
methods) induced a LTD of excitatory transmis-
sion onto D1R MSNs (Fig. 4E). Consistent with
previous studies, the magnitude of this LTD
was enhanced in cocaine-treated as compared
to saline-treated animals (41, 42). However,
in cocaine-treated animals that underwent
SCH23390 exposure in combination with 12-Hz
DBS 24 hours before being killed, this enhanced
mGluR1 LTD was occluded, suggesting a shared
mechanism between DBS and DHPG-induced
LTD. Finally, cocaine exposure occludes the abil-
ity of high-frequency stimulation (HFS) to induce
a LTP in D1R MSNs (15). SCH23390 in combina-
tion with 12-Hz DBS rescued HFS LTP in cocaine
treated animals, further suggesting that DBS in-
duces a depotentiation in vivo (Fig. 4F).
We used insight obtained from optogenetic

in vivo manipulations to propose a novel DBS
protocol, which efficiently abolishes behavioral
sensitization to cocaine through the reversal of
cocaine-evoked potentiation of excitatory trans-
mission onto D1RMSNs. Classical high-frequency
DBS does not alter cocaine-evoked plasticity and
has only transient effects on locomotor sensitiza-
tion; its behavioral effects aremediated through a
mechanism that remains elusive. Low-frequency
DBS applied on its own fails to affect drug-evoked
plasticity, most likely because it causes release
from dopamine terminals, due to the nonspecific
nature of electrical stimulation. Only the combi-
nation of acute low-frequency DBS with a D1R
antagonist (optogenetically inspired DBS) then en-
ables the induction of the mGluR1 LTD necessary
for the depotentation of synapses on D1R MSNs,
most likely formed by the projections from the
mPFC (18), and abolishment of the drug-adaptive
behavior. Given that SCH39166 is a U.S. Food
and Drug Administration–approved D1R antag-
onist (43), translational studies in humans may
be feasible.
Our results demonstrate the potential of novel

DBS protocols inspired by optogenetic manipu-
lations of synaptic pathology. Using DBS to
correct synaptic pathology and restore normal
behavior may have applications in other neuro-
psychiatric disorders. Given the obstacles to the
rapid translation of optogenetic interventions
to humans (44), these findings may lead to a
full realization of the potential of novel DBS
protocols.
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GENOMIC VARIATION

Impact of regulatory variation from
RNA to protein
Alexis Battle,1,2*‡ Zia Khan,3†‡ Sidney H. Wang,3‡ Amy Mitrano,3 Michael J. Ford,4

Jonathan K. Pritchard,1,2,5§ Yoav Gilad3§

The phenotypic consequences of expression quantitative trait loci (eQTLs) are presumably
due to their effects on protein expression levels. Yet the impact of genetic variation,
including eQTLs, on protein levels remains poorly understood. To address this, we mapped
genetic variants that are associated with eQTLs, ribosome occupancy (rQTLs), or
protein abundance (pQTLs). We found that most QTLs are associated with transcript
expression levels, with consequent effects on ribosome and protein levels. However, eQTLs
tend to have significantly reduced effect sizes on protein levels, which suggests that
their potential impact on downstream phenotypes is often attenuated or buffered.
Additionally, we identified a class of cis QTLs that affect protein abundance with little or
no effect on messenger RNA or ribosome levels, which suggests that they may arise from
differences in posttranslational regulation.

T
o understand the links between genetic
and phenotypic variation, it may be essen-
tial to first understand how genetic variation
impacts the regulation of gene expression.
Previous studies have evaluated the associ-

ation between variation and transcript expres-
sion in humans (1–3). Yet protein abundances are
more direct determinants of cellular functions
(4), and the impact of genetic differences on the
multistage process of gene expression through
transcription and translation to steady-state
protein levels has not been fully characterized.
Studies in model organisms have shown that var-

iations in mRNA and protein expression levels
are often uncorrelated (5–8). Comparative studies
(9–13) have suggested that protein expression
evolves under greater evolutionary constraint
than transcript levels (14) and have provided
evidence consistent with buffering of protein ex-
pression with respect to variation introduced at
the transcript level. Yet, in contrast to compara-
tive work, there are few reports of quantitative
trait loci (QTLs) associated with protein levels
(pQTLs) in humans (15–17).
Here, we present a unified analysis of the

association of genetic variation with transcript
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expression, ribosome profiling (18), and steady-
state protein levels in a set of HapMap Yoruba
(Ibadan,Nigeria) lymphoblastoid cell lines (LCLs).
We collected ribosome profiling data for 72 Yoruba
LCLs and quantified protein abundance in 62 of
these lines. Genome-wide genotypes and RNA-
sequencing (RNAseq) data were available for all
lines (19).
Ribosome profiling is an effective way to

