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Antialiasing Filters for Coupled Reynolds-Averaged/
Large-Eddy Simulations

J. U. Schliiter* and H. Pitsch’
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The increasing complexity of engineering problems makes the coupling of multiple simulation codes attractive.
In fluid mechanical applications, the physical range of flow phenomena that can be modeled can be extended
significantly by coupling flow solvers based on the Reynolds-averaged Navier—Stokes (RANS) approach and on
large-eddy simulations (LES). These separate flow solvers run simultaneously and exchange information at the
interface. However, because the LES flow solver operates usually with a much smaller time step, the LES data
have to be sampled to provide data for the RANS flow solver. In the sampling process, aliasing errors can occur.
Possibilities are investigated to suppress aliasing errors while preserving the amplitude and phase of the long wave

spectrum.
Nomenclature
a,, b, = filter constants
D = diameter of the pipe
f = frequency
HQ) = desired filter response
N, M = order of the filter
Re = Reynolds number
r(ty) = filter response on the discrete time #;
S = swirl number
Sr = Strouhal number
s(t) = original signal on the discrete time #;
t = time on the large-eddy-simulation timescale
U = convective velocity
uy, Uy, uy = velocity components in axial, radial,
and azimuthal direction
X, r, ¢ coordinates in axial, radial, and azimuthal direction
Xo = location of the interface point
A = nondimensional frequency
T = time on the Reynolds-averaged Navier—Stokes

timescale

I. Introduction

URRENTLY, a wide variety of flow phenomena are addressed

with numerical simulations. Many flow solvers are optimized
to simulate a limited spectrum of flow effects effectively, such as sin-
gle parts of a flow system, but are either inadequate or too expensive
to be applied to a very complex problem.

As an example, the flow through a gas turbine can be considered.
In the compressor and the turbine section, the flow solver has to
be able to handle the moving blades, model the wall turbulence,
and predict the pressure and density distribution properly. This can
be done by a flow solver based on the Reynolds-averaged Navier—
Stokes (RANS) approach (see Ref. 1). On the other hand, the flow
in the combustion chamber is governed by large-scale turbulence,
chemical reactions, and the presence of fuel spray. Experience shows
that these phenomena require an unsteady approach.? Hence, for the
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combustor the use of a large-eddy simulation (LES) flow solver is
desirable.’

Although many design problems of a single flow passage can be
addressed by separate computations, only the simultaneous com-
putation of all parts can guarantee the proper prediction of multi-
component phenomena, such as compressor/combustor instability
and combustor/turbine hot-streak migration. Therefore, a promising
strategy to perform full aerothermal simulations of gas turbine en-
gines is the use of a RANS flow solver for the compressor section,
an LES flow solver for the combustor, and again a RANS flow solver
for the turbine section (Fig.1).

The approach to couple simulation codes has already been
used in other areas of application, most notably in global climate
simulations,* and recently found more attention in the engineer-
ing community.” However, the idea to couple RANS and LES
flow solvers is a very recent approach. It is a unique method to
construct an LES/RANS hybrid. Whereas other LES/RANS hy-
brid approaches, such as detached-eddy simulations® and limited-
numerical scales’ combine LES and RANS in a single flow solver,
the approach to couple two existing flow solvers has not only the
distinct advantage to build on the experience and validation, but also
the numerical methods and specific optimization that has been put
into the two codes during their development.

A demonstration for an applied coupled RANS/LES computation
is the simulation of the flow development downstream of the final
compressor stage into a diffuser of a gas turbine engine® shown
in Fig. 2. The interactions between the compressor and the predif-
fuser of the combustor can be studied. Here, the compressor stage is
computed with a RANS flow solver because the wall-bounded flows
around the stator and the moving rotor can be efficiently predicted
with this approach. The diffuser on the other hand is computed with
an LES flow solver because only this approach can assure the accu-
rate prediction of detachments in this portion of the flow. The flow
solvers are two-way coupled, which means that both flow solvers
communicate the flow information at the interface to the peer flow
solver.

To ensure the information transfer of flow properties and the cor-
rect specification of boundary conditions in such complex applica-
tions, validation studies have to be performed. Whereas recent work
focused on boundary conditions, the present work will investigate
the preservation dynamic properties of the data exchange. It will
demonstrate the presence of aliasing and will present strategies to
attenuate the aliasing error.

