mo-
ment closure, these are not present in the first or-
der model, but would appear in the second order
modeling formulation. A possible reason for the
insensitivity of the modeling order is that second
order modeling has been applied only for the
chemical source term and not for the higher order
mixing terms. Hence, fluctuations in the dissipa-
tion rate were not being accounted for. For the
same reason, the temporal change of the condi-
tional temperature during autoignition is too fast
compared with the DNS data in these simulations.

The flamelet approach [12,13] has been used by
Pitsch et al. [11,14,15] for predictions of autoigni-
tion under diesel engine conditions. It has been
shown that fluctuations of the scalar dissipation
rate can substantially influence ignition delay
times [11]. The influence of mixing rate, and par-
ticularly scalar dissipation rate fluctuations has
been studied in the past, mainly in the context
of flame extinction [16]. However, in an unsteady
environment encountered for instance in a diesel
engine where the mean scalar dissipation rate de-
cays strongly with time, it remains an open ques-
tion whether the fluctuations of the scalar
dissipation rate lead to an increase or a decrease
in the autoignition delay time.

In this study, we will investigate and model the
influence of turbulent fluctuations of the scalar

dissipation rate in non-premixed combustion
problems. The configuration considered here cor-
responds to a 3D non-premixed medium in isotro-
pic and decaying turbulence. This case has been
chosen, since it represents the time decaying scalar
dissipation rate typically encountered in engines.
We will first present the unsteady flamelet equa-
tions for a non-premixed system evolving by a
one-step chemical reaction. Based on this assump-
tion, the system will be simplified to a set of two
partial differential equations. Then, we will estab-
lish a stochastic differential equation (SDE) for
the scalar dissipation rate, and we will discuss
the mean behavior of this parameter. Numerical
solutions will be compared with DNS data from
Sreedhara and Lakshmisha [1,2], and the sensitiv-
ity of the results on the model parameters will be
investigated.

2. Flamelet equations

The time evolution of the species mass frac-
tions and the temperature are modeled using the
unsteady flamelet equations. This method has
been found to be very successful in handling de-
tailed chemistry and predicting pollutant forma-
tion. Here, to compare with DNS results by
Sreedhara and Lakshmisha [1,2], the flamelet
equations will be formulated for a one-step irre-
versible reaction.

We consider a one-step irreversible reaction of
the form vgF + voO — vpP, where F, O, and P are
the fuel, the oxidizer, and the products, respec-
tively. For two streams, one with fuel at a mass
fraction of Y ; (subscript 1) and one with oxi-
dizer at a mass fraction of Yo , (subscript 2),
the mixture fraction Z is defined by

VYr—Yo + Yo.
z=tEtotlor (1)
Wr1+ Yoo

where ¥ = voWo/veWr is the stoichiometric mass
ratio.

Under this assumption, the flamelet equations
for the evolution of the temperature and the spe-
cies mass fractions are given by the following
equations:
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Here, v; are the stoichiometric coefficients, W; are
the molecular weights, Q = —>_v;Wh; is the heat
release of the reaction, ¢, is the specific heat
capacity at constant pressure, p is the local den-
sity, p is the background pressure, and
7= 2D(VZ)2 the scalar dissipation rate. Finally,
the reaction rate per unit mass is expressed as
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where A is the frequency factor, E is the activation

energy, and R is the universal gas constant.

Since the product mass fraction is not used in
the chemical source term expression, Eq. (3) does
not need to be solved for Yp. The flamelet equa-
tions can be further simplified by considering a
coupling function that comes from the definition
of the mixture fraction Eq. (1).

The system of equations can now be reduced to
only two equations: the temperature equation Eq.
(2), and the fuel mass fraction equation Eq. (3).
Since these two equations describe the local
instantaneous development of an ignition kernel,
the scalar dissipation rate y appears as an external
random fluctuating parameter, which has to be
provided separately. The fluctuating scalar dissi-
pation rate describes the influence of turbulent
mixing on the ignition kernel.

3. Modeling of autoignition in decaying isotropic
turbulence

The configuration considered here corre-
sponds to the DNS of Sreedhara and Laksh-
misha [1,2] for a non-premixed medium in
isotropic decaying turbulence. The domain is a
3D box of a constant total mass at constant vol-
ume. As mixing proceeds with time, ignition oc-
curs, and spots of high temperature are formed.
While the local temperature increases, the back-
ground pressure also increases, which further
accelerates the reaction progress.

