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The scalar dissipation rate is introduced as a second conditioning variable into the first-moment,
singly conditional moment closure model to describe extinction and reignition effects in turbulent,
nonpremixed combustionA priori testing of the combustion model using direct numerical
simulation experiments exhibiting local extinction/reignition events is described. The singly
conditional moment closure model is either unable to describe the extinction seen in the numerical
experiments or predicts global extinction when it does not occur. The new doubly conditional
moment closure approach is able to describe the extinction seen on average, but predicts the onset
of reignition too early. ©2001 American Institute of Physic§DOI: 10.1063/1.1415426

I. INTRODUCTION first-order closure approximation is not valid when fluctua-

o o tions about the conditional means become significant. Figure
The accurate treatment of extinction and reignition phe-; shows local extinction/reignition events érspace frorri)

nomena is thought to be an important factor in determiningy, seriments of a turbulent methane/air reactind’jand i)
how flame stabilization occurs in practical, nonpremixedgiract numerical simulatiofDNS) of a single-step chemical

combustion system’slsn the joint probability density func-  e4ction in spatially homogeneous and isotropic turbuléhce.
tion (PDP approact:® extinction/reignition can be treated In Fig. 1, 6 is the reduced temperature

with improved mixing modelé.However, joint PDF meth-

ods employ a Monte Carlo type solution procedure and thus T-T.,

become computationally expensive when many species in- 0= ﬁ

crease the dimensionality of the modeled joint PDF evolu-

tion equation. Presumed PDF approaches, such as flameleith T; the adiabatic flame temperature ahdthe reference

modeling®>® and conditional moment closure modelifig, temperature. The data of Fig(ilis a current benchmark

can be computationally tractable when many species are tdataset for competing combustion models. Figui¢ shows

be described, as is generally the case in problems of practictie data from an entire planar cross section in the “near-

importance. First-order flamelet modeling and conditionalfield” of the jet, 15 diameters from the fuel nozzle. Figure

moment closure modeling with singly conditional, first- 1(ii) shows the data after one-half a large-eddy turnover time

moment closure breaks down when extinction and/or reigni{t* =t/ 7oq44,~ 3) from the initial, nonpremixed state. The

tion phenomena are preséntOur focus in the present paper time is nondimensionalized with the initial large-eddy turn-

concerns extensions of first-order conditional moment cloover time, 7¢q4qy. In both subplots(i) and (i), T.. was as-

sure modeling to describe extinction/reignition. signed the temperature of the two initially segregated fluids:
Currently, a fundamental closure approximation in sin-the fuel and oxidizer. The temperatures of the fuel and oxi-

gly conditional moment closure modeling is first-order clo- dizer are the same in each of the two experiments. The high-

sure of the average nonlinear chemical source tewnspn-  est temperatures and largest fluctuations appear where fuel

ditioned on the mixture fractior§(t,x) = #: and oxidizer are in stoichiometric proportion &t &, (For
. B the jet flame£,=0.351 and for the DNS,=0.5) Figure 1
(WY (£, T(t,X),p(t,3)) |€(t,X) = 7) illustrates how extinction/reignition events appear as large
~W((Y|7).(T|7).{p| 7)), fluctuations abouté| 7). In the present paper we focus on the

DNS experimental data, as some important quantities of in-
whereY is the vector of mass fractions of the reacting spe+erest for testing the combustion model to be presented is not
cies,T andp are the temperature and density of the mixture,currently available from the jet flame experiments.
respectively, andy is the sample space variable &f The To account for the fluctuations &f and 6 not accounted
for by the fluctuations o€, second-order closure of the con-
“Telephone: 650-725-6635; fax: 650-723-9617. Electronic mail: ditional chemical source term has been proposed to improve

chongcha@stanford.edu singly conditional moment closure modeling and is currently
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() z/D = 15 (ii) t* = 1/2

FIG. 1. Motivation of the work: Scatter plots of the
reduced temperature fro(i) a planar cut ax/D =15 of
the piloted methane/air turbulent reacting jet F of Bar-
low and Frank(Ref. 10, and(ii) from a direct numeri-
cal simulation(DNS) of turbulence in a box of Sripak-
agorn (Ref. 1)) at t*Et/ﬂreddy=% with a single-step,
reversible reaction. HerP is the jet nozzle diameter,
Teady IS the initial large-eddy turnover time. Ifi), the
stoichiometric value of the mixture fraction i§g,
=0.351; in(ii), é4=0.5.

