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Linkage Disequilibrium in Humans: Models and Data

Jonathan K. Pritchard” and Molly Przeworski"

Department of Statistics, University of Oxford, Oxford

In this review, we describe recent empirical and theoretical work on the extent of linkage disequilibrium (LD) in
the human genome, comparing the predictions of simple population-genetic models to available data. Several studies
report significant LD over distances longer than those predicted by standard models, whereas some data from short,
intergenic regions show less LD than would be expected. The apparent discrepancies between theory and data
present a challenge—both to modelers and to human geneticists—to identify which important features are missing
from our understanding of the biological processes that give rise to LD. Salient features may include demographic
complications such as recent admixture, as well as genetic factors such as local variation in recombination rates,
gene conversion, and the potential segregation of inversions. We also outline some implications that the emerging
patterns of LD have for association-mapping strategies. In particular, we discuss what marker densities might be

necessary for genomewide association scans.

Introduction

The extent and distribution of linkage disequilibrium
(LD) in humans is a topic of great current interest. LD
plays a fundamental role in gene mapping, both as a
tool for fine mapping of complex disease genes (e.g., see
Horikawa et al. 2000) and in proposed genomewide
association studies (Risch and Merikangas 1996). LD is
also of interest for what it can reveal about human his-
tory and human origins (e.g., see Tishkoff et al. 1996),
because the distribution of LD is determined, in part, by
population history. Finally, studies of LD may enable us
to learn more about the biology of recombination in
humans. It is difficult to use pedigrees to estimate rates
of homologous gene conversion, or variation in recom-
bination rates over very short distances, because the
events of interest occur at very low rates. However, stud-
ies of LD may offer insight (e.g., see Chakravarti et al.
1984; Awadalla et al. 1999; Przeworski and Wall 2001).

In the present review article, we describe some pre-
dictions about the extent of LD, using simple models
of population genetics. After summarizing the main em-
pirical findings in humans, we turn to applications in
association mapping and discuss the implications of the
data collected thus far. We have not aimed to cover the
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literature exhaustively but, instead, have highlighted
some issues that we think are of particular interest.

Models and Measures of LD

LD refers to the nonindependence of alleles at different
sites. For example, suppose that allele A at locus 1 and
allele B at locus 2 are at frequencies 7, and w5, respec-
tively, in the population. If the two loci are independent,
then would we expect to see the AB haplotype at fre-
quency 7,7 If the population frequency of the AB hap-
lotype is either higher or lower than this—implying that
particular alleles tend to be observed together—then the
two loci are said to be in LD.

A wide variety of statistics have been proposed to
measure the amount of LD, and these have different
strengths, depending on the context. The measurement
of LD is a large and complex topic and will not be
reviewed in detail here; but see the work of Devlin and
Risch (1995); Jorde (2000) and Hudson (2001). Most
of the measures of LD that are in wide use quantify the
degree of association between pairs of markers. In part,
they differ according to the way in which they depend
on the marginal allele frequencies. In the present article,
we use one popular measure of LD between pairs of
biallelic markers, commonly denoted by #* (elsewhere,
7* is also denoted by A?). We also discuss a multilocus
approach, based on an underlying population genetic
model, that we feel has some advantages as a summary
of the overall amount of LD in a region.

Consider two biallelic loci on the same chromosome,
with alleles A and a at the first locus and with alleles
B and b at the second locus, where the labeling is ar-
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bitrary. The allele frequencies will be written as w,, m,,
g and m,, and the four haplotype frequencies will be
WTItten as g, Tap, Tap and . Then,

2= (7rAB - 7TA7|'B)2 ) (1)

TpT, TR T

In some of the figures, we plot \72, because this can
make it easier to see the data points. For brevity, we
will refer to V2 as “r.”

In practice, one typically has a sample of m chro-
mosomes from the population. Then, estimates of 7
() are usually obtained by plugging the sample fre-
quencies T, Ty, T4y, €tc., into equation (1).

Besides estimating the amount of disequilibrium be-
tween pairs of markers, it is also natural to test the null
hypothesis of independence between marker pairs (i.e.,
linkage equilibrium). This can be done by a x? test, and
it turns out that, for biallelic markers, 7* is the standard
x’-test statistic divided by the number of chromosomes
in the sample (Weir 1996, p. 113). As shown later in
the present article, 7* also arises naturally in the context
of association mapping.

The actual value of the disequilibrium coefficient 7*
(or any other measure of LD) between two loci is drawn
from a probability distribution that results from the
evolutionary process. This process can be described in
terms of a population genetics tool called the “coales-
cent” (for reviews, see, e.g., Hudson 1993; Nordborg
2001). When we draw a sample of chromosomes from
a population, all the chromosomes are related by some
unknown ancestral genealogy, known as a “coalescent
tree.” Genetic markers that are very close together on
a chromosome have either the same or similar geneal-
ogies, and this induces dependence between the alleles
at different markers. Markers that are farther apart may
have different ancestral genealogies, because of recom-
bination. For this reason, the strength of LD between
pairs of markers decreases as a function of the genetic
distance between markers.

The expected value of 7* is a function of the parameter
o = 4N,c, where c is the recombination rate between
the two markers and where N, is the effective popula-
tion size. For large p, E(r*) = 1/p (reviewed by Hudson
2001). Below, we will show simulations of the distri-
bution of r under various models.

