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ABSTRACT
We describe extensions to the method of Pritchard et al. for inferring population structure from

multilocus genotype data. Most importantly, we develop methods that allow for linkage between loci. The
new model accounts for the correlations between linked loci that arise in admixed populations (“admixture
linkage disequilibium”). This modification has several advantages, allowing (1) detection of admixture
events farther back into the past, (2) inference of the population of origin of chromosomal regions, and
(3) more accurate estimates of statistical uncertainty when linked loci are used. It is also of potential use
for admixture mapping. In addition, we describe a new prior model for the allele frequencies within each
population, which allows identification of subtle population subdivisions that were not detectable using
the existing method. We present results applying the new methods to study admixture in African-Americans,
recombination in Helicobacter pylori, and drift in populations of Drosophila melanogaster. The methods are
implemented in a program, structure, version 2.0, which is available at http://pritch.bsd.uchicago.edu.

THE study of admixed populations arises in many at a higher than normal rate from one of the parental
contexts in population genetics: for example, in the populations, as in admixture mapping or in studying

study of hybrid zones (Barton and Hewitt 1989), in selection across hybrid zones (Rieseberg et al. 1999).
methods that use admixed populations for gene map- We consider a situation in which we have multilocus
ping (Chakraborty and Weiss 1988; Stephens et al. genotype data from a sample of individuals collected
1994; McKeigue 1998), in studying the ancestry of eth- from a population with (possibly) unknown structure.
nic groups such as Icelanders and Finns (Thompson Pritchard et al. (2000) introduced a method to identify
1973; Guglielmino et al. 1990), and in association map- the presence of different subpopulations, if any, and to
ping (Knowler et al. 1988; Thornsberry et al. 2001). estimate the ancestry of the sampled individuals. That
In many of these problems we would like to identify the article considered two models for the ancestry of individ-
extent of admixture of individuals, or to infer the origin uals. In the first, the “no-admixture model,” individuals
of particular loci in the sampled individuals (McKeigue are assumed to be drawn purely from one of K popula-
et al. 2000). These problems can be difficult if good tions. In the second, the “admixture model,” individuals
estimates of the allele frequencies in the parental popu- are allowed to have mixed ancestry: that is, a fraction qk
lations are not available. of an individual’s genome comes from subpopulation

In this article, we develop methods for studying the k (where �kqk � 1). Both of those models assume that all
ancestry of both individuals and specific loci within ad- the markers are unlinked and provide independent in-
mixed populations. Much of the previous work on popu- formation on an individual’s ancestry. In this article we
lation admixture has aimed to estimate average admix- introduce a third model, the “linkage model,” which ex-
ture proportions in an entire population (e.g., Long tends the admixture model to account for the correlations
1991; Bertorelle and Excoffier 1998; Chikhi et al. between linked markers that arise as the result of admix-
2001) or to study geographic clines in admixture (e.g., ture (“admixture linkage disequilibrium”; Stephens et al.
Sites et al. 1995). However, the distribution of ancestry 1994). As we show, the linkage model allows estimation
proportions can provide additional information about of the origin of chromosomal regions within individuals
the admixture process (McKeigue et al. 2000; Beau-

and provides better resolution to study the historical
mont et al. 2001; Anderson and Thompson 2002;

process of admixture.Falush et al. 2003). It can also be of interest to deter-
We also discuss a new prior model for the allele fre-mine whether specific parts of the genome are inherited

quencies within each population, which can be used in
conjunction with any of the three ancestry models. This
model, while still relatively simple, is more accurate in
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of other extensions to the original model described by offers a number of practical advantages in this context.
Among these, it allows a straightforward assessment ofPritchard et al. have been implemented in a computer

program, structure version 2.0, available at http://pritch. the statistical uncertainty in each estimate of interest.
It also allows us to make use of any prior informationbsd.uchicago.edu.
that we might have regarding population membership
for some members of the sample. See Pritchard et al.

SUMMARY OF OLD AND NEW MODELS
(2000) for further discussion.

The Bayesian approach requires priors for P and Q.Consider a sample of N individuals, each genotyped
at L loci. Pritchard et al. (2000) began by assuming that Following Balding and Nichols (1997), Pritchard et

al. assumed that the vector of allele frequencies at locusthe individuals represent a mixture from K unobserved
populations. All of the calculations are conditional on l in population k is drawn from a symmetric Dirichlet

distribution parameterized by a single hyperparametera particular value of K; Pritchard et al. suggested per-
forming the analysis for a range of values of K and �, independently for each k. Some modifications of this

prior are described below. The admixture proportionsdescribed a heuristic that provides a guide toward the
most appropriate value (or values). q(i) for individual i were also modeled as draws from a

symmetric Dirichlet distribution, in this case with a hyper-In the no-admixture model, each individual comes
from one of the K populations. We let z(i) denote the parameter �. The assumption of symmetry in the prior

for the q’s corresponds intuitively to an assumption thatpopulation of origin of individual i and Z denote the
vector (z(1) . . . z(N)). Each of the K populations is charac- the K populations contribute roughly equal amounts of

genetic material to the sample. To better model situa-terized by a set of allele frequencies at each locus. Let pklj

refer to the frequency of allele j at locus l in population k, tions where this is not the case, the updated implementa-
tion of structure allows different values of � to be estimatedand let P denote the full multidimensional vector of al-

lele frequencies for all k, l, and j. A key modeling assump- for each population (so � becomes a vector of K values,
with �k representing the relative contribution of popula-tion is that there is linkage equilibrium and Hardy-Wein-

berg equilibrium (HWE) within populations. Hence, tion k to the genetic material in the sample). Otherwise
the prior for q is unchanged. Alternative models for qthe likelihood of the genotype of individual i, condi-

tional on its population-of-origin z(i), is simply a product are considered by Anderson (2001) and Anderson and
Thompson (2002).of the frequencies of its alleles in that population.

An obvious limitation of the no-admixture model is In practice we may not know either the allele frequen-
cies P or the populations of origin Z in advance. Pritch-that in practice individuals may have recent ancestors

in more than one population. To model this, Pritchard ard et al. described a Markov chain Monte Carlo (MCMC)
scheme that estimates these jointly. This procedure clus-et al. introduced an admixture model, in which each

individual is assumed to have inherited some proportion ters individuals into populations and estimates the prob-
ability of membership (or, for the admixture model,of its ancestry from each population. Let q( i)

k denote the
proportion of individual i’s genome that is derived from the proportion of membership) in each population for

each individual.population k (where �kq(i)
k � 1), and let Q be the multi-

dimensional vector of ancestry proportions for all the A number of related population genetic methods have
been described, including Dawson and Belkhir (2001),members of the sample. It is now possible for the differ-

ent allele copies in an individual to come from different Sillanpää et al. (2001), and Satten et al. (2001). Fur-
ther, it has recently come to our attention that thepopulations. (We use the term “allele copy” to refer to

an allele carried at a particular locus by a particular admixture model belongs to a class of models known
as “grade of membership” models, which have beenindividual.) To reflect this, the vector Z now records

the population of origin of every allele copy in each used in other literatures, including medical classifica-
tion and machine learning (Erosheva 2002).individual, with z(i,a)

l denoting the origin of the ath allele
copy at locus l in individual i. Pritchard et al. (2000) The linkage model: A deficiency of the admixture

model is that by assuming that the z’s within each indi-discussed only the case of diploid individuals (so a � 1
or 2), but the model is easily extended to data of any vidual are independent, it ignores the correlations in

ancestry that one would expect to see along each chro-ploidy, and we have now done this in the updated imple-
mentation of structure (version 2). Under Pritchard et al.’s mosome. In this context, it is helpful to distinguish

between three sources of linkage disequilibrium (LD).admixture model, the z’s for individual i are assumed
to be drawn independently from {1, . . . , K } according The first source is variation in ancestry (q) among the

sampled individuals. Variation in q leads to correlationsto the probability vector q(i), so that
among markers across the genome, even if they are

Pr[z(i,a)
l � k] � q(i)

k . (1)
unlinked, because individuals with a large component
of ancestry in population k have an excess of alleles thatThis admixture model also assumes linkage equilibrium

and HWE within populations. are common in k. We call this LD “mixture LD.” The
second source is correlations in ancestry along eachInference is performed in a Bayesian framework, which



1569Inferring Population Structure

chromosome, which cause additional LD between linked tion could be relaxed at the cost of an increase in the
number of parameters.markers. We visualize this LD as occurring because each

Interpretation of the linkage model: To provide somechromosome is composed of a set of “chunks” that are
motivation for the linkage model, consider the followingderived, as unbroken units, from one or another of the
idealized scenario. Suppose that our sample comes fromancestral populations. In our terminology, this second
a diploid population that experienced a single “admix-source is “admixture LD.” The third source is “back-
ture event” followed by t2 generations of subsequentground LD” within populations, which usually decays
random mating within postadmixture populations. Inon a much shorter scale (tens of kilobases in humans).
the generation of the admixture event, individuals areThe admixture model in Pritchard et al. (2000) mod-
formed by mating of individuals between two or moreels only mixture LD; here we extend the model to in-
ancestral populations. These individuals inherit theirclude admixture LD. However, we continue to ignore
DNA intact (i.e., without intervening recombination)background LD, and so our model is best suited to data
from the ancestral populations. In the subsequent gen-on markers that are linked, but not so tightly linked
eration, the boundaries delineating these intact chunksthat one would expect to see substantial background
will correspond to crossover events in a single meiosisLD (we return to this point in our discussion).
and so (assuming no interference) will form a PoissonTo make inference computationally tractable, we use
process of rate 1 per morgan. Chromosomes in each sub-a simple model that incorporates the notion of discrete
sequent generation will inherit chunks of DNA fromchromosomal chunks inherited from ancestral popula-
chromosomes in the previous generation in a similartions. Whereas in the “admixture” model of Pritchard
manner, and it follows from standard results on theet al. (2000), each allele copy is derived independently
superposition of Poisson processes that, in chromo-from one of the K populations, in the new “linkage”
somes in the current generation, the boundaries be-model chunks of chromosomes are derived as intact
tween the chunks of DNA inherited intact since theunits from one or another of the K populations, and
admixture event will form a Poisson process of rate t2all allele copies on the same chunk derive from the same
per morgan.population. We assume that the breakpoints between

