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Modeling extinction and reignition in turbulent nonpremixed combustion
using a doubly-conditional moment closure approach
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The scalar dissipation rate is introduced as a second conditioning variable into the first-moment,
singly conditional moment closure model to describe extinction and reignition effects in turbulent,
nonpremixed combustion.A priori testing of the combustion model using direct numerical
simulation experiments exhibiting local extinction/reignition events is described. The singly
conditional moment closure model is either unable to describe the extinction seen in the numerical
experiments or predicts global extinction when it does not occur. The new doubly conditional
moment closure approach is able to describe the extinction seen on average, but predicts the onset
of reignition too early. ©2001 American Institute of Physics.@DOI: 10.1063/1.1415426#
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I. INTRODUCTION

The accurate treatment of extinction and reignition p
nomena is thought to be an important factor in determin
how flame stabilization occurs in practical, nonpremix
combustion systems.1 In the joint probability density func-
tion ~PDF! approach,2,3 extinction/reignition can be treate
with improved mixing models.4 However, joint PDF meth-
ods employ a Monte Carlo type solution procedure and t
become computationally expensive when many species
crease the dimensionality of the modeled joint PDF evo
tion equation. Presumed PDF approaches, such as flam
modeling1,5,6 and conditional moment closure modeling,7–9

can be computationally tractable when many species ar
be described, as is generally the case in problems of prac
importance. First-order flamelet modeling and conditio
moment closure modeling with singly conditional, firs
moment closure breaks down when extinction and/or reig
tion phenomena are present.1,9 Our focus in the present pape
concerns extensions of first-order conditional moment c
sure modeling to describe extinction/reignition.

Currently, a fundamental closure approximation in s
gly conditional moment closure modeling is first-order c
sure of the average nonlinear chemical source terms,ẇ, con-
ditioned on the mixture fraction,j(t,x)5h:

^ẇ~Y~ t,x!,T~ t,x!,r~ t,x!!uj~ t,x!5h&

'ẇ~^Yuh&,^Tuh&,^ruh&!,

whereY is the vector of mass fractions of the reacting sp
cies,T andr are the temperature and density of the mixtu
respectively, andh is the sample space variable ofj. The

a!Telephone: 650-725-6635; fax: 650-723-9617. Electronic m
chongcha@stanford.edu
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first-order closure approximation is not valid when fluctu
tions about the conditional means become significant. Fig
1 shows local extinction/reignition events inj space from~i!
experiments of a turbulent methane/air reacting jet10 and~ii !
direct numerical simulation~DNS! of a single-step chemica
reaction in spatially homogeneous and isotropic turbulenc11

In Fig. 1, u is the reduced temperature,

u[
T2T`

Tf2T`
,

with Tf the adiabatic flame temperature andT` the reference
temperature. The data of Fig. 1~i! is a current benchmark
dataset for competing combustion models. Figure 1~i! shows
the data from an entire planar cross section in the ‘‘ne
field’’ of the jet, 15 diameters from the fuel nozzle. Figu
1~ii ! shows the data after one-half a large-eddy turnover t
(t* [t/teddy5

1
2) from the initial, nonpremixed state. Th

time is nondimensionalized with the initial large-eddy tur
over time,teddy. In both subplots~i! and ~ii !, T` was as-
signed the temperature of the two initially segregated flui
the fuel and oxidizer. The temperatures of the fuel and o
dizer are the same in each of the two experiments. The h
est temperatures and largest fluctuations appear where
and oxidizer are in stoichiometric proportion atj5jst. ~For
the jet flame,jst50.351 and for the DNS,jst50.5.! Figure 1
illustrates how extinction/reignition events appear as la
fluctuations about̂uuh&. In the present paper we focus on th
DNS experimental data, as some important quantities of
terest for testing the combustion model to be presented is
currently available from the jet flame experiments.

To account for the fluctuations ofY andu not accounted
for by the fluctuations ofj, second-order closure of the con
ditional chemical source term has been proposed to impr
singly conditional moment closure modeling and is curren

:

4 © 2001 American Institute of Physics
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FIG. 1. Motivation of the work: Scatter plots of the
reduced temperature from~i! a planar cut atx/D515 of
the piloted methane/air turbulent reacting jet F of Ba
low and Frank~Ref. 10!, and~ii ! from a direct numeri-
cal simulation~DNS! of turbulence in a box of Sripak-

agorn ~Ref. 11! at t* [t/teddy5
1
2 with a single-step,

reversible reaction. HereD is the jet nozzle diameter
teddy is the initial large-eddy turnover time. In~i!, the
stoichiometric value of the mixture fraction isjst

50.351; in~ii !, jst50.5.
e
-
re
e

.

at
in development.12,13 In the present paper we introduce th
use of the dissipation rate of the scalarj as a second condi
tioning variable while maintaining the first-moment closu
of the chemical source term. The scalar dissipation rat
defined as
Downloaded 17 Aug 2005 to 171.64.117.166. Redistribution subject to AI
is

x[2D~“j!2,

whereD is the molecular diffusivity of the mixture fraction
Figure 2 ~subplot t* 5 1

