
Ancient Trans-Species Polymorphism at the Major

Histocompatibility Complex in Primates

Alyssa Lyn Fortier1∗ and Jonathan K. Pritchard1,2

1Department of Biology, Stanford University, Stanford, CA USA
2Department of Genetics, Stanford University, Stanford, CA USA

Email: afortier@stanford.edu, pritch@stanford.edu

June 29, 2022

Abstract

Classical genes within the Major Histocompatibility Complex (MHC) are responsible for peptide presenta-
tion to T cells, thus playing a central role in immune defense against pathogens. These genes are subject
to strong selective pressures including both balancing and directional selection, resulting in exceptional ge-
netic diversity—thousands of alleles per gene. Moreover, some alleles appear to be shared between primate
species, a phenomenon known as trans-species polymorphism (TSP) or incomplete lineage sorting, which
is rare in the genome overall. However, despite the clinical and evolutionary importance of MHC diversity,
we currently lack a full picture of primate MHC evolution. To start addressing this gap, we used Bayesian
phylogenetic methods to determine the extent of TSP at six classical MHC genes. We find strong support
for TSP in all six genes, including between humans and old-world monkeys in HLA-DRB1 and even—
remarkably—between humans and new-world monkeys in HLA-DQB1. Despite the long-term persistence
of ancient lineages, we additionally observe rapid evolution at amino acids within the peptide-binding do-
main. The most rapidly-evolving positions are also strongly enriched for autoimmune and infectious dis-
ease associations. Together, these results suggest complex selective forces arising from di↵erential peptide
binding, which drive short-term allelic turnover within lineages while also maintaining deeply divergent
lineages for at least 45 million years.
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Introduction

The Major Histocompatibility Complex (MHC) is a large immunity locus shared among the jawed ver-
tebrates (Figure 1A)1. In humans, the MHC is also known as the HLA (Human Leukocyte Antigen) re-
gion; it spans about 5 MB on Chromosome 6 and contains 412 total genes2,3. This includes the “classical”
MHC genes that are responsible for presenting protein fragments for inspection by T cells. MHC peptide
presentation allows T cells to monitor the body for the presence of foreign peptides, which might indicate
infection or cancer; this is crucial for vertebrate immune surveillance4.

The MHC locus is extraordinarily polymorphic, with thousands of distinct alleles (i.e., haplotypes) ob-
served at the classical genes5–7. Di↵erent alleles are functionally diverse, with distinct peptide-binding
a�nities and, consequently, allelic di↵erences in pathogen detection4. Given this huge diversity of func-
tionally distinct alleles, the MHC is by far the most important locus in the genome for inter-individual
variation in both infectious and autoimmune disease risk, with thousands of GWAS hits8. Here, we aim to
understand the evolution of the MHC by characterizing trans-species polymorphism in six classical genes,
HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1, and exploring the functional consequences.

Historically, the MHC provided some of the first clear examples of positive selection in early studies of
molecular evolution. By the 1980s and 1990s, researchers had noted an excess of missense variants (i.e.,
dN/dS > 1) in the peptide-binding regions of classical MHC genes9,10, alleles shared across species11,12,
and high nucleotide diversity across the region13,14 in rodents and primates. Indeed, modern data show
that nucleotide diversity in the human MHC exceeds 70-times the genome-wide average near the classical
genes, suggesting ancient balancing selection (Figure 1A-C). Meanwhile, the MHC also features promi-
nently in genome-wide scans for short-term directional selection15–20.
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Figure 1: The classical MHC region. A) Each point at top represents the location of a gene, including the
Class I HLA genes A, C, and B, and Class II HLA genes DRB1, DQB1, and DPB1 that are the focus of this
paper. The black line shows nucleotide diversity (Nei and Li’s ⇡) across the region, while the red dotted line
shows the genomewide average nucleotide diversity (⇡ ⇡ 0.001)21. B) Nucleotide diversity around HLA-A, with
exon structure shown. C) Nucleotide diversity around HLA-DRB1, with exon structure shown. Zoomed-in views
of nucleotide diversity for the other genes is shown in Supplementary Figure S1. D) Species tree showing the
phylogenetic relationships among selected primates from this study. The orange dashed line indicates the split
of the human/chimpanzee lineage from gorilla, approximately 10 million years ago (Mya). The blue dashed line
indicates the split of the ape lineage from OWM, approximately 27 Mya. The green line indicates the split of
the Catarrhine lineage (apes and OWM) from NWM, approximately 45 Mya. References for divergence times
are listed in Supplementary Table S1.

