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Abstract

Turbulent fluctuations of the scalar dissipation rate are well known to have a
strong impact on ignition and extinction in non-premixed combustion. In the
present study the influence of stochastic fluctuations of the scalar dissipation rate
on the solution of the flamelet equations is investigated. A one-step irreversible
reaction is assumed. The system can thereby be described by the solution of
the temperature equation. By modelling the diffusion terms in the flamelet
equation this can be written as an ordinary stochastic differential equation
(SDE). In addition, an SDE is derived for the scalar dissipation rate. From
these two equations, a Fokker—Planck equation can be obtained describing the
joint probability of temperature and the scalar dissipation rate. The equation is
analysed and integrated numerically using a fourth-order Runge—Kutta scheme.
The influence of the main parameters, which are the Damkohler number, the
Zeldovich number, the heat release parameter and the variance of the scalar
dissipation rate fluctuations, are discussed.

1. Introduction

In non-premixed combustion chemical reactions take place when the fuel and oxidizer mix on
a molecular level. The rate of molecular mixing can be expressed by the scalar dissipation
rate, which is for the mixture fraction Z is defined as

x =2Dz (VZ)* (1

where Dy is the diffusion coefficient of the mixture fraction. The scalar dissipation rate appears
in many models for turbulent non-premixed combustion such as, for instance, the flamelet
model [1,2], the conditional moment closure (CMC) model [3] or the compositional PDF
model [4, 5]. In common technical applications, it has been found that if the scalar dissipation
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rates are much lower than the extinction limit, fluctuations of this quantity caused by the
turbulence do not influence the combustion process [6,7]. However, it has been concluded
from many experimental [8] and theoretical studies [9-12] that there is a strong influence
of these fluctuations if conditions close to extinction or auto-ignition are considered. For
instance, in a system where the scalar dissipation rate is high enough to prohibit ignition,
random fluctuations might lead to rare events with scalar dissipation rates lower than the
ignition limit, which could cause the transition of the whole system to a burning state.

In this study, we investigate the influence of random scalar dissipation rate fluctuations in
non-premixed combustion problems using the unsteady flamelet equations. These equations
include the influence of the scalar dissipation rate and have also been shown to provide
very reasonable predictions for non-premixed turbulent combustion in a variety of technical
applications [13—15]. However, it is clear that these equations are actually not capable of
describing all of the features which might occur in turbulent non-premixed flames. For
instance, in jet diffusion flames, local extinction events might occur close to the nozzle because
of high scalar dissipation rates. These extinguished spots might re-ignite downstream, not
by auto-ignition, but by heat conduction and diffusive mass exchange with the still burning
surroundings. It should be kept in mind that the motivation in this work is not to predict actual
turbulent reacting flows, but to study the dynamical system defined by the equations described
in the following section. The advantage of the present simplified approach allows a study of
the extinction process isolated from auto-ignition and re-ignition events.

The basic purpose of this paper is to analyse how random fluctuations of the scalar
dissipation rate can affect extinction of non-premixed combustible systems. The approach,
based on stochastic differential equations, allows us to take random extinction events into
account. In this case the critical conditions must be different from those involving deterministic
situations. Here, we look at these phenomena in terms of noise-induced transition theory, where
multiplicative noise of sufficient intensity can drastically change the behaviour of a system
[16]. In the present case, the probability density function for the temperature in the reaction
zone may undergo qualitative changes as the intensity of random fluctuations increases. It
should be noted that a similar analysis has been made in a series of works on the stochastic
analysis of thermal ignition of explosive systems in [17-19]. The influence of random external
fluctuations of heat and mass transfer on the stationary states of heterogeneous reactions has
been investigated by Buyevich et al [17]. Parameters of steady states have been shown to
deviate drastically from those predicted by the deterministic ignition theory. A stochastic
generalization of the Frank—Kamenetskii thermal explosion problem has been considered in
[18, 19]. The basic physical idea behind these works is that when a combustible mixture is
below the deterministic explosion limit, random fluctuations with low amplitude may cause it
to ignite.