This reasoning provides some justification for the formsuccessive chunks occur at random (i.e., as a Poisson
of the transition rates in Equation 3. However, it fallsprocess), at a rate r per unit of genetic distance, and
short of providing a complete justification for all as-that the population of origin of each chunk in individual
sumptions of the linkage model and in particular fori is independently drawn according to the vector q(i),
the assumption that the ancestral populations of originwhich continues to represent the overall (expected)
of the chunks are independent draws from some (indi-ancestry proportions of the individual.
vidual-specific) vector q. Furthermore, in real popula-

Formally, the above assumptions translate into replac-
tions, biological details such as crossover interference

ing the admixture model assumption that the z’s along and gene conversion events (or transformation in bacte-
each chromosome are independent with the assumption ria) will cause deviations from the assumed model. Nev-
that z’s along each chromosome are dependent, forming ertheless, the linkage model captures, in a parsimonious
a Markov chain. Specifically, for haploid data, indepen- and computationally convenient way, the correlations
dently for each individual i, in ancestry between linked loci that we would expect to

see in admixed individuals from real populations.Pr(z(i)
1 � k |r, Q) � q(i)

k , (2)
The discussion above also suggests an interpretation

and of the parameter r in terms of the number of generations
since admixture first occurred. Specifically, if the genetic
distances dl between adjacent markers are measured in
morgans, then r can be interpreted as an estimate of t2,Pr(z(i)

l�1 � k�|z(i)
l � k, r, Q) � �

exp(�dlr) � (1 � exp(�dlr))q (i)
k�

if k� � k

(1 � exp(�dlr))q(i)
k

otherwise,

the number of generations since the admixture event
(although inevitable deviations from the model assump-(3)
tions mean that it would be wise to treat any such esti-

where dl denotes the genetic distance from locus l to mate with a degree of caution). Similarly, if the genetic
locus l � 1, assumed known. For diploid (or polyploid) distances are measured in centimorgans, then r can be
data, independently for each individual i, the z’s along interpreted as an estimate of 100t2. In some situations
each of i’s two (or more) chromosomes form indepen- the genetic distances between loci may not be known,
dent Markov chains satisfying Equations 2 and 3. but a proxy such as physical distance may be available.

Note that the linkage model includes the admixture If the physical distance between loci, measured in nucle-
model as a limiting case: as r tends to infinity in (3), all otides, is used in place of the genetic distance for dl,
loci become independent, returning us to the original then r can instead be interpreted as an estimate of the
admixture model (Equation 1). Note also that we assume product of t2 and the recombination rate (expected num-

ber of crossovers per base pair per meiosis). If there is nothat r is the same for all individuals, although this assump-
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information on map positions, then the linkage model is with K for the admixture model and for the linkage
not applicable. model with phased data, but scales with K 2 for the link-

For many data sets, we will have little prior knowledge age model with unphased or partially phased data.
concerning the time since admixture (and perhaps also Models of allele frequencies: As described above,
the recombination rate). We have therefore imple- Pritchard et al. (2000) assumed a model in which
mented a uniform prior for log r. The bounds of the the allele frequencies in the different populations are
prior should generally be set to include all biologically independent. Under that model, the allele frequencies
plausible values of r, which may range over several orders in one population provide no information about what
of magnitude (partly explaining the attraction of work- the allele frequencies might be in another population.
ing with log r). In practice, however, we often expect the allele frequen-

Computations for the linkage model: Because in prac- cies in closely related populations to be very similar.
tice the z’s for each chromosome are not observed, the This suggests that a prior model that accounts for such
Markov model for the z’s used by the linkage model correlations would be more accurate in many cases and
(Equations 2 and 3) results in a hidden Markov model may therefore lead to improved performance on “diffi-
(HMM) for the observed genotype data. Standard HMM cult” problems, where distinct populations are quite
methods (see Rabiner 1989 for a review) can be used similar. Indeed, Pritchard et al. (2000) remarked briefly
to sample efficiently from the conditional distribution that they had found some cases of rather subtle popula-
of the z’s and compute the probability of the observed tion structure where the model of independent allele
genotype data, given all other parameters. Both these frequencies was less successful than an alternative model
procedures are used in our MCMC algorithm to fit the that allowed for correlations in allele frequencies among
model, including Metropolis-Hastings updates for Q and different populations. Here, we describe the implemen-
r (see the appendix for details). The necessary computa- tation of an improved model of allele frequency correla-
tions are relatively straightforward when considering tions, which has fewer parameters and is more interpret-
haploid data, or if phase relationships among all linked able than the model for correlated allele frequencies
loci are known, as the computations for each chromo- in Pritchard et al. (2000).
some can then be performed separately. If the data are The new model is based on ideas in Nicholson et al.
unphased then individual allele copies may be inherited (2002), who present a model for correlated frequencies
on the same chunk as any one of the allele copies at for biallelic loci [specifically, single-nucleotide polymor-
the preceding locus. This ambiguity leads to a reduction phisms (SNPs)] in different populations. The model as-
in the amount of information provided by the data on sumes that the populations all diverged from a common
the population of origin of each allele copy and on the

ancestral population at the same time, but allows that
value of r, in comparison with a completely phased data

the populations may have experienced different amountsset. It also increases the complexity of the algorithm
of drift (due to different effective population sizes) sincerequired to fit the model. If relatives have been geno-
this divergence event. The assumption of simultaneoustyped, then pedigree information may indicate that par-
divergence, while unrealistic, is appealing in its simplic-ticular loci have been inherited together from the same
ity. One alternative, which might be more realistic inparent, restoring some of the lost information. In the
some settings, would be to assume that the populationsappendix we describe algorithms that can handle un-
are related to one another by a tree.phased data for diploids and that can also incorporate

The new model for correlated allele frequencies thatsimple pedigree information when available (but note
we describe here is based on the same implicit assump-that the individuals analyzed by structure should all be
tions as the model of Nicholson et al. (2002), but appliesunrelated).
to allele frequencies at multiallelic loci. [This extensionAlthough the linkage model was developed with com-
to multiallelic loci was also suggested independently byputational tractability in mind, it is nevertheless more
Marchini and Cardon (2002) and is related to thecomputationally intensive than the admixture model.
parameterization of Balding and Nichols (1997).] WeThis can make the linkage model less convenient for
introduce a new (multidimensional) vector, PA, whichparticularly large or complicated data sets. For the Afri-
records the allele frequencies in a hypothetical “ances-can-American data set described below (626 diploid in-
tral” population. With a slight abuse of notation wedividuals and 252 loci) and K � 2 populations, a run
denote the frequency of allele j at locus l in the ancestralconsisting of 10,000 burn-in iterations followed by
population by pAlj. It is assumed that the K populations50,000 further iterations took 3 hr using the admixture
represented in our sample have each undergone inde-model, 7 hr for the linkage model if it was (incorrectly)
pendent drift away from the ancestral allele frequencies,assumed that the data were fully phased, and 11 hr for
at rates parameterized by F1, F2, F3, . . . , FK, respectively.the linkage model assuming (correctly) that the data
The allele frequencies in PA are assumed to have Dirich-were unphased (calculations were performed on a DEC
let priors of the same form as that used in the originalAlpha of 2001 vintage). Performance differentials will

increase for larger K: the computation scales linearly model for the (uncorrelated) population frequencies,



1571Inferring Population Structure

pAl· � �(�1, �2, . . . , �Jl), (4) based on the seven demographic scenarios (I–VII) shown
in Figure 1. Mutation parameters differ among the simu-

independently for each l. Here, � may be fixed or esti- lations and are specified separately for each one. Under
mated within the MCMC scheme. Conditional on PA, each scenario, the goal is first to identify the current pop-
the frequencies in each population k have a prior dis- ulations and second to reconstruct elements of their his-
tribution tory: for example, the amount of genetic drift, the degree

of admixture, and the time since admixture occurred.
pkl· � ��pAl1

1 � Fk

Fk

, pAl 2
1 � Fk

Fk

, . . . , pAl Jl

1 � Fk

Fk
�, Differentiating between closely related populations—(5)

The F model: One advantage of the new F model is that
independently for each k and l. The size of Fk tells us it can sometimes detect population subdivision that is
about the effective population size of population k dur- invisible to structure when the gene frequencies of the
ing the time since divergence, with large values of Fk populations are modeled without correlations. An ex-
indicating a smaller effective population size (Nichol- ample is shown in Figure 2, where a single random-
son et al. 2002). mating population splits into two (scenario II). Eight