1L

The simultaneous computation of the flow in all parts of a gas
turbine using multiple flow solvers requires an exchange of infor-
mation at the interfaces of the computational domains of each part.

Interface Conditions



SCHLUTER AND PITSCH 609

T

Compressor: RANS Combustor: LES

Fig. 1 Decomposition of gas turbine engine (RANS/LES of
compressor/diffuser,s LES of combustor,> RANS of turbine section?).

Turbine: RANS

RANS Domain LES Domain
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LES inflow plane

¥ Y stator wakes
L stator wakes]

Fig. 2 Example of a two-way coupled RANS/LES: compressor stage
and a prediffuser in a gas turbine.?

Previous work has established algorithms that ensure that two or
more simultaneously running flow solvers are able to exchange the
information at the interfaces efficiently.”~!!

The necessity of information exchange in the flow direction from
the upstream to the downstream flow solver is obvious: The flow in
a passage is strongly dependent on mass flux, velocity vectors, and
temperature at the inlet of the domain. However, because the Navier—
Stokes equations are elliptic in subsonic flows, the downstream flow
conditions can have a substantial influence on the upstream flow
development. This can easily be imagined by considering that, for
instance, a flow blockage in the turbine section of the gas turbine
can determine and even stop the mass flow rate through the entire
engine. This means that the information exchange at each interface
has to go in both downstream and upstream directions.

When an LES flow solver computing the flow in the combustor
is considered, information on the flowfield has to be provided to the
RANS flow solver computing the turbine as well as to the RANS flow
solver computing the compressor, while at the same time the LES
solver has to obtain flow information from both RANS flow solvers
(Fig. 3). The coupling can be done using overlapping computational
domains for the LES and RANS simulations. For the example of
the compressor/combustor interface, this would imply that inflow
conditions for LES will be determined from the RANS solution at the
beginning of the overlap region, and correspondingly, the outflow
conditions for RANS are determined from the LES solution at the
end of the overlap region.®

However, the different approaches to turbulence modeling used
by the different flow solvers make the coupling of the flow solvers
challenging. Because LES resolves large-scale turbulence in space
and time, the time step between two iterations is relatively small.
RANS flow solvers average all turbulent motions over time and pre-
dict ensemble averages of the flow. Even when a so-called unsteady

LES to RANS
Provide time
averaged data

RANS to LES
Upstream influence
of pressure very
important

-

RANS to LES
Create turbulent
fluctuations

—_—
LES to RANS

Provide time
averaged data

Fig. 3 Gas turbine combustor with interfaces.

RANS approach is used, the time step between two ensemble aver-
ages of the RANS flow solver is usually larger by at least one order
of magnitude than that of an LES flow solver.

To provide boundary conditions for the RANS flow solver from
the LES solution, the data have to be averaged or filtered in time,
and an appropriate down-sampling technique has to be developed.
For a statistically stationary flow, we have shown in the past that a
time average of the data over a time period larger than the integral
timescale of the turbulence provides sufficiently accurate and con-
stant RANS boundary conditions. However, this type of sampling
process will introduce errors if full-scale hydrodynamic oscillations
occur. For the simple time-averaging method, the transmission of
these oscillations across the interface results in a phase-delay and
aliasing errors, which will lead to a change in frequency and, hence,
possibly to the attenuation or forcing of instabilities.

As an analogy, the digitization of a continuous signal during the
acquisition of experimental data can be considered. Here, the highest
frequency recorded without error is the Nyquist frequency, defined
as half of the sampling frequency. Experimentalists use low-pass
filters to remove high-frequency disturbances before the sampling
process. Omitting the filtering would result in aliasing errors, which
means that underresolved frequencies, f > fayquist» appear as low-
frequency contributions in the long-wave spectrum. Hence, low-pass
filtering before to the digitization is necessary.

For the communication between LES and RANS flow solvers, a
similar procedure has to be developed to avoid aliasing of frequen-
cies in the sampling of the LES data. The current study investigates
the use of filters to ensure the communication of dynamic proper-
ties, such as the frequency, the amplitude, and the phase of a given
perturbation.

