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Recent genomic surveys have produced high-resolution haplotype information, but only in a small number of human populations.
We report haplotype structure across 12 Mb of DNA sequence in 927 individuals representing 52 populations. The geographic
distribution of haplotypes reflects human history, with a loss of haplotype diversity as distance increases from Africa. Although
the extent of linkage disequilibrium (LD) varies markedly across populations, considerable sharing of haplotype structure exists,
and inferred recombination hotspot locations generally match across groups. The four samples in the International HapMap
Project contain the majority of common haplotypes found in most populations: averaging across populations, 83% of common
20-kb haplotypes in a population are also common in the most similar HapMap sample. Consequently, although the portability
of tag SNPs based on the HapMap is reduced in low-LD Africans, the HapMap will be helpful for the design of genome-wide
association mapping studies in nearly all human populations.

Linkage disequilibrium (LD) is of central importance in diverse
aspects of human genetics. Most prominently, patterns of LD
and haplotype variation serve as the backdrop for the design of
association mapping studies1,2. Patterns of LD are also informative
about population histories and human migrations3–5, recent
natural selection2,6,7 and the distribution and evolution of recombi-
nation hotspots8–10.

Recent studies from the International HapMap Project2 and from
Perlegen Sciences11,12 have created dense genome-wide haplotype
maps for populations of European, West African and East Asian
descent. These maps provide important resources for the design of
SNP-based studies in at least two respects. First, they represent an
important source of validated SNPs with dense coverage of the
genome. Second, they provide detailed information about haplotype
structure that can be used, for example, to select tag SNPs for use in
association studies2.

A practical issue for association studies is whether tag SNPs chosen
using the HapMap data will adequately capture patterns of variation
in other populations. Several recent studies agree that the HapMap
European (CEU) and East Asian data (CHB+JPT) are valuable
resources for choosing tag SNPs for additional populations of Euro-
pean or East Asian descent, respectively13–18. However, European and
East Asian populations have lower levels of differentiation than other
continental groups19, so these results do not necessarily imply that the
HapMap will provide good tagging information everywhere in the
world. Indeed, recent studies of more divergent populations have
provided somewhat conflicting results20–23.

In this article, we perform a global survey of haplotype variation
in 52 worldwide populations, using SNPs spread across 36 genomic
regions. Our study is designed to suggest initial answers to
several questions. How useful are current SNP databases for studying
haplotype variation in diverse human populations? To what extent
are patterns of haplotype variation similar—or different—across
diverse populations, and what do they imply about human
history and patterns of recombination? To what extent do the
HapMap populations predict patterns of haplotype diversity
found in a worldwide set of populations? Answers to these
questions provide a basis for understanding the extent to which tag
SNPs derived from the HapMap will be useful for association
studies worldwide.

RESULTS
We surveyed SNP variation in 927 unrelated individuals from 52
populations in the Human Genome Diversity Project (HGDP)-Centre
d’Etude du Polymorphisme Humain (CEPH) Cell Line Panel19,24–26.
We designed genotyping assays for 3,024 SNPs spaced across 36
genomic regions, including 32 autosomal regions and four regions
on the non-pseudoautosomal X chromosome, covering a total of
B12 Mb (see Methods). To facilitate inferences about both fine-scale
and long-range LD, we designed the study so that each genomic region
contained a central high-density ‘core’ of 60 SNPs at an average
spacing of 1.5 kb, as well as additional SNPs at lower density outside
the core region, extending 120 kb in each direction at 10-kb spacing.
Hence, each region spanned a total of B330 kb.
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To maximize the degree to which the regions were representative of
the human genome, we chose regions across the range of local gene
densities and meiotic recombination rates (as estimated by the
deCODE map27) without regard to the genes they contained. For
the four X-chromosomal regions, and for 16 of the autosomal regions,
we chose SNPs from dbSNP, with priority given to SNPs identified by
a discovery effort in a multiethnic panel12. The remaining 16 auto-
somal regions were located on chromosome 21, with all
SNPs chosen from a SNP discovery effort that used a uniform
multiethnic panel11.

After excluding SNPs that were monomorphic, that failed geno-
typing or quality control or that were in Hardy-Weinberg disequili-
brium within unstructured populations, our final data set included
genotype data for 2,834 SNPs (see Methods). Data quality was
extremely high, with an estimated genotype error rate of 2�10�4

and a missing data rate of 0.1%. Haplotype phase was estimated using
fastPHASE, a method with the attractive feature that its model allows
haplotype structure to vary across populations28. Extensive testing of

phasing accuracy indicates that fastPHASE provides suitable accuracy for
our purposes (Supplementary Note online).

Haplotype variation
Figure 1 illustrates the phased haplotypes in two of our genomic
regions using a new scheme for graphical representation of haplotype
structure. The similarity of haplotype structure is greatest for nearby
populations, especially for populations from the same continent. The
complex and variable mosaics of haplotypes in Africa (and the simpler,
less variable haplotypes in Oceania and the Americas) illustrate a steady
trend of reduction in haplotype diversity with distance from Africa.