Despite their convenience, the use of * and other
standard summaries of LD has some shortcomings.
Each pair of loci produces an estimate, and it is not
clear how to combine these in a sensible way, in part
because they are not independent. More seriously, it is
not straightforward to compare different regions. For
instance, we might want to know whether a difference
in the values of 7* in two different regions is biologically
meaningful. (There are two kinds of statistical signifi-
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cance in this context: first, we might want to know
whether the amount of LD, appropriately defined, in
one region is significantly more than that in another
le.g., for repeated sampling of loci from the same re-
gion|; second, we might want to know whether there
is evidence that the underlying biological parame-
ters—in particular, the recombination rate—differ either
between regions or from predicted values. We use the
latter sense in this article.) As we will argue below, for
these and other reasons, it seems useful to supplement
the standard pairwise summaries of LD by a model-
based LD measure from population genetics.

As mentioned above, E(#*) is a function of p =
4N.,c. It turns out to be a general result that p (also
called “C” in the literature) is a key determinant of the
extent of LD (Long and Langley 1999), with the
strength of LD decreasing as p increases. Essentially, p
is a scaled recombination rate, where the scaling con-
stant 4N, arises naturally from consideration of the ge-
nealogical process (e.g., see Nordborg 2001; also see
the Nordborg web site). For a given demographic model
of population history, the extent and distribution of LD
depends primarily on p, and we can readily simulate
the distribution of any summary of LD (we also need
to specify a mutation model). (Note a matter of nota-
tion: when we consider p = 4N, ¢ for a region contain-
ing a series of markers, ¢ is normally taken to refer to
the total recombination rate across the entire region.)

The central role of p as a determinant of LD suggests
that it is of interest to estimate this parameter from data.
To do this, we need to assume an explicit model de-
scribing the population history and the processes of mu-
tation and recombination. Then, for a given set of hap-
lotype data, we can (in principle) compute the likelihood
of the data as a function of p, and the mutation rate
(Stephens 2001). Unfortunately, computing this likeli-
hood is both technically challenging and computation-
ally intensive, even for relatively small data sets, and
methods for doing so are in their infancy. Existing ap-
proaches estimate the full likelihood by using either im-
portance sampling (Griffiths and Marjoram 1996; also
see the Paul Fearnhead web site) or Markov chain
Monte Carlo (Kuhner et al. 2000; Nielsen 2000). To
lessen the computational load, other methods simplify
the structure of the data to approximate the shape of
the likelihood function (Wall 2000; also see the Hudson
Lab Home Page); confidence intervals can be obtained
by simulation.

Despite the computational difficulties, it is now be-
coming possible to estimate p in cases of interest, and
we report some results here. There are several potential
advantages to using the model-based estimate p as a
summary statistic: (1) We can obtain a single number
that summarizes the amount of LD in a region. (2) We
can compare the amount of LD observed in studies with
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different marker spacing or from microsatellite and sin-
gle-nucleotide polymorphism (SNP) studies. (3) The
quantity p/4N, is an estimate of the recombination rate
per generation, c. The latter is of particular interest for
studying variation in recombination rate at small scales;
it also allows us to test the models used to predict pat-
terns of LD.

Model Predictions

Population history can have a large effect on the dis-
tribution of LD. To illustrate this, we plot the decay
of 7 for a sample of 400 chromosomes, under four
simple demographic models (see fig. 1). Each plot
shows the results for one data set simulated from a
neutral coalescent model with recombination (Hudson
1993). Points above the horizontal line are in signifi-
cant LD at the 5% level. The first column in figure 1
shows realizations of the standard null model of a ran-
domly mating population of constant size N, = 10*.
(The estimate of N, is obtained from observed diversity
levels, where the mutation rate is assumed to be =
2 x 10 */site/generation [Li and Sadler 1991; Prze-
worski et al. 2000].) As can be seen by comparison of
the five replicates, considerable variability is expected
across runs with the same underlying parameters, es-
pecially between tightly linked sites.

In the second column of figure 1, we plot the decay
of 7 for the model used by Kruglyak (1999). In this
scenario, the effective population size increases expo-
nentially, from 10* to 5 x 10°, starting 5,000 genera-
tions ago. As pointed out by Kruglyak (1999), very little
LD is expected under this model, and, in fact, few sig-
nificant values of 7 are observed beyond 10 kb. It should
be noted, however, that, even in the absence of growth,
LD is expected to be smaller in larger populations. In
the Kruglyak model, it is assumed that N, has always
been =10 the value for the model of constant popu-
lation size. If we want to know the effect of population
growth per se, rather than that of a large population
size, then we need to match the effective population
sizes.

In figure 2, we plot the expected levels of 7* for dif-
ferent growth models with comparable levels of diver-
sity. Under a neutral model, diversity levels are deter-
mined by the mutation rate and the effective population
size. Thus, matching the diversity levels is one way to
match effective population sizes. Here, we fix the cur-
rent effective population size (taken to be 10°) and the
time at which population growth started; we then pick
the growth rate that yields the same average number of
segregating sites (for 100 chromosomes) as does the
model of constant population size with N, = 10*. Once
population sizes are matched in this way, population
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growth still leads to a reduction in LD, but the effect
is smaller than that in the Kruglyak model.

It should be noted that, in addition to diversity levels
and levels of LD, other aspects of the data (e.g., the
frequency spectrum of segregating sites) can be used to
gauge the plausibility of particular demographic mod-
els. Population growth leads to an excess of low-fre-
quency variants relative to a model of constant popu-
lation size (Tajima 1989). Under the model used by
Kruglyak, >80% of all minor alleles would be found
only once in a sample of 400 chromosomes (results not
shown). Such a pronounced skew in the frequency spec-
trum is not seen in actual data. Indeed, the frequency
spectrum at synonymous sites (as detected by variant-
detection arrays; Cargill et al. 1999) indicates little skew
from the predictions of a model of constant population
size. Although the size of the human population clearly
has increased—at least over recent time—there are not
yet enough data to allow us to know which growth
model will be appropriate (Wall and Przeworski 2000).