III. Test Case and Flow Solver

For this investigation, a pipe flow is computed by using two fully
coupled flow solvers, one computing the upstream and the other
computing the downstream part of the pipe. For simplicity and to
focus on the issue of aliasing, we will first consider a laminar flow
at a pipe Reynolds number Re = 103, A fully turbulent flow will be
considered. Then, there is no difference in using an LES or RANS
flow solver, and the same code can be used for both portions. How-
ever, to represent a flow simulation, where LES is used for an up-
stream and RANS for a downstream portion of the flow domain, the
downstream flow solver will be run with a much larger time step. To
study the transfer of dynamic properties from the upstream to the
downstream flow solver, the inflow of the upstream portion of the
pipe is perturbed periodically. Aliasing may then occur when the
temporally highly resolved solution of the upstream domain has to
be sampled to provide data at the time step of the downstream flow
solver.

Figure 4 shows the considered test case: A pipe is split into an
upstream domain computed by one flow solver and a downstream
domain computed by the second. Both pipe segments are 3 diameters
D long with an overlap of 1 D. An interface is used to communicate
the flow variables between both flow solvers.!!

The inflow of the upstream pipe is defined as a laminar parabolic
inflow in the axial direction and a parabolic profile in the azimuthal
direction, thus, simulating a laminar swirling pipe flow. The swirl
number of this flow is § =0.15, where

S 1 j;)D iy dr
D fOD rutdr
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Fig. 4 Geometry of test case.

with u, the axial velocity component and u the azimuthal velocity
component. To create a wave that is convected with a constant bulk
velocity, the azimuthal velocity component has been modulated by

iy (1) = igmean - [1.04 0.3 - sin2 - Sr - 1)] )

With iy mean the mean azimuthal velocity for S =0.15 and Sr the
Strouhal number defined as Sr = f D/ Up,k. The modulated swirl
travels down the pipe where it is getting sampled.

The choice was made to modulate the swirl velocity rather than
the axial velocity because this simulates a convective wave without
changing temporarily the bulk velocity.

For the current investigation, a structures LES flow solver has
been used.'? The filtered momentum equations are solved with a
low Mach number assumption on an axisymmetric structured mesh.
A second-order finite volume scheme on a staggered grid is used.'?
The subgrid stresses are obtained by a dynamic procedure.'* 3

For the real-time exchange of flow variables during the simul-
taneous computation of both domains, a special interface software
has been used.”!? The interface establishes a communication be-
tween the two flow solvers for the exchange of flow variables after
a given time step At. At that time, each of the flow solvers obtains
a set of flow variables for each point at the interface. Then, each
flow solver evaluates the interface boundary conditions on the basis
of the obtained data. For the downstream solver, the velocity data
obtained from the upstream solver can directly be specified as inlet
condition.

The LES boundary condition at the outlet of the upstream flow
solver can be defined using a body force to drive the solution near
the outlet to the desired flowfield.'® However, for the present case,
no such body force is employed, which means that the feedback
from the downstream flow solver to the upstream flow solver is
suppressed. This is done to ensure that aliased frequencies in the
downstream domain are not transferred back to the upstream do-
main, where they would be able to compromise the original signal.
Although initial tests with a true two-way coupling did not show
such an effect, the feedback has been suppressed to demonstrate
clearly that downstream aliased frequencies have not been present
in the upstream domain. Because there is no feedback from the
downstream flow solver, the time-evolving solution of the upstream
flow solver is identical for all cases reported here.

IV. Aliasing

To demonstrate the presence of aliasing, the upstream flow is pe-
riodically excited and the transfer of these frequencies to the down-
stream flow solver examined. The periodic excitation is carried out
simultaneously with two frequencies. These frequencies are chosen
such that the lower one is resolved by the time step of the down-
stream flow solver, and the higher frequency is underresolved. In
real applications, the high-frequency perturbation corresponds to
high-frequency turbulence that is resolved in LES domain, but not
in the RANS domain. The low-frequency perturbation corresponds
to large-scale motions of the flow that are resolved by LES and
RANS.

The two excitation frequencies are at Strouhal numbers Sr =1.0
and Sr =7.5. The interface frequency, defined by the chosen RANS
time step, finerface = 1/AT, is set to Sr=10.0, which leads to a
Nyquist frequency of S = 5.0. Hence, the low frequency at S = 1.0
is well resolved and can be transferred to the downstream domain.
However, the higher frequency is underresolved and will lead to
aliasing.