We refer to this new model for correlated allele fre- generations after the split, the uncorrelated model is
quencies as the “F ” model. The name is chosen to reflect unable to distinguish between the two populations,
the fact that there are close connections between the while the F model distinguishes them quite accurately,
model and the classical measure of correlations between with the exception of a few individuals that are not
populations, Wright’s FST (Wright 1951). Nicholson assigned with high probability to either population.
et al. (2002) describe the connections in some detail; After 16 generations of separate evolution, the uncorre-
here we give a brief summary. Traditionally, FST is esti- lated model becomes able to distinguish reasonably ac-
mated as a single value that summarizes the average curately between the two populations and the F model
deviation of a collection of populations away from the provides little improvement in clustering. Further simu-
mean. Although definitions vary, it is commonly written lations (not shown) indicate that the F model is less
as FST � Var(pk)/p̄(1 � p̄), where pk is the frequency of an likely to improve performance when the number of
allele in population k, and p̄ is the overall frequency of loci is small; rather, it can allow accurate clustering of
that allele across all subpopulations (Excoffier 2001). individuals from extremely closely related populations
In our parameterization (Equations 4 and 5) E(pklj) � pAlj, when large numbers of markers are used (e.g., Rosen-
and Var(pklj) � FkpAlj(1 � pAlj). Hence, pAlj plays a role ana- berg et al. 2002). However, even with very many mark-
logous to that of p̄, and Fk plays a role like that of FST in ers, it is unlikely to be possible in practice to differentiate
the classical model, except that we use a generalized model between biological populations that have split �20 gen-
with different drift rates for each population. Using a dif- erations ago unless there has been little subsequent
ferent value of F for each population, rather than a single admixture and genetic drift has been strong.
common value for all populations, introduces a consider- Estimation of K : Simulations presented by Pritch-
able amount of extra flexibility into the model at the ard et al. (2000) and further experience with other
expense of only a few additional parameters. data sets suggest that the value of K that maximizes the

The prior distribution that we have implemented for F estimated model log-likelihood, log(P(X|K)), is often a
assumes that the Fk are a priori independent, with a density sensible choice for the number of populations. How-
proportional to a gamma distribution truncated at 1 (so ever, the value of K estimated by this procedure can
that Pr[0 � Fk � 1] � 1). Depending on the parameters sometimes depend on the model used. The F model is
of the distribution, the prior can be “harsh”—putting most in general more permissive of additional populations
of its weight on low values of F, or “permissive”—not dis- being fitted to a data set, as it permits the existence of
criminating strongly against any value of Fk. A harsh prior two or more populations with very similar allele frequen-
on low values of F corresponds to strong prior information cies (particularly if the prior on F is chosen to favor small
that the allele frequencies in the different populations are values). Consequently, P(X|K) is sometimes maximized for
similar to one another, and this seems generally to give a higher value of K than under the uncorrelated model.
the best performance in detecting subtle admixture in This cuts to the heart of one of the principal reasons
problems that are difficult for the independent frequen- why inferring K is so difficult and why estimates for K
cies model. However, if the values of Fk are being used to should be treated with caution: the number of popula-
make evolutionary inferences, a permissive prior is more tions supported by the data may depend on how differ-
appropriate. In the appendix, we present Metropolis-Has- ent one would expect allele frequencies in the different
tings updates for PA, Pk, and Fk. populations to be a priori, which is often difficult to specify.

For some data sets, higher estimates of K obtained
using the F model may reflect deviations from random

MODEL RESULTS USING SIMULATED DATA SETS
assortment that are not caused by genuine population
subdivision. Table 1A shows model likelihoods esti-To assess the uses and limitations of the new structure

features, we have performed Wright-Fisher simulations, mated for a single panmictic population (scenario I).
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Figure 1.—Scenarios sim-
ulated using the Wright-
Fisher model. N0 . . . N4 indi-
cate haploid population
sizes, while t0, t1, and t2 indi-
cate time in generations. In
each case t0 � 5N0, so that
the population is close to
mutation-drift equilibrium
at the end of the burn-in.
(I) Sample from a single
random-mating population.
(II) Population bifurcation.
(III) Population trifurcation.
(IV) Hierarchical subdivi-
sion. (V) Admixture creates
an additional population.
(VI) Unidirectional admix-
ture leaves one population
unchanged. (VII) Bidirec-
tional admixture between
two populations. In V, VI,
and VII the diverged popu-
lations undergo an admix-

ture event in which individuals are formed by the union of gametes from preadmixture populations, before undergoing t2

generations of subsequent evolution. The ancestry of the postadmixture populations is determined by a matrix u, where uij is
the proportion of gametes in population j that come from preadmixture population i.

Whether or not the F model is used, the highest value In principle it should be possible to generalize the
model to allow for the possibility of hierachical subdivi-of P(X|K) is given by K � 1. In Table 1B the evolutionary

parameters are identical but there is a 50% selfing rate. sion but we do not attempt this here. Rather, we suggest
testing for deviations from the model by estimating val-In this case, the F model gives higher probabilities for

K � 2, while the original model continues to give the ues of F while excluding one or more of the populations
in turn. If the assumption that all of the populationshighest model likelihood for K � 1. Other situations

that might cause additional populations to be inferred evolved independently from a single common ancestral
population is correct, then this should leave the F valuesby structure (with or without the F model) include a

significant frequency of inbreeding, cryptic relatedness estimated for the other populations approximately un-
changed. If the F values decrease, then this suggests thatwithin the sample, or the presence of null alleles.

Inference of demographic history: The F model can one of the excluded populations diverged first, so that
the remaining populations share a more recent com-also be used to estimate the amount of genetic drift

undergone by the different populations under study. mon ancestor than shared by the whole sample consid-
ered together. If F values of one or more of the popula-In Figure 3A, estimates of F are shown for a population

that trifurcated (scenario III). For a substantial time tions increase, then it may indicate that the original F
values were artificially reduced by the presence of closelyperiod after the trifurcation, the estimated values of F

are approximately proportional to the time since the related subpopulations in the sample. Other diagnostics
are discussed by Nicholson et al. (2002).split and inversely proportional to the population sizes.

When the values of F start to exceed �0.2, F no longer Inference in admixed populations—the linkage model:
Inference of demographic history becomes more diffi-increases linearly but the ranking of the values of F

continues to reflect the relative degrees of drift that the cult if admixture has occurred subsequent to population
divergence (e.g., Beaumont et al. 2001). In these situa-populations have undergone.

The use of the F model to estimate drift is subject to tions, it may be very difficult to estimate allele frequen-
cies in the original “pure” populations, as required fora caveat, which is that contrary to the model assumption,

drift may not have occurred independently in each pop- standard population genetic analyses. When analyzing
data using structure, such populations can also be prob-ulation. For example, Figure 3B shows results based on

scenario IV, in which a single population divides into lematic. The algorithm estimates P and Q jointly, so the
model can either simultaneously underestimate the de-two and one of the populations subsequently subdivides.

The structure algorithm interprets the similarity of the gree of admixture and the genetic distance between
pairs of populations or simultaneously overestimate thetwo subpopulations as evidence that their gene frequen-

cies are close to those of the ancestor of all three popula- same quantities.
Linkage information can help to resolve the ambigu-tions and estimates lower values of F for them than for

their common ancestor prior to subdivision. ity. Informally, admixed individuals contain chromosomal
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Figure 2.—Performance of different
models in distinguishing recently diverged
populations (scenario II). Structure was run
with 50 diploid individuals sampled from
each of two populations. A total of 400 un-
linked microsatellite loci were simulated ac-
cording to the stepwise mutation model
with mutation rate 	 � 2 
 10�4; haploid
population sizes were N0 � 2N1 � 2N2 �
2500. Here, the prior for F was chosen to
put most of its weight on low values (spe-
cifically, we used a gamma distribution with
mean 0.01 and standard deviation 0.05).

chunks that derive from one population or another. We focus on scenario VI, “unidirectional” admixture.
In three out of the four cases shown (Figure 4, A–C),Using closely linked markers, the linkage model aims

to detect the chromosomal chunks and can potentially structure is highly consistent in its inference of gene
frequencies for ancestral population 1, reflecting thereconstruct the ancestral populations accurately even if

no pure members exist. continuous presence of pure individuals in the sample.
The accuracy of this inference provides a baseline fromTo explore the properties of the new method, we

have performed extensive simulations. We consider in- which to judge the performance of structure in disentan-
gling the gene frequencies of ancestral population 2,dividuals genotyped at L* loci on each of C chromo-

somes (i.e., typed at a total of CL* loci). The loci are which ceases to have any pure descendants a few genera-
tions after admixture.equidistant, with a recombination rate R per generation

between adjacent genotyped sites. The genetic map is In the first simulated example (Table 2A, Figure 4A),
as the number of generations after admixture (t2) in-assumed known. We analyzed the simulated data using

the uncorrelated model for allele frequencies. creases, the admixture model becomes increasingly bi-
ased, underestimating the divergence between the pop-Estimation of allele frequencies: One measure of

whether structure is performing well is if it can accurately ulations (shown by the intermediate position of the
inferred populations in the gene frequency tree) andestimate the population allele frequencies in the ances-

tral populations. To visualize this, we have constructed underestimating the amount of admixture (H2 in Table
2A). In contrast, the linkage model estimates gene fre-neighbor-joining trees based on the posterior mean al-

lele frequencies. When the allele frequencies are accu- quencies and the degree of admixture accurately for
many generations after the admixture event.rately estimated, the branch tips lie close to the large

black dots (which represent the “correct” frequencies). The performance of the admixture model is im-
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TABLE 1