in development®'® In the present paper we introduce the — y=2D(V¢)?,

use of the dissipation rate of the scafaas a second condi-

tioning variable while maintaining the first-moment closurewhereD is the molecular diffusivity of the mixture fraction.
of the chemical source term. The scalar dissipation rate i§igure 2 (subplott* =3) shows the DNS data of Fig.(ii)

defined as mapped into the scalar dissipation rate phase spacgé at
t*=1/10 tr=1/4
1 1

2 3
FIG. 2. The DNS experiment of spatially isotropic, ho-
mogeneous, and decaying turbulence performed by Sri-
pakagorn(Ref. 11 for case B(cf. Table ). The reduced
temperature is shown &=0.5 as a function of the
local scalar dissipation ratg=2D(V &)2.

2 3

0 2
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log xst
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=&, (Figure 2 is described in detail lateMeasurements of TABLE I. Vafikation of the DNS cases of SripakagoiRef. 11, where the
x do not yet exist for the laboratory experimental data showneaction F+O=2P is simulated in decaying, homogeneous, and isotropic

. . . . - . k/IK
In SprIOt(I)' Note that information showmg the maximum turbulence with an initial Re=33 on a 128 grid. Here Se=0.7 and Lewis

departures from equilibrium after the mapping xophase numbers are unity. Chemistry rate parameterscare0.87, Ze=4, andK
space is not lost. Important additional information, not dis-=100.

cernable iné phase space alone, is discussed later. The pre
sumption is that the extinction/reignition events, seen in Fig.
1 for example, can be described in the spacg Gh addition A 13.0x 10 0.94
to £ andx). B 8.0x 10 0.57
The present formulation of introducing a second condi- € 0.3<10f 021
tioning variable should be distinguished from the multiply
conditional moment closure modeling in Ref. 9, where addi-
tional conditioning variables must be introduced to treat gation). Use of such an idealized system to decouple and

multistream mixing problem. Here, only a two-stream mix- investigate presumed PDF combustion modeling strategies is
ing process is considered, where the advantage of doublommon41®

Case A(s™h Xq (87

conditioning expectationsin addition to the mixture frac- Figure 2 shows the level of extinction/reignition from
tion) is to account for additional fluctuations about the singlythe DNS experiment witth=8x10*s™ %, «=0.87, Ze=4,
conditional means due to the fluctuationsyof andK =100. The solid line in each subplot is the steady-state

The paper is organized as follows. In the next sectiongolution of the flamelet equatidior 4 at &,. The quenching
the DNS experiments to be modeled are described. In Segalue of the scalar dissipation rate & is Xq=0.57 s for
1, the assumptions of singly conditional moment closurethis moderate extinction level case. Additional cases were
modeling are reviewed and a new conditional moment cloperformed where the degree of extinction was increased and
sure model, where the scalar dissipation rate is introduced dfecreased from the moderate extinction level case shown
a second Conditioning variable is formulated. In Sec.dV, F|g 2 by Varying the frequency factdy The experimenta|
priori modeling comparisons are made with the DNS experitases considered in this paper are summarized in Table I.
ments. Finally, in the conclusions section, the strengths angligure 2 corresponds to case B.

limitation of the doubly conditional moment closure model Some preliminary qualitative observations are made that

are summarized. are important for later discussion. In all three cases, the av-
erage scalar dissipation rateét,{ sy, increases to a maxi-
1. NUMERICAL EXPERIMENT mum att* ~:, then decays in time. The fluctuating scalar

. i . . dissipation rate is approximately lognormal in distribution
Presently, thea priori combustion modeling compari- 504 maximum local values of.; also correspond to this
sons are made with the DNS experiments performed b)(ime, as can be seen in Fig. 2. Figure 2 shows that for
Sripakagorrt! Briefly, fuel (F), oxidizer(0), and productP)  _

. ved i d-ord ib| i =<3, extinction events occur when the local values yaf
Involved in a one-step, second-order, reversible reaction, - gyceedy, . Local extinction events reduce the conditionally

k averaged mean temperature. For increasing titfes 3,
F+O§(2P, (2.1) both extinction and reignition events occur simultaneously.