We will first provide a model for the turbulent
fluctuations of the scalar dissipation rate around
its mean value in mixture fraction space. Thereaf-
ter, for the particular configuration of 3D isotro-
pic decaying turbulence, the mean scalar
dissipation rate as well as the pressure rise will
be modeled. In a general application of the model,
the background pressure and the mean scalar dis-
sipation rate will be computed from the solution
of the flow field.

3.1. Modeling the fluctuations of the scalar dissi-
pation rate

3.1.1. General stochastic differential equation

To represent the fluctuations of the scalar dis-
sipation rate around a mean value, we use a sto-
chastic differential equation (SDE). It is well
known that a reasonable approximation for the
pdf of the scalar dissipation rate is a log-normal
distribution [17]

N (Iny — p)’
Pl =L e ( = ) )

with
(1) = exp(p +30°), (6)

— exp(e?) — 1, (7)

where u and ¢ are the mean and the variance of the
log-normal distribution. This assumption has been
confirmed by Yeung et al. [18] who compared
DNS data of the logarithm of the scalar dissipa-
tion rate for isotropic turbulence to a Gaussian
distribution with good agreement. At a fixed
Schmidt number (here Sc = 0.58), the variance of
the logarithm ¢ is assumed to depend only on the
Reynolds number. The DNS data [1] provide the
ratio of the variance over the mean (;">)/(x)?, from
which the value for ¢ can be found. For other con-
figurations, this value can be deduced from the tur-
bulent Reynolds number [19].

We now want to write an SDE for y such that the
resulting probability density function is given by
the above log-normal distribution. Using Ito’s rep-
resentation, the SDE has the following form [20]

dy = Adt+ BdW (8)

where A4 (y,t) is the drift coefficient, B(y, 1) is the
diffusion coefficient, and W(t) is the Wiener pro-
cess. The probability density function P(y, f) given
by Eq. (5) is the solution to the forward equation
also known as the Fokker—Plank equation

op 19 d
——5:5(BP)+ o (4P) = 0. 9)

Comparing the solution of Eq. (9) with Eq. (5),
the unknown coefficients 4 and B can be deter-
mined resulting in

dy= — <ln (&) —%az —%T) (;t+ \/%axdW,
(10)

where (y) is a prescribed average scalar dissipation
rate obtained from the DNS data, S, = d(y)/dt
accounts for the change in the mean scalar dissi-
pation rate, and T is the scalar time scale, which
will be defined below.

3.1.2. Spatial correlation

It has been found from experimental measure-
ments [21] and DNS computations [18] that the
scalar dissipation rate is correlated in space. How-
ever, Eq. (10) in its present form is a one point
equation whose solution is uncorrelated in mix-
ture fraction space. To represent the spatial corre-
lation of y, we create smoothed white noise [22]
according to

AZ)2
/ kK(Z)dW . (Z+2Z)dZ', (11)
Tl sz

and we solve Eq. (10) as a function of Z with
dW=dW,, where dW, is the smoothed white
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noise, dW,. is the original uncorrelated white
noise, k is a kernel function, and ||| =

[k*(Z))dZ" its L* norm. For the kernel, we

should use a C* function with a compact support
[-AZ/2,AZ[2]. However, since we will discretize
the kernel function, the requirement of compact
support can be relaxed, and we use a polynomial
function of the form

K(Z') = LAZ* —INZ* 77 + 7. (12)

The initial scalar dissipation rate field has to be
created with the same spatial correlation as the
white noise.

The correlation in mixture fraction space AZ
corresponds to the characteristic mixture fraction
fluctuation for an appropriate correlation length
scale of the scalar dissipation rate. This correlation
length /. has been found from DNS [18] and exper-
iments [21] to be much smaller than the integral
length scale of the scalar. We can distinguish be-
tween two possible situations. For sufficiently high
Reynolds number, the Taylor scale 1is a reasonable
choice for /., as / can be found in the vicinity of the
peak of the dissipation spectrum over a large range
of Reynolds numbers. However, for the present
DNS, 1 is not the appropriate scale. Because of
the relatively low Reynolds number of the DNS,
the Taylor scale is of the order of the integral scale,
and hence does not represent the correlation length
of dissipation. In this case, the Kolmogorov scale
can be used for /., since this certainly is a lower
bound for the correlation length scale.