Oberlack et al [20] have investigated the influence of Damkohler number fluctuations in
a well stirred reactor. The fundamental difference compared with the present study is that in a
well stirred reactor the mixing process is assumed to be infinitely fast. The Damkohler number
therefore represents the residence time rather than the mixing time and appears in the non-
dimensional chemical source term. Hence, imposing stochastic variations of the Damkd&hler
number corresponds to a fluctuating chemical source term. Here, however, the fluctuating
quantity is the scalar dissipation rate, which appears as a diffusion coefficient. The response of
the mixing field to this fluctuating diffusion coefficient and the interaction with the chemical
source term are investigated. Moreover, in the present formulation we allow for temporal
changes of the fluctuating quantity and also consider its PDF.

In this paper, we will first present the non-dimensional flamelet equations for a one-step
global reaction. With this assumption the system can be reduced to a single equation for the
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temperature. We will then derive stochastic differential equations for the temperature and the
scalar dissipation rate. These equations lead to a partial differential equation for the joint
probability density function of the temperature and the scalar dissipation rate. This equation
will be discussed and numerical solutions will be presented.

2. Governing equations

2.1. Flamelet equations

Assuming an irreversible one-step reaction of the form vgF + voO — P, where F, O and P

denote the fuel, oxidizer and reaction product, respectively, the flamelet equations for the mass

fractions of fuel Y, oxidizer Yo, reaction product Yp and the temperature 7', can be written as
Y;  x 0%Y;

W_Eﬁ-'_vimw:() i=FO,P (2)

—=——=w=0. 3
ot 2072 ¢ 3)
Here v; are the stoichiometric coefficients, W; are the molecular weights, ¢ is the time, p is
the density, ¢, is the specific heat capacity at constant pressure and Q is the heat of reaction
definedas Q = — ), v; W; h;, where h; denotes the enthalpy of species i. The mixture fraction
Z is defined as
VY — Yo + Y,
z=——2""22 )
UYF’ 1+ YO,Q
where the subscripts 1 and 2 refer to the conditions in the fuel stream and the oxidizer stream,
respectively, and D is given by

voWo

oW &)

<>

The parameter x appearing in equations (2) and (3) is the scalar dissipation rate, which has
already been defined by equation (1). The reaction rate per unit mass w is given by

Yedo E ©
= X —
U= P ewe T TP\ T RT

where A is the frequency factor and E is the activation energy of the global reaction,
respectively. R is the universal gas constant.

2.2. Non-dimensionalization

In order to investigate the flamelet equations with respect to the relevant non-dimensional
parameters it is convenient to introduce the non-dimensional temperature € and mass fractions
of fuel yg, oxidizer yo and reaction product yp as

T — Ty Ye Yo
0= ——" = Yo = ()
Tst,b - Tst,u YF,st,u YO,st,u
VFWF Yp
w=@0+1) - 8)

vpWp YE |
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where the index ‘st’ refers to stoichiometric conditions and the unburnt values of the
temperature, fuel and oxidizer at stoichiometric conditions are given by

Ty =T+ (T — ) Zy Yisw = Yiz + (Vi1 — Yi2) Zg i=F,O. )
The adiabatic temperature for complete conversion of fuel to products is
Y Y
Tup = Tou + — Y@ p=prl (10)
Cp WFVF(U + 1) YO’Z

With these definitions and equation (4), the mixture fraction can be expressed as

_ l)y]:—y0+1
B v+1

z (11)

from which the stoichiometric mixture fraction

1
Zy = (12)
v+1

follows.
The non-dimensional time 7 is given by
Xst,0 2AZv
T=—"1

with a =2AZ Z4(1 — Zy) =

a (1+v)? (13)

where the reference value for the scalar dissipation rate xg o and the parameter AZ will be
introduced below.