Reignition can only occur when local values pf; are less
evolve in isotropic, homogeneous, and decaying turbulencehan y,. Reignition dominates at late times, as very few
The stoichiometric value of the mixture fraction§g=0.5.  local values ofyg ever exceed the quenching value. An im-
The forward reaction rate, in Eq. (2.1) has an Arrhenius portant consequence of the overlapping of extinction and re-
temperature dependence with the equilibrium constint, ignition events is noted. The number of local reignition
held fixed. The production rates for fuel, oxidizer, and prod-events must dominate the level of extinction before the con-
uct are wg=—w, Wo=-—w, and wp=2W, respectively, ditionally averaged temperature & can increase. Conse-

where quently, prior to this increase, many local reignition events
Ze Ze(1- ) occur while the conditionally averaged temperature is still
W(Ye,Yo,Yp, 6)=Aex;< -— e ;{ - m) decreasing.
1 2
X| YeYo— KYP [Il. COMBUSTION MODELING

is the reaction rate. Herd\ is the frequency factotmulti- A. Singly conditional moment closure

plied by density and divided by molecular weight, assumed In this section, we review the singly conditional moment
equal for all species a=(T;—T.)/T; is the heat release closure model, which is to be used as a baseline comparison
parameter, ZeaT,/T; is the Zeldovich number, an@l, is  against the strategy of doubly conditioning.

the activation temperature. The Schmidt number is 0.7 and  For the present case of a single-step reaction, the condi-
Lewis numbers unity. The turbulent flow is incompressibletional averages of all species and temperature can be ob-
and the molecular diffusivities and viscosity are independentained from the single equation for the averagedddingly

of the temperaturécf. Sripakagorit for details of the simu-  conditioned on:
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Htr=1/2 (i) *=1/2
0.5 05
0.4r * g .. . . .
N . FIG. 3. An illustration of (i) the
. (x|m)={(x0)F(7) dependence in the
_.03f, . present DNS experiment withr (%)
£ =exp{—2erf {(27—1)1%, and(ii) the
ReAC . approximate independence ofyg
o2 =x/F with & The variance is repre-
® 00000000 °C000000,  w sented by the open circles. Notgg
0.1 °o°° % 4 =y at {4=0.5 for the present case.
% 0.2 0.4 0.6 0.8 1
n
9 (x|m) 2 B. Doubly conditional moment closure
—=0=—-—=0+2w ,Q0,Qp,0), (3.9 : N o
at 2 oy’ (Qr.Qo.Qp The physical significance of the scalar dissipation rate,

where(x|7) is the conditionally averaged scalar dissipationX’ in extinction/r_eignition phenomena is well known _from
rate, Qr= 7— Qp/2, Qo=1—7—Qu/2, andQp=0. Equa- flamelet modeling. In first-order flamelet modeling,
tion (3.1) is referred to as the cmcl model throughout the?(1.€:x), wherey appears as a random parameter. Along the

remainder of the paper. With appropriate initial and boundar)}sozomo;l‘r OfgSt_then’ fluctuatlo_ns oi9(t,§59 artla dlue to thel
conditions, closure is obtained witly|) specified directly random fluctuations of. Herey is approximately lognorma

from the DNS(to be described in Sec. Il)CDetails of the in distribution and so its fluctuations become larger with in-
derivation are found in Klimenko and Bilg&rBriefly, we creasingy. Hence, at larger values gf fluctuations oft are
have the following also correspondingly larger relative to the fluctuation® af

smaller values of. The effect of large on #is illustrated in
(1) Terms representing the diffusion of the conditional aver-the DNS experiment shown in Fig. 2, where for most of the
ages in physical space, times, large fluctuations of correspond to relatively large
70 values ofy. Accounting for fluctuations of due toy is done
e_QE<<DV2@+21)V§.V _) ,7> , by choosingy as the second conditioning variable in a con-
p an ditional moment closure modeling framework.

Presently, we choosgy= x/F (&) as the second condi-
tioning variable. This specializes the combustion modeling to
the present DNS experiments whefeand y, have been
found to be statistically independent with

have been ignored in E@3.1) (eq closure.

(2) A closure hypothesis involving contributions to the bal-
ance of the conditional average by fluctuations about sin
gly conditional means¢’=6— 0, has been invoked:

>:_V~(<U’9’|7I>Pg)
P

(ey closurd. Hereu(t,x) is the turbulent velocity field in  Note, xo= x at {s= 0.5 for the present case. Figure 3 shows

physical spacey’ its fluctuations about the mean, and the typical functional dependence of the conditional mean
pe(7;t) the PDF ofé. (filled circles and standard deviatiopen circleg of y and

ey

_E<(i+u.v_mz) o'l F(&)=exp—2[erf (26— 1)1%). (32
p

ot

3

The reaction rate is represented by singly conditionalko With the mixture fraction. Subplati) illustrates the ap-
proximate independence of the first two momentg gfvith

means onlyfirst-momentw closure.