2! shows the DNS data of Fig. 1~ii !
mapped into the scalar dissipation rate phase spacej
-
Sri-
FIG. 2. The DNS experiment of spatially isotropic, ho
mogeneous, and decaying turbulence performed by
pakagorn~Ref. 11! for case B~cf. Table I!. The reduced
temperature is shown atjst50.5 as a function of the
local scalar dissipation rate,x[2D(“j)2.
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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5jst. ~Figure 2 is described in detail later.! Measurements o
x do not yet exist for the laboratory experimental data sho
in subplot~i!. Note that information showing the maximum
departures from equilibrium after the mapping tox phase
space is not lost. Important additional information, not d
cernable inj phase space alone, is discussed later. The
sumption is that the extinction/reignition events, seen in F
1 for example, can be described in the space ofx ~in addition
to j andx!.

The present formulation of introducing a second con
tioning variable should be distinguished from the multip
conditional moment closure modeling in Ref. 9, where ad
tional conditioning variables must be introduced to trea
multistream mixing problem. Here, only a two-stream m
ing process is considered, where the advantage of do
conditioning expectations~in addition to the mixture frac-
tion! is to account for additional fluctuations about the sing
conditional means due to the fluctuations ofx.

The paper is organized as follows. In the next secti
the DNS experiments to be modeled are described. In
III, the assumptions of singly conditional moment closu
modeling are reviewed and a new conditional moment c
sure model, where the scalar dissipation rate is introduce
a second conditioning variable is formulated. In Sec. IVa
priori modeling comparisons are made with the DNS exp
ments. Finally, in the conclusions section, the strengths
limitation of the doubly conditional moment closure mod
are summarized.

II. NUMERICAL EXPERIMENT

Presently, thea priori combustion modeling compari
sons are made with the DNS experiments performed
Sripakagorn.11 Briefly, fuel ~F!, oxidizer~O!, and product~P!
involved in a one-step, second-order, reversible reaction

F1O

k/K

k

2P, ~2.1!

evolve in isotropic, homogeneous, and decaying turbulen
The stoichiometric value of the mixture fraction isjst50.5.
The forward reaction rate,k, in Eq. ~2.1! has an Arrhenius
temperature dependence with the equilibrium constantK,
held fixed. The production rates for fuel, oxidizer, and pro
uct are ẇF52ẇ, ẇO52ẇ, and ẇP52ẇ, respectively,
where

ẇ~YF ,YO,YP,u!5A expS 2
Ze

a DexpS 2
Ze~12u!

12a~12u! D
3S YFYO2

1

K
YP

2D
is the reaction rate. Here,A is the frequency factor~multi-
plied by density and divided by molecular weight, assum
equal for all species!, a[(Tf2T`)/Tf is the heat release
parameter, Ze[aTa /Tf is the Zeldovich number, andTa is
the activation temperature. The Schmidt number is 0.7
Lewis numbers unity. The turbulent flow is incompressib
and the molecular diffusivities and viscosity are independ
of the temperature~cf. Sripakagorn11 for details of the simu-
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lation!. Use of such an idealized system to decouple a
investigate presumed PDF combustion modeling strategie
common.14,15

Figure 2 shows the level of extinction/reignition from
the DNS experiment withA583104 s21, a50.87, Ze54,
andK5100. The solid line in each subplot is the steady-st
solution of the flamelet equation5 for u at jst. The quenching
value of the scalar dissipation rate atjst is xq50.57 s21 for
this moderate extinction level case. Additional cases w
performed where the degree of extinction was increased
decreased from the moderate extinction level case sh
Fig. 2 by varying the frequency factorA. The experimental
cases considered in this paper are summarized in Tab
Figure 2 corresponds to case B.

Some preliminary qualitative observations are made t
are important for later discussion. In all three cases, the
erage scalar dissipation rate atjst,^xst&, increases to a maxi
mum at t* ' 1

4, then decays in time. The fluctuating scal
dissipation rate is approximately lognormal in distributio
and maximum local values ofxst also correspond to this
time, as can be seen in Fig. 2. Figure 2 shows that fort*
& 1

2, extinction events occur when the local values ofxst

exceedxq . Local extinction events reduce the conditiona
averaged mean temperature. For increasing timest* . 1

2,
both extinction and reignition events occur simultaneous
Reignition can only occur when local values ofxst are less
than xq . Reignition dominates at late times, as very fe
local values ofxst ever exceed the quenching value. An im
portant consequence of the overlapping of extinction and
ignition events is noted. The number of local reignitio
events must dominate the level of extinction before the c
ditionally averaged temperature atjst can increase. Conse
quently, prior to this increase, many local reignition eve
occur while the conditionally averaged temperature is s
decreasing.