Using Kolmogorov’s scaling for both the
velocity and the scalar field in the situation of high
Reynolds number, we can write the correlation
length in mixture fraction space AZ; as

12
21
Az-@% | (13)
u

where /; is the integral length scale, and u’ is the
large scale velocity fluctuation. This form of AZ
has to be used in applications of the model in en-
gine simulations. However, for the present DNS,
we use the following definition based on the Kol-
mogorov scale:

AZ, = 1y /%, (14)

where y(Z,1) is the instantaneous local scalar dis-
sipation rate. The sensitivity of the results to the
choice of AZ is discussed below.

3.2. Modeling the configuration

3.2.1. Imposed mean scalar dissipation rate
Writing Eq. (10) for a given value of the mix-

ture fraction, the conditionally averaged scalar

dissipation rate (y|Z) appears as an external

parameter. Hence, we have to provide the condi-
tional mean value as a function of time and mix-
ture fraction (y|Z)(Z,t). In a general application
of the model, this conditional mean value will be
deduced from the solution of the flow field, and
no further modeling of the mean scalar dissipation
rate will be required.

For decaying isotropic turbulence, it is well
known that the decay of the variance of a passive
scalar follows a power law. Therefore, we can
write the variance of the mixture fraction as

112 —m

@ = (1 + 5) : (15)
<Zo ) lo

where the exponent m has been found from DNS
simulation and experimental results [23] to depend
on the ratio (L/L)y of the initial integral length
scale of the velocity and scalar field. The DNS data
[1] provide the ratio (L/L,)o = 1.35, for which it is
found from Mell et al. [23] that m = 2.46. Then,
to model (), we use the following expression:

w0 =n(1+1) (16)

which follows from the assumption of isotropic
turbulence.

With these expressions, we can define the sca-
lar time scale 7 appearing in Eq. (10) as

<Zuz> _ t+ ZO

() m
We also need to impose (y|Z) as a function of

the mixture fraction. We assume that the condi-

tionally averaged scalar dissipation rate has the
following form:

(HZ2)(Z,1) = 4t () Z(1 = 2). (18)

This expression has been observed to fit the DNS
data very well. Furthermore, this expression is
more accurate close to the stoichiometric mixture
fraction than for instance the expression from a
counterflow [12]. The relation between yo and ymax
comes from

(17)

(@) = /(X\Z>(Z’ 1)P(Z)dz, (19)

which gives as the final expression for the imposed
mean scalar dissipation rate

121~ 2) no
20— (2) - 2" (1 * ro) ‘

(n2)(z,1) =

(20)

3.2.2. Pressure modeling

Assuming that the simulation is performed
in the low Mach number limit, the background
pressure p is homogeneous, and hence will be
determined as the box average
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p:poR(/Z %P(z)dz)l, (21)

where W(Z) and T(Z) are the molecular weight of
the mixture and the local temperature, respec-
tively. P(Z) represents the probability density
function of Z. We assume that the mixture frac-
tion pdf is a B-function depending on the mean
and the variance of the mixture fraction. For the
present case, the mean mixture fraction is con-
stant at (Z) = Zy = 0.0621 corresponding to an
n-heptane and air mixture. The expression for
the variance of the mixture fraction has been de-
scribed earlier. The mixture fraction pdf changes
with time due to mixing, whereas the temperature
changes due to ignition. As a consequence, the
background pressure is not constant in time.
The local density is then given by

_p(2)
RT(Z)

(22)

4. Numerical method

The stochastic differential Eq. (10) can be
solved independently from the flamelet Egs. (2)
and (3). To solve the SDE, we use a second order
Milshtein scheme [24]. The two coupled flamelet
equations are solved using a second order
Crank—Nicholson scheme with an iterative New-
ton solver.