Selection at the MHC is believed to reflect the dynamics of host-pathogen evolution1,22. The MHC system
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provides constant surveillance against a diverse and ever-changing array of pathogens, all while avoiding
detection of self-peptides, which can lead to autoimmune disease. However, the precise mode of selection
has not been fully resolved, and several models can explain salient features of the MHC. Under heterozy-
gote advantage, individuals with di↵erent MHC alleles at each classical locus could defend against a wider
range of pathogens than homozygotes. This would drive selection in favor of new alleles (as these would
nearly always be heterozygous), and select against common alleles. The divergent allele advantage model
extends the heterozygote advantage model by noting that heterozygotes with functionally divergent al-
leles may have better immune surveillance than heterozygotes with similar alleles1,23. Other models em-
phasize the role of pathogen evolution. In the rare allele advantage/frequency dependent selection models,
pathogens adapt to avoid detection by the most frequent MHC alleles, meaning novel alleles enjoy fitness
advantages1,24. Lastly, in fluctuating selection, pathogen pressures vary across time and space. Specific
MHC alleles could become advantageous during epidemics, resulting in frequency shifts over time or across
geographical areas1. In all of these modes, high diversity and long-term maintenance of alleles are inextri-
cably linked.

In the present paper, we explore a particularly striking feature of the selection signals at MHC, namely
the evidence for extremely deep coalescence structure. Some alleles (haplotypes) are more closely related
to corresponding alleles from another species than they are to distinct alleles from their own species. This
phenomenon is referred to as trans-species polymorphism (TSP).

TSP is rare overall in humans. Across most of the genome, human alleles coalesce to a common ancestor
well within the human lineage, typically around 2 million years ago25. Indeed, only ⇠100 loci genome-wide
show compelling evidence for sharing of ancestral alleles between humans and our closest relatives, chim-
panzees26. TSP among humans and more distantly-related species is even rarer; besides MHC, the only
other clear example of deep TSP is at the ABO locus27. At this locus, both the A and B alleles are shared
by descent throughout the apes, implying that the A and B lineages date back to at least the divergence-
point of humans and gibbons ⇠20 million years ago28. Such deep coalescence is extraordinarily unlikely
under a neutral model, and instead points to some form of balancing selection.

Meanwhile, TSP is evident at multiple MHC genes, and in many di↵erent phylogenetic clades. TSP was
first proposed in the 1980s on the basis of unusual sequence similarity between mice and rats11,13,29–32,
and between humans and chimpanzees12,33. Later work has reported likely TSP between humans and
apes34–37 and humans and old world monkeys38–48,48–50 (see Supplement for more details); deep TSP is
also consistent with the high levels of genetic diversity within the MHC. Such ancient TSP would make
the MHC unique compared to any other locus in the genome. However, most previous work has not fully
accounted for the inherent uncertainty in phylogenetic inference, especially given the potential for conver-
gent evolution at functional sites. Although there is clear evidence for TSP, its exact depth at each gene is
still uncertain.

Thus, despite the long history of evolutionary studies of the MHC, we still lack a full description of key
aspects of variation in the classical MHC genes. In particular, while the high within-species diversity and
between-species allele sharing have been well-known for 30 years, we still do not know precisely how an-
cient these lineages are, how this varies across genes, how to interpret the evidence for ancient lineages
alongside the evidence for rapid evolution at specific sites, or how these evolutionary features relate to pro-
tein function and disease associations.