The non-dimensional scalar dissipation rate x, the Damkdhler number Da, and the
Zeldovich number Ze are defined as

X

X = (14)
Xst,0
vvpaps,u Yoo A
= exp (—PBrer) (15)
v+ Wo xso PP

7 8 Typ — T, 8 E (16)
e =q, o= —— = .
Ty p RT

With the assumption of constant molecular weight of the mixture the density p can be
expressed in terms of the non-dimensional temperature 6 as

(I-0w

= T+ < Pstu- 17
0 l_a(l_e)pl, (I7)

Introducing these definitions into the flamelet equations, (2), (3), yields

dyr  ax 3%yg 1

Oyr _ ax 37yr ~0 18
o 2 922 vrl” (18)
9 9

S0 =0 (19)
ot 2 9072 v+1

9 9

COLA L ) (20)
ot 2 072

30 8%0

BT ,=0 21)
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where the non-dimensional chemical source term is given by

pa O D? (1 — &) exp (Bret — B)
a
v 1—a(l—06)

w =

1-6
YEYO eXp (— Ze m) (22)

The boundary conditions for equations (18)—(21) are
Z=0: yE2 =0 yo2 =1 yp2 =0 6,=0 (23)

Z=1 yr1 =1 vyo,1 =0 yp,1 =0 01 =0. 24

2.3. Coupling functions
Adding equations (18), (19) and (21) yields a conservation equation for ygr + yo + 0 as

2

0 ax
E(yF"')’O"'G)_ (r+yo+0)=0. (25)

29272
The boundary conditions for the conserved scalar can be determined from equations (23) and
(24) to be unity on both sides. Then with the unburnt state as an initial condition, the solution
of equation (25) is given by

YE+Yyo+0 =1. (26)

Note that this particular choice of the initial condition does not restrict the solution, since it
is a requirement of every possible physical initial condition that it has to be realizable from
the unburnt state. Since the non-dimensional product mass fraction yp and temperature 6 are
governed by a mathematically similar flamelet equation (equations (20) and (21)) and have the
same boundary and initial conditions, it follows that

yp =10 27

which shows that equation (26) represents the mass conservation condition.

With equation (26) and the definition of the mixture fraction, equation (11), the mass
fractions of fuel and oxidizer can be expressed in terms of a mixture fraction and temperature
as

v

yo=1—2— 0=1-7Z—(1-2,0 (28)

v+1

=7 - =7 —Zu0 29
YF b+l st (29)

and the chemical reaction rate, defined in equation (22), as

= pg L=V P Pt = ) <£—9> ( 1-2 —9) exp(—Zei). (30)
I—a(l—6) Za 1—Z, I—a(l—6)

With equation (30) the flamelet equation for the non-dimensional temperature given by
equation (21) depends only on the temperature itself and can be integrated without solving
the equations for the mass fractions of the fuel, oxidizer and product. If desired, these can be
computed from equations (27)—(29).
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2.4. Stochastic differential equations

In this section we want to derive an equation for the joint PDF of the temperature and the scalar
dissipation rate. To complete equation (21) we need a stochastic differential equation (SDE)
that governs the evolution of the scalar dissipation rate.

We consider a Stratonovich SDE given by [16]

dxst = f(xs0) dt + 0@ (xst) 0 dW (1) €1y

where W (t) denotes a Wiener process. In equation (31) the first term on the right-hand side
is a drift term and the second is a random term. The stationary probability density function
corresponding to the Stratonovich SDE can be found to be

N 2f(2) )
s\ Nst) = d . 32
Pex) = o P </0 o202(z) =

It is well known that a good approximation for a stationary PDF of y(¢) is a lognormal
distribution [21] given as

2

1 (1[1 Xst — 10 Xt 0)
s Ogt) = —— — . 33
Ps (Xst) w207 exp( 252 (33)

from which it can easily be shown that the mean value of x is
¥ = > _ 1.2
Xst = / XsePs (tst) dxst = xsto exp (30°7). (34)
0

To find f(xs) and ¢(xs) one needs to equate equations (33) and (32). From this we obtain

X 2 1
f(xsl):—(lnxst—lnxsl,o)t—:‘ w(xso:,/;xst N = N 35)

For dimensional reasons a characteristic time scale ¢, has been introduced, which appears as
a parameter of the problem. This time scale is associated with the time to reach a statistically
stationary state. Therefore, it does not appear in the stationary PDF given by equation (33).
The scalar dissipation rate x (¢) then obeys the following SDE:

Xst 2
dxs = — (In Xt — In x500) . dt+o | Xst © dW(@). (36)
x

X

In non-dimensional form, this equation can be rewritten as

Xst 2
d.xst = _? In Xst dr+o g.xst @) dW(T) (37)