The number of distinct haplotypes per genomic core region declines
from Africa along the likely path of human migrations into the Middle
East, from the Middle East to Europe and Central and South Asia
(referred to as ‘Central/South Asia’), from Central/South Asia to East
Asia, and from East Asia to Oceania and the Americas (illustrated in the
quantitative view of haplotype structure in Fig. 2). This result matches
the prediction of a serial dilution model29 in which each successive
human migration drew a sample of haplotypes from among those
available at the previous location. The model also predicts a larger value
for the fraction of haplotypes of location A found in location B than
when location A is further from Africa and B is closer. This prediction
is a consequence of the fact that the fraction of haplotypes of location A
found in location B is the quotient of the number of shared haplotypes
(which is the same for comparisons in both directions) and the number
of haplotypes in location A, a quantity that is smaller at greater
distances from Africa. Figure 2 shows for each ordered pair of
geographic regions the fraction of the haplotypes found in the first
region that are also observed in the second. As predicted, for pairs of
geographic regions at different numbers of migrational steps from
Africa (Africa ¼ 0, Middle East ¼ 1, Europe ¼ Central/South Asia ¼ 2,
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Figure 2 Schematic world map of haplotype diversity. Colored boxes

represent regions of the world, positioned geographically. The average

number of haplotypes per genomic core region in a sample size of 54

chromosomes is written for each geographic region. Links entering a

geographic region indicate the percentages of distinct haplotypes from the

geographic region found in other regions (and are drawn proportionately in

width). For example, on average 11% of haplotypes observed in Europe in a
given part of the genome are found in Africa, whereas 6% of African

haplotypes are found in Europe. The links can be viewed as a description of

haplotype ‘flow’: for example, 11% gives a measurement of the proportion of

distinct European haplotypes that could have come from Africa (without

mutation or recombination), and 6% gives the proportion of African

haplotypes that could have come from Europe.

Figure 1 Haplotype structure in diverse populations for two genomic regions

of size B330 kb. For each population, haplotypes are plotted in rows;

horizontal position is proportional to physical position in the sequence. Each

haplotype is represented as a mosaic of seven ‘template’ haplotypes, each of

which is common in a different part of the world and is colored using the

same color as the text for that region (see Methods). Haplotypes are sorted

so that within populations, similar haplotypes are drawn close together.

A pair of haplotypes is identical across the entire region if and only if

both share the same coloring pattern (rare minor alleles not on any

template are dropped from the analysis). The same coloring scheme is

used for all populations.
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East Asia ¼ 3, Oceania ¼ America ¼ 4), the ‘flow’ of haplotypes is
always greater from the region closer to Africa toward the farther region
than the flow in the reverse direction.

A potential concern about haplotype diversity computations is that
they might be biased by SNP ascertainment procedures30–33. Indeed,
the average heterozygosity of individual SNPs in our study shows
evidence of ascertainment bias. Owing to the inadequate representa-
tion of African samples in panels used for SNP discovery, SNP
heterozygosity is greatest in the Middle East, Central and South Asia
and Europe (Fig. 3); in contrast, studies with little or no ascertainment
bias have consistently identified African populations as having the
greatest genetic diversity19,29,34–36. When we consider longer haplo-
types, however, African haplotype heterozygosities overtake those of
Europe and Asia, so that for haplotypes of length Z20 kb, there is
almost perfect correlation between haplotype heterozygosity and the
heterozygosity of microsatellite loci in the same populations (Spear-
man’s r ¼ 0.96, Po 10�8). This effect is likely to be a consequence of
the fact that for highly polymorphic markers, the ascertainment
scheme has relatively little impact on which markers are ascertained,
as the same set of markers will probably be identified with most
schemes33. Although the ascertainment of individual SNPs, which are
not highly polymorphic, may depend heavily on the ascertainment
scheme, the same underlying haplotypes,
which are highly polymorphic, are likely to
be observed regardless of which SNPs are
studied in a genomic region. Hence, although
ascertainment is known to cause biases in
such statistics of individual loci as SNP allele
frequencies30,32,37, it is less likely to bias ana-
lyses of long haplotypes.

Recombination rates across populations
To investigate the properties of the underlying
recombination process that gives rise to LD,
we applied a recently developed method that
uses the strength of LD across sites to estimate
the historical extent of fine-scale recombina-
tion in a genomic region8. Estimates are
obtained for the population recombination
rate r ¼ 4Ner, where Ne is effective population
size and r is the meiotic recombination
rate per kb. High levels of LD produce low
estimates of r, and recombination hotspots
lead to localized peaks of high r.

Our fine-scale estimates of the recombina-
tion landscape for different populations often

show marked correspondence in the estimated locations of hotspots
(Fig. 4a). This result indicates that areas of haplotype breakage are
frequently shared across diverse populations; cases in which a hotspot
is not detected in some populations despite being observed in others,
such as for Yoruba in Region 2, where the estimate of r is constant
across the entire region, may result from incomplete power of the
method to detect hotspots or from the possibility of rapid evolution of
hotspot differences across populations9,10,38.