In contrast to population growth, population struc-
ture tends to increase levels of LD. It can even lead to
significant associations between unlinked markers;
however, we still expect the strongest LD between
tightly linked markers. An example of this can be seen
in the third and fourth columns of figure 1, where we
present the results for a model with two subpopulations,
corresponding to a level of population differentiation
of E; = .2 (Wright 1951; Hartl and Clark 1997).

In the third column of figure 1, all individuals are
sampled from one subpopulation, whereas, in the fourth
column of figure 1, they are drawn equally from both.
Both situations lead to increased LD, and, particularly
in the latter case, there is strong LD across the entire
distance plotted.

Empirical Patterns

Long-Distance LD

There are now more than a dozen studies that char-
acterize the extent and range of background LD over
large distances (e.g., see Peterson et al. 1995; Laan and
Pdibo 1997; Huttley et al. 1999; Dunning et al. 2000;
Eaves et al. 2000; Gordon et al. 2000; Taillon-Miller et
al. 2000; Wilson and Goldstein 2000; Zavattari et al.
2000; Abecasis et al. 2001; Service et al. 2001). Although
a few recent studies consider SNPs (Dunning et al. 2000;
Taillon-Miller et al. 2000; Abecasis et al. 2001), most
data sets consist of microsatellites. The populations sam-
pled are usually either European or of European descent
(e.g., the Amish or Afrikaners). Many are thought to be
either relatively isolated or to have experienced rapid
growth from a small number of founders (e.g., Finns
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Figure 1 Simulated decay of 7, as a function of genetic distance, for five independent replicates for each of four demographic models. Each plot shows the results for one sample of 400 chromosomes

simulated under a particular demographic model of population history. On the X-axis is the genetic distance, in centimorgans, separating pairs of markers; at the genome average recombination rate of
~ 1 cM/Mb, this is equivalent to distances in megabases. Each plot shows all pairwise comparisons for 40 biallelic markers, chosen randomly from the available markers whose minor-allele frequencies
were =.2. Points above the horizontal lines are in significant LD at the .05 level; for a sample size of 400, this corresponds to a value of r = .098 (see the “Models and Measures of LD” section). The
first column shows results for a panmictic population of constant size N, = 10*; the second column shows results for the model of population growth considered by Kruglyak (1999) and described in the
“Model Predictions” section; and the third and fourth columns show results for a simple model of population structure. In the third column, all individuals are drawn from the same subpopulation; in the
last column they are drawn equally from both subpopulations. We used the symmetric two-island migration model (Wright 1951), with N, = 5,000 for each deme, and migration rates of one individual
per deme per generation.
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Figure 2 Decay of expected value of 72, as a function of genetic

distance, for different growth models (sample size of 100 chromo-
somes). From top to bottom, the four models are as follows: constant
population size of N, = 10* (unbroken line); population-growth onset
500 generations ago—that is, 10* years ago, under the assumption
that there are 20 years per generation (dotted line); population-growth
onset 5,000 generations ago (short-dashed line); and the model used
by Kruglyak (1999) (see the “Model Predictions” section) (long-dashed
line). In two growth models (dotted line and short-dashed line), the
current population was fixed at 10°. Except in the Kruglyak model,
the parameters were chosen to match the amount of genetic diversity
seen in humans (see text). In each of 10* simulations, 10 SNPs with
a minor-allele frequency =.2 were chosen.

and Sardinians). Sample sizes vary from 50 to several
hundred haplotypes.

Several of these studies find that LD extends over very
long distances. For example, Peterson et al. (1995), Laan
and Piibo (1997), Huttley et al. (1999), Gordon et al.
(2000), Wilson and Goldstein (2000), and Service et al.
(2001) all observe significant associations between pairs
of microsatellites separated by =1 ¢cM. Significant LD
extends out to 2 ¢cM in Ashkenazim and Bantus, in an
X-chromosome survey conducted by Wilson and Gold-
stein (2000). In a sample of Afrikaners, Gordon et al.
(2000) find two pairs of markers in significant LD (after
a Bonferroni correction for multiple tests), despite the
markers being separated by >3 cM.

Huttley et al. (1999) describe results from a genome-
wide search for LD in the microsatellite data of the Cen-
tre d’Etude du Polymorphisme Humain (CEPH). Those
authors used the LD level observed in the major histo-
compatibility (MHC) region as a benchmark for “high”
levels of LD. (The MHC region shows extreme levels of
LD, which are thought to reflect the action of natural
selection.) By this criterion, eight regions, each spanning
several centimorgans, show “excess LD” in a sample of
CEPH individuals.

One of the SNP studies (Taillon-Miller et al. 2000)

S

also finds long-range LD in regions Xq25 and Xq28,
with highly significant associations between several pairs
of markers separated by >500 kb. However, SNP data
from four autosomal regions (from Dunning et al.
[2000] and Abecasis et al. [2001]) seem to show a dif-
ferent pattern, with a more rapid decay of LD with dis-
tance (fig. 3).

A visual inspection of figure 1 suggests that, under the
standard models, the finding that LD extends over mul-
tiple centimorgans is surprising, at least in the absence
of substantial population structure. Ideally, one would
like to compare the patterns of LD found by different
studies more formally and, also, to test the predictions
of alternative models. However, this is not straightfor-
ward. First, the power to detect LD may be higher for
markers with many alleles (e.g., microsatellites) than for
biallelic markers (Slatkin 1994). Second, the results from
different studies are reported in terms of a variety of
measures of LD. Most common among these are D’ (Le-
wontin 1964), 7*, and P values from pairwise significance
tests of LD. As illustrated in figure 4, D’ and 7* behave
very differently, and high values of D’ may not be in-
consistent with low values of 7*. In particular, there seems
to be much more random variation in values of D' at a
given recombination distance.