Since we are using a stochastic approach, a
large number of realizations for different noise
paths are computed. Here, each simulation has

Table 1
Model parameters from the DNS data [1] for runs 4, B,
and C

Run Rey. 1% to (ms) u' (mm/s)
A 38.5 0.8 50 20
B 57.8 1.1 33 30
C 71.0 1.4 25 40

been done with 4000 realizations. Then, we take
the conditional ensemble average of the main vari-
ables at a constant time and mixture fraction. We
are especially interested in the most reactive mix-
ture fraction [9,8] Zyr =0.12, where the first
spots of high temperature appear.

Following its definition from Eq. (21), the
background pressure is different for every single
realization. Rather than solving each flamelet with
the pressure determined from Eq. (21), all flam-
elets are solved with the average pressure over
all flamelets.

The parameters that have been used are taken
from the DNS data of Sreedhara and Lakshmisha
[1,2]. Different configurations, called runs 4, B,
and C, have been considered. The only difference
between these three cases is the variation of the
eddy turnover time, which is equivalent to the var-
iation of the Reynolds number. The time scale #,
and the variance ¢ are the only variables influ-
enced by the eddy turnover time. The initial mean
scalar dissipation rate as well as the initial integral
length scale are constant for the three runs at
%0 =3.96 s and /, = 0.57 mm, respectively.

5. Numerical results

Numerical solutions have been computed for
the three runs (4, B, and C). The different param-
eters used for these computations are summarized
in Table 1. Figure 1 shows a single realization of
the simulation in three different views. Figure 1A
shows the temporal evolution of the scalar dissi-
pation rate at the most reactive mixture fraction
for a given noise path and is compared with the
imposed mean scalar dissipation rate. The mean
starts at a value high enough to prevent ignition,
but according to Eq. (20), the value decreases
strongly with time. This behavior closely resem-
bles the dissipation rate history in a diesel engine
[11]. The instantaneous realization essentially fol-
lows this trend, but shows large departures from
the mean values. The evolution of the temperature
with the scalar dissipation rate for this case is

15
A ° — single realization B
--- imposed <x|Z> 2400f -~ ===~ 2400
T Aof! 2000 2000)
= =,
"2 1600 2 1600
B =
N )
& 1200 & 1200
% 20 40 60 80 8%o1 X 70 700 0 20 0 50 80
t [ms] X (Zur) 571 t [ms]

Fig. 1. Effect of the dissipation rate on the temperature evolution for one single realization at most reactive mixture
fraction; (A) time evolution of y (solid line) compared to the imposed mean dissipation rate (dashed line); (B)
temperature evolution with respect to y (solid line) compared to the S-shaped curve (dashed line); (C) time evolution of

the temperature.
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shown in Fig. 1B. For a comparison, the steady
state solutions of the flamelet equations, given
by the so-called S-shaped curve are also shown
in this figure. Ignition can only occur, when the
scalar dissipation rate decreases below the lower
turning point of this curve, which for the present
case occurs at around ¢ = 20 ms. Even thereafter,
it still takes approximately 20ms for the kernel
to ignite. The temporal evolution of the tempera-
ture is given in Fig. 1C. Ignition occurs at approx-
imately =45 ms. This is much later than the
homogeneous ignition delay time, which is
iy = 30 ms. It is interesting to note that although
the scalar dissipation rate has such a strong influ-
ence, the random variations of this quantity are
not visibly present in the temperature. Once the
temperature is approximately above 1200 K, the
final temperature increase occurs nearly
instantaneously.

The results of the present simulations are com-
pared with DNS data for all three cases in Fig. 2.
Conditional averages of the temperature at the
most reactive mixture fraction (Zyr = 0.12) are
shown. In addition, the temperature evolution
for the homogeneous case is also shown. It is obvi-
ous that the final temperature obtained from the
model and the DNS data is not the same. The fi-
nal temperature of the model simulations corre-
sponds to the adiabatic flame temperature at the
specific mixture fraction, which, in the absence
of differential diffusion effects, should be the upper
limit of the temperature. It appears that the very
sudden temperature increase during the autoigni-
tion process leads to numerical overshoots in the
DNS data leading to locally overestimated tem-
perature, which slowly decays towards the equilib-
rium value. However, this is without consequence
for the present study, since we are interested only
in the actual ignition process.