Estimates for model log-likelihood (log P(X|K))
for 100 diploid individuals taken from a simulated

random-mating population (scenario I) with N0 � 2500

K Uncorrelated model F model

A.
1 �81404 �81404
2 — �81819
3 — �82657
4 — �82470

B.
1 �76855 �76855
2 �77169 �76780
3 �77059 �77099
4 — �78171

In B there is a 50% selfing rate. (—) One of the populations
was empty in all of the simulated runs. A total of 400 microsatel-
lites were simulated according to the stepwise mutation model
with 	 � 2 
 10�4. Each model log-likelihood is the average
from two structure runs with 5000 generations burn-in and
50,000 iterations. The prior for F (gamma distribution with
mean 0.01 and standard deviation 0.05) puts most of its weight
on low values of F. The highest likelihood run in each group
is underlined.

proved by increasing the number of chromosomal re-
gions studied (Table 2B, Figure 4B) but the linkage
model continues to prolong the number of generations

Figure 3.—Estimates of F under two evolutionary scenarios.after admixture for which accurate ancestry estimates
(A) Scenario III (population trifurcation). (B) Scenario IVcan be obtained.
(hierachical subdivision). Structure was run with 50 diploidIn another example (Table 2C, Figure 4C), the admix- individuals from each of the populations. The no-admixture

ture model shows the opposite bias for a number of model was used throughout. Mutational parameters were as
generations, overestimating rather than underestimat- in Figure 2. Population sizes are shown on the graph. The

vertical line in B indicates the time at which population 2 spliting admixture and the degree of divergence between
into populations 3 and 4.ancestral populations. The linkage model again uses

linkage information to resolve the ambiguity and it per-
forms well up to eight generations after the admixture

admixture. For examples A–C the value of r (Table 2)event. However, in this example, the marker density is
provides good estimates of the number of generationslow enough that in later generations, the linkage infor-
since admixture, except immediately after the admix-mation is lost, and the admixture and linkage models
ture event (when little admixture has occurred, so thatproduce almost identical (and similarly biased) results.
there is not yet much admixture LD and the posteriorBy contrast, Figure 4D (see also Table 2D) shows the
for r is uninformative) and �100 generations after ad-situation where the marker density is very high. In this
mixture, when the number of generations is underesti-case, background LD is substantial, leading the linkage
mated. The time of admixture may be considerably over-model to consistently overestimate the divergence be-
estimated by r if there is substantial background LD intween the two populations. Further, substantial admix-
the sample (Table 2D).ture is estimated for population 1, which is in fact pure.

Population-of-origin assignments for chromosomal re-The admixture model actually does rather better in the
gions: A further advantage of the linkage model is thatpopulations it infers, but a few generations after the
if the marker density is high enough, it can provide ac-admixture event it also produces misleading results.
curate population-of-origin assignments for chromosomalThese results illustrate the problems that can arise when
regions, as required in applications such as admixturethere is substantial background LD, a point to which
mapping. For example, Figure 5 shows population-we return in the discussion.
of-origin assignments for the two allele copies at eachEstimating the time since admixture: In addition to im-
locus of a single diploid individual. The Markov struc-proving estimates of the degree of admixture, the link-

age model also provides an indication of the time since ture of the data is clearly evident from the structure
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Figure 4.—Population allele frequen-
cies estimated using the linkage (blue)
and admixture (white on black) models
in the generations following an admix-
ture event, as visualized using neighbor-
joining trees of genetic distances (Kumar
et al. 2001). The simulations were per-
formed according to scenario VI, in
which ancestral population 2 receives
one-half of its gametes from ancestral
population 1 (in boxes) in a single, one-
way admixture event. The positions of
the true ancestral populations in the
trees are indicated by the large black
dots. The labels give the number of gen-
erations after admixture (t2) at which
the sample was taken. When the allele
frequencies are estimated accurately,
the corresponding labels lie close to the
black dots. Labels are not shown for pop-
ulation 1 in A–C as they all fall close
together on the top black dot. In each
of the simulations, L* � 50, N0 � 2N1 �
N3 � 5000. (A) C � 5, t1 � 5000, R �
0.001, N2 � 2500. (B) As in A except C �
50 (10-fold more chromosomes). (C)
C � 50, t1 � 500, R � 0.01, N2 � 100
(resulting in strong drift in the recipient
population). (D) As in C except R �
0.0001 (tighter linkage). Biallelic mark-
ers were simulated with 	 � 10�5. In
each case, structure was run with K � 2,
using 100 haploid individuals from both
of the postadmixture populations. In the
notation of Figure 1, u11 � 1, u12 � 0.5.
The trees were constructed using the
Nei and Li (1979) distance �PiPj

between
allele frequency vectors Pi and Pj as
�PiPj

� dPiPj
� (dPiPi

� dPjPj
)/2, where dPiPj

�

�L
l�1(1 � �jpkljpk�lj)/L and pklj is the fre-

quency of allele j at locus l in popula-
tion k.

output, in that nearby loci typically have similar assign- each population, and this information can be extracted
from the data, given sufficiently dense markers (as inment probabilities. When the data are phased, individ-

ual loci are often assigned with very high probability to Figure 5).
Coverage properties: A final advantage of the linkagethe correct ancestral population, especially in the mid-

dle of a large chunk inherited from one population. At model is that it gives more accurate estimates of the
statistical uncertainty of admixture proportions. Thisboundaries between chunks, the assignment probabili-

ties typically change rapidly, giving a good indication property is illustrated in Figure 6, which shows 90%
credibility regions for q for a sample of individuals fromof the position of the recombination event that brought

the chunks from different populations together. two populations. The two populations partially admixed
with each other in an admixture event (scenario VII)For unphased diploids, the data contain somewhat

less information about the population of origin of in- 32 generations before the sample was taken. After 32
generations of random mating within each postadmix-dividual allele copies, particularly in regions of the

genome where the two homologous chromosomes are ture population, the ancestry coefficients of each indi-
vidual are almost identical (differing by �0.001) andspanned by chunks inherited from different ancestral

populations. In these regions, neighboring loci do not are shown by the red horizontal lines in the figure.
Ancestry estimates were made by both the admixtureprovide information concerning which of the two allele

copies at a particular locus comes from one population and linkage models, for markers at a variety of genetic
distances. Tightly linked markers give nonindependentand which comes from the other. For many problems

(such as in admixture mapping) we are mainly inter- information and are therefore less informative about
the value of q for each individual than are the sameested in inferring the number of allele copies from
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TABLE 2

Estimates for model log-likelihood, ancestry, and other parameters for the structure runs shown in Figure 4

Admixture model Linkage model

H1 H2 Log P(X|K) � H1 H2 Log P(X|K) � r

A.
1 0.999 0.999 �4306 0.026 0.995 0.515 �4304 0.0286 3.5
2 0.995 0.512 �5414 0.1042 0.966 0.523 �4694 0.1897 2.4
4 0.991 0.533 �5728 0.1944 0.940 0.522 �4676 0.3711 5.3
8 0.990 0.400 �5965 0.1785 0.932 0.505 �4872 0.4368 7.3

16 0.990 0.419 �5957 0.191 0.937 0.492 �4961 0.4353 14.2
32 0.993 0.221 �6153 0.1144 0.956 0.479 �5428 0.4021 36.4
64 0.990 0.169 �5970 0.0985 0.961 0.476 �5433 0.3886 62.1

128 0.995 0.044 �5935 0.038 0.962 0.450 �5781 0.3977 106.7
256 0.997 0.016 �5836 0.0303 0.995 0.026 �5856 0.0345 114.3

B.
1 1.000 0.470 �39362 0.0231 1.000 0.471 �39219 0.0247 39.3
2 0.999 0.501 �49602 0.0907 0.998 0.501 �42360 0.0918 2.5
4 0.999 0.531 �55770 0.1786 0.996 0.472 �43881 0.2032 3.9
8 0.999 0.508 �57284 0.16 0.996 0.510 �44938 0.2103 7.4

16 0.999 0.490 �57299 0.1895 0.997 0.507 �46542 0.2047 15.3
32 0.999 0.468 �56969 0.1893 0.997 0.505 �48755 0.1962 32.2
64 0.999 0.452 �56558 0.1879 0.998 0.487 �50787 0.1855 62.2

128 0.998 0.366 �56027 0.1918 0.998 0.443 �52857 0.1805 110.4
256 0.999 0.006 �54832 0.0321 0.998 0.327 �54373 0.1784 199.6

C.
1 0.998 0.412 �62175 0.03 0.999 0.411 �62141 0.025 0.00
2 0.989 0.493 �64033 0.1669 0.993 0.486 �63491 0.1152 2.46
4 0.987 0.641 �66179 0.2827 0.987 0.570 �65363 0.2661 4.97
8 0.990 0.683 �66145 0.2769 0.984 0.592 �65464 0.3061 8.82

16 0.991 0.667 �66213 0.2459 0.985 0.592 �65878 0.3016 18.3
32 0.989 0.598 �65657 0.2641 0.985 0.578 �65689 0.3097 40.81
64 0.982 0.453 �65429 0.3425 0.985 0.456 �65343 0.3041 58.37

128 0.995 0.024 �64370 0.054 0.997 0.014 �64393 0.0314 97.46

D.
1 0.993 0.526 �58517 0.0579 0.575 0.450 �53428 6.25 423
2 0.976 0.488 �60928 0.2256 0.573 0.450 �54267 8.65 439
4 0.979 0.639 �61922 0.3278 0.541 0.441 �54570 10.71 373
8 0.986 0.703 �63055 0.3022 0.556 0.455 �54130 10.79 377

16 0.987 0.634 �62297 0.2708 0.605 0.481 �54419 9.62 402
32 0.970 0.566 �62248 0.3924 0.602 0.470 �54324 8.63 426
64 0.980 0.551 �61368 0.348 0.604 0.459 �53901 9.1 437