Here, 6 = 1, xs1,0/a represents the ratio of the characteristic time scales of equations (37) and
(3). In a turbulent flow, the time scale #, would be modelled by the integral time scale of the
turbulence or the scalar [22]. Hence, ¢, can be expressed as

CoZ"?
o= (38)
Xst,0 €Xp(0%/2)
from which it follows that
CoZ?
0 (39)

S =
2AZ Zsl(l - Zst) CXP(Uz/z)
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Figure 1. Single realization of the numerical solution of equations (21) and (37).

where Cy is a constant and Z? is the mixture fraction variance. This shows that § is independent
of the mean scalar dissipation rate. Here, § = 1 will be assumed, which for Cy = 1, Zy = 0.5
and o = 1 corresponds roughly to Z’ = 0.2.

From a mathematical point of view, equation (21) with the source term equation (30)
and the random scalar dissipation rate is a nonlinear stochastic partial differential equation,
which can be solved, but is very difficult to work with analytically. One way to analyse this
equation is to derive the corresponding equation for the probability density functional for the
temperature distribution 6(Z) [18, 19]. However, since the random parameter x (t, Z) appears
in equation (21) as a multiplicative noise, it would be very difficult to obtain reasonable results.
In order to simplify the problem we will derive ordinary stochastic differential equations for
these quantities by modelling the diffusion term in equation (21).

To justify the assumptions made in the following derivation, we will first look at the coupled
numerical solution of the original system given by equations (21) and (37). In the numerical
solution of these equations o = 2 has been used and the mixture fraction dependence of the
scalar dissipation rate is approximated as x(Z) = xg f(Z), where f(Z) is determined from
the analytic solution of an unsteady one-dimensional mixing layer problem [1]. The initial
conditions are xy = 1 for the scalar dissipation rate and the appropriate burning steady-state
value evaluated from equation (21) for the temperature. The stoichiometric scalar dissipation
rate and temperature development from an arbitrary realization of the solution are shown in
figure 1. Both quantities are fluctuating strongly until the scalar dissipation rate is greater
than the extinction limit for a sufficiently long time and extinction occurs. Figure 2 shows the
temperature as a function of the mixture fraction at different times from this simulation. It is
obvious that despite the fluctuating scalar dissipation rate each profile can clearly be divided
into two regions, namely the reaction zone, characterized by a negative curvature, and an inert
preheat region, which reveals linear profiles of the temperature. This is particularly true for the
burning profile, even though it becomes less pronounced during extinction. It has been shown
by Peters [21] that these linear temperature profiles in the outer non-reactive structure can be
found as the first-order solution of an asymptotic analysis of the flamelet equations assuming
one-step global chemistry. The assumption of linear temperature profiles in the outer structure



48 H Pitsch and S Fedotov

0.8

0.6

0.4

0.2

Z

Figure 2. Temperature as a function of mixture fraction from a numerical simulation of
equations (21) and (37) at different times.

will now be used for an approximation of the diffusion term appearing in equation (21).
The diffusion term evaluated at stoichiometric conditions can be written as a finite-
difference approximation over the reaction zone of width AZ as

1 (oT|" T
~ (T _’ . (40)
.. Az \az| 8z
If the temperature gradients appearing in this expression are evaluated with the assumption of
linear profiles in the non-reactive diffusion zones, the diffusion term can be approximated as

9T
922

32_T ~ _L TSt — Tl _ T2 — TS‘ _ TSt - Tsl,u (41)
2%, AZ\1-1Zq4 Zy AZZy(1 - Zy)

which, in terms of the non-dimensional quantities, can be written as
°T| (T — Tua) )
3z, AZZg (1 — Zy) "

Here, it has to be assumed that the reaction zone thickness A Z is independent of the scalar
dissipation rate. Then, AZ is a constant which appears in the Damkohler number. The actual
choice of AZ then only changes the value of the Damkdhler number and is of no consequence
for the conclusions of the paper. The validity of this assumption has been evaluated numerically
by Cha [23]. The actual value of AZ can be determined using equation (42) and the numerical
results are shown in figures 1 and 2. The resulting development of AZ is given in figure 1.
The reaction zone thickness remains fairly constant until extinction occurs, at which time AZ
increases significantly.