To address these questions, we used data from the IPD-MHC/HLA database, a large repository for MHC
allele sequences from humans, non-human primates, and other vertebrates5–7. The thousands of full-length
allele sequences deposited here provide a snapshot of MHC diversity across a wide range of species and al-
low us to answer questions at a larger scale than previously (Figure 1D). We account for the uncertainty
in phylogenetic inference using a Bayesian MCMC approach (BEAST2 ) that samples from the posterior
distribution of trees, allowing us to perform formal model-testing for shared ancestral lineages. BEAST2
also permits evolutionary rates to vary across sites, thus allowing us to minimize the influence of rapidly-
evolving, potentially-convergent positions. Lastly, we integrated this analysis with protein structural infor-
mation and disease associations.
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We find conclusive support for TSP among the great apes for HLA-B and -DPB1, and between humans
and OWM in HLA-DRB1. Remarkably, we observe TSP in HLA-DQB1 going back to the common ances-
tor of humans and NWM, implying that alleles have been maintained by balancing selection for at least
45 million years. We also find that most rapidly-evolving sites in all six classical genes are located in the
critical peptide-binding regions; moreover, the most rapidly-evolving sites are also the most frequently as-
sociated with immune phenotypes and diseases in the literature, connecting our evolutionary findings with
their functional consequences. These results highlight the contrasting roles of ancient balancing selection
and short-term directional selection within the peptide-binding regions of these genes, and motivate fur-
ther evolutionary and functional studies to better understand this unique system.

Results

Data. We collated sequence data for six classical MHC genes from existing databases. The IPD-IMGT/HLA
database contains over 32,800 human alleles51, while the IPD-MHC database contains over 11,400 al-
leles across 77 species, including 55 non-human primates52. Most alleles belong to the highly polymor-
phic classical MHC genes, and most are partial sequences covering exons 2 and 3 (which contain the pep-
tide binding region), while the rest span the entire coding regions of genes. A handful of alleles also in-
clude the introns, although such full sequences are limited to only a few species. We compiled alleles of
six highly polymorphic classical genes, HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1, for which the entire
coding sequence (all exons) was available in the database (details in Methods). Because phylogenetic infer-
ence is computationally intensive, we reduced each set to a representative collection of alleles spanning the
species’ allelic diversity, according to the alleles’ two-digit designations. The final data set consisted of 149
alleles for HLA-A, 197 for HLA-B, 61 for HLA-C, 100 alleles for HLA-DPB1, 122 alleles for HLA-DQB1,
and 122 alleles for HLA-DRB1 (available as Supplementary Files).

Phylogenetic Inference. To assess the evidence for ancient TSP, we first reconstructed the phyloge-
netic relationships between alleles. This task is potentially challenging for several reasons: (i) phylogenetic
inference is subject to considerable uncertainty, and it can be di�cult to quantify (and visualize) the un-
certainty in tree reconstruction; (ii) adaptive evolution of missense variants in the peptide-binding regions
could make divergent alleles appear similar due to convergent evolution; (iii) recombination means that
di↵erent regions of a gene have di↵erent ancestral histories, thus not conforming to standard phylogenetic
assumptions.

To address these challenges, we used a method for Bayesian evolutionary analysis, BEAST2, to estimate
allele trees53,54. Previous MHC work has mostly relied on either summary trees or rudimentary assess-
ments of tree confidence such as bootstrap clade support, which do not naturally allow for hypothesis test-
ing. As an MCMC method, BEAST2 produces a large set of phylogenies, drawn from the posterior dis-
tribution, that we could use for formal model-testing. Second, to account for rapidly-evolving sites, we
allowed evolutionary rates to vary among nucleotide sites. The package SubstBMA55 allows BEAST2 to
estimate partitions among sites with di↵erent evolutionary rates for each partition, thereby preventing
rapidly-evolving sites from disproportionately shaping the final phylogeny. The Bayesian framework also
allowed us to incorporate priors, average over models, and quantify uncertainty. Third, to minimize the
impact of recombination, we mainly describe the analysis of short regions—a single exon in most cases—
even though this may increase uncertainty due to the smaller numbers of sites. We note that, if anything,
recombination should bias the data away from observing TSP since recombination homogenizes haplotypes
within species but not between. Nonetheless, we additionally support our main conclusions with an analy-
sis of synonymous divergence distances that is independent of the phylogenetic analyses.

Trans-Species Polymorphism is Widespread. We considered six classical genes and five di↵erent
subsets of each gene: exon 2 alone, exon 3 alone, exons 2 and 3 together (PBR), the non-PBR exons to-
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gether (Other Exons), and all exons together (CDS). Because few intron sequences were available for non-
human species, we did not include them in our analyses. For all six genes, the summary trees suggest deep
sharing of ancient lineages among species.

