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Abstract

Dominant markers such as amplified fragment length polymorphisms (AFLPs) provide an
economical way of surveying variation at many loci. However, the uncertainty about the
underlying genotypes presents a problem for statistical analysis. Similarly, the presence of
null alleles and the limitations of genotype calling in polyploids mean that many conventional
analysis methods are invalid for many organisms. Here we present a simple approach for
accounting for genotypic ambiguity in studies of population structure and apply it to AFLP
data from whitefish. The approach is implemented in the program 

 

STRUCTURE

 

 version 

 

2.2,

 

which is available from http://pritch.bsd.uchicago.edu/structure.html.
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Introduction

 

Methods based on variable polymerase chain reaction (PCR)
amplification such as amplified fragment length poly-
morphisms (AFLPs) can provide a rapid and affordable
approach to collecting polymorphism data on a genomic
scale (Campbell 

 

et al

 

. 2003; Luikart 

 

et al

 

. 2003). However,
these markers are typically ambiguous about the genotypes
that underlie them. In particular, in diploids, a band will be
obtained if either or both of the homologous chromosomes
contain an amplifiable sequence. In polyploids, there can
be ambiguity even with codominant markers. Even when
it is possible to determine which alleles are present, it
might be difficult to determine the number of each. These
ambiguities need to be addressed in any analysis (e.g.
Holsinger 

 

et al

 

. 2002; Hardy 2003; Hill & Weir 2004;
Hollingsworth & Ennos 2004; Kosman & Leonard 2005).

The program 

 

structure

 

 uses a Markov chain Monte
Carlo (MCMC) algorithm to cluster individuals into popu-
lations on the basis of multilocus genotype data (Pritchard

 

et al

 

. 2000; Falush 

 

et al

 

. 2003b), and it has been applied to
problems such as identifying cryptic population structure,

detecting migrants or admixed individuals, and inferring
historical population admixture (e.g. Rosenberg 

 

et al

 

. 2002;
Falush 

 

et al

 

. 2003a; Albert 

 

et al

 

. 2006; Lecis 

 

et al

 

. 2006; Ostrowski

 

et al

 

. 2006). We describe here an MCMC algorithm within the

 

structure

 

 framework that accounts appropriately for the
genotypic ambiguity inherent in dominant markers given
that other structure assumptions are met (see Model descrip-
tion below). The algorithm is implemented in the newest
release of 

 

structure

 

 (version 2.2, to be made available at
http://pritch.bsd.uchicago.edu/), with the result that all
available model options can now be applied to data sets that
include dominant markers. The approach should also be
applicable to a wide range of other MCMC analysis methods.

 

Model description

 

We encourage readers who are unfamiliar with 

 

structure

 

to consult Pritchard 

 

et al

 

. (2000) before proceeding further.
In brief, 

 

structure

 

 assumes that all of the genetic material
of the sampled individuals comes from one or more of 

 

K

 

unobserved populations. Each population is characterized
by a set of allele frequencies 

 

P

 

 at each locus, where 

 

P

 

 is a
multidimensional vector with elements 

 

p

 

klj

 

 representing
the frequency of allele 

 

j

 

 at locus 

 

l

 

 in population 

 

k

 

.
The simplest ancestry model (the no-admixture model)

assumes that all of the genetic material from any given
individual comes from one population, but more complex
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models (the admixture, migration, and linkage models)
allow for the possibility that individuals may have mixed
ancestry in more than one of the 

 

K

 

 populations. When indi-
viduals have mixed ancestry, this means that each geno-
typed allele comes from one or other of the 

 

K

 

 populations.
In that case,  denotes the population of origin of allele
copy 

 

a

 

 of individual 

 

i

 

 at locus 

 

l

 

 (we use the term ‘allele
copy’ to refer to one of the two alleles carried at a particular
locus by a particular individual).