Introducing equations (42) and (30) into equation (21) formulated at Z = Z yields

Bst

—+ x(T)0y — w (By) =0 43)
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with

(I —a)exp (Bret — B)
I —a(l —6y)

) 1 — Oy
w = Da 1—-6) exp|—Ze ———— ). 44

I —a(l —6y)

2.5. Joint probability density function

Now we are in a position to analyse how random fluctuations of the scalar dissipation rate can
influence the non-premixed combustion process. It follows from equations (43) and (37) that
the pair process (6 (7), x5 (7)) is Markovian and therefore their probability density function
p = p (7, xy, Oy) is governed by the Fokker—Planck equation

ap 1 0 0 o2 9?

3 gaTq ((1nxst - 02) Xstl’) + 90n ( (=x0s + w (O)) P) =3 m (xsztp) (45)
with 0 < xy < 00,0 < 65 < 1, and the boundary conditions
P (7,0,64) = p(r,00,65) = p (7, x5, 0) = p (7, x, 1) = 0. (46)

It is convenient to introduce the natural logarithm of the stoichiometric scalar dissipation
rate as a new independent variable

Xin = In xg. a7

The PDF of xj, can then be obtained by the normalization condition

Pln
plrg) = = (48)
st
and equation (45) can be written as
8plnx I 9 d 02 82plnx
— ——— (X Pmx) + — ((—e™bsy + ®) pnx) — — =0. 49
Py 53x1n(1pl ) 8931(( (+®) Piny) 5 a2 (49)
The boundary conditions are given by
Pinx (T, =00, 0) = pinx (T, 00, Oy) = Pinx (T, Xin, 0) = pinx (T, X1, 1) = 0. (50

Note that, as shown by equation (48), the distribution py, , is different from p and the maximum
will, in general, be at a different value of the scalar dissipation rate. However, since both
functions can easily be converted into each other, the conclusions do not depend on the choice
of the formulation used for the analysis.

3. Numerical solution

Equation (49) has been solved numerically using a fourth-order Runge—Kutta scheme with
adaptive step-size control. The convection term in the xj,-direction has been discretized using
central differences, the convection term in the 6-direction by a robust, globally second-order
upwind scheme as given by Koren [24]. The equations are solved on a 300 x 300 equidistant
grid. The numerical time step is restricted by a CFL condition, which is imposed by the high
convection velocity in the O -direction at high scalar dissipation rate. This can be observed
in figure 4, which will be described below. The initialization is performed with a numerical
§-function at some point in the x;,—6-space.
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4. Results and discussion

In this section we will first provide a general discussion of equation (49) and the parameters
Da, Ze and « appearing in this equation. Numerical solutions of equation (49) will then
be presented for a variation of the scalar dissipation rate variance o and the results will be
discussed.

Numerical solutions of equation (49) will then be presented. The results for different
values of the scalar dissipation rate variance o will be discussed.

4.1. General discussion

Equation (49) is a two-dimensional unsteady partial differential equation depending on x;, and
. In the direction of xy,, the equation reveals a convective term and a diffusion term. The
convective term describes the relaxation to the mean. The mean value is achieved when the
convection velocity is zero. This implies that the mean value of the non-dimensional scalar
dissipation rate is xj, = 0, which follows trivially from the normalization of xy. However, it
is interesting to note that only the scalar dissipation rate itself determines the speed at which
it relaxes to its mean. The diffusion term describes the broadening of the PDF by fluctuations
of the scalar dissipation rate with o> appearing as the diffusion coefficient.

In the direction of 65, equation (49) only reveals a convection term. Setting the convection
velocity Vy, = —e™6+w equal to zero yields the steady-state relation between the temperature
and the scalar dissipation rate in the absence of scalar dissipation rate fluctuations as

2
_§> (1 —a)( —bu) exp<_ze—1_9“ ) 51)
o ) O (1 —a(l —6y)) I —a(l—6y)

o

Ze
x (6s) = Daexp (
ref
This relation describes the so-called S-shaped curve for non-premixed combustion [1], which
depends on three parameters: the Damkohler number Da, the Zeldovich number Ze, and the
heat release parameter o, where Ze and « only depend on the chemistry.