128 0.969 0.261 �62590 0.3239 0.621 0.440 �53029 7.69 465

The first column gives the number of generations after the admixture event, T2. H1 and H2 are the average
estimated ancestry from ancestral population 1 for individuals in the two postadmixture populations (true
values are 1.000 and 0.500). r is measured in generations. The highest log-likelihood in each row gives a
heuristic guide to which model fits better.

number of unlinked markers, leading to higher varia- ers increases and continue to reflect the true degree of
statistical uncertainty even for tightly linked markers.tion in estimates between individuals. The admixture

model does not take these correlations into account.
Consequently, the sizes of the estimated credibility re-

APPLICATIONS TO DATAgions are approximately independent of the actual de-
gree of linkage and are much too narrow for tightly Recombination between distinct populations of Heli-
linked markers. Under the linkage model, the credibil- cobacter pylori: The bacterium Helicobacter pylori colonizes

the human stomach lining. When multiple strains infectity regions for q become wider as linkage between mark-
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Figure 5.—Population-of-origin assignments for maternal and paternal strands from 10 chromosomes of a single diploid
individual. The loci are shown in map order, with 50 loci per chromosome. (A) True population-of-origin combinations for
each chromosomal region; (B) posterior assignment probabilities (proportion occupied by each color) calculated using the
linkage model with phased data; (C) as in B but for unphased data. The colors indicate different assignment combinations: both
allele copies inherited from population 1 (black) or population 2 (blue), maternal from population 1 and paternal from
population 2 (red), maternal from population 1 and paternal from population 2 (green), and an unspecified copy from population
1 and the other from population 2 (yellow). In B the assignment probabilities for each strand can be inferred by summing over
the different combinations for the other strand. So, for example, the probability that the maternal copy is inherited from
population 1 is given by the proportion that is either black or red. In C individual allele copies are not assigned separately, so
if the true population of origin is either red or green, the correct assignment for that locus is yellow. Structure was run with K �
2 and 50 individuals from each population. Wright-Fisher simulations were performed according to scenario VI with C � 10,
L* � 50, R � 0.001, t1 � 5000, t2 � 32, u11 � 1, and u21 � 0.3. N0 � 2N1 � 2N2 � 5000 and mutational parameters as in Figure 4.

the same stomach, they recombine rapidly through the abilities to all four populations being �0.25. The re-
maining nucleotides are mostly assigned with high prob-import of fragments of DNA that are typically a few

hundred base pairs in length (Falush et al. 2001). Falush ability to Africa1 or, less frequently, Africa2 (red). The
Africa2 nucleotides appear to come in runs, suggestinget al. (2003) used the no-admixture model on multilocus

sequence data from a global collection of strains to import of specific DNA fragments into a bacterium from
the Africa1 population. This conclusion was confirmedshow that there are four major modern populations of

bacteria, which they named “hpAfrica1,” “hpAfrica2,” by further exploratory analysis (Figure 7B). For each pop-
ulation, the sum of the log of the assignment proba-“hpEastAsia,” and “hpEurope,” on the basis of their

geographical distributions. Here, we use results from bilities was computed within a 100-nucleotide moving
window. For most of the sequence, the value of the sumthat analysis to illustrate site-by-site (in this case nucleo-

tide-by-nucleotide) population-of-origin assignment in was positive for the Africa1 population (indicating
higher probabilities than those under random assign-haploid organisms.

Figure 7 shows results for a typical isolate from South ment) and negative for the other three populations.
However, in three stretches the sum for the Africa2Africa. South Africa contained isolates from hpAfrica1,

hpAfrica2, and hpEurope populations, reflecting the population gives positive values, suggesting DNA import
into those regions.ethnic diversity of the region. The particular isolate we

consider here was assigned to the Africa1 (blue) popula- The linkage model provides a formal method to make
population-of-origin assignments that take the linkagetion by the no-admixture model. The top plot (Figure 7A)

shows the posterior assignment probabilities for each relationships into account (Figure 7C). Nucleotides in
the three regions identified by the exploratory analysisindividual nucleotide based purely on the estimated

population allele frequencies (i.e., not using informa- were assigned to the Africa2 population with probabili-
ties close to 1.0, providing statistical support for thetion from q). The plot shows that most sites provide

little information about ancestry, with assignment prob- conclusion that there have been (at least) three imports
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Figure 6.—Coverage properties of ancestry estimates for
individuals sampled from two postadmixture populations (sce-
nario VII). In each plot, the 90% credibility region for q for

Figure 7.—Hybrid ancestry of a Helicobacter pylori isolate,each individual is drawn as a thin vertical line. Within each
showing import of Africa2 fragments (red) into an isolate thatpopulation the true ancestry coefficients are essentially the
is mostly of Africa1 origin (blue). Data are for eight genesame for all individuals and are indicated by a red horizontal
fragments of between 398 and 623 nucleotides in length. (A)line. The individuals are ordered according to their point
Posterior assignment probabilities of polymorphic nucleotidesestimates for q. When the inference is performed correctly,
to populations, based on the nucleotide frequencies P esti-�90% of the individual credibility regions should cross the
mated by the no-admixture model; (B) 100-nucleotide movingred line. Details are 100 haploid individuals from each popula-
sum of the log of four times the assignment probabilitiestion, C � 50, L* � 100. Wright-Fisher simulations were per-
shown in A; (C) assignment of nucleotides using the linkageformed with R as shown; t1 � 5000, t2 � 32, u11 � 0.9, and
model. The colors green and yellow indicate European andu21 � 0.3. N0 � 2N1 � 2N2 � 5000 and mutational parameters
East Asian contributions, respectively.are as in Figure 4.

disequilibrium in a Chicago-based population of Afri-of Africa2 DNA into these fragments. This example
can-Americans. Previous work on African-Americans hasshows that given highly differentiated populations and
shown significant levels of European admixture in theenough informative sites, it can be possible in practice
range of �5–25%, with substantial variation across stud-to make accurate population-of-origin assignments for
ies and across study populations (summarized by Parraindividual loci. Further, because of the large amount of
et al. 1998). Since the admixture is quite recent (primar-information provided by linkage, it is also possible to
ily in the last 200 years or so; Parra et al. 1998; Pfaffreconstruct ancestral populations in the absence of pure
et al. 2001), it is likely that admixture LD extends overindividuals, using the linkage model. See Falush et al.
large distances and hence could be useful for gene map-(2003) for details of this analysis.
ping (Chakraborty and Weiss 1988; Stephens et al.Admixture LD in African-Americans: We used the new

linkage model to study the extent of admixture linkage 1994; McKeigue 1998). Indeed, Parra et al. (1998) de-
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tected admixture LD across 22 cM between two markers
that have extremely large frequency differences between
Africans and Europeans, in several African-American
populations.

The data set that we used consists of 247 microsatel-
lites genotyped in samples of unrelated individuals in-
cluding 210 African-Americans (from Maywood, Illinois),
158 European-Americans (from Michigan), and 308 Ni-
gerians (Yoruba; Cooper et al. 2002; Thiel et al. 2003).
The data were kindly provided by R. Cooper, A. Chakra-
varti, N. Schork, and A. Weder. We analyzed the data
using the linkage model described above, without haplo-
type phase information. Genetic distances between
markers were estimated using the Marshfield linkage
map (Broman et al. 1998). The average spacing between
adjacent markers on the same chromosome was 13 cM
with a minimum of 2.14 and a maximum of 42.66. While
the markers are not especially close together, this den-
sity should still be informative about admixture that
occurred on the order of 10 generations ago, because
under those conditions, adjacent markers would fre-
quently be inherited on the same ancestral chunk.

When run with K � 2, both the admixture and linkage
models gave very similar ancestry estimates and both

Figure 8.—Posterior distribution of the chunk size parame-suggested that Nigerians and American whites were al-
ter r, per centimorgan, for the data set of African-Americans,most pure representatives of the respective preadmix-
European Americans, and Nigerians. (A) Genetic distances

ture populations, with average estimated admixture estimated from the Marshfield map; (B) using Marshfield map
rates of 1.4% for both populations. The African-Ameri- distances but with the order of the loci randomized. The prior

distribution of log10r is uniform on (�3, 1) and is shown bycans were substantially admixed, having a mean of
the red line on each graph.17.8% European ancestry (the range of point estimates

for individuals’ values of q was 2–59%, using the admix-
ture model). Similar results were obtained if we used

maps (Figure 9). The simulations assumed that the esti-the USEPOPINFO � 1 option to specify the population
mated distances between markers are unbiased on aver-of origin of the American whites and Nigerians. Our
age, but may be inaccurate. The results indicate that asestimate of 17.8% European ancestry is very similar to
long as the chromosome chunks are typically larger thanthe estimate of 18.8% obtained by Parra et al. (1998)
the intermarker distances, then even highly inaccuratefor their sample from this population.
maps do not lead to biases in r.The posterior distribution for the parameter r under