For each population, averaging over rate variation within
genomic regions, estimates of the population recombination rate r are
strongly correlated with meiotic recombination rate r estimated
from Icelandic pedigrees (Fig. 4b, P o 0.01 for most populations).
However, the nature of the relationship between r and r varies
greatly across populations. Because r ¼ 4Ner, the slope of a linear
regression of r on 4r, denoted N̂eðrÞ, provides an estimate
of the effective population size Ne. Hence, for example, the steep
slope for Bantu reflects a large Ne, in contrast to the flatter slope
for Pima.

The estimate N̂eðrÞ based on the slope of the regression line
between r and 4r provides a summary of the extent of LD, with
larger N̂eðrÞ corresponding to smaller amounts of LD. Both the
estimate N̂eðrÞ and microsatellite-based heterozygosity are expected
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to increase with Ne, so that under simple demographic models, these
two quantities should be highly correlated (illustrated in Fig. 5, which
plots the relationship between the extent of LD and microsatellite
heterozygosity). In addition, LD is extremely strong (low N̂eðrÞ) and
diversity very low in the American populations and, to a lesser extent,
in the two populations from Oceania (Fig. 5). Notably, populations
similar to those in the HapMap sample (Yoruba, French and Han), all
of which are representatives of large cosmopolitan groups, have
among the lowest LD of any of the populations in our data set. We
see no systematic difference between the chromosome 21 regions and
other autosomal regions, despite the use of different SNP ascertain-
ment protocols (Supplementary Note).

Several populations have unusual levels of LD relative to their
neighbors. By far the highest N̂eðrÞ among the Native Americans is
seen in the Maya, perhaps owing to the presence of European
chromosomes in these samples19 that could show evidence of recom-
bination. We have observed previously that the Kalash population
from Pakistan clusters distinctly from other Eurasian populations19,
and, in fact, relative to other Eurasians, the Kalash show reduced
N̂eðrÞ and heterozygosity, consistent with a long-term history of
isolation. Among Africans, the San, a hunter-gatherer group, have
the lowest N̂eðrÞ, although their microsatellite diversity is not sub-
stantially reduced. Because demographic events such as bottlenecks
can have a larger effect on LD than on genetic diversity4, this result
may suggest a past bottleneck in the San.

Worldwide portability of the HapMap
An important motivation for studying LD is to inform the design of
association mapping studies. The HapMap study provides dense,
genome-wide information on LD in only a few populations, and it
is of interest to ask what fraction of worldwide haplotype variation is
captured by its samples. To address this issue, we considered windows
of fixed size within the core regions, and for each population and each
window position, we computed the fraction of common haplo-
types (frequency 410%) that were also common in the most
similar HapMap population (Fig. 6). For example, averaging across
populations, 83% of common haplotypes are also common in the
most similar HapMap population (at a window size of 20 kb).

Comparing HapMap Asians (CHB+JPT) to our new data, we find
that as expected, haplotype sharing is highest with our Han and
Japanese samples. Similarly, our Yoruba sample is the population that
has the highest sharing with the HapMap YRI. Although there is no
direct analog of the HapMap CEU population in our data set, sharing
with HapMap CEU is high with several of our European populations
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and is highest for French and Basques. The patterns of haplotype
sharing do not depend noticeably on window size and are also
robust to the definition of ‘common’ and to variation in sample size
(Supplementary Note). Note that owing to sampling variation,
none of the populations reach 100% sharing with any of the
HapMap samples.

Overall, we found that sharing with the HapMap is high in
European and East Asian populations, a result consistent with
previous work13–15,17, but that sharing for most other populations
was lower. Most notably, for larger window sizes, the common
haplotypes in African hunter-gatherer groups differed markedly
from those found in any of the HapMap populations. Other popula-
tions that have lower sharing with the HapMap are those that are
geographically distant from all of the HapMap populations, including
populations from Oceania (Papuan, Melanesian) and the Americas
(Colombian, Karitiana, Surui), and genetically distinctive populations
from Central Asia (Kalash and Uygur) and North Africa (Mozabite).

A related matter is whether tag SNP sets designed using HapMap
data will perform well in association studies in diverse popula-
tions14,23. To investigate this issue, we designed three tag SNP panels
based on the HapMap samples (CHB+JPT, CEU and YRI). As the use
of more complex multimarker approaches does not tend to change the
qualitative order across populations of results concerning tag SNPs39,
we followed a popular approach for choosing tag SNPs based on
pairwise r2 (ref. 40). For each HapMap sample, we identified the set of

333 tag SNPs that maximized the total fraction of SNPs tagged at r2 4
0.85 in that HapMap sample. As all three tag SNP panels used the
same density of markers (corresponding to a genome-wide panel
of B400,000 markers), the performances of all three panels are
directly comparable.