The gene frequencies (represented collectively by 

 

P

 

) and
the population of origin of each allele copy of each indi-
vidual (represented collectively by 

 

Z

 

) are assumed to be
unknown, so that they must be estimated from the data.
However, the previous versions of 

 

structure

 

 have
assumed that the genotype of each individual at each locus
is known (or entirely unknown, in the case of missing
data). The genotype of allele copy 

 

a

 

 of individual 

 

i

 

 at locus

 

l

 

 is represented . For notational convenience, geno-
types are represented as being ordered, even if no phasing
information is available, so that for a diploid, ,

 is distinct from , . Collectively, the
genotypes are represented by 

 

X

 

.
Our method makes use of a computationally intensive

approach, Markov chain Monte Carlo (MCMC), to perform
inference. MCMC proceeds by starting from an initial
arbitrary configuration of parameter values, and iteratively

 

updating

 

 subsets of the parameters to new values, condi-
tional on the data and the current values of the other
parameters. In a single iteration of the algorithm, all of the
parameters are updated once. For example, in the no-
admixture model, 

 

structure

 

 starts with a random con-
figuration of 

 

Z

 

. In a single iteration, 

 

P

 

 is updated conditional
on 

 

X

 

 and 

 

Z,

 

 and 

 

Z

 

 is updated conditional on 

 

X

 

 and 

 

P

 

. The
updates are constructed in such a way that after many
iterations, the algorithm should converge to the posterior
distribution of all of the parameters given the data. Practical
issues related to convergence of the algorithm and inter-
pretation of its results are discussed by Pritchard 

 

et al

 

.
(2000) and Falush 

 

et al

 

. (2003b).
In order to extend 

 

structure

 

 to dominant markers, we
now assume that there are observations 

 

X

 

*, which provide
partial information about the diploid genotypes 

 

X

 

 for the
entire data set. We then introduce a new update step into
the algorithm, which updates 

 

X

 

 based on the probability of
all possible genotypes, conditional on 

 

X

 

*, 

 

P

 

 and 

 

Z.

 

 All of
the other updates can then proceed as usual, but condi-
tional on the (current) imputed values of 

 

X.

 

 Specifically, we
assume that at a subset of the loci, a single (known) allele 

 

r

 

 is
recessive with respect to all of the others; this recessive
allele will typically correspond to an allele copy that yields
no PCR product. Any other alleles are assumed to be co-
dominant with each other. So for example, a single AFLP
observation consists of presence or absence of a band on a
gel. In this case, absence of a band is the recessive state and the

underlying genotype is ambiguous when a band is observed.
For microsatellites, null alleles due to allele-specific PCR
failure will be recessive to all other alleles at a locus.

In diploids, the genotype is ambiguous when a single
allele 

 

j,

 

 different than the recessive allele 

 

r,

 

 is observed at a
particular locus . In this case, it is possible
either that both allele copies at the locus are of type 

 

j

 

, or
that one of them is of type 

 

r

 

. Using the standard 

 

structure

 

assumption of conditional independence of the genotypes
given 

 

Z (

 

i.e. loosely speaking that there is Hardy–Weinberg
equilibrium within populations) we have

and

In each iteration, one of these genotypes is chosen at
random according to its probability.

For organisms with ploidy greater than two, genotypic
ambiguity may exist even if all alleles are codominant with
each other. In triploids for example, if two alleles are
observed at a locus, then either of them may be represented
by two allele copies. We have implemented an algorithm
that generates appropriate genotypes given both this
ambiguity and (optionally) the ambiguity caused by reces-
sive nulls, allowing dominant markers to be used. A trial
genotype of individual 

 

i

 

 at locus 

 

l

 

 is generated by assigning
each allele copy 

 

a

 

 independently, with probabilities
,

where 

 

j

 

1

 

 … 

 

j

 

B

 

 are the 

 

B

 

 different codominant alleles
observed at that locus and 

 

r

 

 is the recessive null allele (if
applicable). Not all of the genotypes generated in this way
will be consistent with the observed data; some will lack
one or more of the observed alleles. We handle this diffi-
culty by generating new trial genotypes until a consistent
one is obtained; the resulting algorithm is inefficient com-
putationally but is applicable for all ploidy levels.