III. COMBUSTION MODELING

A. Singly conditional moment closure

In this section, we review the singly conditional mome
closure model, which is to be used as a baseline compar
against the strategy of doubly conditioning.

For the present case of a single-step reaction, the co
tional averages of all species and temperature can be
tained from the single equation for the average ofu singly
conditioned onj:

TABLE I. Variation of the DNS cases of Sripakagorn~Ref. 11!, where the

reaction F1O

k/K

k
2P is simulated in decaying, homogeneous, and isotro

turbulence with an initial Rel533 on a 1283 grid. Here Sc50.7 and Lewis
numbers are unity. Chemistry rate parameters area50.87, Ze54, andK
5100.

Case A ~s21! xq ~s21!

A 13.03104 0.94
B 8.03104 0.57
C 0.33104 0.21
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 3. An illustration of ~i! the
^xuh&[^x0&F(h) dependence in the
present DNS experiment withF(h)
[exp$22@erf21(2h21)#2%, and~ii ! the
approximate independence ofx0

[x/F with j. The variance is repre-
sented by the open circles. Note,x0

5x at jst50.5 for the present case.
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Q5

^xuh&
2

]2

]h2 Q12ẇ~QF ,QO,QP,Q!, ~3.1!

where^xuh& is the conditionally averaged scalar dissipati
rate, QF5h2QP/2, QO512h2QP/2, and QP5Q. Equa-
tion ~3.1! is referred to as the cmc1 model throughout t
remainder of the paper. With appropriate initial and bound
conditions, closure is obtained witĥxuh& specified directly
from the DNS~to be described in Sec. III C!. Details of the
derivation are found in Klimenko and Bilger.9 Briefly, we
have the following.

~1! Terms representing the diffusion of the conditional av
ages in physical space,

eQ

r
[KSD¹2Q12D“j"“

]Q

]h D Uh L ,

have been ignored in Eq.~3.1! ~eQ closure!.
~2! A closure hypothesis involving contributions to the ba

ance of the conditional average by fluctuations about
gly conditional means,u8[u2Q, has been invoked:

eY

r
[KS ]

]t
1u"“2D¹2D u8Uh L 52

“"~^u8u8uh&pj!

pj

~eY closure!. Hereu(t,x) is the turbulent velocity field in
physical space,u8 its fluctuations about the mean, an
pj(h;t) the PDF ofj.

~3! The reaction rate is represented by singly conditio
means only~first-momentẇ closure!.

Assumption~1! is strictly valid only at high Reynolds
numbers in nonhomogeneous~shear! flows,9 has been shown
to be valid at low Reynolds numbers for a semihomogene
flow,16 and is exact for the present spatially degenerate~ho-
mogeneous, isotropic! case. The closure hypothesis invok
in ~2! has been validated against a DNS database of a
poral mixing layer.17 For the present fully homogeneou
DNS case, theeY term can be ignored under this closu
hypothesis. Assumption~3! is valid when fluctuations abou
singly conditional means are small and thus higher-or
terms negligible in an expansion of the nonlinear chem
source term.9 In doubly conditional moment closure, a se
ond conditioning variable is chosen that tries to account
these fluctuations not attributable toj.
Downloaded 17 Aug 2005 to 171.64.117.166. Redistribution subject to AI
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B. Doubly conditional moment closure

The physical significance of the scalar dissipation ra
x, in extinction/reignition phenomena is well known from
flamelet modeling.6 In first-order flamelet modeling
u(t,j;x), wherex appears as a random parameter. Along
isocontour ofjst then, fluctuations ofu(t,jst) are due to the
random fluctuations ofx. Herex is approximately lognorma
in distribution and so its fluctuations become larger with
creasingx. Hence, at larger values ofx, fluctuations ofu are
also correspondingly larger relative to the fluctuations ofu at
smaller values ofx. The effect of largex on u is illustrated in
the DNS experiment shown in Fig. 2, where for most of t
times, large fluctuations ofu correspond to relatively large
values ofx. Accounting for fluctuations ofu due tox is done
by choosingx as the second conditioning variable in a co
ditional moment closure modeling framework.

Presently, we choosex0[x/F(j) as the second condi
tioning variable. This specializes the combustion modeling
the present DNS experiments wherej and x0 have been
found to be statistically independent with

F~j![exp$22@erf21~2j21!#2%. ~3.2!

Note,x05x at jst50.5 for the present case. Figure 3 sho
the typical functional dependence of the conditional me
~filled circles! and standard deviation~open circles! of x and
x0 with the mixture fraction. Subplot~ii ! illustrates the ap-
proximate independence of the first two moments ofx0 with
h, implying the approximate statistical independence of
random variablesx0 andj.