To quantify the transfer of the dynamic properties, the transient
data are recorded for several points over 50 periods of the lower
frequency, Sr =1.0, and analyzed. The points are located on the
x =2D plane. For the upstream flow solver, the points are just in
the same location, where the data are acquired for the downstream
flow solver. The points are at the same location, where the data for
the downstream flow solver have to be specified. In the following
discussion, data for the point x =2D, r =0.5R, and ¢ =0 will be
presented.

The transient data are analyzed by a Fourier transform of the ki-
netic energy to assess the spectral characteristics. Figure 5 shows
the energy spectrum in the upstream domain. Because we are con-
sidering a laminar flow, the spectrum is very smooth and shows
mainly the two distinct peaks resulting from the forcing of the flow.
There are some additional smaller peaks from the folding of the
two frequencies (such as Sr=8.5 and Sr =6.5) and subharmonic
responses of the flow (such as Sr =2.0). The goal of a successful
signal processing is to transfer the long-wave frequency, Sr = 1.0,
with no energy loss, while suppressing the high-frequency distur-
bance, Sr=7.5.

Figure 6 shows the energy spectrum for the same physical point,
but in the downstream domain. Because the flow solver computing
the upstream domain has transferred the signal without any spe-
cial anti-aliasing, the high-frequency perturbation in the upstream
domain has been aliased and can be found now in the long-wave
spectrum at Sr =2.5.

This may cause considerable problems because this frequency
is resolved by any unsteady RANS flow solver operating at a time
step corresponding to the interface frequency. Because the peak in
the long-wave spectrum at Sr = 2.5 is not present in the upstream
domain, it is obvious that this error has been introduced entirely by
the sampling process. To suppress the high-frequency perturbation,
the upstream flow solver has to treat the signal during the sampling
process in a way that the aliasing is removed and both amplitude
and phase of the low-frequency oscillation is preserved.
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Fig. 5 Energy spectrum at pointx =2D,r=0.5R, and ¢ =0 in interface
plane of upstream domain.
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Fig. 6 Energy spectrum at interface plane of downstream domain;
physically identical point as Fig. 5 (x =2D, r=0.5R, and ¢ =0), no filter.
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V. Temporal Filters

A. Definition

A common procedure to avoid aliasing errors in experiments is
to use low-pass filters before the sampling process. The low-pass
filter suppresses all frequencies above the Nyquist frequency while
letting all lower frequencies pass. This filtering process has to be
done before the sampling process because otherwise the aliasing
error has already taken effect and is indistinguishable from the rest
of the long-wave spectrum.

Using the same strategy for the sampling of LES data leads to the
need of an appropriate digital filter. A digital filter can be defined as

N M
() =Y bus_n) + Y anr(t ) )
n=0

m=1

with r the filter response, s the original signal, and #; the time, where
ty — 1 1 is the LES time step At. Because in LES computations the
time step is usually not constant, but varies to maintain the high-
est possible time step that satisfies the Courant-Friedrichs—-Lewy
condition, a presampling process has to be made. This presampling
averages the data with a higher frequency than the actual sampling
frequency. To avoid aliasing in the presampling process, the fre-
quency of the presampling has to be chosen well within the energy
decay of a turbulent energy spectrum, so that the energy of frequen-
cies higher than the Nyquist frequency are considerably smaller than
the energy of the lower frequencies. A filter such as Eq. (2) can then
be applied.

A filter in the form of Eq. (2), a so-called infinite impulse response
filter, uses the history of the signal and the history of prior filter
responses to define the filter. However, a simplified filter that uses
only the history of the signal, a so-called finite impulse response
filter (FIR filter), may have advantages. This filter is given in the
form

N
P =Y bus(t) 3)

n=0

First, FIR filters are always stable. Because of the absence of the
filter response, no feedback is possible, and hence, this kind of filter
is unable to amplify errors. Second, FIR filters have a linear phase
response. The advantage of this will be made clear later.

Because of the high number of points at the interface that the filter
has to be applied to, the order N of the filter is sought to be small
inasmuch as N determines the number of time steps that have to be
recorded.

For the current investigation, two different filters have been used.
The detailed description of the determination of the filter constants
may be found in the Appendix.