Given an imputed value of 

 

X

 

, all of the other updates can
be performed as before. In the simplest case (i.e. ignoring
updates of optional parameters such as the admixture pro-
portions 

 

Q

 

, described in Pritchard 

 

et al

 

. 2000 and Falush

 

et al

 

. 2003b), the updates proceed as follows:
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1

 

Update(

 

Z

 

 | 

 

P

 

, 

 

X

 

)

 

2

 

Update(

 

X

 

 | 

 

X

 

*, 

 

P

 

, 

 

Z

 

)

 

3

 

Update(

 

P

 

 | 

 

X

 

, 

 

Z

 

).

In order to initialize the algorithm in iteration 1, the Zs
are first estimated randomly. For example, in the no-
admixture model individuals are assigned randomly to
each of the 

 

K

 

 populations with probability 1/

 

K

 

. The 

 

Xs

 

 are
then initialized by ignoring any genotypic ambiguity, i.e.

. 

 

P

 

 can then be initialized
using the normal update.

 

Model validation

 

We validated the new model feature by using computer
simulation to generate closely related populations. First,
ancestral population frequencies were generated at 500 bi-
allelic loci, with gene frequencies generated from a beta
distribution (the bi-allelic version of a Dirichlet distribution)
with parameter 

 

λ

 

 

 

=

 

 1 (see, e.g. Devlin & Roeder 1999;
Falush 

 

et al

 

. 2003b). Two populations were then generated
with beta-distributed gene frequencies that were inde-
pendently perturbed from the ancestral gene frequencies,
assuming a value of genetic drift 

 

F

 

 

 

=

 

 0.1 for each one. Two
hundred individuals were generated such that a known
proportion 

 

q

 

i

 

 of individual 

 

i

 

's ancestry was from the first
population and 1 

 

−

 

 

 

q

 

i

 

 from the second, where 

 

i

 

 

 

=

 

 1, … , 200.
The 

 

q

 

s were chosen according to a beta distribution with
parameter 

 

α

 

 

 

=

 

 0.1. Thus, the data are generated according
to a model that is very similar to the model assumed by

 

structure

 

 to perform inference.
The data were handled in two different ways. In the first,

the full genotypes were input into 

 

structure

 

, so that the

alleles were codominant. In the second, some information
was removed from the data by making the allele desig-
nated 0 be recessive to allele 1; the diploid genotype 11 is
then indistinguishable from 01 or 10; these three genotypes
are all entered as 11. In both cases, we used 

 

structure

 

assuming the correct model of dominance.

 

structure

 

 estimated both the ancestry gene frequencies

 

p

 

 in the two populations and the ancestry proportion 

 

q

 

 of
each individual (Fig. 1). As would be expected, the gene
frequency estimates are more accurately estimated when
the alleles are codominant, especially when the frequency
of allele 1 is high. However, the difference is not all that
large. Further, in this example, the mean squared error in
estimating the ancestry proportions 

 

q

 

 is actually slightly
higher when the alleles are codominant than when 0 is
recessive, showing that the genotypic ambiguity caused
by recessive alleles does not impose a substantial penalty
on the quality of the inference, as long as it is handled
correctly.

 

Example

 

Normal and dwarf forms of the whitefish 

 

Coregonus
clupeaformis

 

 coexist in several lakes in Canada. Campbell &
Bernatchez (2004) typed 440 AFLP loci from 23 normal and
24 dwarf fish from Cliff Lake. We used 

 

structure

 

 to
investigate possible gene flow between the two ecotypes.

We first used the admixture model and performed
clustering not using any population of origin information,
under the 

 

F

 

 model, which assumes that the allele frequencies
in the two populations are correlated. In view of the small
number of individuals sampled, we fixed the number of
populations to 

 

K

 

 = 2. We ran structure for 10 000 iterations

Fig. 1 Comparison of estimated gene frequencies p and admixture proportions q with true values, for simulated data from two closely
related populations. Black points show estimates for codominant markers. Grey points show estimates where allele 1 is dominant over allele
0. p represents the frequency of allele 1.
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after a burn-in of 1000 iterations. The divergence between
populations estimated using the F model (analogous to FST,
Falush et al. 2003b), with a single value of F estimated was
0.25, implying that the two populations were quite strongly
differentiated from each other before admixture occurred.
The clustering correlated strongly with ecotype and most
individuals were estimated to have almost all of their ances-
try from a single population (Fig. 2a). However, there were
several individuals who apparently had mixed ancestry,
and one normal whitefish with a dwarf-like genotype.