measure changes in translational regulation
by using sequencing (18). We obtained a median
coverage of 12 million mapped reads per sample,
and as expected, the ribosome profiling reads
are highly concentrated within coding regions
and show an enrichment of a 3–base pair (bp)
periodicity, which reflects the progression of
a translating ribosome (figs. S1 to S3 and
table S1).
We collected relative protein expression mea-

surements using a SILAC internal standard sample

(20) and quantitative protein mass spectrom-
etry (fig. S4). To confirm the quality of the pro-
teomics data (tables S2 and S3), we evaluated
the agreement between measurements of dis-
tinct groups of peptides from the same protein.
Differences between these measurements can
reflect true biological variation (e.g., splicing)
or experimental noise. The high correlations
(Spearman’s rho 0.7 to 0.9; R2 of 0.3 to 0.7;
depending on the sample) confirmed that we
are able to precisely quantify interindividual
variation in protein levels (fig. S5). We also
analyzed quantifications of peptides that over-
lapped nonsynonymous SNPs that were heter-
ozygous in either the analyzed or the internal
standard sample (fig. S6). The median ratios
measured from these peptides matched the ex-
pected values closely, indicating that our pro-
tein measurements were likely not subject to
ratio compression (figs. S7 and S8).
As a final quality check, we considered vari-

ation in expression levels within and between
genes. We found that transcript and protein

expression levels—which are the furthest removed
processes studied here—are the least correlated
(figs. S9 and S10). Our observations are in agree-
ment with most high-throughput studies that
considered large number of samples, although
smaller studies have often observed higher cor-
relations (18, 21, 22).
We mapped genetic associations with regu-

latory phenotypes. First, we evaluated QTLs for
each phenotype independently by testing for
association between the phenotype and all gen-
etic variants withminor allele frequency >10% in
a 20-kb window around the corresponding gene.
We used a shared standardization, normaliza-
tion, regression, and permutation pipeline for all
three phenotypes. At a false discovery rate (FDR)
of 10%, we detected 2355 eQTLs, 939 rQTLs, and
278 pQTLs (Table 1 and fig. S11).
There is substantial overlap among detected

QTLs (fig. S12). Among the 4322 genes quanti-
fied for all three phenotypes, 54% of the genes
with pQTLs also have a significant rQTL and/or
eQTL. Given the incomplete statistical power
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Table 1. Number of cis-QTLs identified at FDR of 10%.

Measurement Genes tested No. of cell lines cis-QTLs

Protein abundance 4,381 62 278
Ribosome occupancy 15,059 72 939
mRNA expression 16,614 75 2,355
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Fig. 1. Comparisons of QTLs at three levels of gene regulation. (A)
Many QTLs exhibit shared effects across mRNA, ribosome occupancy, and
protein. This example illustrates a shared QTL for the schlafen family mem-
ber 5 (SLFN5) gene (24). (Top two panels) Mean sequence depth (per bp)
for mRNA and ribosome occupancy, averaged among individuals with each
genotype at the QTLSNP. (Bottom)Median log2 SILAC ratios at each detected
peptide, relative to the shared internal standard. (B) Replication rates between
independently tested cis-QTLs for each phenotype pair, at FDR = 10%. QTLs

detected for the phenotype labeled on each row were tested in the pheno-
type listed for each column, considering only the 4322 genes quantified in all
three phenotypes. (C) On average, eQTLs exhibit attenuated effects on protein
abundance but not on ribosome occupancy. We used eQTLs detected by the
GEUVADIS study to avoid ascertainment bias, and we polarized the alleles
according to the direction of effect in GEUVADIS. Mean effect sizes and stan-
dard errors of the means, measured as expected fold-change per allele copy
on a log2 scale.
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to detect QTLs in each dataset independently,
we performed replication testing across data
sets, using the specific single-nucleotide poly-
morphism (SNP)–gene pairs underlying each
class of QTLs. This analysis is less sensitive to
power limitations than genome-wide testing. The
results confirm that many QTLs are shared across
all three phenotypes (example in Fig. 1A). In par-
ticular, most (90%) genetic variants associated
with ribosome occupancy are also associated with
transcript levels (fig. S13). In contrast, eQTLs
showed the lowest overlap with pQTLs (35%), as
expected (Fig. 1B).
Our observation that many SNPs identified

as eQTLs are not associated with differences in
protein levels is consistent with the notion
that, across species, protein levels diverge less