The studies also differ in the way in which haplotypes
are obtained. In studies of X-linked regions, the hap-
lotypes can be determined in males. For autosomal data,
the haplotypes are sometimes reconstructed on the basis
of pedigrees. Otherwise, they are usually estimated by
statistical methods, with unknown effects on the accu-
racy of inferences about LD (especially if the populations
show pronounced departures from Hardy-Weinberg
equilibrium, as found by Dunning et al. [2000]). Sig-
nificance tests of LD can also be performed on the ge-
notype data directly, at the cost of some loss in power.

Another complication in comparing the data from dif-
ferent studies is that some report only physical distances
(as plotted in fig. 4). These are not necessarily compa-
rable, since it is known that recombination rates vary
widely across the genome (Payseur and Nachman 2000;
Yu et al. 2001). Moreover, in comparisons of LD on the
X chromosome and the autosomes, it should be noted
that higher levels of LD are expected on the X chro-
mosome. In fact, we expect p to be halved, since (1) N,
is 3/4 of the value for autosomes (when a sex ratio of
1:1 and no sexual selection are assumed) and (2) re-
combination between X chromosomes occurs only in
females.

As discussed above, one approach to quantifying the
extent of LD in a region is to estimate p = 4N,c; this
estimate, p, can be thought of as providing a summary
of the amount of LD. We can usually obtain external
estimates of N, (on the basis of diversity data) and of ¢
(on the basis of genetic maps), and this allows us to
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Figure 3

Plots of 7, as a function of physical distance (in kb), for SNP data from five regions (Dunning et al. 2000; Taillon-Miller et al.

2000; Abecasis et al. 2001). On each plot, points above the unbroken line are in significant LD at the .05 level, and points above the dotted
line correspond to what Kruglyak (1999) has called “useful LD”; these lines are set at = .316, the equivalent of * = .1.

predict what p “should” be. To conclude that there is
more LD than what would be predicted under the model,
we need to show that p is less than the predicted value
of p.

Estimates of p depend on the demographic model. The
choice of model influences both the average rate of decay
of LD (fig. 2) and the amount of chance variation in the
distribution of LD across independent realizations of the
evolutionary process (e.g., compare the second and
fourth columns of fig. 1). As noted above, there is con-
siderable uncertainty in the choice of an appropriate
model for human populations. Here, we report estimates
of p for a model of constant population size. Since we

suspect that there may be an excess of LD, this choice
is conservative: more LD is expected with constant pop-
ulation size than is expected in the presence of popu-
lation growth (fig. 2; Slatkin 1994).

Estimates of p are available for three SNP regions (see
the first, second, and fifth plots in fig. 3). For the data
reported by Taillon-Miller et al. (2000), the maximum-
likelihood estimate of p is five times lower than would
be expected if ¢ = 1 ¢cM/Mb and N, = 7,500 (for the
X chromosome), lending support to the qualitative view
that there is “excess” LD in this region (see the Hudson
Lab Home Page). Alternative physical maps yield di-
vergent estimates of the recombination rate for this re-
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Figure 4 Simulated decay of D’ (+) and #* (#), as a function

of genetic distance. These data correspond to one realization from
figure 1 (first column, second row), simulated under a model of con-
stant population size (i.e., N, = 10*) and random mating.

gion (see the data reported by Payseur and Nachman
2000; also see the Human Recombination Rates web
site); the rate may be as high as 3 cM/Mb, which would
make the discrepancy 15-fold.

In contrast, for the two regions with SNP data re-
ported by Abecasis et al. (2001), the plot of decay of
7 (see fig. 3) appears more like the plots for constant N,
(see the first column of fig. 1). Estimates of p were ob-
tained by a pair of similar methods (see the Hudson Lab
Home Page and the Gil McVean web site). Because of
computational limitations, the analysis was performed
on subsets of 50 of the available haplotypes. For
N, = 10* the maximum likelihood estimate of ¢ is 1.8
cM/Mb for the region on chromosome 2, and 2.5 cM/
Mb for the region on chromosome 14; estimates of c,
from comparison of a genetic map and a physical map,
are =1 and =2.5 cM/Mb, respectively (as estimated by
Payseur and Nachman [2000]). There are considerable
uncertainties in all of these estimates; nonetheless, a
model of constant population size roughly predicts the
decay of pairwise LD found in the data of Abecasis et
al. (2001). We do not have estimates of p for the data
reported by Dunning et al. (2000), but the plots of decay
of 7 (see fig. 3) also appear to be consistent with either
a model of constant population size or a model with
some population growth.

The parameter p has also been estimated for data from
a microsatellite study (Laan and Pdibo 1997) that, in
the Saami, found strong pairwise LD extending over
several centimorgans. The maximum-likelihood estimate
of p, obtained under a stepwise mutation model, is ~100
times smaller than that expected on the basis of the
genetic distance between markers if N, = 10* (see the
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Paul Fearnhead web site); use of a geometric mutation
model yields similar results (see Pritchard et al. 1999).
(Again, because of computational limitations, estimates
of p were obtained from a series of subsets of the mark-
ers.) One explanation for the high LD is simply that the
Saami have a tiny effective population size (i.e., N, =
10?%). However, the levels of genetic diversity at the same
microsatellite loci are similar in the Saami and in neigh-
boring populations that have much lower LD, arguing
against the hypothesis of very small N.. An alternative
hypothesis is that recent admixture or gene flow into the
Saami is responsible for these observations.