7, implying the approximate statistical independence of the

Assumption(1) is strictly valid only at high Reynolds random variableg, andé.
numbers in nonhomogeneo(sheay flows? has been shown The & functional dependence & in Eq. (3.2 to render
to be valid at low Reynolds numbers for a semihomogeneoug, independent of can be shown using mapping clostfe.
flow,'® and is exact for the present spatially degenetate  For the present spatially degenerate case with a symmetric
mogeneous, isotropicase. The closure hypothesis invoked double-delta-function initial condition for the PDF &f° an
in (2) has been validated against a DNS database of a tenanalytic expression for the mixture fraction dependence of
poral mixing layert’ For the present fully homogeneous the nth conditional moment of can be shown to béy"|¢
DNS case, theey term can be ignored under this closure = 7)~F"(5) with F(7)=exp{—2[erf }(27—1)]3}. Direct
hypothesis. Assumptio(8) is valid when fluctuations about substitution ofy= xoF (£) into {x"|&é= ) yields the desired
singly conditional means are small and thus higher-orderesult that{ xg| é= 7), the nth conditional moment ok, is
terms negligible in an expansion of the nonlinear chemicalndependent of;, and thusy, and¢ are statistically indepen-
source ternt.In doubly conditional moment closure, a sec- dent. The mapping closure model becomes invalid at the
ond conditioning variable is chosen that tries to account foffinal stages of mixing? For the times of interest investigated
these fluctuations not attributable §o in the present paper, the variance is sufficiently large such
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that the PDF of is approximately or nearly always bimodal L(®) L(&) d® L(xo) 90
and thef functional given by Eq(3.2) holds, as predicted by + - -~

) p p dn p X
mapping closure.

The formulation of the doubly conditional moment clo- )
sure model does not require the statistical independenge of  _,1g ..y 70 2DV o'V 90 L(6')
and the second conditioning variable, but simplifies its an oX p
implementation(to be described in Sec. Ill)Gand the mod- (92@ pr
eling of the joint PDF of¢ and the second conditioning vari- +D(VE)2——5 +2DVEVE,
able required to obtain unconditioned avera@es., the av- an’ danaX
eraged density to be used in a Reynolds-averaged or large- 520
eddy simulation In high Reynolds number flows, the +D(VX0)2W+2W-

decompositiony = yoF (£) would not be necessary asis

independent o£,?! and y could replacey, in the derivation

of the doubly conditional moment closure model to follow. Noting thatL(£)=0 in the second term on the Ihs and
The source term for the scalar dissipation rate is required(V £)= x/2 in the fourth term on the rhs, taking the dou-

to derive the governing equations for the conditional averbly conditional average of this equation gives

ages of the reacting scalars. Hgraes produced by the tur-

bulent velocity field, which can increase the scalar gradients 9@ 0 eq ey )

by the effect of strain, and is destroyed by the action of H+<Sx| 1X) o = 7+ ?+<2W|77:X>

molecular diffusion, which relax the gradients &f These

effects are represented by the terms on the rhs of the trans- X 9’0

port equation fory,2 which, for the present case of constant + <§‘ ”’X>_2_

p andD, can be written as

(92
+(2DV &V xol 7.X) ——=

L
O (2 e DV2> , (3.33 InIX
p (3’t Sy 26

with +<D(VX0)2| 7,X) X2’

S,=—4D(VE®VE): (V) 6

€Q
—4DA(VRVE):(VRVE). (3.3b ;E<(DV2®+2DV§-V o

Here, ® is the dyadic product of two vectors. The source 00
term for yo can be obtained by substituting= xoF (&) into +2DV xo-V 0)() ‘ 7 X>

Eq. (3.39. Making use of the relationV(xoF)=xoVF
+V xoF with VF=V édF/dé, the transport equation forg

e J
can be shown to be _Y_< ( = +uV— DV2> 9'

).