2600
ST T T T e
2400 Homogeneous g -
\
2200 :
2000 RunC

1800 Run B

1600

T (Zur) [K]

1400 Run B,

1200 no fluctuations

1000

800

Fig. 2. Comparison of the predicted evolution of the
conditional average of the temperature at the most
reactive mixture fraction Zyr = 0.12 (solid lines) with
DNS data (dashed lines) during autoignition.

Regarding the ignition delay times (Fig. 2), the
comparison with the DNS data shows good agree-
ment for all three test cases. The slope of the tem-
perature near the time of ignition is well
represented for the lower Reynolds number cases,
but tends to be overpredicted for higher Reynolds
number. However, for both DNS and the model
results, the slope of the temperature near the time
of ignition is much lower than for the homoge-
neous case and the case without scalar dissipation
rate fluctuations. The main reason for this is that
because of the fluctuations of y, each ignition ker-
nel has a different ignition delay time. As a conse-
quence, the temperature average spreads over a
much longer period. This also leads to an ambigu-
ity in a definition of the ignition delay time in a
turbulent environment, where possible definitions
could be based on the single realizations or the
mean temperature development.

The comparison with the homogeneous case
(for an identical mixture), which ignites at approx-
imately 7i; = 30 ms, demonstrates the strong influ-
ence of the scalar dissipation rate. Figure 2 also
shows results of a simulation, where no fluctua-
tions of the scalar dissipation rate have been con-
sidered. This simulation has been carried out
using the same parameters as for run B, but with
¢ = 0. The comparison of this simulation with the
result for run B highlights the strong effect of mix-
ing rate fluctuations on the autoignition process.
In particular, this result shows that in the present
environment of a decaying scalar dissipation rate,
which is typical for diesel engines, fluctuations of
the mixing rate lead to lower ignition delay times.
The reason is in the very strong non-linearity
around the lower turning point of the scalar dissi-
pation rate. As long as the scalar dissipation rate
is above this limit, positive fluctuations of the sca-
lar dissipation rate are of insignificant conse-
quence. However, a decrease in the scalar
dissipation below this limit may lead to ignition,
even if the mean value is still above this limit.
Note, however, that as shown in Fig. 1, even if
the local value of the scalar dissipation rate de-
creases below the ignition limit, autoignition is
still not instantaneous. This means that short
excursions below the ignition limit are possible
without much influence.

Because the correlation length /. (or AZ in mix-
ture fraction space) has to be specified in the mod-
el, it is of interest to investigate its influence on the
solution. In the following, we will consider two
limiting cases. When the correlation length tends
to zero, random scalar dissipation rate fluctua-
tions are locally independent. Then, there is al-
ways a chance that one of the points has a low
dissipation rate, which would allow for autoigni-
tion. The mixture will ignite as soon as only one
of the neighboring points ignites. As a conse-
quence, ignition delay times will be lower
and not as widely distributed as in the case of high
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correlation. When the correlation length is very
high, temperature variations due to mixing rate
fluctuations are the same for all considered points.
The probability of finding at least one low value
of the dissipation rate for this case is much lower,
and the average ignition delay time will hence be
longer. It has been found that the correlation
should be weaker than predicted by Eq. (14). A
possible reason could be that the simple scaling
arguments used might not be accurate enough to
determine the correlation length in mixture frac-
tion space. However, for high Reynolds number,
this value is assumed to be much smaller, so that
the results might become more independent from
this quantity.

6. Parameter analysis

The model involves three parameters, which
represent the turbulence and mixing state of the
considered case. In an engine, these would, for in-
stance, be determined by the engine speed and the
injection process, which influence the turbulent ki-
netic energy and the integral time scale. The three
parameters appearing in the stochastic differential
equation for the scalar dissipation rate are: g, f,
and yo. Their values are determined by the initial
turbulence: y, corresponds to the initial mean va-
lue of the scalar dissipation rate, 7o to the decay
rate, and o represents the fluctuations of the scalar
dissipation rate. It is interesting to note that all
these quantities relate to the scalar field and do
not have a length scale. However, since the time
scale 7y scales as [/u’, and the scalar dissipation
rate scales as y ~ Z"*u'/l,, these quantities will be
influenced by changing »’ or /; individually.