Our results show considerably improved tagging for tag SNP panels
based on the ‘nearest’ HapMap population in comparison with those
based on either of the other two HapMap samples (Fig. 7). The
groupings that describe the HapMap population with the best tag
SNP performance closely follow clusters of human population struc-
ture estimated from microsatellites genotyped in the same indivi-
duals19,41: sub-Saharan Africans are best tagged by YRI, populations
from Europe, the Middle East and Central and South Asia by CEU
and populations from East Asia, Oceania and the Americas by
CHB+JPT. Of the 52 populations, only the Maya and Mozabite
populations do not follow this trend. Maya are tagged best by CEU,
perhaps reflecting partial European admixture, and Mozabites, who
have a noticeable proportion of sub-Saharan ancestry, are best tagged
by YRI19.

Within geographic regions, there was generally little reduction of
the proportion of variation tagged (PVT) in transferring HapMap tag
SNPs to a different population. For example, in East Asia, PVT for our
Japanese and Han Chinese samples was comparable to that of other
East Asian populations14,16,18. The Yoruba were tagged by the HapMap
YRI sample slightly better than were other African populations,
though the difference is modest, perhaps because the Yoruba have
low LD even among Africans (Figs. 4 and 8).

The portability of tags to a population was affected much more by
its level of LD than by its proximity to the donor HapMap population
(Fig. 8). Proximity predicted which HapMap sample provided the
highest PVT, as 48 of 52 populations were best tagged by the HapMap
sample to which they had the lowest FST genetic distance (the
exceptions being Hazara, Maya, Mozabite and Uygur). Additionally,
in a linear regression controlling for r2 decay distance, we found a
significant contribution to PVT for FST distance to the nearest
HapMap sample (P o 10�4). However, the Spearman correlation of
PVT with r2 decay distance (0.72) was considerably greater in
magnitude than the corresponding correlation of PVT with FST
(–0.16). Thus, portability of HapMap tag SNPs might be high for
high-LD populations that are genetically distant from the HapMap
populations and low for low-LD populations whose genetic similarity
to one of the HapMap groups is greater. Owing to their low levels of
LD, African populations are the most difficult populations to tag (even
though an African population is included in the HapMap), and Native
Americans, with their high levels of LD, are among the easiest, despite
the fact that they have relatively low haplotype sharing with
the HapMap populations.
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By considering additional schemes for tag SNPs, it is potentially
possible to obtain more effective tagging of some of the populations
that are genetically most distant from HapMap groups, such as
African hunter-gatherers, Native Americans and populations geneti-
cally intermediate between HapMap samples. For example, when we
use four additional tag SNP panels, relying on one of the three pairs of
HapMap populations or on the combination of all three groups, tag
portability improves for several of the genetically intermediate popu-
lations (Supplementary Fig. 1 online). Hazara, Kalash and Uygur
show improved tagging when tag SNPs are chosen based on the
combination of the HapMap CEU, CHB and JPT samples, whereas
Bedouin and Mozabite have higher PVT when using the combination
of CEU and YRI to choose tag SNPs.

One problem that affects tag portability is that HapMap tag SNPs
are frequently monomorphic in these most distant populations. For
example, it might have been expected that tagging would be essentially
perfect in the American populations, where LD is so extensive.
However, we found that 47% of the tag SNPs designed based on
East Asians have minor allele frequency (MAF) o0.1 in Surui,
compared with 13% in our Han sample. A similar problem occurs
in Africa, where 47% of HapMap YRI tag SNPs have MAF o0.1 in
San, compared with 16% in our sample of Yoruba. Some improve-
ment in tag portability can be obtained by careful consideration of
SNP ascertainment procedures, which affect proportions of mono-
morphic SNPs and low-frequency alleles. For example, tag portability

based on the HapMap CEU data is noticeably higher for SNPs in our
data that were ascertained in the multiethnic panel of ref. 11 than it is
for other SNPs (Supplementary Fig. 2 online), as such multiethnically
ascertained tag SNPs are likely to have generally higher minor allele
frequencies in most populations. Indeed, for SNPs with average
MAF 40.2 across populations, these multiethnically ascertained
SNPs have higher frequencies than all remaining SNPs (Wilcoxon
two-sample P¼ 0.004). At the same time, tag portability based on YRI
is lower for SNPs from the multiethnic panel (Supplementary Fig. 3
online): owing to the higher level of genetic variation in Africa, tag
SNPs chosen from such a panel (in comparison with those from, for
example, a European-ascertained panel) are likely to include many
polymorphisms private or nearly private to Africa that will perform
poorly as tags elsewhere. This claim is supported by the fact that the
fraction of SNPs with a higher MAF (MAF 4 0.2) among pooled
Africans and lower MAF (MAF r 0.1) among pooled non-Africans is
considerably larger (11.1%) for the SNPs from ref. 11 than for the
remaining SNPs (5.2%).