Written this way, similar unclosed terms involving fluctua-
tions about the conditional means result as in the derivation
of the singly conditional moment closure model equations;
namely,eq ,ey, and closure of the conditionally averaged
Following the derivation given in Ref. 9, the analogous clo-
sure hypothesis foey can readily be generalized for the
present, doubly conditional case, leading to

L(xo) S, 2DVé-VyodF x5 d?F
T_FJ“TdH 2 dé% (3.39

whereS, is the source term fox given by Eq.(3.3b and,

for convenience, the lhs operato( ) defined in Eq(3.39

is used. For examplé,(£) =0 asé is a conserved scalar.
Following the decomposition procedutethe doubly

conditional moment closure equations wittand y, as con-

ditioning variables can be derived using the differentiation

rules:
ey V(U0 |7.X)peby)
aa_a®+a® dE 9O dxg 96 —=— oD ,
Tt ag ot aX ot o P €Fxo

d with u’=u—(u|,X) and¢ and y, statistically independent.
Vo=Vo+ %V&L X VXot Ve Then, simplifying for the present case, the analogous terms
€q andey under double conditioning can again be neglected
Here, 6’ represents fluctuations about the doubly conditionabased on spatial homogeneigf. Sec. 11l B). With regard to
mean( 4| »,X)=0 with X the corresponding sample space first-momentw closure, the fluctuations about doubly condi-
variable for yo. Substitution into the local, instantaneous tioned means are presumably reduced and their neglect a
governing equation for the normalized temperaturég) more accurate approximation. That is, first-moment closure
=2w, yields of the chemical reaction rate using doubly conditioned
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means is expected to yield improved results over the analazomputational grid, where the conditionally averaged DNS
gous closure with singly conditioned means used in Eqdata are not available. The conditionally averaged coeffi-
(3.1. These closures yield cients of the DNS data do not change very rapidly with time
2 2 2 and need not be computed at each time step used in the
J J XF o J Jd . . . . .
(_ + ag— — —+Bo=oz t Yor—g | O numerical integration of Eqg3.1) and (3.4). Cubic splines

at X 2 9y X IndX are used to interpolate the one-dimensiofy) profile for
+2W(QF,Q0,Qp.0), (3.4  the cmcl model and the two-dimensional profites, Sy,
andy, for the cmc2 model between 12 stations over the total
time span of interest, 2.

(S,/n.X) 1dF 1_,dF

“="F Fdn o 2% a7 (3.4b Boundary conditions for the singly conditional case
5 7=0,1) are ©(t,0)=0(t,1)=0. For the doubly conditional

Bo=(D(V x0)*| 7.X), (349 case, boundary conditions must be specifiedsfer[ 0,1] at

Yo=(2DV £V xo 7,X), (3.49 X=Xmin Xmax and for Xe[Xmin.Xmaxd at 7=0,1. Here

0(t,0X)=0(t,1X)=0; at X,n=0, equilibrium solutions
for the doubly conditional moment closure modeling govern-are used while pure mixing solutions are used at some
ing equations. Again, for the present simplified chemistryxmaPXq_ Here x4 is the quenching value of the scalar dis-
case,Qr=7—Qp/2, Qo=1~7—Qp/2, andQp=0. sipation rate. A value oK,,,—=exp(3) was found to be large
The doubly conditional mea® in Eq. (3.4), henceforth  enough to not influence solutions. Cubic interpolation is also

termed model cmc2, is to be distinguished from the singly,sed to fit the DNS data at the initial time im(X) space for
conditional means of model cmcl. Noteworthy differencese initial conditions.

between the two models are highlighted. The convection
term in y, phase spadghe second term on the left-hand side
of Eq. (3.43] results from the fact thag, is not a conserved
scalar. The nonconstant coefficiesy is the doubly condi-
tional average of the source term fgg, which was given in

Figure 3i) shows a typical profile illustrating the de-
pendence ofy| 7). (x| ) is taken directly from the DNS data
for the singly conditional moment modeling calculations.
Singly conditional moment modeling calculations show no

Eq. (3.30. In contrast to singly conditional moment closure, appreciable effect on the solutions wif) modeled as

the coefficient of the diffusion term iiphase spacihe first {(Xo)F(7) (cf. Fig. 3. This modeling has been used in all
term on the right-hand side of Eq3.4a] is closed. The Ccmcl results to follow.

second and third terms on the right-hand side of Ba Figures 4 and 5 show thé and x, dependence of the
are additional diffusion terms that account for additional con-Coefficientsag, Bo, and yo (round symbols Also shown
duction losses important at high values yof. These terms are the analogous coefficientsyfwere used as the second
do not appear in singly conditional moment closure model<onditioning variable(square symbojs (S, |¢é=7,x=X)
ing, as transport iny, phase space is ignored. The coeffi- (analogous tay,, but with second conditioning og instead
cients for these additional termgg and y,, are taken from  of xo), (D(Vx)?/é=n,x=X) (analogous topB,), and

the DNS(described next in Sec. III)C (2DV &V x| €= n,x=X) (analogous toyy). At é= &, Fig.
4 shows theX dependence ok, and(S,|£= &g, x=X) (top
C. Implementation issues row) and B, and (D(V x)?|é= &4, x=X) (bottom row.