The j functional dependence ofF in Eq. ~3.2! to render
x0 independent ofj can be shown using mapping closure18

For the present spatially degenerate case with a symm
double-delta-function initial condition for the PDF ofj,19 an
analytic expression for the mixture fraction dependence
the nth conditional moment ofx can be shown to bêxnuj
5h&;Fn(h) with F(h)5exp$22@erf21(2h21)#2%. Direct
substitution ofx5x0F(j) into ^xnuj5h& yields the desired
result that̂ x0

nuj5h&, thenth conditional moment ofx0 , is
independent ofh, and thusx0 andj are statistically indepen
dent. The mapping closure model becomes invalid at
final stages of mixing.20 For the times of interest investigate
in the present paper, the variance is sufficiently large s
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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that the PDF ofj is approximately or nearly always bimod
and thej functional given by Eq.~3.2! holds, as predicted by
mapping closure.

The formulation of the doubly conditional moment cl
sure model does not require the statistical independencej
and the second conditioning variable, but simplifies
implementation~to be described in Sec. III C! and the mod-
eling of the joint PDF ofj and the second conditioning var
able required to obtain unconditioned averages~e.g., the av-
eraged density to be used in a Reynolds-averaged or la
eddy simulation!. In high Reynolds number flows, th
decompositionx5x0F(j) would not be necessary asx is
independent ofj,21 andx could replacex0 in the derivation
of the doubly conditional moment closure model to follow

The source term for the scalar dissipation rate is requ
to derive the governing equations for the conditional av
ages of the reacting scalars. Herex is produced by the tur-
bulent velocity field, which can increase the scalar gradie
by the effect of strain, and is destroyed by the action
molecular diffusion, which relax the gradients ofj. These
effects are represented by the terms on the rhs of the tr
port equation forx,22 which, for the present case of consta
r andD, can be written as

L~x!

r
[S ]

]t
1u"“2D¹2Dx5Sx , ~3.3a!

with

Sx[24D~“j‹“j!:~“‹u!

24D2~“‹“j!:~“‹“j!. ~3.3b!

Here, ^ is the dyadic product of two vectors. The sour
term for x0 can be obtained by substitutingx5x0F(j) into
Eq. ~3.3a!. Making use of the relation“(x0F)5x0“F
1“x0F with “F5“jdF/dj, the transport equation forx0

can be shown to be

L~x0!

r
5

Sx

F
1

2D“j•“x0

F

dF

dj
1

x0
2

2

d2F

dj2 , ~3.3c!

whereSx is the source term forx given by Eq.~3.3b! and,
for convenience, the lhs operatorL( ) defined in Eq.~3.3a!
is used. For example,L(j)50 asj is a conserved scalar.

Following the decomposition procedure,9 the doubly
conditional moment closure equations withj andx0 as con-
ditioning variables can be derived using the differentiat
rules:

]u

]t
5

]Q

]t
1

]Q

]h

]j

]t
1

]Q

]X

]x0

]t
1

]u8

]t
,

“u5“Q1
]Q

]h
“j1

]Q

]X
“x01“u8.

Here,u8 represents fluctuations about the doubly conditio
mean^uuh,X&5Q with X the corresponding sample spa
variable for x0 . Substitution into the local, instantaneo
governing equation for the normalized temperature,L(u)
52ẇ, yields
Downloaded 17 Aug 2005 to 171.64.117.166. Redistribution subject to AI
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L~Q!

r
1

L~j!

r

]Q

]h
1

L~x0!

r

]Q

]X

52D“j"“
]Q

]h
12D“x0"“

]Q

]X
2

L~u8!

r

1D~“j!2
]2Q

]h2 12D“j"“j0

]2Q

]h]X

1D~“x0!2
]2Q

]X2 12ẇ.

Noting that L(j)50 in the second term on the lhs an
D(“j)25x/2 in the fourth term on the rhs, taking the do
bly conditional average of this equation gives

]Q

dt
1^Sxuh,X&

]Q

]X
5

eQ

r
1

eY

r
1^2ẇuh,X&

1 K X

2Uh,XL ]2Q

]h2

1^2D“j"“x0uh,X&
]2Q

]h]X

1^D~“x0!2uh,X&
]2Q

]X2 ,

eQ

r
[ K S D¹2Q12D“j"“

]Q

]h

12D“x0"“
]Q

]X D Uh,XL ,

eY

r
[ K S ]

]t
1u"“2D¹2D u8Uh,XL .

Written this way, similar unclosed terms involving fluctu
tions about the conditional means result as in the deriva
of the singly conditional moment closure model equation9

namely,eQ ,eY , and closure of the conditionally averagedẇ.
Following the derivation given in Ref. 9, the analogous c
sure hypothesis foreY can readily be generalized for th
present, doubly conditional case, leading to

eY

r
52

“"~^u8u8uh,X&pjpx0
!

pjpx0

,

with u85u2^uuh,X& andj andx0 statistically independent
Then, simplifying for the present case, the analogous te
eQ andeY under double conditioning can again be neglec
based on spatial homogeneity~cf. Sec. III B!. With regard to
first-momentẇ closure, the fluctuations about doubly cond
tioned means are presumably reduced and their negle
more accurate approximation. That is, first-moment clos
of the chemical reaction rate using doubly condition
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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means is expected to yield improved results over the an
gous closure with singly conditioned means used in
~3.1!. These closures yield