DISCUSSION
Our study provides the first data on global haplotype variation across
multiple megabases of sequence in multiple genomic regions. We find
that although SNP ascertainment distorts patterns of variation at the
single-SNP level, patterns of haplotype diversity at larger scales show
greatly reduced evidence of bias. Global patterns of haplotype varia-
tion accord well with a population model in which genetic variation
passed through a serial dilution process as humans spread progres-
sively further from our African source. In the future, autosomal
haplotype data will surely provide an important tool for unraveling
the history of human migrations.

A related application of haplotype data is identifying genomic
regions that have been targets of natural selection2,6,7. Such tests,
which attempt to identify unusually long common haplotypes likely to
have reached high frequencies as a result of recent natural selection,
have reduced power in populations that are strongly bottlenecked7,
owing to the property that common haplotypes are often extremely
long even in neutral regions. Hence, these tests will unfortunately be
less powerful in the populations that have extreme long-range LD
(especially in Oceania and the Americas).

Our results extend recent work showing that the HapMap is a
valuable resource for designing association studies in diverse
human populations. We find that most populations have extensive
haplotype sharing with at least one HapMap population. Some
exceptions exist, however, especially in Africa; as our sample includes
only six African populations, considerable scope exists for improved
understanding of the extent of LD patterns and tag SNP portability
in Africa.

We observe that there is a clear advantage to developing distinct sets
of tag SNP panels based on each of the three HapMap groups rather
than having a single panel to be used worldwide. For populations
where tag portability is lower, several strategies, including use of
SNPs ascertained in a more optimal manner or consideration of
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Figure 8 The determinants of portability of HapMap tag SNPs. (a) The

relationship between tag portability and the distance at which the r2

measure of linkage disequilibrium decays below 0.5. (b) The relationship

between tag portability and FST genetic distance to the HapMap population

that produces the highest tag portability. For each population, tag porta-

bility is computed as the maximum of the three PVT values in Figure 7a.

Spearman correlation coefficient equals 0.72 between tag portability and

r2-decay distance and equals –0.16 between tag portability and FST.

1 25 6 VOLUME 38 [ NUMBER 11 [ NOVEMBER 2006 NATURE GENETICS

ART I C LES
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eg
en

et
ic

s



additional tag SNP designs, may potentially be used to provide
improvements. However, for the populations we have studied, neither
ascertainment nor the use of additional tag SNP panels affects the
fact that tag portability is determined to a greater extent by levels of
LD than by proximity to the nearest HapMap population (Supple-
mentary Figs. 4 and 5 online). Thus, although such strategies (as well
as inclusion of additional populations in studies of similar magnitude
to the HapMap study) will improve tag portability in low-LD
populations, these populations will likely continue to require an
increased density of tag SNPs to achieve the same proportion
of variation tagged as can be obtained with fewer SNPs in higher-
LD populations.

METHODS
Samples. We genotyped 1,048 distinct individuals and four duplicate DNA

samples for 3,024 SNPs. The individuals were drawn from the HGDP-CEPH

Human Genome Diversity Cell Line Panel24,25, and the set of 1,048 distinct

individuals was the same as a previously used collection, the H1048 data

set26,41. We removed 22 individuals with large amounts of missing data

and additional individuals who were first- or second-degree relatives of others

in the data set41, obtaining a final data set of 927 individuals. The smallest

sample size from any major geographic region (regions defined as Africa,

Europe, the Middle East, Central and South Asia, East Asia, Oceania and

the Americas19) is 27 (from Oceania); hence, some analyses that are sensitive to

variable sample sizes use subsamples of 54 chromosomes from each

continent. Further details on many aspects of the methods are available in

Supplementary Methods.

Choice of genomic regions and SNPs. The 36 genomic regions include

16 regions scattered across the autosomes, 16 from chromosome 21 and four

from the non-pseudoautosomal X chromosome. The first set of 16 autosomal

regions included eight that fell within regions studied in detail by the

ENCODE Project2.

For both sets of 16 regions, we aimed to include one region to represent each

category in a 4 � 4 table, each of whose cells corresponds to a quartile of the

genomic distribution of recombination rate (based on the deCODE map27) and

a quartile of the distribution of gene density (from the UCSC genome browser).

We sampled the four X-chromosomal regions to represent each recombi-

nation rate quartile. For the non-ENCODE autosomal regions, we filled

out the rest of the 4 � 4 table as well as possible given the properties

of the ENCODE loci. Apart from the eight predetermined ENCODE regions,

all regions were sampled at random subject to these criteria (Supple-

mentary Methods).

Each region was studied using 84 SNPs, including a ‘core’ of 60 SNPs spaced

at an average of 1.5 kb apart, flanked by two sets of 12 SNPs at 10 kb average

spacing. Thus, each region covered B330 kb. For the chromosome 21 regions,

all SNPs were selected from those discovered in a uniform screen of

20 chromosomes of multiethnic origin11. For the other regions, SNPs were

chosen in the following order of priority: (i) Perlegen SNPs (most of which

were discovered in a multiethnic panel11); (ii) HapMap Phase I SNPs2;

(iii) dbSNP ‘two-hit’ SNPs.