Figure 3 shows the effect of these three param-
eters on the ignition delay time itself and on its
probability distribution. An increase either of
the initial dissipation rate yo or of the decay time
to leads to an increase of the ignition delay time.
Due to the increased dissipation, it takes longer

A 2400

22001
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2000

1800F

16001

14001

T (Zur) [K]

12001

1000

8000 10 20 30 40 50 60

t [ms]

70

B 0.30! — Baseline case
--- AZ=0.08
x,=9-28~
0.25 — t,=20ms
-- =14
0.20!
]
= 1
o 0.15,
0.10:
0.05!
0 e ~
35 40 45 50 55
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to reach the point where the dissipation rate is
low enough for the mixture to ignite. Hence, the
influence of these parameters depends on the
mean value of the dissipation rate. It can also be
noticed that these changes have an effect on the
width of the probability density function of the
ignition delay time. As the ignition delay time de-
creases, the fluctuations of y have a smaller and
smaller impact on the solution. Therefore, the
width of the pdf becomes smaller.

The third parameter o is assumed to depend
only on the Reynolds number [19] and the depen-
dence is relatively weak. As discussed earlier, be-
cause of the strong non-linearity around the
lower turning point of the S-shaped curve, an in-
creased variance in the fluctuations of y leads to
earlier ignition in average. Similarly, if the fluctu-
ations of y are larger, then the fluctuations of the
ignition delay time are expected to be larger.
However, since the mean ignition delay time
simultaneously approaches the homogeneous igni-
tion delay time, fluctuations of 7;, have to become
smaller. These two opposite effects balance each
other, and the width of the pdf is nearly constant
when ¢ is changed.

7. Conclusion

In the present study, we have presented an un-
steady stochastic flamelet model to describe and
analyze autoignition in a turbulent environment
for conditions typically encountered in internal
combustion engines. Considering a one-step glo-
bal reaction, the flamelet equations for the tem-
perature and the fuel mass fraction have been
coupled with a stochastic differential equation
for the scalar dissipation rate. For 3D isotropic
homogeneous and decaying turbulence, the sto-
chastic evolution of the conditionally averaged
scalar dissipation rate has been modeled as a func-
tion of time and mixture fraction. Simulation re-
sults have been compared with DNS data, and

Tig [ms]

Fig. 3. Influence of parameter variations on autoignition: baseline case B with constant AZ =0.02, ¢ = 1.1, o = 4.6 s7h
(A) conditionally averaged temperature at most reactive mixture fraction; (B) pdf of ignition delay time. Arrows are in

the direction of increasing parameter.
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the effects of different model parameters have been
discussed.

The comparison of the simulation results with
DNS data for three different cases shows good
agreement. The analysis shows that the fluctua-
tions of the scalar dissipation rate y are very
important. It has been found that the ignition de-
lay time depends strongly upon the variance
parameter of y. In particular, these fluctuations
lead to shorter ignition delay times compared to
cases without fluctuations. These fluctuations are
also responsible for a smaller change of the mean
temperature near the time of ignition.

The model provides a good framework to
incorporate the influence of the scalar dissipation
rate and its fluctuations on autoignition into en-
gine CFD simulations, but also for fundamental
studies of the influence of inhomogeneities of mix-
ture fraction, temperature, or residual gases on
autoignition, for instance in HCCI engines.
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be greater for the higher Reynolds number case and is
hence consistent with the under-prediction of the slope
of the temperature for Run C shown in Fig. 2.

Norbert Peters, RWTH Aachen, Germany. In previ-
ous LES simulations, you have shown that scalar dissi-
pation rate fluctuations considerably alter the results.
How does your present stochastic approach fit into the
LES context?

Reply. In our previous large eddy simulations, we
have shown that the resolved fluctuations of the scalar
dissipation rate might strongly influence modeling re-
sults, and we have argued that although the dissipation
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occurs at the smallest scales, large changes of the dissipa-
tion rate occur on the large scales. However, this does
not consider the unresolved part of the dissipation rate
fluctuations, and the importance of these is yet unclear.

The present stochastic model can be used as a sub-filter
model for the dissipation rate fluctuations and would al-
low modeling and assessing the influence of small scale
fluctuations of the dissipation rate.
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