There seems to be mounting evidence that, for some
regions, there is more LD than would be expected under
simple demographic models. Not all data sets, however,
show such departures from the model predictions. For
some of the reports of excess LD, there is independent
knowledge of demographic departures from model as-
sumptions—for example, of recent admixture between
diverged populations of the Lemba (Wilson and Gold-
stein 2000) or of admixture and inbreeding in a Costa
Rican population (Service et al. 2001); for other ex-
amples, there is no obvious explanation (e.g., see Laan
and Piaibo 1997; Taillon-Miller et al. 2000).

Short-Scale LD

A poor fit of certain regions and/or populations is per-
haps not surprising, given that the models are simplifi-
cations of the history of human populations. In that light,
it is interesting to note that, at short physical distances,
there does not appear to be an excess of LD. In fact,
polymorphism data from short (i.e., <10 kb) scales appear
to show less LD than would be expected if N, = 10* and
¢ = 1 cM/Mb. For example, for data on Lpl (Clark et al.
1998), B-globin (Harding et al. 1997), and Dmd44 (Nach-
man and Crowell 2000), estimates of p are all an order
of magnitude higher than would be expected under either
a model of constant population size or a simple model
with population growth (Przeworski and Wall 2001). Re-
cent analysis of SNPs in a series of sequence-tagged-site
regions reached a similar conclusion (K. Ardlie and L.
Kruglyak, personal communication).

In summary, we have several examples in which large
regions exhibit more LD than would be expected under
either a model of constant population size or a model
with rapid population growth. Yet, at the same time,
studies of polymorphism at a small scale reveal less LD
than would be expected. These observations at different
scales are hard to accommodate in a single explanation,
since factors that increase long-distance LD will tend to
have an even larger effect on closely linked sites (e.g.,
see the third and fourth columns of fig. 1). In what
follows, we will discuss potentially salient biological fea-
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tures not included in the simple models described thus
far.

Demographic Departures from Model Assumptions

LD can be inflated by demographic factors, including
inbreeding, population structure, and bottlenecks. The
potential importance of inbreeding is highlighted by a
recent study that examined genotypes of eight reference
families from the CEPH (Broman and Weber 1999).
That study found homozygous chromosomal segments
of >10 ¢cM in several families, a much larger distance
than would be expected with random mating (Clark
1999). As pointed out by the study’s authors, these long
identical tracts could have resulted from mating of re-
lated individuals.

The effect of inbreeding among relatives is to lower
diversity levels and to increase LD (i.e., decrease p). In
this context, it is known that very high rates of inbreed-
ing can have a greater impact on LD than on diversity
(as seen in highly selfing plants [Nordborg 2000]). How-
ever, this effect is likely to be minor in human popula-
tions, in which, by comparison, the rates of inbreeding
are modest.

The recent admixture of populations with different
allele frequencies is a known factor in the generation of
LD. At the time of admixture, there can be LD even
between unlinked sites (e.g., see Pritchard and Rosenberg
1999). However, this decays very rapidly: with random
mating, LD breaks down at a rate of (1 — ¢) per gen-
eration (Hartl and Clark 1997). The net result is that in
recently admixed populations, there can be substantial
LD over centimorgan distances (e.g., see Wilson and
Goldstein 2000; Service et al. 2001).

Note that extensive LD is also seen in populations
that appear relatively homogeneous. Low rates of gene
flow from more divergent populations could introduce
haplotypes that increase LD (as shown in the third col-
umn of fig. 1). The importance of this effect is unknown.

The extent of LD may also be increased by temporary
reductions in population size (“bottlenecks”). Under
some models of changing population size, N, is given by
the harmonic mean of the population size over time
(Hartl and Clark 1997). Since the harmonic mean is very
sensitive to the smallest terms, severe or long-term bot-
tlenecks can lead to sharp reductions in N.. Several au-
thors have appealed to a population bottleneck in the
history of non-African populations as an explanation
for what appear to be higher LD levels outside Africa
(e.g., see Tishkoff et al. 1996; Kidd et al. 1998). How-
ever, there is still considerable uncertainty about the ap-
propriate model for the evolution of modern humans.
In particular, it remains to be tested whether a model
with a bottleneck accompanying an emigration from Af-
rica ~100,000 years ago is consistent with the data on
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LD, as well as with levels of genetic diversity and with
the frequency spectrum.

When recent demographic effects (e.g., the founding
events in the Finns or Sardinians) are being considered,
it is worth keeping in mind that most surveys of SNPs
focus on markers where both alleles are common. These
high-frequency variants tend to be older than random
polymorphisms and therefore reflect events that oc-
curred farther in the past. Thus, unless they are very
severe, recent demographic events may have little impact
on the extent and distribution of LD among high-fre-
quency SNPs (see Kruglyak 1999). This might explain
why levels of LD appear roughly similar across Euro-
pean populations that probably share most of their ev-
olutionary history (Dunning et al. 2000; Eaves et al.
2000; Taillon-Miller et al. 2000).

Natural Selection

Significant allelic associations over large genetic dis-
tances may also result from the action of natural selec-
tion (as noted by Peterson et al. 1995; Huttley et al.
1999; Abecasis et al. 2001)—for example, from balanc-
ing selection acting in the MHC region. This said, studies
of polymorphism in Drosophila and humans suggest
that long-lived balancing selection is rare (Hey 1999;
Przeworski et al. 2000). A second mode of selection
known to generate LD is epistasis (nonadditive inter-
actions between sites [Hartl and Clark 1997; Kelly and
Wade 2000]). However, epistatic selection would have
to be very strong to maintain allelic associations at the
scale of megabases, in the face of substantial recombi-
nation. The same is true for “selective sweeps,” in which
a rare, favorable mutation is quickly swept to fixation.
It is unknown to what extent this mode of selection
increases pairwise LD between high-frequency alleles.
However, selective sweeps affect sites over a genetic dis-
tance on the order of the selection coefficient (Kaplan
et al. 1989), so, for a single sweep to affect =1 Mb, the
selective advantage of the variant would have to be large
(i.e., at least =.01).