Genotype data. Genotyping was performed using the Illumina BeadLab

1000 platform. Of the initial 3,024 SNPs, 190 were excluded: 115 failed

genotyping, 50 were monomorphic, 20 SNPs failed Hardy-Weinberg checks

in unstructured populations and 11 had 410% missing data (six of these

also failed Hardy-Weinberg). These exclusions yielded a final cleaned data

set of 2,834 non-monomorphic SNPs typed in 927 individuals. The missing

data rate in the cleaned data was 0.1%. The genotype error rate in the cleaned

data was estimated at B2 � 10�4 based on comparisons of three duplicate

samples and on mendelian error checks between related individuals in the

full sample. Details of the SNPs used are available in Supplementary

Table 1 online.

For some analyses, we also make use of the Phase II HapMap data in the

regions studied here. For those analyses, we only use SNPs from our data set

that are also in the HapMap data set; there are 2,078 such SNPs.

Haplotype phasing. Haplotype phasing was performed using fastPHASE v. 0.9

(ref. 28). A pre-publication release of the program was supplied by P. Scheet.

We chose to use fastPHASE for several reasons. The related program PHASE was

found to have the best performance in a recent comparison of phasing

methods42. fastPHASE achieves similar accuracy to PHASE but at much greater

speed in large samples such as ours42. fastPHASE has the added benefit of

allowing separate parameters for each population, a feature that is attractive for

our data set and that leads to improved performance (Supplementary Note).

We also used fastPHASE to impute the 0.1% of missing genotypes so that

the analyzed data set does not contain any missing values (except where

otherwise specified).

In order to phase the data, there were a number of choices that had to be

made, including how to label and group the population samples and the

number of haplotype clusters to assume. Our main approach was to perform a

series of fastPHASE runs in which 10% of the genotype data were hidden at

random. We computed the error rates in the genotypes imputed by fastPHASE

and then chose parameter combinations that minimized the overall error rate.

This is essentially the approach suggested by ref. 28. We also checked our results

using haplotype reconstructions from the set of parent-offspring pairs available

in our full data. Finally, for HapMap data in our regions, we compared values

of the LD statistic r2 estimated from data phased by fastPHASE (parents only) to

the same data phased using trio information, and we found almost perfect

agreement (Supplementary Note).

Haplotype visualization. In order to visualize the haplotypes in each genomic

region, we developed the following algorithm. Our method was conceptually

motivated in part by the model developed in ref. 28, but it differs in being

less model-based.

We start by identifying, for each of seven major geographic regions, the

single most common haplotype spanning a genomic region. These seven

haplotypes will be called the ‘template’ haplotypes. (The assignment of

populations to seven geographic regions is the same as that used in ref. 19).

Occasionally, the most common haplotype is identical for two or more

geographic regions. In that case, we take as one of the templates the second-

place haplotype that is most frequent within its region. Each template is

assigned a distinct color. Next, we color each observed haplotype as a mosaic of

the seven templates, requiring exact matches between the observed haplotype

and the template that is being copied. Roughly speaking, the coloring mini-

mizes the number of switches between templates (see Supplementary Methods

for details). Rare alleles not found on any template were dropped from the

analysis in the version shown in Figure 1.

Finally, for each population shown in Figure 1, 20 haplotypes were

sampled without replacement for plotting. Surui and Colombians have

o20 total haplotypes, so for these populations, all haplotypes are shown.

For clarity, the plotted chromosomes are sorted by the coloring in the center of

the region.

Estimation of recombination rates. The reversible jump Markov Chain Monte

Carlo method LDhat v2.0 (ref. 8) was used to estimate maps of the population-

genetic recombination rate r from the SNP data for each genomic region. The

program requires a choice of value for a smoothing parameter that determines

the penalty for introducing a new zone with distinct recombination rate;

following ref. 8, this quantity was set to 20. As the LDhat method uses

unphased genotype data rather than phased data, this analysis used the

unphased genotypes and did not use the data version with missing data

imputed. For all results, the mean value of the recombination rate was obtained

over 106 iterations of the MCMC (with a thinning interval of 2,000), following

a burn-in of 105 iterations.

We estimated r/kb for each population and genomic region by taking the

mean map length for each genomic region and each population and dividing

by the total length in kb of the region in that population. The average

population-genetic recombination rate per kb in region reg and population

pop is denoted rpop,reg. Genomic region 1 is distal to the first deCODE marker

on chromosome 1p, so the pedigree-based recombination rate is unreliable.