One filter is based on the Fourier series method (FSM), which
is the exact solution for an infinite number of filter coefficients for
a chosen filter response H ()). The filter response of this filter is
shown in Fig. 7. The dashed line denotes the ideal filter response,
which is equal to one below the cutoff frequency and otherwise zero.
Because only a limited number of filter coefficients are available,
the actual filter response differs from the ideal filter.

The order of the filter is chosen to be N =21. This order is the
lowest order ensuring a filter response of unity at 0 Hz and, thus,
ensuring mean momentum conservation. The low order of the filter
results in an overshoot right next to the cutoff frequency, which is
known as Gibb’s phenomenon.

The second filter employed attempts to minimize this effect. Win-
dow functions can be used to smoothen the ripple effects. Here, the
usage of a Kaiser window is proposed, resulting in a smoothed filter
response (Fig. 8).

B. Temporal Filter: Amplitude Response

In the next step, the filters are applied to the results of the com-
putation of the upstream domain. Two simulations are performed,
with one using the FSM filter and the other the Kaiser window. The
signal response of both computations using the two different filters
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Fig. 9 Energy spectrum at interface plane of downstream domain with
use of FSM designed filter (Fig. 7).

show the desired results (Figs. 9 and 10). The long-wave pertur-
bation at Sr =1.0, the frequency that is desired to be transmitted,
can be found in the downstream domain without a loss of energy.
Because the filters have eliminated the high-frequency perturbation
before the actual sampling process, no aliasing can be observed. A
comparison with the unfiltered spectrum shows that the energy of
aliased frequency is reduced by 99.6% using the FSM method and
by 99.7% for using the Kaiser window.
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Fig. 11 Phase response of filter designed with window method using a
Kaiser window, N =21.

Whereas for the current test case the results of both filters are
nearly identical, more complex test cases may require the choice of
a filter based on the filter response. These results show that digital
filters can be used to improve the quality of the signal taken from
LES data to correct the amplitude response and attenuate aliasing.

C. Temporal Filter: Phase Response

The application of these filters have a major drawback. Figure 11
shows the phase response of both filters. The phase response is linear
in the passing frequency range. This translates to a constant time
delay of

At = (N - 1)/2 . fsample (4)

with which the signal coming from the upstream flow solver arrives
in the downstream flow domain. The time delay can be minimized
by decreasing the order of the filter, but the filters presented here
with an order of N =21 are the minimum order for a filter with
an acceptable quality of amplitude response. If unsteady coupling
effects are investigated, this time delay introduced by the filter is
usually not acceptable.

Because the phase delay is unavoidable using these temporal fil-
ters, the application of these filters is limited to the following: most
unsteady RANS flow solvers for turbomachinery applications do
not claim to compute a truly unsteady flow but an ensemble average
or a phase average. In phase-averaged flows, a number of averages
of the flow are taken in relation to the phase of a base frequency
Joase> Which is tied to the rotational speed of the turbomachinery.
When it is assumed that the LES delivers data to a RANS flow
solver computing phase averages, the LES flow solver can compute
phase averages on the basis of the LES data at the interface. Then,
a filter is designed that creates the time delay for one full period of
the base frequency. Here, the advantage of a linear phase response
of a FIR filter is apparent: The linear phase response translates to a

constant time delay that can be controlled by the order of the filter.
The order of the filter is then determined by

N =2 (fample/ frase) + 1 (&)

Although this procedure might be working for a number of appli-
cations, most unsteady LES/RANS computations will neither toler-
ate the time delay nor the usage of phase averages at the interface.

VI. Spatial Filters
A. Definition
The major reason why temporal filters are creating a time delay
is the lack of information of the signal in the future. For fluid flow,
the Taylor hypothesis can be used to translate temporal to spatial
information. The Taylor hypothesis can be written as

a. a.

9 _ .0 6
ot - "ox ©

with u, being the local convection velocity in the x direction. The
Taylor hypothesis is valid if the Reynolds number is high and the
flow is locally in the x direction. The temporal filter then becomes
the spatial filter

N
r() =Y bus (i) @)

n=0
with
Xp —Xp—1 = Mc/fsumple (8)

Instead of using the time history of the signal, the downstream devel-
opment is sampled. Unlike the case of the temporal filters, where the
time history of the interface points have to be stored, no additional
memory is necessary for the spatial form of the filter.