The Relationship between Physical Distance and
Genetic Distance

Estimates of the recombination rate at a centimorgan
scale can be obtained by comparison of the genetic and
physical maps. Although these are not yet very precise,
they indicate that recombination rates vary by an order
of magnitude across the human genome (Payseur and
Nachman 2000; Yu et al. 2001). Regions of several me-
gabases have rates <0.3 cM/Mb, whereas others have
rates >3 cM/Mb. As would be expected, these “jungles
and deserts” of recombination correspond to blocks of
low and high linkage disequilibrium, respectively (Yu et
al. 2001). Thus, comparison of LD levels in different
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regions may not be meaningful unless the local recom-
bination rates are taken into account.

Recombination rates may also vary at a scale that is
not detected by markers separated by megabases (see Yu
et al. 2001). Dramatic changes in recombination rate
have been reported over distances as short as a few kilo-
bases (e.g., see Chakravarti et al. 1984). The molecular
basis of hotspots for recombination remains unknown,
but contributing factors might include high GC content
(Eisenbarth et al. 2000; Yu et al. 2001) or whether the
region is transcribed (Nicolas 1998). Thus, genetic maps
may provide limited information about rates at short
scales; more-refined estimates can be obtained by means
of single-sperm typing (e.g., see Lien et al. 2000).

One known aspect of recombination not taken into
account by most models is homologous gene conversion
(here, gene conversion and crossing-over are thought of
as alternative outcomes of a common recombination
mechanism). For markers a megabase or so apart, the
contribution of gene conversion to the overall level of
genetic exchange is negligible (Andolfatto and Nordborg
1998). As a result, genetic map—based estimates of the
recombination rate are essentially estimates of the
crossing-over rates alone. The latter should accurately
predict the extent of pairwise LD between polymor-
phisms far apart (given an adequate demographic
model). For closely linked markers, however, LD may
also be broken up by gene conversion. Indeed, in Dro-
sophila and yeast, it appears that the rate of initiation
of recombination events resolved as gene conversions
and as crossovers is similar. Thus, pedigree-based esti-
mates may substantially underestimate the total rate of
recombination at small scales.

Currently, very little is known about gene conversion
in humans. However, as noted above, there appears to
be less LD at small scales than would be expected from
estimates of crossing-over rates and observed levels of
diversity. An intriguing explanation for this pattern is
that gene conversion is quite frequent in humans. In
support of this, Przeworski and Wall (2001) show that
the data that they have analyzed are more likely under
a model in which two-thirds of recombination events
are gene-conversion events than under a model of
crossing-over alone. An analysis of 10 anonymous in-
tergenic regions also finds evidence for extensive gene
conversion (A. Di Rienzo, L. Frisse, and R. R. Hudson,
personal communication).

The relationship between LD and distance might also
be shaped by the segregation of inversions. Inversion
polymorphisms are thought to suppress recombination
in heterozygotes throughout much of the length of the
inverted segment (Roberts 1976; Martin 1999), al-
though the precise details are unknown. Thus, the pres-
ence of inversion polymorphisms in a given region will
reduce the rate of recombination. For instance, if 50%
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of the individuals used to construct a genetic map are
heterozygous for an inversion, and if there is no recom-
bination in heterozygotes, within the inverted region,
then the average recombination rate in the region will
be halved.

Moreover, inversion polymorphism can potentially
have a second, much stronger effect on the extent of LD.
Because recombination between the standard and in-
verted types is rare or absent, strong LD can develop
between the two kinds of chromosomes. In the extreme
case where there is complete suppression of recombi-
nation, a mutation within the inverted region arises on
one type of chromosome and cannot move to the other
via recombination. As mutations accumulate on both
genetic backgrounds, the two arrangements diverge, po-
tentially leading to a buildup of substantial LD. The
extent of the effect will depend on the history and fre-
quency of the inversion—including what kind of natural
selection, if any, is acting on the inversion (see Andol-
fatto et al. 2001).

Little is known about the number, size, and frequency
of inversions in the human genome. In particular, in-
versions shorter than a few megabases are currently dif-
ficult to detect by cytological methods but, if they were
to reach intermediate frequencies, could have a sub-
stantial impact on the extent of LD. There are now a
number of findings of common inversion polymor-
phisms: several studies of disease-associated inversions
have reported inversion-heterozygote frequencies of
21%-33% in controls (Small et al. 1997; Saunier et al.
2000; Giglio et al. 2001). The length of the inverted
segments varies from ~50 kb (Small et al. 1997) to 3
Mb (]J. Weber, personal communication), long enough
for these rearrangements to potentially contribute to is-
lands of extensive LD.

It appears that many of these chromosome rearrange-
ments are mediated by nonhomologous meiotic
exchange between inverted repeats (Small et al. 1997;
Saunier et al. 2000; Giglio et al. 2001; Tilford et al.
2001). Since much of the human genome consists of
repetitive DNA, it is possible that chromosomal rear-
rangements resulting in inversion polymorphisms are
fairly common.