This genomic region was excluded from the analysis. The effective size of a

population Npop was estimated from the population-genetic recombination

rates by a model that allowed for an error in the pedigree-based estimate of the
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recombination rate (the most extreme example of which is the excluded

genomic region 1). In this model, we assume

rpop;reg ¼ 4Npopðdreg+bregÞ+ epop;reg ð1Þ

where dreg is deCODE’s pedigree-based estimate of recombination rate per kb

for the region, and breg is the ‘error’ in the pedigree rate estimate for a region

when used at a local scale. To constrain this model, we required that the sum

across regions of the values of breg be 0. The model was fitted to minimizeP
pop;reg e

2
pop;reg by a hill-climbing algorithm, where the sum ranges over 52 � 31

(52 populations and 31 autosomal regions, excluding region 1) population-

region combinations. Further analyses regarding the robustness of the

results and the use of different estimation methods can be found in the

Supplementary Note.

Definition of haplotypes for computations of haplotype summary statistics.

We computed haplotype summary statistics based on haplotypes within

genomic windows of a specified length w. For these analyses, the entire window

was required to lie within our genomic ‘core’ regions. For each SNP, we defined

a haplotype locus that extended from the position of the SNP (a) along the

chromosome to the SNP position plus the window size (a + w). The haplotype

of a particular phased chromosome was then specified by the set of allele states

at all SNPs located between a and a + w (including position a but excluding

position a + w). Haplotypes were considered to be identical if and only if they

had the same genotype for all SNPs with position in [a,a + w). For each

value of w, except for the f statistic (defined below), the summary statistics

presented are means over all haplotype loci with the given window size. The f
statistic was computed by averaging across haplotype loci within each of the

genomic core regions and was then averaged across regions. The computations

of f also differed in that estimates involving the HapMap excluded

from consideration SNPs not among the 2,078 in our data set that were

contained in the HapMap.

Numbers of distinct haplotypes and private haplotypes. Because sample sizes

differed across geographic regions, this computation used the rarefaction

approach43,44 to obtain sample-size corrected estimates of the numbers of

distinct haplotypes and private haplotypes. For a given summary statistic, if a

sample has size N, the idea of this approach is to choose a value for g r N and

to compute the mean value of the statistic expected across all possible

subsamples of size g from the original sample of size N. Because the smallest

sample size among the seven geographic regions equaled 54 chromosomes

(Oceania), we used g ¼ 54 for all computations.

Following the notation in ref. 44, for a given haplotype-locus, let Nj

represent the number of haplotypes sampled in the jth geographic region, let

Nij represent the number of haplotypes of type i in the jth geographic region

and let m represent the total number of distinct haplotypes observed

(Nj ¼
Pm

i¼1 Nij). Let Pijg be the probability of observing at least one haplotype

of type i in a sample of size g haplotypes from geographic region j, and let Qijg

be the probability of not observing any haplotypes of type i in a sample of size g

from region j. For region j, the expected number of distinct haplotypes that will

be observed in a sample of size g, or aðjÞg , equals43

aðjÞg ¼
Xm
i¼1

Pijg ð2Þ

where Pijg ¼ 1 – Qijg and

Qijg ¼

Nj � Nij

g

� �
Nj

g

� �

Let J equal the number of geographic regions under consideration (J ¼ 7 in our

case). The number of distinct haplotypes private to region j expected in a

sample that contains g haplotypes from each of the J geographic regions,

or pðjÞg , equals44

pðjÞg ¼
Xm
i¼1

Pijg
YJ
j 0¼1
j 0 6¼j

Qij 0g

0
BB@

1
CCA ð3Þ

Pairwise haplotype sharing of geographic regions. To compute the fraction of

distinct haplotypes that are shared between two geographic regions, say regions

j and j¢, for each haplotype-locus, we first computed the numbers of distinct

haplotypes and the numbers of private haplotypes for the particular pair of

geographic regions. This computation used the rarefaction approach with

g ¼ 54 and J ¼ 2, and in this analysis, private haplotypes for population j

refer to those not found in j¢.
The expected number of distinct haplotypes that will be found in a sample

of size g from geographic region j that will also be found in a sample of size g

from region j¢ is then equal to the difference between the expected number

of distinct haplotypes in region j and the expected number of private

haplotypes in region j, or SðjÞg ¼ aðjÞg � pðjÞg . Thus, we can view the following

statistic as an estimator of the fraction of distinct haplotypes observed in a

sample of size g from region j that will also be observed in a sample of size g

from region j¢:

zðjÞg ¼
aðjÞg � pðjÞg

aðjÞg
ð4Þ

Fraction of common haplotypes that are also common in the HapMap.