S ]

]t
1a0

]

]XDQ5S XF

2

]2

]h2 1b0

]2

]X2 1g0

]2

]h]XDQ

12ẇ~QF ,QO,QP,Q!, ~3.4a!

a0[
^Sxuh,X&

F
1

1

F

dF

dh
g01

1

2
X2

d2F

dh2 , ~3.4b!

b0[^D~“x0!2uh,X&, ~3.4c!

g0[^2D“j"“x0uh,X&, ~3.4d!

for the doubly conditional moment closure modeling gove
ing equations. Again, for the present simplified chemis
case,QF5h2QP/2, QO512h2QP/2, andQP5Q.

The doubly conditional meanQ in Eq. ~3.4!, henceforth
termed model cmc2, is to be distinguished from the sin
conditional means of model cmc1. Noteworthy differenc
between the two models are highlighted. The convect
term inx0 phase space@the second term on the left-hand sid
of Eq. ~3.4a!# results from the fact thatx0 is not a conserved
scalar. The nonconstant coefficienta0 is the doubly condi-
tional average of the source term forx0 , which was given in
Eq. ~3.3c!. In contrast to singly conditional moment closur
the coefficient of the diffusion term inj phase space@the first
term on the right-hand side of Eq.~3.4a!# is closed. The
second and third terms on the right-hand side of Eq.~3.4a!
are additional diffusion terms that account for additional co
duction losses important at high values ofx0 . These terms
do not appear in singly conditional moment closure mod
ing, as transport inx0 phase space is ignored. The coef
cients for these additional terms,b0 andg0 , are taken from
the DNS~described next in Sec. III C!.

C. Implementation issues

The statistical independence ofj and x0 bring about
simplifications in the implementation of both cmc1 and cm
models. Details of the implementation of thea priori testing
of the models is described in this section.

All coefficients in Eqs.~3.1! and ~3.4! are calculated
directly from the DNS experiment. The conditional averag
of the data are computed using an equal number of d
points per bin as opposed to using equally spaced increm
of the sample space variable for each bin size. In the for
method, the bin size over the range in the sample space
able can differ from bin to bin, while in the latter case, ea
bin size would be equal by definition and could correspo
to the computational mesh chosen forj and/orx0 space. The
latter method can degrade the confidence of some of
conditionally averaged points, as it does not guarantee a
ficient number of data points to compute averages~or any
higher-order statistics for that matter!. The implemented bin-
ning procedure results in more accurate and smoother co
tional averages but requires interpolation for a fixed fini
differenced computational mesh that does not change
time. Cubic interpolation is used inj andx0 space on a fixed
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computational grid, where the conditionally averaged DN
data are not available. The conditionally averaged coe
cients of the DNS data do not change very rapidly with tim
and need not be computed at each time step used in
numerical integration of Eqs.~3.1! and ~3.4!. Cubic splines
are used to interpolate the one-dimensional^xuh& profile for
the cmc1 model and the two-dimensional profilesa0 , b0 ,
andg0 for the cmc2 model between 12 stations over the to
time span of interest, 2teddy.

Boundary conditions for the singly conditional case~at
h50,1! areQ(t,0)5Q(t,1)50. For the doubly conditiona
case, boundary conditions must be specified forhP@0,1# at
X5Xmin ,Xmax and for XP@Xmin ,Xmax# at h50,1. Here
Q(t,0,X)5Q(t,1,X)50; at Xmin'0, equilibrium solutions
are used while pure mixing solutions are used at so
Xmax@xq . Herexq is the quenching value of the scalar di
sipation rate. A value ofXmax5exp(3) was found to be large
enough to not influence solutions. Cubic interpolation is a
used to fit the DNS data at the initial time in (h,X) space for
the initial conditions.

Figure 3~i! shows a typical profile illustrating theh de-
pendence of̂xuh&. ^xuh& is taken directly from the DNS data
for the singly conditional moment modeling calculation
Singly conditional moment modeling calculations show
appreciable effect on the solutions with^xuh& modeled as
^x0&F(h) ~cf. Fig. 3!. This modeling has been used in a
cmc1 results to follow.