So far, the phase delay is still present, unless the origin of the filter
is shifted upstream placing the filter centrally around the desired
interface point:

X0,new = X0,0ld — [(N — 1)/2](ML'/fsample) (©)]

Here, the location of the sampling points is defined by the sampling
frequency. In many flow solvers, especially when using structured
meshes, it may be of advantage to define the sampling frequency
on the mesh spacing. The locations of the sampling points are then
defined as points on the mesh and the sampling frequency by the
distance of the points:

fﬂz\mple = Mc/Ax (10)

The advantage of this definition is mainly of practical nature because
it is easier to retrieve data from these points. Furthermore, no error
due to aliasing in the presampling process is introduced because the
sampling points resolve the entire spectrum on the given mesh.

The disadvantage of this definition of the sampling points is the in-
dependence of the sampling frequency from the interface frequency.
A variation of the RANS time step (and hence, a variation of the
interface frequency) requires a new definition of the filter because
the desired cutoff frequency has changed although the sampling
frequency remained constant.

For the current study, the spacing of mesh points in the axial
direction is Ax =3D/128. With u. = Uy = 1.0, this results in a
Strouhal number S7gmpie = 42.67. The cutoff frequency of Sr =5.0
results in a normalized cutoff frequency foyo =0.117.

The number of sampling point is limited to N = 17. A small num-
ber of sampling points is desirable because the Taylor hypothesis
loses validity with increasing distance from the interface point. Fur-
thermore, the extent of the spatial filter is sought to be small for
several reasons. First, in geometries more complex than the current
pipe flow, the spatial filter has to be put into an area where the flow
is nearly parallel and has a nearly constant convection velocity over
the spatial extent of the filter. This may not be the case over a large



SCHLUTER AND PITSCH 613

nitude

(=]

Ma

0o 01 02 03 04 05 06 07 08 09 1
Normalized Frequency

Fig. 12 N=17:---,ideal filter response and ——, amplitude response
of spatial filter based on a running average.

energyl— T T T 1 T T 1 | p—
n spatial filter ]
0.030 f— —]
0.020 f— —]
0.010 f— —]
- I L 11 1 [
0000 =" 4 6 7/ 8 9 & 11

(]
=

forcing freq. 1 Nyaquist freq. forcing freq. 2 interface freq. = D

Fig. 13 Energy spectrum at interface plane of downstream domain;
spatial running average filter (Fig. 12) used.

portion of the flow. Second, in parallel computations, the extent of
a spatial filter may be larger than the extent of the flowfield com-
puted on a single processor, so that interactions between parallel
processors may be necessary.

Because it is rather difficult to design a filter with a low cutoff fre-
quency, such as fiyoir = 0.117, on the basis of few sampling points,
a running average filter is employed (b, = 1/N). This is the only
filter that could ensure an amplitude response of unity at the mean
flow. The resulting filter response can be seen in Fig. 12.

B. Spatial Filter: Amplitude Response

The spatial filter is implemented in the upstream flow solver com-
puting the pipe flow. The integrated computation is performed and
the received signal at the inlet of the downstream flow solver exam-
ined (Fig. 13). It can be seen that the low-frequency perturbation
has passed the interface, although, due to the filtering, it has lost
some energy (~3%). The high-frequency perturbation has been fil-
tered out sufficiently so that aliasing is successfully suppressed. In
comparison to the unfiltered spectrum, the aliased frequency is at-
tenuated by 99.1%.

C. Spatial Filter: Phase Response

The phase delay of this filter can be expressed as a constant time
delay Ar, which is a sum of the filter time delay and the time cor-
rection by the shift of the origin Eq. (9),

Afioal = Alfilier + At&)rigin shift (11)

The filter time delay Atg., is defined corresponding to Eq. (4). The
time correction due to the shift of the origin upstream is given by

Atorigin shift = AX/M(‘ = _[(N - 1)/2](uc/fsample)(l/“z‘) (12)
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allased freq. from freq. 2

Fig. 14 Energy spectrum at interface: original signal in the upstream
domain.

unfiltered

10°

Nyquist freq. interface freq.
foreing freq. 1 forcing freq. 2
allased freq. from freq. 2

Fig. 15 Energy spectrum at interface: downstream solution without
filtering.

interface freq.