The statistical independence @fand x, bring about ~Hereyo and(2DV &V y|£= &g, x=X) are independent of
simplifications in the implementation of both cmc1 and cmc2and are not shown. Ag or xo=(xsp=X1, Fig. 5 shows the
models. Details of the implementation of thepriori testing 7 dependence at, and(S,|é= 7, x=X) (top row), B, and
of the models is described in this section. (D(Vx)?[é=n,x=X;) (middle row, and vy, and

All coefficients in Egs.(3.1) and (3.4) are calculated (2DVé£-V x|é=n,x=X;) (bottom row. The figure shows
directly from the DNS experiment. The conditional averageghat «q, B¢, and y, are approximately independent &f
of the data are computed using an equal number of datturther corroborating the independencexgfand ¢. For ex-
points per bin as opposed to using equally spaced incremengsnple, the functional dependence(¢fV x,|)| 7, X) depend
of the sample space variable for each bin size. In the formeless on# than {(|V x|)| #,X). Doubly conditional moment
method, the bin size over the range in the sample space vafinodeling calculations with and without the cross derivative
able can differ from bin to bin, while in the latter case, eachterm, 320/959X (corresponding to the assumption gf
bin size would t_)e equal by definition and could correspond— 0), shows no appreciable effect on the solutions. Hence,
to the computational mesh chosen gm_nd/or,\/o space. The only values fora, and B, need to be specified on thé
latter method can degrade the confidence of some of thﬁoundaries of the computational mesh.At,, both are set
go_nditionally averaged poipts, as it does not guarantee a su{(—) 2610, atX,a, @o=0 and a value fopB, is extrapolated
ficient number of data points to compute averag@sany from a power law fit of the data
higher-order statistics for that mattefhe implemented bin- '
ning procedure results in more accurate and smoother cond{i Practical implementation
tional averages but requires interpolation for a fixed finite- P
differenced computational mesh that does not change in The doubly conditional moment closure model asaan
time. Cubic interpolation is used #and yo space on a fixed posteriori predictive modeling tool is briefly summarized as
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t*=3/4 t*=3/2
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. °° FIG. 4. Scalar dissipation rate dependence of the coef-
R -2 0 2 R -2 0 2 ficients in doubly conditional moment closure modeling
(at é=¢&4): ag and By (circles and (S, |é= &4, x=X)
t*=3/4 t* =3/2 (note conditioning ony, not xo,) and (D(Vx)?|¢
0 ) 0 =g, x=X) (squares Open symbols are correspond-
%ooé’..'u ‘ oo ing rms information.
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compared and contrasted to singly conditional moment cloeally independent of (cf. a previous discussion in Sec.
sure modeling for high Reynolds number turbulent reactindll B).
flows, e.g., the jet flame of Fig.(d. The modeling of Favre-averaged nonreacting scalars and
Analogous to cmcl, an extension of cmc2 to incorporateheir gradients has been developed by Jones and &tliers
complex chemistry is a trivial task and involves simulta- relation to a transport equation fopx)/{p)=% (and hence
neous solutions oNS+1 equations taking the form of Eq. also@y, the Favre-averaged source term in transport equa-
(3.4). NS+1 is the total number of reacting species plus thetion fory). An extension of their work to explicitly modgl,
additional equation for temperature. Concurrergtipcondi-  and?, would be necessary. A two-parameter presumed beta
tioned Favre-averaged equations would be solved for thgepF shape for are commonly applied to practical flows,

turbulent velocity and _mixture fraction fields with a suitable \;yere only the mean and variance of the mixture fraction,
turbulence model. Various submodels are employed to relate —

unconditional to conditional averagé® specify the coeffi- and ¢'?, determine all the statistics of. Laboratory
cients in the conditional moment closure equatjcarsd con- experimenté/ suggest that the lognormal distribution gf
struct presumed PDF shapes of the conditioning varigble MaY beé characterized by only its megp, Thus, the joint
(to convolve the conditionally averaged density and temperaf DF 0f ¢ andy, p,, can be specified everywhere by
ture for the fluid dynamic calculations