Figures 4 and 5 show thej and x0 dependence of the
coefficientsa0 , b0 , and g0 ~round symbols!. Also shown
are the analogous coefficients ifx were used as the secon
conditioning variable~square symbols!: ^Sxuj5h,x5X&
~analogous toa0 , but with second conditioning onx instead
of x0!, ^D(“x)2uj5h,x5X& ~analogous to b0!, and
^2D“j"“xuj5h,x5X& ~analogous tog0!. At j5jst, Fig.
4 shows theX dependence ofa0 and^Sxuj5jst,x5X& ~top
row! and b0 and ^D(“x)2uj5jst,x5X& ~bottom row!.
Hereg0 and^2D“j"“xuj5jst,x5X& are independent ofX
and are not shown. Atx or x05^xst&[X1 , Fig. 5 shows the
h dependence ofa0 and^Sxuj5h,x5X1& ~top row!, b0 and
^D(“x)2uj5h,x5X1& ~middle row!, and g0 and
^2D“j"“xuj5h,x5X1& ~bottom row!. The figure shows
that a0 , b0 , and g0 are approximately independent ofh,
further corroborating the independence ofx0 andj. For ex-
ample, the functional dependence of^(u“x0u)uh,X& depend
less onh than ^(u“xu)uh,X&. Doubly conditional moment
modeling calculations with and without the cross derivat
term, ]2Q/]h]X ~corresponding to the assumption ofg0

50!, shows no appreciable effect on the solutions. Hen
only values fora0 and b0 need to be specified on theX
boundaries of the computational mesh. AtXmin , both are set
to zero; atXmax, a050 and a value forb0 is extrapolated
from a power law fit of the data.

D. Practical implementation

The doubly conditional moment closure model as ana
posteriori predictive modeling tool is briefly summarized a
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Scalar dissipation rate dependence of the co
ficients in doubly conditional moment closure modelin
~at j5jst!: a0 and b0 ~circles! and ^Sxuj5jst ,x5X&
~note conditioning onx, not x0! and ^D(“x)2uj
5jst ,x5X& ~squares!. Open symbols are correspond
ing rms information.
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compared and contrasted to singly conditional moment
sure modeling for high Reynolds number turbulent react
flows, e.g., the jet flame of Fig. 1~i!.

Analogous to cmc1, an extension of cmc2 to incorpor
complex chemistry is a trivial task and involves simult
neous solutions ofNS11 equations taking the form of Eq
~3.4!. NS11 is the total number of reacting species plus
additional equation for temperature. Concurrently~uncondi-
tioned! Favre-averaged equations would be solved for
turbulent velocity and mixture fraction fields with a suitab
turbulence model. Various submodels are employed to re
unconditional to conditional averages~to specify the coeffi-
cients in the conditional moment closure equations! and con-
struct presumed PDF shapes of the conditioning variabl~s!
~to convolve the conditionally averaged density and tempe
ture for the fluid dynamic calculations!.

Numerous approaches exist to describe the condition
averaged coefficients. The simplest of methods include
placing the conditional averages with their unconditiona
averaged density-weighted counterparts.23 In more elaborate
methods, Fredholm integral equations are inverted, assum
a form for the joint PDF of the conditioning variable~s!.24,25

The former class of methods would require no modificat
to specify all coefficients in the doubly conditional mome
governing equations, while the latter method has alre
been applied to two conditional averages in the framework
conditional source term estimation.25 The only additional in-
formation required by cmc2 then is the~unconditioned!
Favre-averages ofa0 , b0 , andg0 in Eq. ~3.4! with x0 re-
placed byx and a submodel to specify the PDF ofx. Note
for high Reynolds numbers,x can be assumed to be statis
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cally independent ofj ~cf. a previous discussion in Sec
III B !.

The modeling of Favre-averaged nonreacting scalars
their gradients has been developed by Jones and others26 in
relation to a transport equation for^rx&/^r&[x̃ ~and hence
also ã0 , the Favre-averaged source term in transport eq
tion for x̃!. An extension of their work to explicitly modelb̃0

and g̃0 would be necessary. A two-parameter presumed b
PDF shape forj are commonly applied to practical flows
where only the mean and variance of the mixture fractionj̃

and j82̃, determine all the statistics ofj. Laboratory
experiments27 suggest that the lognormal distribution ofx
may be characterized by only its mean,x̃. Thus, the joint
PDF of j andx, pjx , can be specified everywhere by

pjx~h,X;t,x!5pj@h; j̃~ t,x!,j82̃~ t,x!#px@X;x̃~ t,x!#,

wherepj and px are the marginal beta PDF forj and log-
normal PDF forx, respectively.

In summary, the required modeling efforts to practica
apply cmc2 include the development/validation of mod
for b̃0 and g̃0 and validation of the model forpjx . These
modeling efforts fall under the rubric of turbulence modeli
~of a nonreacting scalar!. Presumed PDF combustion mode
ing approaches, like cmc1, and cmc2, can be validated in
pendent of turbulence modeling issues by working in ph
space. The present DNS experiments are more suited fa
priori combustion modeling due to the Reynolds number
striction.
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FIG. 5. Mixture fraction dependence of the coefficien
in doubly conditional moment closure modeling~at X
5X1[^x0&!: a0 , b0 , and g0 ~circles! and ^Sxuj
5h,x5X1& ~note conditioning on x, not x0!,
^D(“x)2uj5h,x5X1&, and ^2D“j•“xuj5h,x
5X1& ~squares!. Open symbols are corresponding rm
information.
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IV. RESULTS AND DISCUSSION

The qualitative observations made with regard to Fig
at the end of Sec. II describe the important role the sc
dissipation rate plays in the extinction and reignition eve
occurring in the DNS experiments:~i! Extinction occurs
when the local value ofx exceeds the quenching value,xq ;
~ii ! reignition only occurs whenx has locally fallen below
this value; and~iii ! both local extinction and reignition
events can occur at the same time.