than transcript levels (12–17). Yet some QTLs
may not replicate at the protein level simply
because of incomplete mapping power. To
address this and to avoid overestimation of
effect sizes due to ascertainment bias at signif-
icant QTLs, we focused on eQTLs detected pre-
viously in European samples by the GEUVADIS
study (2). We then attempted to replicate the
GEUVADIS eQTLs using our transcript, ribo-
some profiling, and protein data and considered
themeanQTL effect size in each data type. Mean
effect sizes calculated in this way are expected to
be unbiased with respect to either technical or
biological variance.
Using this approach, we observed a reduced

mean effect size for the GEUVADIS eQTLs in the
protein data compared with either the RNAseq

data (t test P = 6.7 × 10−3) or ribosome data (P =
5.6 × 10−3) (Fig. 1C). In contrast, the average ef-
fect sizes observed for the RNAseq and ribosome
data are not significantly different from each
other, and their effect sizes are highly correlated
across the tested eQTLs (Pearson c = 0.79, P <
10−96) (fig. S14). The reduction in effect size ob-
served in protein data is robust with respect
to potential technical confounders, including
intensity-based absolute quantification inten-
sity level and transcript model complexity (fig.
S15). We thus conclude that the majority of ge-
netic variants affecting transcript levels also alter
ribosomal occupancy, typically with a similar
magnitude of effect. Yet both QTL mapping
and effect-size analyses indicate that many eQTLs
have attenuated (or absent) effects on steady-
state protein levels (fig. S16).
In addition to the observation of generally

attenuated effect sizes in pQTLs compared with
eQTLs, we identified a subset of variants that
appear to affect levels of proteins but not mRNA
and, hence, are candidates to affect posttran-
scriptional gene regulation. To evaluate evidence
for these, we tested each SNP for association
with one regulatory phenotype, while treating
one or both of the other phenotypes as covariates
(conditional model). Considering protein levels,
with RNA levels as a covariate, we identified 146
protein-specific QTLs (psQTLs) at FDR = 10%
(Fig. 2A). The identification of psQTLs is gen-
erally robust to the choice of technology used to
characterize transcript expression (fig. S17).
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Fig. 2. Protein-specific and RNA-specific QTLs. (A) An example of a
protein-specific QTL, for the apolipoprotein L, 2 (APOL2) gene, detected by
both the interaction model and the conditional models, indicating both
larger effect (LRT, P = 3.3 × 10−6, interaction model; P = 5.1 × 10−13, con-
ditional model) in protein than mRNA and that the effect on protein is not
mediated by either mRNA or ribosome occupancy (LRT, P = 2.1×10−12,
conditional model). Plotting details as in Fig. 1A. Although the causal variant
underlying this pQTL is unknown, several linked variants near the 3′ end of
APOL2 are all strongly associated with protein levels, including rs8142325

shown here and missense variant rs7285167 [linear model coefficient bg =
0.83, P = 9.8 × 10−9; LRT, P = 2.1 × 10−5, interaction model; P = 5.5×10−13,
conditional model]. (B) Effect sizes for ribosome occupancy tend to track
with RNA—not protein. (Top) effect sizes in all three phenotypes are shown
for psQTLs. Effect sizes were estimated using linear regression in each of
the phenotypes independently.The signs of the effects were set to be positive
in protein. Solid lines reflect predicted effects based on a linear model.
(Bottom) Similarly, effect sizes in all three phenotypes for esQTLs. Here, signs
of the effects were set to be positive in RNA.

Table 2. Enrichment of genomic annotations among esQTLs and psQTLs. Enrichments were
evaluated by a continuous test using QTL results from the conditional model (see supplementary
materials). Columns (from left to right) describe the annotation being considered, the number of
SNPs matching this annotation, the set of SNPs used as background for the corresponding test, and
the enrichment P values for psQTLs and esQTLs, respectively.

Annotation No. of SNPs Background Protein RNA

Exonic 12,568 Intergenic 2.8 × 10−14 2.3 × 10−21

5′ UTR 6,488 Intergenic 3.2 × 10−5 5.9 × 10−19

3′ UTR 15,139 Intergenic 2.0 × 10−6 1.7 × 10−16

Intronic 628,591 Intergenic 7.1 × 10−3 2.9 × 10−38*
Nonsynonymous 2,099 Exonic 5.7 × 10−3 9.7 × 10−2