Two of these trees are shown in Figure 2, corresponding to the second exons of HLA-DRB1 and HLA-
DQB1, respectively (the other exons and genes are in Supplementary Figures S2-S7). Each image shows
a single phylogeny that maximizes the product of posterior clade probabilities56. Each tip represents an
IPD-MHC/HLA allele, named according to the standard hierarchical naming scheme57 and with color and
shape indicating the species. Clade labels were chosen somewhat arbitrarily to make it easier to indicate
key interpretative features of the trees. Outgroup and single-species clades are collapsed for clarity.

Critically, we observe that, at both genes, the alleles fail to cluster together according to species, as in-
dicated by the mixed-color clades throughout the trees. At HLA-DRB1, the human alleles (in red) are

Figure 2: BEAST2 allele summary trees using sequences from exon 2. A) HLA-DRB1 and B) HLA-
DQB1. Each tip represents an allele, with color and shape representing the species. Human alleles (red squares)
are also bolded for emphasis. Outgroup and single-species clades are collapsed for clarity. The color/shape key
(upper right) also depicts the species tree. The smaller inset tree in panel B highlights the relationships be-
tween two human alleles (red) and two NWM alleles (green). The indicated human and NWM lineages coalesce
more recently between groups than within each group. This particular example of ancient TSP has extremely
strong statistical support (Bayes factor > 7000).
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spread across the tree, appearing in Clades 2, 3, and 6. Chimpanzee alleles (pink) also appear in Clades
2, 3, and 6. Even macaque alleles (blue) are distributed among several of the same clades: 2, 3, and 4.
Hence, alleles are often most closely related to alleles from other species, suggesting extensive TSP and
sharing of ancient lineages at least as far back as the ape–old-world monkey split.

The HLA-DQB1 tree suggests even more extensive TSP: human and other great ape alleles are found in
Clades 3, 4, 6, and 9; old-world monkeys are found in Clades 2, 3, 4, 5, 6, 7, and 8; new-world monkeys are
in Clades 1 and 6. The inset figure highlights an example of TSP between human and new-world monkey
alleles. This particular example has strong statistical support. Thus, remarkably, data from HLA-DQB1
indicate the persistence of distinct ancestral lineages for at least 45 million years.

However, while the summary trees in Figure 2 are suggestive of deep TSP, they do not directly quantify
the statistical confidence in the TSP model. Moreover, standard approaches to quantifying uncertainty
in trees, such as bootstrap support or posterior probabilities for specific clades, do not relate directly to
hypothesis testing for TSP. We therefore implemented an alternative approach using BEAST2 output, as
follows (see the Methods for details).

We performed formal model testing for TSP within quartets of alleles, where two alleles are taken from a
species (or taxon) A, and two alleles are taken from a di↵erent species (or taxon) B. If the alleles from A
(and respectively from B) are closest in the unrooted tree, this quartet supports monophyly of A (and of
B). But if alleles from A and B are closest in the unrooted tree, then this comparison supports TSP. Since
BEAST2 samples from the posterior distribution of trees, we counted the number of trees that support
TSP versus the number that support monophyly as an estimate of the posterior support for each model.
We then summarized the relative support for each model by converting these to Bayes factors. The pre-
cise interpretation of Bayes factors depends on one’s prior expectation; however, following standard guide-
lines58 we suggest that Bayes factors > 100 should be considered as strong support in favor of TSP. Bayes
factors <1 are evidence against TSP. For each comparison of two taxa, we report the maximum Bayes fac-
tor across the possible quartets, as we are interested in whether any quartet shows compelling evidence for
TSP.

Bayes factors are shown in Figure 3. For each genic region (x-axis), we tested for TSP among humans,
non-human apes, OWM, and NWM, with each of the comparisons listed on the y-axis. Each table entry is
colored and labeled with the maximum Bayes factor among all tested quartets of alleles belonging to that
category. Red indicates support for TSP among the species in that category, while blue indicates evidence
against TSP.

At the Class I genes, HLA-A, -B, and -C, we find strong support for TSP within the great apes: between
human, chimpanzee, and gorilla for HLA-A and -C, and also with orangutan at -B. We do not find ev-
idence for deeper TSP within Class I (but note that we do not have gibbon alleles apart from HLA-A).
Meanwhile, the results for HLA-DRB1 and -DQB1 confirm the presence of ancient TSP. Bayes factors for
exon 2 of HLA-DRB1 indicate TSP between humans, chimpanzees, gorillas, and even OWM. (The Bayes
factors between human and orangutan are 0, but there are only two orangutan alleles in this dataset.)
Even more striking, the Bayes factors indicate TSP in exon 2 of HLA-DQB1 at least as far back as our
ancestors with NWM.