Figure 3 shows S-shaped curves from solutions of equation (51) for different values of
these parameters*. It is well known and will be shown in the following discussion that stable
solutions can only be achieved for the upper and the lower branch, whereas solutions given
by the middle branch are unstable. Considering the fact that the S-shaped curves shown in
figure 3 represent states with zero convection velocity in the direction of 6, it can be seen from
equation (49) that the convection velocity Vp, is positive for scalar dissipation rates smaller
than x,(6s) as given from equation (51) and negative for larger values. The consequence is
that the convection velocity in the 6-direction is always directed away from the intermediate
branch, which shows that these solutions are unstable. It also shows that starting from an
unburnt solution, the scalar dissipation rate has to be decreased below the value at the lower
turning point of the curve to be able to auto-ignite. This value will therefore be referred to as
the ignition scalar dissipation rate x;,. Correspondingly, starting from a burning solution, the
flame can only be extinguished by increasing the scalar dissipation rate over the value at the
upper turning point. This value will therefore be called the extinction scalar dissipation rate
Xex-

For non-premixed methane flames, the activation energy of a one-step global reaction can
be assumed to be E = 150 kJ kg~! [25]. This implies a value of s = 8.03 for a methane—air
system at ambient conditions. Then, the full curve in figure 3 corresponds to a case with

4 For a constant scalar dissipation rate this relation would be plotted as a function of the Damkéhler number, which
would be proportional to xl;l. In the present paper these curves are plotted over xj, and are therefore mirrored.
However, we still use the phrase S-shaped curve.



Scalar dissipation rate fluctuations in non-premixed turbulent combustion 51

e 7
3 Da Ze 1
081 —— 100 491 0679 ]
i - 7 10 491 0.679 |
| - = - 100 6.95 0.679 / J
06 |- T 100 6.95 0.866 .
& - ' .
0.4 |- Vesl>0 / —
| —'/ i
I - |
~
0.2 ... ]
[ OL/ ~ / |
I — - Vest<0 i
0 L. .| | | ( |
-14  -12  -10 -8 -6 -4 -2 0 2
X]

Figure 3. The S-shaped curve determined from equation (51) for different parameter variations.
Parameter changes are indicated by arrows.

preheated air at 7, = 800 K and the dotted curve to an air temperature of 7, = 300 K. For
both cases the fuel temperature is assumed to be 77 = 300 K and the pressure to be 1 bar. Itis
clear from equation (51) and it can be seen in figure 3 that a variation in the Damkdohler number
simply shifts the curve. In contrast a variation of the Zeldovich number leads to moderately
lower scalar dissipation rate for extinction and a strongly decreased ignition scalar dissipation
rate.

The strongest influence, however, can be seen by changing the heat release parameter.
Although by increasing « the extinction scalar dissipation rate is only slightly increased,
the ignition scalar dissipation rate is decreased very strongly to a value of approximately
Xin,ig & —40, corresponding to x;; ~ 107!7 for the example shown in figure 3. This merely
shows that auto-ignition of methane at ambient conditions is almost impossible.

Figure 4 shows a two-dimensional vector representation of the velocities of particles in
the 6—xj, space, where the term particle is defined by a point and the associated velocity in
this space. This figure again clearly shows that the PDF tends to move to x;, = 0 and generally
away from the unstable branch. However, at low temperature and low scalar dissipation rate on
the left-hand side of the S-shaped curve, for instance, the driving force in the direction of the
mean scalar dissipation rate is so strong that particles might cross the unstable branch. Even
though these particles were initially in a regime which would for constant x, lead to ignition,
these particles will then be attracted by the lower branch.

In the present example this effect is not so obvious for particles originating from a burning
state with a scalar dissipation rate higher than the extinction limit, which would be located in
the upper right-hand corner in figure 4. These particles can also during the extinction process
move to lower scalar dissipation rates and might cross the S-shaped curve. This would lead
to a recovery to the burning state. It has been discussed previously and is indicated in figure 3
that in the absence of scalar dissipation rate changes all particles on the left-hand side of the
unstable branch of the S-shaped curve will change to the burning state, whereas particles on the
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Figure 4. Convection velocities in Os—x, space.

right will change to the non-burning state. However, it has been clearly demonstrated here that
this is different in the case of a fluctuating scalar dissipation rate, where the unstable branch
does not uniquely separate into these two regimes.