With regard to~i! and~ii !, cmc2 modeling describes ex
tinction by accounting forx0 fluctuations and describes re
ignition by transport inx0 phase space. In cmc1, only ave
aged scalar dissipation rate information appears and
effect of locally large values ofx at jst are neglected. The
expectation is that the extinction events seen in Fig. 2~case
B!, for example, cannot be adequately described by the c
model. Case C was designed such that most of the l
values ofxst exceedxq . ~Here ^xujst& exceedsxq over one
initial large-eddy turnover time in case C.! As is well known,
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a serious deficiency of the cmc1 model is its inability
reignite when^xujst& exceedsxq for a sufficient period of
time.

With regard to~ii ! and ~iii !, the observations made re
garding reignition events in the DNS experiments do n
specify the physical mechanism by which reignition tak
place but only states that it is conditional on the event t
locally x must be less thanxq . That is, there is no guarante
that reignition should be adequately described by transpo
x0 phase space alone, the only mechanism by which it
occur in cmc2 modeling. No mechanism for reignition exis
in cmc1. It is important to note that the reignition mech
nism~s! not accounted for by cmc2 modeling could lead
deviations between the predictions and the DNS data, e
when the conditionally averaged temperature is decrea
due to the existence of overlapping reignition events. T
should not be misconstrued as shortcomings in the ability
cmc2 to describe extinction, which can confidently be attr
uted to locally large fluctuations of the scalar dissipation r
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. ~i! The average scalar dissipation rate
jst ,^x0& ~filled circles!, and its rms,x08[A^x08

2& ~open
circles!, from the DNS experimental cases. A dot–d
line corresponds toxq for each case~cf. Table I!. ~ii !
Singly conditional mean of the product atjst :
triangles5case A; circles5case B; squares5case C;
dash–dash line5cmc1 modeling predictions and solid
line5cmc2 calculations.
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following the observations of the experimental DNS da
that were made with regard to Fig. 2 in Sec. II. This must
kept in mind when gauging the true merits of cmc2 model
over the cmc1 model in the results and discussion to foll

Figure 6~i! shows the average scalar dissipation rate
jst,^x0& ~filled circles!, and its rms,A^x08

2&[x08 ~open
circles!, identical for all three DNS experimental cases a
~cf. Table I!. The dot–dot line corresponds toxq for each
case. Subplot~ii ! of Fig. 6 shows cmc1~dash–dash line! and
cmc2 ~solid line! modeling results against the DNS da
(triangles5case A, circles5case B, squares5case C) of the
average reduced temperature conditional on the evenj
5jst. The doubly conditional moment closure solutio
have been convolved with the probability density functi
~pdf! of x0 .

^uujst&5E
0

`

Q~ t,jst,X!px0
~X;t !dX,

wherepx0 is the pdf ofx0 taken from the DNS experimenta
data andU is the solution of Eq.~3.4!.

Case A corresponds to a case with low extinction leve
as the frequency factor for this case was chosen such tha
quenching value of the scalar dissipation rate was relativ
large,xq5max̂ x0&1maxx08 @cf. Table I and Fig. 6~i!#. Thus,
most of the fluctuations ofx0 are unimportant with respect t
extinction and therefore also reignition. The singly and do
bly conditional moment closure modeling predictions a
comparable for this case and deviate little from the data.

In case B,xq'max̂ x0& and the singly conditional mod
eling results do not predict the extinction that occurs in
mean for t* & 1

2. The doubly conditional moment closur
model is able to describe the extinction at these relativ
early times, but predicts the onset of reignition too soon~or,
alternatively, the level of temperature depression is under
dicted for later timest* . 1

2!.
Case C corresponds to a case with relatively high ext

tion levels asxq5max̂ x0&2maxx08 . In this case, the cmc1
model predicts complete~global! extinction, whereas the nu
merical experiment exhibits a recovery to a burning state.
mechanism exists in the cmc1 model to allow for reignitio
The cmc2 model can reignitevia the transport inx0 phase
space. However, the reignition predicted by cmc2 mode
again occurs too early, as was also observed in case B.
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The strengths and weaknesses of the cmc2 model ca
understood by considering the doubly conditional statist
Case B is used as an illustrative case. Figure 7 shows c
~dash-dash line! and cmc2 ~solid line! modeling results
against the DNS data~symbols!. Comparisons are made fo
increasing times fromt* 5 1