Numerous approaches exist to describe the conditionally
averaged coefficients. The simplest of methods include re-
placing the conditional averages with their unconditionally
averaged density-weighted counterpaftin more elaborate Wherep; andp, are the marginal beta PDF f@rand log-
methods, Fredholm integral equations are inverted, assumirgPrmal PDF fory, respectively.
a form for the joint PDF of the conditioning variakge?*2° In summary, the required modeling efforts to practically
The former class of methods would require no modificationaPply cmc2 include the development/validation of models
to specify all coefficients in the doubly conditional momentfor 3, and%, and validation of the model fop,, . These
governing equations, while the latter method has alreadynodeling efforts fall under the rubric of turbulence modeling
been applied to two conditional averages in the framework ofof a nonreacting scalarPresumed PDF combustion model-
conditional source term estimatiénThe only additional in-  ing approaches, like cmc1, and cmc2, can be validated inde-
formation required by cmc2 then is th@nconditioned  pendent of turbulence modeling issues by working in phase
Favre-averages aty, By, andyg in Eq. (3.4) with xo re-  space. The present DNS experiments are more suited for
placed byy and a submodel to specify the PDF pfNote  priori combustion modeling due to the Reynolds number re-
for high Reynolds numberg; can be assumed to be statisti- striction.

Do (7.X:6.) = 7 E(E,X), £ 2(t,%) 1P, [X (LX),
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IV. RESULTS AND DISCUSSION a serious deficiency of the cmcl model is its inability to
I . . . eignite when exceedsy, for a sufficient period of
The qualitative observations made with regard to Fig. 2; 9 (xlés0 Aa P

at the end of Sec. Il describe the important role the scalar™

dissipation rate plays in the extinction and reignition events W'th regard to(ii) and (i), the observations made re-
occurring in the DNS experimentsi) Extinction occurs garding reignition events in the DNS experiments do not

when the local value of exceeds the quenching valug, specify the physical mech.ar.nsm by _wh|ch reignition takes
(ii) reignition only occurs whery has locally fallen below place but only states that it is con_dltlonal on the event that
this value; and(iii) both local extinction and reignition locally x must be less thag,. That is, there is no guarantee
events can occur at the same time. that reignition should be adequately described by transport in
With regard to(i) and(ii), cmc2 modeling describes ex- Xo Phase space alone, the only mechanism by which it can
tinction by accounting fory, fluctuations and describes re- occur in cmc2 modeling. No mechanism for reignition exists
ignition by transport iny, phase space. In cmcl, only aver- in cmcl. It is important to note that the reignition mecha-
aged scalar dissipation rate information appears and theism(s) not accounted for by cmc2 modeling could lead to
effect of locally large values of at & are neglected. The deviations between the predictions and the DNS data, even
expectation is that the extinction events seen in Figcade Wwhen the conditionally averaged temperature is decreasing
B), for example, cannot be adequately described by the cmcdue to the existence of overlapping reignition events. This
model. Case C was designed such that most of the locahould not be misconstrued as shortcomings in the ability of
values of exceedyy . (Here (x| & exceedsyy over one  cmc2 to describe extinction, which can confidently be attrib-
initial large-eddy turnover time in case)@s is well known,  uted to locally large fluctuations of the scalar dissipation rate
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(i) (i)

1 1
Xq (Case A)
08 FIG. 6. (i) The average scalar dissipation rate at
£4.{xo) (filled circles, and its rms,§=\{x42) (open
08, Xq (Case B) circles, from the DNS experimental cases. A dot—dot
l@ o, line corresponds tey, for each casécf. Table ). (ii)
o . Singly conditional mean of the product afg:
04 g o 0.4 . ) .
° . N triangles=case A; circlescase B; squarescase C;
¢ . Xq (Case C) \ (_jash—dash Iinecm(_:l modeling predictions and solid
L S 0.2 e ] line=cmc2 calculations.
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0 0.5 1 15 2 0 05 1 15 2
t* t*