Suppose that haplotypes with frequency greater than a cutoff value c are

considered to be common haplotypes. Making a slight modification to

Equation (2), the expected number of distinct common haplotypes at a given

haplotype locus that will be observed in a sample of size g from population j, or

aðjÞg;c , equals

aðjÞg;c ¼
Xm
i¼1

Pijgwffij4cg ð5Þ

where the indicator function wffij4cg ¼ 1 if the frequency fij of haplotype i in

population j exceeds the cutoff c, and equals 0 otherwise. The expected number

of distinct common haplotypes gðjÞg;c;j 0 in a sample of size g from population j

that also have the property of being common in population j¢ is given by the

following expression:

gðjÞg;c;j0 ¼
Xm
i¼1

Pijgwf fij4cgwf fij 04cg ð6Þ

Therefore, for the ordered pair of populations (j,j¢), for a sample of size g from

population j, we used the following expression to determine the average

fraction of common haplotypes in population j that were also common in

population j¢:

fðjÞ
g;c;j0 ¼

gðjÞg;c;j0

aðjÞg;c
ð7Þ

Heterozygosity. For a given haplotype locus, the heterozygosity of the

haplotypes of a particular population, Hj, was computed as follows45:

Hj ¼
Nj

Nj � 1
1 �

Xm
i¼1

Nij

Nj

� �2
" #

ð8Þ

In this equation, Nj equals the number of haplotypes in population j, and

Nij is the number of haplotypes of type i in population j. Microsatellite

heterozygosity for each population was computed as the average across

783 loci41, pooling the two Bantu groups into a single population.

Tag SNP analysis. For analysis of tag SNP portability, we used overlapping

SNPs with the HapMap Phase II data (release 19) for 29 regions

(X-chromosomal regions 23–26, and regions 30–32 with gaps were excluded).

Of the SNPs typed in the current study, 2,078 are present in the phase II

HapMap. The HapMap data were phased with the same protocol used to

phase the HGDP-CEPH genotypes; phasing and analysis were performed

together with the parental genotypes only in the case of the CEU and YRI

samples. CHB and JPT samples were combined into one 90-sample population

for phasing and all subsequent analyses. All SNPs were used to assist the
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phasing, but the tag SNP analysis described below was limited to our

high-density ‘core’ regions. The number of core SNPs present in the

HapMap ranges from 27 to 58 per region, of a total possible 60. For each

HapMap population separately (CEU, YRI, CHB+JPT), we selected 333 LD-

based tag SNPs with the goal of maximizing the total number of SNPs that have

r240.85 with at least one tag SNP; our algorithm was roughly as described

by ref. 40.

The central aim of these analyses was to measure the amount of variation

indirectly assayed in one population (the ‘target’) by typing genetic markers

selected in another (the ‘donor’). We define a simple metric called the PVT

(proportion of variation tagged) as our measure of tag portability:

PVT ¼

Pn
r¼1

tr � sr

Pn
r¼1

pr � sr

where the number of tag SNPs within genomic region r that are polymorphic in

the target population is denoted sr, the number of SNPs ‘tagged’ (which

includes tag SNPs) is tr , the total number of polymorphic SNPs within region r

is pr and the total number of genomic regions is n = 29. Because sample sizes

vary across populations, it was important to control for the effect of sample size

in our analyses. A linear relationship between PVT and sample size (in the

relevant range) was observed in simulations based on subsampling from large

populations (Supplementary Note). Hence, all PVT scores were adjusted to the

mean sample size across HGDP-CEPH populations (36 chromosomes) using

the following procedure. For populations with more than 36 chromosomes, we

corrected the PVT score empirically by resampling 36 chromosomes from the

population 30 times and averaging PVT scores across these subsamples. For

populations with fewer than 36 chromosomes, we used a regression adjustment

to ‘bring them up’ to 36 (Supplementary Note).

PVT was measured for each population using each of the HapMap samples,

as well as using combinations of the HapMap samples. The analysis was also

performed separately using only the chromosome 21 SNPs overlapping with

the HapMap and only the overlapping SNPs not on chromosome 21.

Determinants of tag SNP portability. To compare the influence of levels of LD

and relatedness of the most similar HapMap population on portability of tag

SNPs, we analyzed the relationships between tag portability as measured by

PVT and each of these two variables. For each population, tag portability was

computed as the maximum of the three PVT estimates based on the three

HapMap samples (Fig. 7a). FST was computed between each population and

the HapMap sample that produced the highest portability. This computation

was performed for each SNP in a core region (excluding regions 23–26 and

30–32) among those SNPs overlapping with the HapMap data, using equation

5.3 of ref. 46.

The distance at which the LD statistic r2 decayed below a specified cutoff c

was obtained by considering all pairs of SNPs in the same core region among

SNPs overlapping with the HapMap data (excluding regions 23–26 and 30–32),

subject to both SNPs having MAF Z m in the population under consideration.

Given c and a percentage p, increasing the distance d continuously, all points

were located where the percentage of SNP pairs separated by distance rd that

had r2 4 c crossed from being greater than p to less than p. The desired

distance d* was obtained at the largest of these crossing points as the smallest

distance d* so that op% of SNP pairs separated by distance rd* had r2 4 c.

To correct for the influence of sample size, for each population, r2 for each SNP

was obtained as the average across 1,000 resamples (without replacement) of

12 chromosomes. In populations where r2 did not decay below c at the

distances we investigated, d* was set to the approximate average length of

the core regions, or 90 kb. The computations shown in Figure 8 used m ¼ 0.2,

c ¼ 0.5 and p ¼ 50%.

Note: Supplementary information is available on the Nature Genetics website.
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