Implications for LD Mapping

The recent interest in LD in humans is due in large part
to the prospect of large-scale association studies to locate
complex disease genes. Risch and Merikangas (1996)
showed that, under ideal circumstances, the power to
detect disease mutations of small effect is much greater
with association mapping than it is with linkage analysis.
On the basis of this result, they argued that the future
of complex-disease genetics lies in the use of genomewide
screens of association.
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r* and the Power of Association Studies

Several recent articles have referred to the connection between
various measures of LD and the power of association studies
(Kruglyak 1999; Dunning et al. 2000; Abecasis et al. 2001).
Here we clarify this relationship.

Suppose that we genotype a case-control sample of N, in-
dividuals at locus 1, a (true) disease-susceptibility locus, and
that we genotype N, individuals at locus 2, a nearby marker
locus. We want to compare the power of association tests at
these two loci.

Assume that both loci are biallelic, with alleles A and a at
locus 1 and with alleles B and b at locus 2. Let 7, and ¢,
be the frequencies of allele A in individuals with the disease
and in controls, respectively, and let 7, and 7, be the anal-
ogous frequencies at locus 2. Let q,5 (respectively, q,;) be the
probability that a chromosome with allele A (respectively, allele
a) at locus 1 has the B allele at locus 2. Then,

Tpg — Tep = (Tpa = Teal(Gap = Gan) -

The standard x? test statistic of association at locus 1 (call this
“X?”) can be written as

(%DA _ %CA)Z 2N1¢(1 - 9)

Xi = = =
ma(1—my)

5

where T, Tca, and 7, are the sample frequencies of A in
affected individuals, in controls, and in the overall sample, re-
spectively, and where ¢ and 1 — ¢ are the fractions of the sample
that are cases and controls, respectively. The test statistic for
association at locus 2 (X3) is similar—but with B in place of
A and with N, in place of N,. The distributions of X} and
X3 are approximately the squares of normal random variables,
with means

1
2

2N, ¢(1 — ¢)
(Tpa = Tea| =7 =
ol = 74)
and
- N1 —g)?
(Tpa = Teal(@ap — Q)| —= — - 5
(1 — 7p)
where

Ty = ¢mpy+ (1 = P)meu =7y,

and similarly for 7, and where the variances are =1 if the
difference, in frequency of A, between cases and controls is
small. Then, since

7 = (qap — qup)’Tall — m)mg (1 — ) 7",

it follows that the distributions of X} and X3 are approximately
the same if N, = N,/7~. In other words, to achieve (approxi-
mately) the same power at the marker locus as is achieved at
the susceptibility locus, the sample size must be increased by a
factor of 1/7.
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However, the practical aspects of genomewide asso-
ciation mapping are currently daunting. It is clear that
the number of markers that will be needed to scan the
genome for association is very large. Recent progress
has expanded the set of available SNPs across the ge-
nome (International SNP Map Working Group 2001),
but the costs of genotyping a large sample of cases and
controls at sufficient marker density would still be ex-
tremely high (although dropping). Clearly, we need
good estimates of the marker density that will be re-
quired to achieve acceptable power in these studies.

The required density will depend on which statistical
tests are used to detect association. Currently, it is most
common to test for association at each marker in turn
(or, sometimes, by combining pairs of nearby markers).
In what follows, we consider the case in which only one
marker is used, while noting that there seems to be a
great need for the development of multilocus tests of
association that make use of haplotype information,
since these might prove to be much more efficient (see
the Nordborg web site).

Density of Markers

Suppose that we test for association at a marker locus
that is near a disease-susceptibility mutation. It can be
shown that, in order to achieve roughly the same power
at the marker locus as we would have if we could test
the disease mutation itself, we need to increase the sam-
ple size by a factor of 1/r*, where #* is the coefficient of
LD between the marker and the disease mutation (see
the sidebar; also see Kruglyak 1999). Hence, for small
values of 72, there is little power to detect association at
the marker locus.

In a highly influential paper, Kruglyak ran simulations
of the coalescent with recombination to predict the rate
of decay of LD; he predicted that “a useful level of LD
is unlikely to extend beyond an average distance of
roughly 3 kb in the general population” (Kruglyak 1999,
p- 139). None of his models predicted “useful” LD over
>30 kb. His criterion for useful LD was that the sample
size necessary to detect association at the marker should
not be increased more than 10-fold (in our terms, this
corresponds to > = .1). (The formal criterion used by
Kruglyak (1999) is slightly different from ours: d* =
.1.) The predictions of more-realistic models of growth
are less drastic (see fig. 2).

As data on LD among SNPs become available, we can
start to get an empirical sense of the rate of decay of 7.
Figure 3 shows plots of 7 for SNPs in five regions. If we
make the assumption that the distribution of #* between
two random SNPs is the same as that between a SNP
and a disease mutation, then we can use plots such as
those in figure 3 to study the decay of #* directly (see
Dunning et al. 2000; Taillon-Miller et al. 2000; Abecasis
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et al. 2001). In practice, it seems likely that disease mu-
tations at polymorphic frequencies will usually be del-
eterious, which would have the helpful effect of increas-
ing the average LD with nearby sites (Pritchard 2001
[in this issue]).

In figure 3, points above the dotted lines meet Krug-
lyak’s criterion of useful LD. Even at very short dis-
tances, many pairs of markers are in low LD (except,
possibly, in the data reported by Taillon-Miller et al.
(2000)). Thus, even if a disease mutation is very close
to the nearest marker, there may be a substantial prob-
ability of failing to detect association at that marker.

In a genome-scan for association, there would be a
series of markers spaced along the chromosome. For a
given location (and frequency) of the disease mutation,
there is some probability that each of the nearby markers
is in useful LD with the disease mutation; this probability
drops as a function of the distance between marker and
mutation. In effect, the goal is to choose the marker
density in such a way that there is a high probability
that the mutation will be in strong LD with at least one
of the markers. This density might differ substantially
from what would be suggested by consideration of av-
erage r* values.