following the observations of the experimental DNS data  The strengths and weaknesses of the cmc2 model can be
that were made with regard to Fig. 2 in Sec. Il. This must beunderstood by considering the doubly conditional statistics.
kept in mind when gauging the true merits of cmc2 modelingCase B is used as an illustrative case. Figure 7 shows cmcl
over the cmcl model in the results and discussion to follow(dash-dash line and cmc2 (solid line modeling results
Figure Gi) shows the average scalar dissipation rate ahagainst the DNS datésymbol3. Comparisons are made for
£su(xo) (filled circles, and its rms,(x(2)=x4 (open increasing times fromt* =% (top row of subplotsto t* =3
circles, identical for all three DNS experimental cases a—c(bottom row and conditional on three representative values
(cf. Table ). The dot—dot line corresponds g, for each  of the scalar dissipation rate: a relatively low valieft col-
case. Subplafii) of Fig. 6 shows cmcidash—dash lineand  umn of subplots moderatgcenter colump and a relatively
cmc?2 (solid linel modeling results against the DNS data high value(right column. More precisely, the center column
(triangles=case A, circles-case B, squarescase C) of the of subplots are conditioned on the events=(xg), X
average reduced temperature conditional on the evénts =(xo)— x¢ in the left column, ancK= (xo) + x¢ in the right
=¢,. The doubly conditional moment closure solutions column of subplots[Figure &i) shows(x,) (filled circles
have been convolved with the probability density functionand x; (open circley at the various time$ Recall that(xo)
(pdf) of xq. is the only required mixing information to be used by the
cmcl model. In contrast, cmc2 modeling accounts for all
values ofyg, including those greater and smaller tha).
Open symbols are doubly conditioned rms informatiorpof
taken from the DNS experiment. As can also be seen from
wherep,  is the pdf ofy, taken from the DNS experimental Fig. 2, the rms off (open circles in Fig. Fincreases with
data andO is the solution of Eq(3.4). time (moving from the top row down in Fig.)7and higher
Case A corresponds to a case with low extinction levelsscalar dissipation ratgsnoving from the left column to the
as the frequency factor for this case was chosen such that thight in Fig. 7).
guenching value of the scalar dissipation rate was relatively  For all times, both singly and doubly conditional mo-
large, xq=max xo)+maxy [cf. Table | and Fig. @)]. Thus,  ment closure models are comparable at relatively low values
most of the fluctuations of, are unimportant with respect to of X with respect tq yo) (left column of subplots in Fig.)7
extinction and therefore also reignition. The singly and douwhere the effects of extinction are not significant in the
bly conditional moment closure modeling predictions aremean, and represent the data well.
comparable for this case and deviate little from the data. For timest* <1 and at relatively high scalar dissipation
In case B,yq~maxxo) and the singly conditional mod- rate values with respect {e) [subplots(iii ) and(vi) in Fig.
eling results do not predict the extinction that occurs in the7], the cmc2 model yields the most significant improvement
mean fort*=<3. The doubly conditional moment closure over the singly conditional moment closure results. For this
model is able to describe the extinction at these relativelicase, the mean value af, never exceedg, in the DNS
early times, but predicts the onset of reignition too s¢mn  experimen{cf. Fig. )], hence the singly conditional mod-
alternatively, the level of temperature depression is underpreeling results could never predict any extinction events. cmc2
dicted for later timeg* > 3). modeling accounts for the fluctuations pf, which can ex-
Case C corresponds to a case with relatively high extinceeed x, by over a factor of Ssee Fig. 2 at* = 3, for ex-
tion levels asy,=maxxo)—Mmaxy,. In this case, the cmcl ample, and thus can yield the improved predictions seen in
model predicts complet@lobal extinction, whereas the nu- subplots (iii) and (vi) of Fig. 7 at the relatively largeX
merical experiment exhibits a recovery to a burning state. Ne= x. Recall from Fig. 2 that reignition events are rare at
mechanism exists in the cmcl model to allow for reignition.these times.
The cmc2 model can reignitga the transport inyg phase For increasing timeg? > % (bottom half of Fig. 7, when
space. However, the reignition predicted by cmc2 modelingeignition occurs in the mean, the doubly conditional model-
again occurs too early, as was also observed in case B. ing results diverge from the dafavitness subplotsix) and

<0|§St>: f0w®(tvgst7x)pxo(x;t)dxa
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FIG. 7. Modeling comparisons: Symbel®NS data, dash—dash lisemcl; solid linescmc2. Left column: conditioning on relatively low values pf

(X={(xo0)— \/<X62)), center colume-conditioning atX=(xo), right column: conditioning on relatively high valuesgf (X={xq)+ \/<X62>)- Open symbols
are corresponding rms information.

(xii) in Fig. 7]. Both (xo) and x, decay in time. The values sus(vi). The diffusion inX space in the cmc2 model is evi-

dently also insufficient to yield the required reduction in the
sufficient to account for the reduction in the conditional conditional means. This may be due to the neglect of the
influence of the fluctuations of the dissipation rate of the

of the scalar dissipation rate at times> 3 is evidently in-

mean, which is comparable, for example, in subgiot ver-
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