In order to assess the statistical support for evidence of
gene flow between the two groups, we used the USEPOP-
INFO option (Pritchard et al. 2000). This model assumes
that most individuals classified as having a particular eco-
type have pure ancestry from that type but that a small
proportion of individuals may have a proportion of ancestry
from the alternative ecotype. We set GENSBACK = 3, so
that each individual could be of the alternative ecotype (i.e.
they are misclassified) or have one parent, grandparent or
great-grandparent with the alternative ecotype. In order to
ensure that there is strong statistical support for any inference
of mixed ancestry, we further set MIGRPRIOR = 0.001,
implying that the prior probability that an individual has
pure ancestry from its predefined ecotype is 0.999. Two
dwarf and five normal whitefish showed strong evidence
for mixed ancestry, with less than 50% posterior probability
of having pure ancestry from the designated ecotype

(Fig. 1b). These individuals are classified as hybrids with
high probability, but there is some uncertainty remaining
about how many generations ago the admixture occurred.
One further whitefish shows a greater than 99% probability
of having a dwarf genotype, despite being classified as nor-
mal. This individual presumably represents a classification
error. The individuals who were classified as likely hybrids
also showed the highest estimated admixture, implying
that the two analyses are concordant (as were results for
different runs with the same model, using different random
starting points).

Discussion

We have presented a simple approach that allows structure
to handle dominant markers such as AFLPs and also
genotype ambiguity for codominant markers in polyploids.

One common practical problem with otherwise codom-
inant markers such as microsatellites is the presence of null
alleles for which no PCR product is obtained. In principle,
these can be handled by the model we introduce here, by
treating such alleles as recessive. In practice, however, the
model includes a number of assumptions that may not
hold, including that the alleles that drop out do so consist-
ently, e.g. due to mutations in the PCR primer binding site,
rather than to variation in experimental conditions or low
concentrations of DNA in a particular sample. In addition,
the user must decide whether genotypes where no product
is observed are homozygous for the null allele (in which
case they should be recorded as such), or to other reasons
such as low quality DNA (in which case they should be
recorded as missing data; see Brookfield 1996 for relevant
discussion). Finally, we note that inbreeding within popu-
lations may cause structure to infer a high proportion
of null alleles, although it is unclear whether this might
have a detrimental effect on inference for data sets on
inbred populations, since structure currently assumes no
inbreeding. In principle, individual-specific inbreeding
coefficients could be estimated to allow for this. The
approach taken here could also be extended to allow
explicitly for genotyping errors, or allelic dropout due to
low quality DNA. However, we have not attempted these
extensions here.

The extensions described here will be particularly useful
for researchers who would like to make inferences on pat-
terns of gene flow in natural populations, but have only
relatively limited resources for genotyping. We have
shown that by using 440 AFLP markers, it is possible detect
whitefish with mixed ancestry from two different eco-
types, even when the admixture occurred two or three gen-
erations ago, so that three-quarters or more of the ancestry
of the fish in question comes from a single population.
Larger numbers of markers, in combination with linkage
information, would allow yet more detailed inferences.

Fig. 2 Ancestry of whitefish from Cliff Lake estimated using
structure. (a) Ancestry estimates based on naïve clustering.
Ancestry from the inferred dwarf and normal gene pools are
shown in dark and light grey, respectively. (b) Likely ancestry of
each individual, estimated using phenotypic information. White:
full ancestry from observed ecotype. Light grey: one great
grandparent with other ecotype. Grey: one grand parent with
other ecotype. Dark grey: one parent with other ecotype. Black:
both parents from other ecotype. See text for model details.
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