At this time, it seems premature to provide a formal
estimate of the required marker density. However, sup-
pose that the first four plots in figure 3 are typical of
LD across the genome. Then the genome scans will need
to have numerous (perhaps 5-10 or more) markers
within, say, 50 kb of each disease mutation, to ensure
a high probability that at least one marker is in strong
LD with the mutation.

In the discussion so far, we have implicitly assumed
that the value of 7* between the disease mutation and
each nearby marker is independent. This is not true: each
recombination event in the ancestral genealogy can af-
fect multiple markers. This correlation effect will further
increase the required density of markers, although the
size of this effect is unknown.

Ultimately, the marker map will also need to reflect
variation in the extent of LD across regions, placing
more markers in some regions than in others. As dis-
cussed above, some of the reasons for variation may be
predictable—for example, variation in recombination
rate and the predicted difference between the X chro-
mosome and the autosomes. Some may be due to factors
that we do not yet understand, whereas some variation
will result from the inherent randomness of the coales-
cent process.

In closing, we should mention one situation in which
LD is expected to extend over quite long distances—
namely, in admixed populations such as African Amer-
icans (Pfaff et al. 2001). It has been proposed that, for
diseases that differ in frequency between the parental
groups, the resulting “admixture disequilibrium” could
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enable LD mapping using relatively small numbers of
markers, spaced centimorgans apart (Chakraborty and
Weiss 1988; McKeigue 1997).

Fine-Scale Mapping

So far, we have discussed the issue of testing for as-
sociation, but LD also plays a central role in the problem
of gene localization. These two goals are rather different:
in the first, the aim is either to identify chromosomal
regions that contain disease-susceptibility loci (as in the
genome-scan model) or to confirm regions with weak
evidence from pedigree studies; in fine-scale mapping,
one already has strong evidence that a region of interest
contains a disease locus, and the goal is to use a series
of markers to estimate its location (e.g., see McPeek and
Strahs 1999; Horikawa et al. 2000; Morris et al. 2000).

The extent and distribution of LD affect these two
kinds of goals in different ways. When one is testing for
association, it is helpful if LD extends over long distances
around the disease mutation, because then not so many
markers are needed to scan for association; but at the
later stage, when the goal is to infer location, long-rang-
ing LD is potentially problematic. It means that strong
associations might be observed far from the causative
site(s), and these could lead to effort being spent on the
wrong location.

The possibility of rampant gene conversion is wor-
rying for the use of LD in fine-scale mapping. The pres-
ence of gene conversion increases the recombination rate
at very-short scales (Andolfatto and Nordborg 1998),
which is helpful. However, it may also make the rela-
tionship between LD and distance less predictable, since
gene conversion affects only short regions, leaving flank-
ing haplotypes unchanged. Currently, little is known
about the extent to which the spatial distribution of LD
matches model predictions, such as those used in fine-
mapping (e.g., see McPeek and Strahs 1999). For now
at least, studies at the fine-mapping stage should take
great care to map the entire extent of the region of as-
sociation, in case the region contains local peaks of as-
sociation far from the causative site(s).

Future Directions

We have aimed to place the new empirical data on LD
in the context of various population genetics models.
One point that emerges clearly is that, to understand LD
in humans, we need to have a much better understanding
of human demography. This includes the history of
changes in population size, as well as population struc-
ture and other forms of nonrandom mating. We also
need to have more data on recombination rates across
the genome. It is known that recombination rates vary
greatly, and accurate data are needed to allow compar-
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isons of LD from different regions. When the time comes
to construct marker sets for association mapping, we
will need accurate and fine-scale recombination maps,
so that the density of markers in each region reflects
local rates. As discussed above, little is known about
either the rate of gene conversion or the frequency of
submicroscopic inversion polymorphisms, but both have
the potential to play an important role in determining
the distribution of LD.

At this time, our conclusions about LD between SNPs
are somewhat limited by the amount of data available.
Ideally, one would want a large number of SNPs from
many regions, to enable studies of differences among
regions. The markers should be placed so that there are
data on LD both over short distances (i.e., <5 kb) and
over long distances (i.e., =1 Mb). In terms of experi-
mental design, there is probably little to be gained from
the genotyping of huge numbers of individuals at each
SNP; instead it makes more sense to genotype many
SNPs.

Our review has concentrated primarily on the extent
of LD, as measured by pairwise measures (mainly 7%).
This emphasis reflects that of the majority of the liter-
ature. However, we feel strongly that, for many prob-
lems, it will be important to think about the spatial
structure of LD in more detail. For example, how much
local variation in LD is there, as one moves through a
small region? In LD mapping, how often will there be
isolated peaks of association far from the causative site?
What is the probability that a disease mutation sits in
a local trough of low LD, making it virtually unde-
tectable for any plausible marker density? In other con-
texts, the use of complete haplotype data may also offer
major advantages over pairwise measures—for instance,
in the estimation of p; in making more efficient use of
marker data for detecting associations, particularly if
there is allelic heterogeneity (Pritchard 2001 [in this
issue]); and in fine-structure mapping (e.g., see McPeek
and Strahs 1999).

Note added in proof.—A recent article by Reich et al.
(2001) reports extensive LD among SNPs at 19 loci. They
report more LD than would be expected under a model
of stepwise population growth (and, also, more than
would be expected with a constant population size of
10,000 [D. Reich, personal communication]). As a pos-
sible explanation, Reich et al. suggest that there may have
been a recent bottleneck in non-African populations.
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