4.2. Numerical results

For the numerical solution of the equation for the joint PDF of 6y and xj,, equation (49), the
parameters appearing in this equation have been set to Da = 200, Ze = 4.91 and o = 0.679.
As mentioned above, this corresponds to a methane—air system, where the air is preheated to
T, = 800 K. Results of the numerical simulations at time T = 5 are presented for o = 0.5,
1, and 2 in figures 5-7, respectively. All calculations have been started with a §-function at
Ost = 0.9 and x}, = 0 as the initial condition for the probability density function, which is then
given by p(t = 0, xp, O¢) = §(xm, O — 0.9). Certainly, the choice of the initial conditions
can lead to even qualitatively very different solutions, for instance if a §-function in a regime
with a different attractor were chosen. Here, the conditions have been chosen such that the
upper burning branch of the S-shaped curve would be the attractor in the absence of scalar
dissipation rate fluctuations. Under this restriction it has been found that the exact form and
location of the initial probability distribution hardly influences the results and does not affect
the conclusions.

It can be seen in figure 5 that even for the low-variance case o = 0.5, the distribution of
high probability density is already rather broad, extending from approximately —1 < xj, < 1
and mainly around the upper branch of the S-shaped curve. Even though it cannot be observed
in figure 5, the numerical results show that there is already some probability of finding the
extinguished state around x;, = 0. Note, that the direct comparison of the probability to
find extinguished and still burning particles is only of minor significance, since figure 5
shows simply the solution at a certain time and not a steady state. This should therefore
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Figure 5. Calculated joint 65—x, probability density function for o = 0.5.

only be compared with the solutions with different o shown in the following figures. The
comparison of the probability distribution at different times is qualitatively similar, while the
overall probability of finding extinction increases until complete extinction occurs for the
steady state.

It follows from the above discussion that extinguished particles originate from burning
particles, which, because of the fluctuations of the scalar dissipation rate, have experienced
a scalar dissipation rate which is high enough to completely extinguish the particle without
crossing the unstable branch of the S-shaped curve. This would result in re-ignition. The low
probability of finding these high scalar dissipation rates then forces the extinguished particles
to a state around x;, = 0. In a real turbulent diffusion flame these extinguished areas could
re-ignite by heat conduction from the surrounding, still burning gas. This effect, however, is
not included in the current analysis. Therefore, re-ignition can only occur here if the scalar
dissipation rate of an extinguished particle becomes smaller than the ignition limit. This,
however, is prohibited in the present simulations by choosing the lower boundary for xy, larger
than the ignition scalar dissipation rate. This allows one to study the extinction process without
the influence of auto-ignition.

It is important to recognize that because of this assumption the steady-state solution is
always completely non-burning. This means that for this dynamic system scalar dissipation
rate fluctuations, even of small amplitude, lead to a phase transition from the burning to the
non-burning state. This dynamical character would not be observed in the deterministic case.

Figure 6 shows the PDF for o = 1. Here, the distribution is even broader, revealing a
substantial probability for —2 < xj, < 2. Also the probability of finding extinguished states
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Figure 6. Calculated joint 65—xj, probability density function for o = 1.

is already of comparable magnitude as for the burning states. As for ¢ = 1 the region of
high probability is still concentrated around the S-shaped curve, indicating that the chemistry
is fast enough to compensate scalar dissipation rate fluctuations. It is also interesting to note
that similar to the findings of Oberlack et al [20], there is only a very low probability of
finding states between burning and extinguished. This shows that the extinction process is fast
compared with other time scales of the system.