The posterior distribution of r (Figure 8A) clearlythe linkage model is shown in Figure 8A. The posterior
excludes large values of r, indicating that we are de-mean of r was 0.098 chromosome chunk breakpoints
tecting a significant signal of admixture LD. Recall thatper centimorgan, with a 90% credible region of 0.07–0.13.
as r gets large the linkage model becomes equivalent toUnder the simplifying assumption that the African-
the admixture model, so the fact that the posterior forAmerican population was created by a single hypotheti-
r excludes large values shows that the linkage modelcal admixture event (scenario V), this event is estimated
provides a better fit to the data than does the admixtureto have taken place 7–13 generations ago. This is consis-
model in this case. For comparison, Figure 8B showstent with what one might expect, on the basis of the
the posterior for r for the same data and map distances,history of African-Americans, who were mostly exported
but with the order of the loci randomized. The posteriorfrom Africa during the late eighteenth century (Parra
for r has considerable support all the way up to theet al. 1998) and have undergone some degree of continu-
maximum value of r permitted by the prior and wouldous admixture with the European-American population
clearly have extended to still larger values had the priorsince then.
allowed this. Three further randomizations producedWe repeated our analysis using information provided
similar results, supporting the effectiveness of the poste-by map distances from the recently published deCODE
rior for r in summarizing the extent of admixture LD.map (Kong et al. 2002) and obtained similar answers

Although we detected a definite signal of admixture(data not shown). To assess the potential impact of map
LD in our sample, most of the LD present in the African-misspecification more generally, we applied structure to

a series of simulated data sets with inaccurately specified Americans is actually due to variation in q: i.e., “mixture
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Figure 9.—Effect of genetic map-distance errors on esti-
mates of r. Simulations were performed according to scenario
V, in which an additional population is formed by mixture of
two ancestral populations, t2 generations before sampling. The
intermarker distances used to simulate the data were all equal
(5 cM), but structure was given distances with errors (mean of
1 unit; standard deviation as shown on x-axis). The asterisks
show the correct estimates of r for each value of t2. Map errors Figure 10.—Most of the LD present in African-Americans ishad a substantial effect on estimates of r only when the average mixture LD, not admixture LD. The figure shows two differentchunk size was smaller than the intermarker distances. Details measures of correlation between adjacent markers, plotted asare L* � 100, C � 25, N0 � 7500, N1 � N2 � N3 � 2500. t1 � a function of the genetic distance between the markers. (A) Cor-50, R � 0.05, N2 � 2500. Markers were simulated according relation of ancestry probabilities for allele copies at pairs ofto the stepwise mutation model with 	 � 10�4. In each case, adjacent markers. (B) Residual correlation of ancestry proba-structure was run with K � 2, using 50 haploid individuals from bilities, corrected for variation in q across individuals. Theeach of the three populations. The genetic map distances correlations in the top plot are the result of both mixture andentered into the program were simulated as Poisson(n)/n, admixture LD and are clearly positive on average, albeit noisy.for a range of values of n (corresponding to different levels The correlations in the bottom plot result from admixtureof accuracy). In the notation of Figure 1, u11 � 1, u22 � 1, LD only, and the average is not significantly different fromu31 � 0.5, u32 � 0.5. zero. However, the more powerful structure-based analysis does

detect a strong signal of admixture LD. See text for further
explanation.LD” in the terminology we introduced earlier. To differ-

entiate between mixture and admixture LD, we exam-
ined the correlations of ancestry estimates (from the

with the genetic distance between the loci does not haveadmixture model) between adjacent loci. The first mea-
a significant slope under either measure, presumablysure that we used (Figure 10A) measures the correlation
because the trend has been obscured by the high degreebetween the estimated probability of African ancestry
of variation in correlation values at each genetic dis-(averaged over the two allele copies at each locus) for
tance. The fact that the linkage model obtains plausiblepairs of neighboring loci. The correlations were positive
estimates of r and rejects large values of r indicates thaton average (mean 0.041 with standard error 0.009),
the linkage model extracts much more informationalbeit with a great deal of variation between different
from the data than the pairwise comparisons do.locus pairs. These correlations reflect the total LD in

Our results also highlight an important feature ofthe sample. The second measure (Figure 10B) shows
human genetic data, which is that there is a great dealthe correlations that remain when variation in q among
of noise in raw LD estimates for individual locus pairs,African-Americans is accounted for. For each individual,
even when the admixture involves populations that, byat each locus, we computed a “residual” by subtracting
human standards, are relatively highly differentiated.the individual’s estimated q(i) from the estimated proba-
Thus, our description of admixture LD in this popula-bility of African ancestry (averaged over the two allele
tion would be enhanced by using a denser set of mark-copies at each locus). The figure shows the correlations
ers, and for applications such as admixture mappingof these residuals. The correlations are slightly but not
where one needs to estimate the population of originsignificantly negative on average (mean �0.001 with
for the sampled chromosomes, a denser marker setstandard error 0.007), implying that most of the LD in
would be critical. In admixed populations where locithe sample can be accounted for by variation in q (i.e.,

mixture LD). Further, a regression of the correlations have been chosen specifically to have large frequency
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differences between the putative parental populations
(Parra et al. 1998), these loci may be more informative
for studying admixture than microsatellites were here.

Genetic drift in Drosophila melanogaster : To illustrate
some of the possible ways of using the F model in histori-
cal inference, we have reanalyzed the data set of Agis
and Schlötterer (2001). Their data set consisted of
48 microsatellite loci typed in samples of flies from Israel
(1 sampling location, 58 genotypes), New South Wales,
Australia (8 sampling locations, 190 genotypes), and
Tasmania (2 sampling locations, 53 genotypes). Some
of the genotypes came from isofemale lines, so we haplo-
dized the data set by randomly discarding an allele copy
at each locus. In the original analysis, Agis and Schlöt-
terer found that the Tasmanian population had similar
high pairwise FST values with both Australian and Israeli
populations. In contrast, FST between Australian and
Israeli flies was quite low (though statistically signifi-
cant), as is typical for populations of Drosophila melano-
gaster. Tasmanian flies had lower genetic diversity than
the other groups, but statistical tests for bottlenecks
based on the allelic distribution in individual locations
were inconclusive, not providing clear evidence for
stronger drift within the Tasmanian lineage. Since their
analysis did not establish any particular connection be-
tween the Australian and Tasmanian populations, Agis
and Schlötterer could not rule out the possibility that
Tasmanian flies might have come from an entirely dif-
ferent source population with distinct gene frequencies.

We started the analysis without making any assump-
tion about geographical clustering. Using the no-admix-
ture and F models, K � 3 gave the highest model likeli- Figure 11.—Posterior for F for D. melanogaster populations
hood. The three inferred populations correlated well identified by structure. The prior (a gamma distribution with

a mean and standard deviation of 0.1) is shown as a red dottedwith the land masses Israel, Tasmania, and Australia, al-
line. (A) Values of F estimated using the whole data set, withthough many flies were not clearly allocated to one
K � 3. (B–D) Values estimated with K � 2, excluding datapopulation and 50 Australian flies, 2 Tasmanian flies, from Tasmania, Australia, and Israel, respectively. The propor-

and 7 Israeli flies were assigned to their home popula- tions of genotypes from the three land masses assigned to
tion with �50% probability. These inconsistencies are each structure population are shown in boxes.
due to limited statistical power rather than to identifi-
able admixture events because an analysis under the mi-
gration model with the USEPOPINFO option (Pritch- in both cases. This analysis suggests that Tasmanian and

Australian flies share a more recent common ancestorard et al. 2000), in which each genotype was assigned
a 5% prior probability of being admixed, did not identify with each other than with the Israeli flies. Further, the

amount of drift that the Australian flies have undergoneany evidence for admixture. The value of F inferred for
the Tasmanian population was high, consistent with a since splitting with the Tasmanian flies is very low, im-

plying that Tasmania was colonized from Australia andstrong episode of genetic drift (Figure 11A). The much
lower values of F for the other two populations and underwent a bottleneck in the process. A possible tech-

nical objection to our analysis is that flies were sampledthe weaker correlation of assignments with geography
indicate that there has been no comparable episode of in several locations in Australia and that this might

somehow account for the particularly low estimatedgenetic drift separating Israeli and Australian flies.
Where did the Tasmanian flies come from? We esti- value of F. We tested for this possibility using the five

sampling locations in Australia that had �25 genotypes.mated F values when analyzing Tasmanian and Israeli
flies together (Figure 11C) and Tasmanian and Austra- We ran structure separately for each one, using all of the

Tasmanian genotypes in every case. The analysis gave alian flies together (Figure 11D). The value of F inferred
for the Australian population was close to zero, much consistently high value of F for the Tasmanian popula-

tion (0.100–0.125) and a low value for the Australian pop-lower than that for the Israeli population, while a high
value of F was estimated for the Tasmanian population ulation (0.004–0.023)—lower than that for the Israeli
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population in the equivalent analysis (0.039). Our infer- has been so extensive that no pure individuals remain
in the sample. In highly informative data sets, it mightence therefore appears to be robust to the exact combi-

nation of populations chosen for analysis. also be useful to relax the assumption of a single value
for r. Possible ways forward include using a different rThe approach we have taken is similar to that used by

Nicholson et al. (2002), who calculated drift parame- for each individual or geographical location and/or
allowing the expected chunk size to depend on theters for populations that were defined on the basis of

geographical labels (this type of analysis can be per- population of origin of the chunk. In this way, it might
be possible to extract additional information about theformed using structure by using the program option

USEPOPINFO). For this data set utilizing geographical timing of admixture between different subpopulations.
Although the linkage model takes into account thelabels does not change the conclusions concerning the

origin of the Tasmanian flies, although it does lead to correlations between markers that occur due to admix-
ture, structure will always need data from several un-different estimates for the extent of genetic drift, estimat-

ing higher values of F for the Israeli population (0.055 linked or weakly linked genetic regions from each indi-
vidual to make meaningful inferences. We stronglyvs. 0.026) and lower values of F for the Australian one