4 ~top row of subplots! to t* 5 3
2

~bottom row! and conditional on three representative valu
of the scalar dissipation rate: a relatively low value~left col-
umn of subplots!, moderate~center column!, and a relatively
high value~right column!. More precisely, the center colum
of subplots are conditioned on the eventsX5^x0&, X
5^x0&2x08 in the left column, andX5^x0&1x08 in the right
column of subplots.@Figure 6~i! shows^x0& ~filled circles!
andx08 ~open circles! at the various times.# Recall that̂ x0&
is the only required mixing information to be used by t
cmc1 model. In contrast, cmc2 modeling accounts for
values ofx0 , including those greater and smaller than^x0&.
Open symbols are doubly conditioned rms information ou
taken from the DNS experiment. As can also be seen fr
Fig. 2, the rms ofu ~open circles in Fig. 7! increases with
time ~moving from the top row down in Fig. 7! and higher
scalar dissipation rates~moving from the left column to the
right in Fig. 7!.

For all times, both singly and doubly conditional mo
ment closure models are comparable at relatively low val
of X with respect tô x0& ~left column of subplots in Fig. 7!,
where the effects of extinction are not significant in t
mean, and represent the data well.

For timest* & 1
2 and at relatively high scalar dissipatio

rate values with respect tôx0& @subplots~iii ! and~vi! in Fig.
7#, the cmc2 model yields the most significant improveme
over the singly conditional moment closure results. For t
case, the mean value ofx0 never exceedsxq in the DNS
experiment@cf. Fig. 6~i!#, hence the singly conditional mod
eling results could never predict any extinction events. cm
modeling accounts for the fluctuations ofx0 , which can ex-
ceedxq by over a factor of 5~see Fig. 2 att* 5 1

4, for ex-
ample!, and thus can yield the improved predictions seen
subplots ~iii ! and ~vi! of Fig. 7 at the relatively largeX
*xq . Recall from Fig. 2 that reignition events are rare
these times.

For increasing times,t* . 1
2 ~bottom half of Fig. 7!, when

reignition occurs in the mean, the doubly conditional mod
ing results diverge from the data@witness subplots~ix! and
P license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Modeling comparisons: Symbols5DNS data, dash–dash line5cmc1; solid line5cmc2. Left column: conditioning on relatively low values ofx0

(X5^x0&2A^x08
2&), center column5conditioning atX5^x0&, right column: conditioning on relatively high values ofx0 (X5^x0&1A^x08

2&). Open symbols
are corresponding rms information.
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~xii ! in Fig. 7#. Both ^x0& andx08 decay in time. The values
of the scalar dissipation rate at timest* . 1

2 is evidently in-
sufficient to account for the reduction in the condition
mean, which is comparable, for example, in subplot~ix! ver-
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sus~vi!. The diffusion inX space in the cmc2 model is ev
dently also insufficient to yield the required reduction in t
conditional means. This may be due to the neglect of
influence of the fluctuations of the dissipation rate of t
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scalar dissipation rate,b0 , the coefficient of the diffusion
term in X space@cf. Eq. ~3.4!#. ~The present doubly condi
tional moment closure model also neglects fluctuations ab
a0 and g0 , which could also contribute to enhanced diff
sion in the scalar dissipation rate space.! In any case, the
shortcomings of the cmc2 model are due to the fluctuati
about the doubly conditioned means not accounted for by
fluctuations ofj andx0 ~and as represented by the rms ofu
seen in Fig. 7!. When these fluctuations become significa
@subplots~ix! and ~xii ! in Fig. 7, for example#, the doubly
conditional moment closure model underpredicts the leve
which the temperature is depressed in the experiment. Re
from Fig. 2 that significant reignition events begin to occ
locally at these times as more and more local values of
scalar dissipation rate fall belowxq .

The cause of these large conditional fluctuations ofu at
relatively low values of the scalar dissipation rate with
spect toxq are due to the local reignition events that beco
more and more frequent for timest* . 1

2 and dominate at late
times ~as observed in Sec. II with regard to Fig. 2!. Recall
that these reignition events begin to occur before the co
tionally averaged mean temperature reaches its minim
value. Evidently, the mechanism by which reignition is a
counted for by the present cmc2 model@cf. the discussion
regarding points~ii ! and~iii ! at the beginning of this section#
allows these reignition events to occur too quickly. Th
should not belittle the advancements made by the n
model, however, which correctly applies the physically
able mechanisms~derived from the experimental observ
tions made in Sec. II! by which extinction occurs and reig
nition is allowed to occur.

V. CONCLUSIONS

The singly conditional moment closure model is una
to describe the extinction and reignition seen on averag
the current DNS experiments. A new conditional mome
closure strategy using the scalar dissipation rate as a se
conditioning variable describes extinction in the mean w
but predicts the onset of reignition too early. Strengths of
doubly conditional moment closure model also includes
ability to correctly predict the transition to a reignited sta
while the singly conditional analog incorrectly predicts gl
bal extinction. The weakness of the new model is due
significant fluctuations about the doubly conditional mea
which can occur at low values of the scalar dissipation r
with respect to the quenching value in the~numerical! ex-
periments.
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