Ribo SNitch 414 Exonic 5.2 × 10−2 2.5 × 10−2

Acetylation site 22 Nonsynonymous 3.2 × 10−2 0.62
*Depletion relative to background.
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Using an alternative approach, an interaction
model, we identified 68 psQTLs with significant-
ly larger effects in protein thanmRNA [according
to a likelihood ratio test (LRT)] (FDR = 10%).
We also used the interaction model to identify
76 expression-specific QTLs (esQTLs, interac-
tion model, LRT; FDR = 10%). We then consid-
ered the ribosomal data. We found that the
effect sizes for ribosomal occupancy are similar
to the esQTL effect sizes (Fig. 2B). Yet, for psQTLs,
low ribosome effect sizes are observed. Thus, for
QTLs with discordant effects between transcript
and protein, the ribosome data usually tracked
with levels of RNA. Put together, these results
allow us to identify loci where genetic variants
have specific impacts on protein levels that are
not fully mediated by regulation of either tran-
scription or translation and hence may affect
rates of protein degradation.
Finally, we performed enrichment analysis in

which we considered each tested gene-SNP pair
separately and evaluated the full distribution
of P values from the conditional model (rather
than choosing a significance threshold) for dif-
ferent genomic and functional annotations. SNPs
within transcribed regions [exonic and in the un-
translated region (UTR)] are enriched for more
significant psQTLeffects, comparedwith intergenic
or intronic SNPs, even within the narrow 20-kb
windows tested (figs. S18 to S20). In addition,
psQTLs are further enriched for nonsynonymous
sites (compared with all exonic SNPs) (Table 2).
Investigating additional annotations (Table 2

and fig. S21), we found that nonsynonymous SNPs
near acetylation sites showed nominal enrich-
ment for psQTLs. This possibly reflects the func-
tional role of lysine acetylation in modulating
protein degradation (23). Overall, the enrichment
results suggest that genetic variants involved in
posttranscriptional regulation are functionally
distinct from genetic variants that primarily af-
fect transcription—they are more likely to fall
within translated regions of the gene and more
likely to occur at nonsynonymous sites.
In summary, we have shown that, although a

substantial fraction of regulatory genetic variants
influence gene expression at all levels frommRNA
to steady-state protein abundance, there are al-
so a number of effects with specific impact on
particular expression phenotypes. QTLs affecting
mRNA levels are, on average, attenuated or buf-
fered at the protein level, as has been observed
between species (14). Our analysis indicates that
this attenuation is not evident at the stage of
translation. Although the overall phenotypic sim-
ilarity between ribosome occupancy and protein
abundance is high, cis-regulatory genetic effects
on ribosomeoccupancy appear to bemore strong-
ly shared with mRNA than with protein. These
observations, along with the phenotype-specific
QTL analysis, indicate a scarcity of translation-
specific QTLs and minimal attenuation of genetic
impact betweenmRNAand ribosomephenotypes.
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HOST RESPONSE

Inflammation-induced disruption
of SCS macrophages impairs B cell
responses to secondary infection
Mauro Gaya,1* Angelo Castello,1* Beatriz Montaner,1 Neil Rogers,2 Caetano Reis e Sousa,2

Andreas Bruckbauer,1 Facundo D. Batista1†

The layer of macrophages at the subcapsular sinus (SCS) captures pathogens entering
the lymph node, preventing their global dissemination and triggering an immune response.
However, how infection affects SCS macrophages remains largely unexplored. Here we
show that infection and inflammation disrupt the organization of SCS macrophages in a
manner that involves the migration of mature dendritic cells to the lymph node. This
disrupted organization reduces the capacity of SCS macrophages to retain and present
antigen in a subsequent secondary infection, resulting in diminished B cell responses.
Thus, the SCS macrophage layer may act as a sensor or valve during infection to
temporarily shut down the lymph node to further antigenic challenge. This shutdown
may increase an organism’s susceptibility to secondary infections.

T
hehighly organized architecture of the lymph
node (LN) is critical for mounting effective
immune responses against pathogens. One
particular facet of this organization is the
layer of CD169+ macrophages at the sub-

capsular sinus (SCS) floor; strategically positioned
at the lymph-tissue interface to capture patho-
gens as they enter the LN (1). This prevents

systemic dissemination of pathogens (2–5) and
allows presentation of intact antigen in the form
of immune complexes, viruses, and bacteria to
cognate B cells for the initiation of humoral im-
mune responses (2, 6–8).
Infection causes a remodeling of the global

architecture of the LN (9, 10). However, how
this process affects the organization of the SCS
macrophage layer is not well defined. To address
this, we visualized the distribution of SCSmacro-
phages in draining LNs of C57BL/6mice after ear
skin infection with Staphylococcus aureus, the
most common etiological organism of skin and
soft tissue infection. Cryosections of superficial
cervical LNs were immunostained and examined
7 days after infection by confocal microscopy. The
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