(0.015 vs. 0.022) when all three populations are included recommend against using the model for a data set con-
sisting of human Y chromosome or mitochondrial hap-in the analysis. These results show that when clustering

is inaccurate due to limited divergence between popula- lotypes, for example. As well as having markers from
several genomic regions, it is also important that none oftions, this can significantly affect F estimates. The advan-

tage of the approach taken here is that no assumption the markers be too strongly linked. Background linkage
disequilibrium arises through genetic drift within popu-is made at the outset about the likely patterns of geo-

graphical partitioning. If either the actual population lations, and in some scenarios this can lead structure to
produce misleading results.structure is independent of geography, for example,

because of cryptic speciation, or the boundaries to gene Background LD causes problems when particular al-
lele combinations are overrepresented in two or moreflow are unexpected, then this will be picked up by the

analysis. In the Drosophila example, the most likely of the populations before admixture takes place. Such
LD can arise through genetic drift before the popula-cause of differentiation is one that might have been

expected at the outset—a founder effect during the tions separate (i.e., during the burn-in phase in scenarios
V, VI, and VII in Figure 1). If the markers are tightlycolonization of an island from a mainland source.
linked, then this LD can persist throughout the period
of divergence and subsequent admixture. Suppose that

DISCUSSION
for this reason, allele combinations ab and AB are over-
represented in both of the populations, compared toWe have presented two major modifications of the

structure approach, namely the linkage model and the Ab and aB. The linkage model tries to attribute this
LD to admixture and hence tends to overestimate theF model. Both can significantly improve the technical

quality of the inference, giving better clustering, more frequency of alleles a and b in one population and the
frequency of alleles A and B in the other. In this manner,realistic confidence limits, and more accurate admix-

ture estimates. For some data sets, these improvements structure can both overestimate the divergence between
ancestral populations and infer spurious admixture. Be-are critical, allowing the detection of population sub-

structure or admixture that was invisible using the ear- cause background LD decays over short distances, this
also leads to overestimation of the time since admixture.lier algorithm. The new models are also an important

step in making structure into a tool for performing de- In designing a data set to be used by the linkage
model, it is therefore desirable to ensure that the mark-tailed historical inference.

The linkage model allows structure to analyze data sets ers are sufficiently closely linked to allow for admixture
LD, yet sufficiently far apart that there is not substantialcontaining markers with admixture LD between them,

significantly expanding the range of data sets for which background LD between them. Historical information
about the likely time of admixture, combined withit is an appropriate tool. For data sets with weak admix-

ture LD (e.g., the African-American example), the link- knowledge of intermarker recombination rates, can be
used to help select an appropriate marker spacing.age model gives similar clustering and ancestry estimates

to the admixture model, but also estimates a chunk size An alternative, post hoc, approach is to rely on inspec-
tion of structure output. One observation that we haveparameter r that provides information on the average

rate of decay of admixture LD in the sample. The rate made from simulations (based on a variety of demo-
graphic scenarios; data not shown) is that when back-of decay reflects the amount of time that has elapsed

since populations admixed. For very informative data ground LD is a problem, structure infers that all individu-
als from both populations are admixed. Genuine admixture,sets (e.g., the H. pylori data), the linkage model also al-

lows accurate assignment of chromosomal chunks to by contrast, is often asymmetrical, affecting some popu-
lations much more than others. For example, if a prede-ancestral populations. One consequence is that ances-

tral populations can be reconstructed even if admixture fined subpopulation in the sample has substantial ances-



1583Inferring Population Structure

try from one structure population without corresponding ture. The no-admixture model assumes a prior probabil-
ity that each individual is drawn from one of the Kancestry from a second, then this is an indication that

background LD is not a serious bias. Further when K � populations is 1/K. It would also be possible to general-
ize this prior to allow for differences in frequency be-2, background LD causes admixture to be inferred pref-

erentially between the most closely related structure pop- tween populations but this option has not yet been
implemented.ulations; thus if admixture is inferred between distantly

related populations, this result is unlikely to result from The large number of model options that have now
been implemented might lead to concerns about over-background LD.

In future, it should be possible to specifically model parameterization. However, provided that there are a
reasonable number of loci (�10), the number of modelthe background LD present in the data. Full coalescent

approaches to this type of problem are computationally parameters added by each model option is small in
comparison with both the number of elements in thedaunting, and so models that simplify the structure of

the data may be suitable. One approach would be to data set and the total number of parameters estimated
by structure (which include all the elements of P anduse a Markov formulation of haplotype structure, per-

haps like that used by Daly et al. (2001). This model Q). Indeed, although the F model may appear to in-
crease the number of parameters to be estimated by thewould split each chromosome into segments that con-

tained background LD, so that any LD between seg- model, in some sense it decreases the effective number
of parameters, by introducing correlations among thements would be due to admixture. Another, more ambi-

tious, approach would be to approximate patterns of allele frequencies in the different populations.
Nevertheless, there may not be enough informationLD using the kinds of ideas applied in a quite different

setting by Stephens et al. (2001). in a particular data set to estimate all of the parameters,
in which case a simpler model would be more appro-This article also introduced the new F model for corre-

lated allele frequencies. This update improves cluster- priate. The linkage model adds only a single parameter,
r, but for some data sets little or no admixture LD maying for some data sets where populations are very weakly

differentiated and also allows inference of the pattern be present (indicated by posterior support for large
values of r), in which case the admixture model shouldof drift. We used the model to show that Tasmania was

almost certainly colonized by Australian D. melanogaster provide essentially the same answers (and be faster to
run). It is also possible that certain parameter combina-and that a significant bottleneck occurred in the pro-

cess. A weakness of the current model is that it assumes tions could lead to problems. For example, our experi-
ence with simulated data suggests that it is sometimesthat all populations have evolved by independent drift

from a single ancestral source population, which may difficult to estimate both � and F jointly (perhaps be-
cause estimated values for � are sensitive to the estimatesnot always be a good approximation. This framework

could potentially be generalized to incorporate, and for the ancestral allele frequencies PA, which in turn are
sensitive to estimates of F). In such cases we have founddifferentiate between, more complicated scenarios, with

populations splitting from each other sequentially. it useful to first estimate � using the old independent
model for population allele frequencies and then to fixThe new implementation of structure (version 2) also

contains other new options that can be useful for some � at its estimated value while using the F model for
correlated allele frequencies.data sets. In the earlier version, the gene frequencies P

and admixture proportions Q were drawn from symmet- In many cases, symptoms that might be attributed to
overparameterization in fact provide useful indicators ofric Dirichlet distributions with parameters � and �, re-

spectively. � was normally fixed at 1.0, which corre- genuine biological uncertainty. For example, the model
used for gene frequencies sometimes has a large effectsponds to a uniform prior on allele frequencies. For

some types of markers (e.g., sequence polymorphisms on the estimates of admixture proportions that are ob-
tained. In Figure 2 the estimates of admixture betweenand SNPs, depending on the process of ascertainment),

the frequency spectrum may be skewed toward rare the populations (in fact, 0) are much more accurate
under the F model than under the uncorrelated model.alleles. In this situation, the data are better modeled by

smaller values of � (smaller values of � place more prior However, neither model makes accurate estimates for
the proportion of European ancestry of the African-weight on configurations where all but one allele at

a locus is rare). Therefore, we have implemented a Americans if Nigerians are excluded from the sample.
The uncorrelated model overestimates admixture (28%)Metropolis-Hastings update for �. We have found that

for data where most alleles are rare, updating � can while the F model underestimates it (3%). For both
of these data sets, the large difference in admixturelead to more accurate estimates of P. We now also allow

different values of � for each population. This general- estimates between models provides an indication that
there is limited information on the true degree of ad-ized prior for Q allows for the fact that in practice not

all populations are equally represented in the sample, mixture. In contrast, when Nigerians are added to the
latter data set, both models give very similar estimateswhich may lead to more accurate ancestry estimates,

particularly in situations of highly asymmetric admix- (18 and 17%) for the European ancestry of African-
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APPENDIX

Here we provide the computational details for the new MCMC updates. Recall that our goal is to sample from
the joint posterior distribution of

Pr(P, Q , Z, r, F, �, �|X, K). (A1)

MCMC methods provide an approach for doing this. We start by making arbitrary initial choices for each parameter
and then propose updates that change a subset of these, conditional on the other parameters and the data. One
full iteration of our Markov chain proposes changes to each parameter. This algorithm results in a Markov chain
whose stationary distribution is the joint posterior distribution of interest. For background on these methods in the
present context see Pritchard et al. (2000) or a general text such as Gilks et al. (1996).

Pritchard et al. (2000) described updates for P, Q, Z, and �. Here, we describe updates for r, F, and �, as well
as modified updates for Q and Z under the linkage model, and for P under the F model.