Nyquist freq.
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aliased freq. from freq. 2

foreing freq. 1

Fig. 16 Energy spectrum at the interface: downstream solution using
temporal filter (Kaiser window).

interface freq.

forcing freq. 2
aliased freq. Irom lreq. 2

Nyquist freq.
forcing freq. 1

Fig. 17 Energy spectrum at the interface: downstream solution using
spatial filter.
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Equation (11) then becomes

o N1 N-1 L 03
ol = 2. fﬂi\mp]t 2 f%ample -

The zero time delay ensures a true phase transfer of a given pertur-
bation.

This result shows, that antialiasing with spatial filters is possible,
allowing the proper transfer of amplitude and phase of a given long-
wave perturbation and, hence, allowing for a true unsteady coupling
between LES and RANS flow solvers.

VII. Filtering: Application to Turbulent Flows

To demonstrate the filtering procedures on turbulent flows, the
computations are repeated using a turbulent pipe flow with a
Reynolds number of Re = 1.5 x 10*. For both parts of the domain,
LES flow solvers are used.

Because the inflow of the upstream pipe has to be turbulent, the
inflow was generated by a separate LES computation of a periodic
pipe flow with Re =1.5 x 10* and S =0.15. The outflow plane of
this computation is recorded into a database that is used as inflow
for the actual LES computation.!’

As in the laminar case, the swirl velocity is periodically excited.
Here, the mean swirl velocity is modulated, whereas the turbulent
fluctuations are left untouched. Because the propagation of a con-
vective wave is disturbed by the turbulence, the upstream pipe is
shortened by 1.5D so that the inlet plane is 0.5D upstream of the
interface plane. This allows to obtain a clearer signal from the forc-
ing at the interface plane.

The solution of the upstream flow solver is filtered at the appropri-
ate plane using the RANS time step At. Inflow boundary conditions
for the downstream LES flow solver are then generated using the
database method described in Ref. 18. A database of turbulent flow
data generated by a turbulent pipe flow simulation is used and scaled
to satisfy the mean velocity and velocity fluctuations provided by the
upstream flow solver. The database is generated by an LES computa-
tion of a periodic pipe at a higher Reynolds number Re =3 x 10* to
point out differences in the high-frequency spectrum in the upstream
and downstream domains.

Figure 14 shows the resulting energy spectrum in the upstream
domain. The lower forcing frequency can be easily identified. The
high-frequency forcing is disturbed by the turbulence and is less
distinct. However, in the unfiltered downstream spectrum shown in
Fig. 15, aliasing of the second frequency can be easily observed.

Applying a temporal filter to the upstream LES computation sup-
presses the aliasing successfully (Fig. 16). Some differences in the
high-frequency spectrum between upstream and downstream do-
mains can be observed. These are due to the reconstruction of high-
frequency turbulence using a database in the downstream domain.

The use of a spatial filter yields essentially the same result as a
temporal filter. This is shown in Fig. 17.

VIII. Conclusions

In integrated LES/RANS computations, the higher temporal res-
olution of the flow in the LES domain may lead to aliasing errors
when sampling the data for the RANS flow solver using a larger
time step. This problem is similar to the aliasing problem in exper-
iments, where a continuous signal is digitally sampled and where
antialiasing is achieved with low-pass filtering before the sampling.
In the present study, we demonstrated the occurrence of such alias-
ing effects in coupled simulations running at different time steps.
The application of digital filters before the sampling process has
been proposed to achieve antialiasing.

The effects of two different digital filters of the order N =21
are shown, and both filters are able to decrease aliasing by more
than 99% for the chosen test case of a periodically perturbed pipe
flow. However, a large phase delay is introduced by the filter, which
makes it unsuitable for a truly unsteady coupling of LES and RANS
flow solvers.

To avoid the phase delay caused by the digital filter, the tem-
poral filters can be transformed into spatial filters using the Taylor

hypothesis. It is demonstrated that the spatial formulation of the dig-
ital filter is able to attenuate aliasing substantially, while preserving
the phase information. This makes this filter formulation a suitable
antialiasing method for coupled RANS/LES computations.