The solution for an even larger scalar dissipation rate variance of ¢ = 2is shownin figure 7.
Again, the probability distribution is further broadened and the fraction of extinguished states is
even higher. Most interesting here is the observation that particularly at high scalar dissipation
rates close to extinction, the high probability region clearly departs from the S-shaped curve.
This can also be observed in figures 5 and 6 but to a smaller extent. The departure from
the S-shaped curve indicates that the chemistry is not fast enough to relax the temperature in
accordance with large-scale scalar dissipation rate fluctuations to the steady solution. At low
scalar dissipation rate, the high probability region is still very close to the S-shaped curve.

This observation has an important implication for turbulent combustion modelling using
a flamelet-type approach. Since the flamelet equations as given by equations (2) and (3)
describe an instantaneous state and the scalar dissipation rate appearing in these equations is a
fluctuating quantity, in order to apply the solution of these equations in a turbulent combustion
model, a closure model has to be provided. Two different closures have been proposed in the
literature. In the first, which has been proposed by Peters [1, 2], a PDF of the scalar dissipation
rate is considered and the mean quantities are given as ensemble averages of flamelet solutions
with different scalar dissipation rates. In the second approach [7, 14] the scalar dissipation rate
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Figure 7. Calculated joint 65—xj, probability density function for o = 2.

in the flamelet equations is replaced by its conditional mean. Then, the solution of the flamelet
equations is to be interpreted as conditional mean quantities. This approach leads to equations
closely resembling to the first-order CMC equations. The results of the two approaches are
different and the applicability of each closure can be estimated from the present results.

Figure 5 shows that for low scalar dissipation rate variance the region of high probability
is restricted to a small area around the steady solution for the particular scalar dissipation rate.
Hence the mean temperature will be well represented by an ensemble of solutions for given
constant scalar dissipation rates, weighted with the PDF of the scalar dissipation rate. For the
higher variance of o = 2, which is shown in figure 7 the high probability region departs from
the steady-state solutions and will in the limit of large variance be in a small area around a
line of constant 8. This temperature might be closer to the flamelet solution with a constant
scalar dissipation rate equal to the conditional mean and so the second approach might be more
appropriate, which, however, is not clear.

5. Conclusions

In this paper the flamelet equations have been formulated for a one-step global reaction and
used for the investigation of the influence of scalar dissipation rate fluctuations on non-
premixed turbulent combustion. By modelling the diffusion term in the flamelet equation,
ordinary stochastic differential equations were derived for the temperature and the scalar
dissipation rate at stoichiometric mixture. From these, a Fokker—Planck equation for the joint
probability density function of temperature and the scalar dissipation rate has been derived.
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The equation has been discussed and numerical solutions for varying scalar dissipation rate
variance provided.

The analysis shows that the S-shaped curve, which represents the steady-state solution for
a given scalar dissipation rate in the absence of scalar dissipation rate fluctuations separates
the O4—x),-space into two regimes, which will either lead to the burning or the extinguished
state. It is also shown that scalar dissipation rate fluctuations, even of small amplitude, will
under the present simplifications cause a phase transition from the burning to the completely
extinguished state.

Numerical solutions show an increasing fraction of extinguished states for increasing
scalar dissipation rate variance at a given time. It is also found that particles with a scalar
dissipation rate higher than the extinction limit can recover to a burning solution during the
extinction process. Therefore, for a fluctuating scalar dissipation rate, particles can cross the S-
shaped curve, which thereby no longer separates regimes that uniquely lead to the extinguished
or the burning state.

Furthermore, it is found that the low probability of finding a high scalar dissipation rate
forces particles, which have been extinguished at high scalar dissipation rate, to rapidly change
to a state with lower scalar dissipation rate, where re-ignition could occur. For higher scalar
dissipation rate variance it is observed that the high probability region clearly departs from
the S-shaped curve. This indicates that the chemistry is not fast enough to relax large-scale
scalar dissipation rate fluctuations to the steady-state solution. This has been shown to have
an important implication in the application of flamelet-type models in non-premixed turbulent
combustion.

The presented method has been shown to provide a useful tool for studying the effect of
random scalar dissipation rate fluctuations. In future work, the model is to be corroborated with
results from direct numerical simulations of turbulent reacting flows and the re-ignition process
is to be included. The investigation of the influence of scalar dissipation rate fluctuations on
auto-ignition delay times and pollutant formation could also be a worthwhile extension of this

paper.
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