MCMC update for the F model: The update for pkl· is similar to that for the original (independent frequencies)
model (Equation A6, Pritchard et al. 2000), but substitute pAlj(F�1

k � 1) in place of �j.
The update for the “ancestral” allele frequencies PA is more complicated. The algorithm that we have implemented

is as follows. Start with initial guesses for PA (e.g., based on the overall sample frequencies). Then, at each step of
the Markov chain, propose the following update once for each locus. Select at random two alleles m and n, such
that 1 � m � n � Jl , where Jl is the total number of alleles observed at locus l. Simulate a value � from a normal
with mean 0 and some small (fixed) standard deviation (we used 0.05) and propose changing the allele frequencies
pAlm and pAln to p�Alm � pAlm � � and p�Aln � pAln � �, respectively. Reject the proposal if either of the proposed allele
frequencies is outside (0, 1). Otherwise, accept the updated allele frequencies according to the appropriate Metropo-
lis-Hastings probability, that is, the minimum of 1 and

Pr(P �A)Pr(P1, . . . PK|P �A, F )
Pr(PA)Pr(P1, . . . PK|PA, F )

, (A2)

where Pr(PA) is the prior probability of PA, assumed to be symmetric Dirichlet with parameter �. Expression (A2)
can be rewritten as

� p�Almp�Aln

pAlmpAln
�
��1

�
K

k�1


( fkpAlm)
( fkpAln)

( fkp�Alm)
( fkp�Aln)

p fk�
klmp�fk�

kln , (A3)

where fk � (1 � Fk)/Fk .
Finally, to update each value of Fk, we start from an initial value F (0)

k (the prior mean, say) and then update it as
follows. Conditional on the current value, Fk , we propose a new value, F �k , from a normal distribution with mean Fk

and some fixed standard deviation (0.05, say). If the new value F �k is outside the interval (0, 1), we reject the proposal.
Otherwise, we accept it with the Metropolis-Hastings probability, namely, the minimum of 1 and

Pr(F �k)Pr(Pk|PA, F �k)
Pr(Fk)Pr(Pk|PA, Fk)

, (A4)

where Pr(Fk) is the prior probability of Fk , assumed to be proportional to a gamma distribution with mean 	 and
variance �2 (see main text). Expression (A4) can be rewritten as

exp �	(Fk � F �k)
�2 ��F �k

Fk
�
	2/�2�1

�
L

l�1
� 
( f �)� j 
( fpAlj)p fp �Alj

klj


( f )� j 
( f �pAlj)p fpAlj
klj

�, (A5)
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where f � and f are (F�k � 1)/F�k and (Fk � 1)/Fk, respectively. If we assume a single value F for all populations, the
update is much the same, except that the posterior ratio is given by a product over both k and l.

Full description of the linkage model, including unphased data: The following describes an MCMC scheme for
simulating from a Markov chain with stationary distribution Pr(P, Z, r, Q|X, K).

1. Sample from Pr(Z|P, r, Q, X).
2. Sample from Pr(P|Z, r, Q, X) � Pr(P|Z, X).
3. Update r by Metropolis-Hastings update.
4. Update Q by Metropolis-Hastings update.

Step 2 is exactly the same as in Pritchard et al. (2000). Step 1 can be done separately for each individual, using
the forward-backward algorithm (e.g., Rabiner 1989), as follows. We start by assuming that individuals are haploid or
that phase is known. For each chromosome from one individual (and omitting the individual’s superscript i for
clarity), we let �l k � Pr(x1, . . . , xl , zl � k|P, r, Q). Then, recalling that pklj is the frequency of allele j at locus l in
population k, we have

�1k � qkpk1x1
(A6)

for k � 1, . . . , K, and

�(l�1)k� � �
K

k�1

�l kPr(zl�1 � k�|zl � k)pk�(l�1)xl�1
. (A7)

This allows us to compute �l k for k � 1, . . . , K, and l � 1, . . . , L (the “forward” part of the algorithm). This
computation can be made linear in K rather than quadratic, following a simple rearrangement. After substituting
Equation 3 for Pr(zl�1 � k�|zl � k), we get

�(l�1)k� � ��
K

k�1

�l k�pk�(l�1)xl�1
qk�(1 � exp(�d l r)) � �l k�pk�(l�1)xl�1

exp(�d l r). (A8)

Note that the sum in brackets is independent of k� and therefore needs to be calculated only once for each l.
Having done this, the “backward” part allows us to simulate Z , starting from zL, using Gibbs sampling based on

Pr(zL � k|X, P, r, Q) � �LK (A9)

and

Pr(zl � k|zl�1 , . . . , zL, X, P, r, Q) � Pr(zl � k, x1 , . . . , xl|P, r, Q)Pr(zl�1 , . . . , zL, xl�1 , . . . xL, P, r, Q)

� �l kPr(zl�1|zl � k, r, Q), (A10)

where Pr(zl�1|zl � k, r, Q) is given by (3).
For unphased or partially phased diploids, we have implemented two algorithms. The two algorithms can incorpo-

rate different types of phase information and produce equivalent results for unphased data. The first algorithm is
based on a Markov formulation for phase information. For each pair of adjacent linked loci we have an estimate
of the probability bl that the first alleles of loci l and l � 1 are on the same chromosome. Information that adjacent
allele copies were inherited together from the same (unspecified) parent is often available from sib-pair pedigree
data. For unphased data the order of the allele copies is random so that bl � 0.5 for all loci. We define

�l k1k2 � Pr(x 1
1, x 2

1, . . . , x 1
l , x 2

l , z 1
l � k1, z 2

l � k2|P, r, Q), (A11)

where superscript (1) refers to the first allele copy and (2) refers to the second allele copy at each locus. Denote
the quantity in the right-hand side of Equation 3 by Pk�k . In the forward part of the algorithm we calculate

�1 k1k2 � qk1qk2pk11x1
1
pk21x2

1
(A12)

for k1 � 1, . . . , K; k2 � 1, . . . , K; and

�(l�1)k1�
k2� � �

K

k1�1
�
K

k2�1

�l k1k2pk1�
(l�1)x1

l�1
pk2�

(l�1)x2
l�1

{blPk1�
k1Pk2�

k2 � (1 � bl)Pk1�
k2Pk2�

k1}. (A13)

In the backward part we jointly simulate z1 and z2 using

Pr(z1
L � k1, z 2

L � k2|X, P, r, Q) � �Lk1k2 (A14)

and



1587Inferring Population Structure

Pr(z 1
L � k1, z 2

L � k2|z 1
l�1, z 2

l�1, . . . , z 1
L, z 2

L, X, P, r, Q) � �l k1k2 {blPz 1
l�1k1Pz 2

l�1k2 � (1 � bl)Pz 1
l�1k2Pz 2

l�1k1}. (A15)

The model for maternal and paternal phase information is similar; here

�l k mk p � Pr(x 1
1, x 2

1, . . . , x 1
l , x 2

l , zm
l � km, z p

l � k p|P, r, Q), (A16)

where superscripts m and p refer to the maternal and paternal allele copies at each locus,

�1k mk p � qk mqk p{M1pk m1x 1
1
pk p1x 2

1
� (1 � M1)pk m1x 2

1
pk p1x 1

1
} (A17)

and

�(l�1)k m�
k p� � �

K

k m�1
�
K

k p�1

�l k mk pPk m�
k mPk p�

k p{Mlpk m�
(l�1)x 1

l�1
pk p�

(l�1)x 2
l�1

� (1 � Ml)pk m�
(l�1)x 2

l�1
pk p�

(l�1)x 1
l�1

}, (A18)

where Ml is the probability that allele 1 at locus l is inherited maternally, assumed known. In the backward step, we
simulate the population of origin of maternal and paternal chromosomes.

Pr(zm
L � km, z p

L � k p|X, P, r, Q) � �Lk mk p (A19)

and

Pr(zm
l � km, z p

l � k p|zm
l�1, z p

l�1, . . . , zm
L , z p

L, X, P, r, Q) � �l k mk pPz m
l�1k mpz p

l�1k p . (A20)

We then simulate the population of origin for the two allele copies at each locus, conditional on maternal and
paternal assignments, using

Pr(z 1
l � km, z 2

l � k p|zm
l � km, z p

l � k p) � Mlpk mlx 1
l
pk plx 2

l
. (A21)

For both of these diploid models, a rearrangement analogous to that described for the haploid case leads to the
computation in the forward part being proportional to K 2 rather than to K 4.

For each of these models, the updates for r and Q use the random-walk Metropolis algorithm. In haploids, for
example (with the individual superscript i reinstated),

Pr(x (i)
1 . . . x (i)

L |P, r, q (i)) � �
K

k�1

�(i)
Lk ; (A22)

r is updated using a Metropolis-Hastings step, by comparing this sum for proposed and current values of r. We have
implemented a uniform prior for log10(r); the proposed value of log10(r) differs from the current value according
to a normal distribution with mean of 0.05.

Last, we perform step 4, the Metropolis-Hastings update for Q, as follows. For each individual i, we simulate a
proposal value q(i)* from the prior distribution, which is D(�1, �2, . . . , �K). The proposed value q(i)* is accepted with
probability that is equal to the ratio of the likelihoods.

MCMC updates for � and �: We begin by placing independent uniform priors in the range (0, 10) on �k for
each population k. We start the Markov chain at arbitrary initial values, �(0)

k � 1, for instance, and then update each
�k as follows. Conditional on the current value of �k, we propose a new value ��k from a normal distribution with
mean �k and some standard deviation (0.3, say). If ��k is outside (0, 10), we reject the new proposal; otherwise, we
accept it according to the standard Metropolis-Hastings ratio. That is, we accept it with a probability that is the
minimum of 1 and

�
L

l�1


( Jl ��k)
(�k)J
l


( Jl �k)
(��k)J
l

(pkl1pkl 2 · · · pklJl )
��

k��k . (A23)

The latter expression is the ratio of the density function for the Dirichlet distribution given the proposed and
current values of �k, respectively, multiplied across all loci. If we assume that the same value of � holds for all K
populations, then the analogous update ratio is

�
L

l�1
�
K

k�1


( Jl ��)
(�)J
l


( Jl �)
(��)J
l

(pkl1pkl 2 · · · pklJl )
���� . (A24)

The full update used for � is closely analogous to that for �, except that the products are over individuals, not loci,
and over ancestry coefficients, q, not allele frequencies, p.