The identification of the aliasing problem in integrated
RANS/LES computations and its solution using spatial filters is
an important step toward truly unsteady flow predictions using mul-
ticode RANS/LES flow simulations.

Appendix: Digital Filter Design

Digital filter design, especially low-order design, is currently
more an art than an exact science. The minimum specifications for
a digital filter vary from application to application. For coupled
RANS/LES computations, the temporal digital filters are designed
using a minimum number of coefficients and with a filter response
of unity at 0 Hz to ensure the conservation of mean momentum.
Here, two different filters are presented. One is derived mathemat-
ically from the desired filter response and is the basis for all filters.
The other filter improves the filter response by employing a window
function.

A. FSM
The first filter is designed using the FSM.!° The coefficients can
be derived from
1

b, = —[ H(\)[cos(mA) + jsin(mA)] dr (A1)
2 J,.

with
m=n—[(N—1)/2] (A2)

and with H ()) being the desired filter response and A the normal-
ized frequency, which is here normalized to the presampled fre-
quency. The optimal filter response would have a cutoft frequency
of % - finterface- The presampling frequency is chosen here twice the
interface frequency, which results in a cutoff frequency Acyorr = %.
Equation (A1) then becomes

1 /4 1 /4
b, = —/ cos(ml) di —|—j—/ sin(mA) dA (A3)
27 S 27 fosa

The second integrand is zero because the integrand is an odd function
and the limits of the integration are symmetric. Equation (A3) then

becomes

. h=m/a .
sin(m) _ sinlm(w/4)] (Ad)

A=—m/4 miw

by =

2mm

Please note that the definition of the filters does not include the
knowledge of the actual sampling frequency, but only the cutoff
frequency relative to the sampling frequency. This means that, if the
interface frequency is changed, the filters will adapt automatically.
The filter coefficients for N =21 can be found in Table Al.

The filter response of this filter is shown in Fig. 7. The deviations
of the actual filter response from the ideal filter response are due to
the low number of filter coefficients. Most notably, an amplification

Table A1 Coefficients of the
filter defined by Eq. (A4)

Coefficient Value

b, by 0.0311536
b1, big 0.0244766
by, big —0.0000006
b3, b1y —0.0314696
by, bie —0.0519226
bs, bys —0.0440576
be, b4 0.0000006
b7, b13 0.0734296
bg, b1y 0.1557666
by, b1} 0.2202866
bio 0.2446776
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Table A2 Coefficients of the
filter using a Kaiser window

Coefficient Value
bo, bao 0.0004736
by, by 0.0013386
b, big —0.0000006
b3, b17 —0.0069236
by, big —0.0179856
bs, bis —0.0217416
bg, b14 0.0000006
b7, b13 0.0583416
bg, b1z 0.1425086
b, by 0.2189896
bio 0.2500006
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Fig. A1 Kaiser window used to improve filter respose, N =21and 3 = 6.

close to the cutoff frequency can be observed. This amplification is
called Gibb’s effect.

B. Window Method

The second filter used in this study uses a window method to
smoothen the filter response. One of the major shortcomings of the
FSM is the assumption that the signal is periodic. This creates some
problems due to a discontinuity at the end and at the beginning of
the recorded signal. One possibility to dampen this effect is to use
window functions given by

N
F() =Y bawns(t ) (AS)
n=0

with w, being the window function. Some of the most common
window functions are the Hann, Hamming, Parzen, or Kaiser win-
dows (see Ref. 20). The choice of the appropriate window method
is subjective and depends on the preferences of the designer. Cur-
rently, a number of filter design tools are available, which allow the
investigation of the effect of a given window to the filter response.
Here, the commercial package MATLAB® has been used.

Applying several windows to the filter (N = 21) results in varying
filter responses. Some filters are not able to attenuate Gibb’s phe-
nomenon completely (such as the Hann and Hamming window).
Others disturb the low-frequency spectrum significantly (such as
the Parzen window) for the given order of the filter. Here, as a com-
promise, the Kaiser window was chosen (Fig. A1l).

The window function is usually combined with the filter coeffi-
cients, which leads to a new set of coefficients provided in Table A2.

This filter has been designed to work under the current circum-
stances, but may have to be adapted for other applications, most
notably, when a larger number of filter coefficients can be used.
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