There is also extensive support for TSP within the OWM for all genes (except HLA-C, which is only present
in the great apes), and within NWM for HLA-B and -DPB1. HLA-DQB1 and -DPB1 also show TSP be-
tween OWM and NWM. There is no support for TSP between humans and any of the outgroup species.
Supplementary Figures S9-S15 show Bayes factors for all analyses. Thus, in summary, the phylogenetic
analyses strongly support the presence of ancient TSP in these genes.

However, the tree-based model has certain limitations: it may not fully account for convergent evolution at
functional sites (even though we allow for rate variation among sites) and it ignores recombination. There-
fore, we next used a complementary, nonparametric approach based on synonymous nucleotide distances
(dS) between pairs of alleles to verify the plausibility of our tree-based results. Pairwise synonymous dis-
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Figure 3: Strong support for TSP at all six genes. Bayes factors computed over the set of BEAST trees in-
dicate deep TSP. Di↵erent species comparisons are listed on the y-axis, and di↵erent gene regions are listed on
the x-axis. High Bayes factors (red) indicate support for TSP among the given species for that gene region,
while low Bayes factors (blue) indicate that alleles assort according to the species tree, as expected. Bayes
factors above 100 are considered decisive. Yellow values show poor support for either hypothesis, while white
boxes indicate that there are not enough alleles in that category with which to calculate Bayes factors.

tances make less-e�cient use of the data compared to the phylogenetic analysis, but should be robust to
both convergent nonsynonymous evolution at functional sites and recombination. In the presence of re-
combination, dS would simply reflect the mean coalescence time along the sequence, averaged over recom-
bined blocks. We estimated dS between pairs of alleles using codeml59,60.

The dS results are shown in Figure 4. Each data point shows the estimated dS for a pair of alleles within
or between the indicated species. We reasoned that the observed dS values reflect a distribution of under-
lying coalescence times between pairs of alleles. Due to the random sampling error in dS, the true distri-
bution of expected values would usually be narrower than the observed distribution. Therefore, for each
comparison we estimated the underlying distribution of expected dS values under a simple model (see Sup-
plement for details); these are indicated by the gray boxed region on each plot.

First, we noticed that even within humans, the dS divergence values can be extraordinarily high. Noting
that a conservative upper bound on the mutation rate in primates is ⇠ 1 ⇥ 10�9 per year61, a value of dS
> 0.1, as seen in exon 2 for several genes, suggests a remarkably ancient split time of > 50 MY between
pairs of human alleles. Second, we reasoned that in the presence of TSP, the distributions of dS values
should overlap within and between the relevant species. For example, in the phylogenetic analysis, HLA-
A shows evidence for TSP among human, chimpanzee, and gorilla, but not with other species. Consistent
with this, we see overlap of the dS distributions for these three species. However, in most cases we actu-
ally see more evidence for TSP than in the phylogenetic analysis (Figure 4A). For example, HLA-DRB1
shows overlap between the dS distributions of human-human and human-OWM pairs (though they do
not quite overlap for chimpanzee, gorilla, and orangutan), while HLA-DQB1 shows broad overlap of the
distributions—including the outgroup species.
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In Figure 4B, we see overlap of the human-human and human-NWM distributions in exon 2 of HLA-B,
indicating deeper TSP than we see in the phylogeny. We do not observe any overlap for the whole CDS,
confirming that the greater recombination across larger regions averages dS across blocks and attenuates
signal for TSP. Thus, the dS estimates support ancient allelic structure within these genes, consistent
with—if not even more ancient than—the results from phylogenetic analysis.

Figure 4: Synonymous divergence between allele pairs is consistent with ancient TSP. Each red point
represents estimated dS for a pair of alleles (x-axis), sorted by species comparison (y-axis). The gray boxes
show estimated ranges of true dS values (details in Supplement) for each comparison. The blue regions extend
the gray box for human-human pairs downward across each plot to facilitate visual comparison between species
pairs. A) In many cases, allele comparisons within humans (Human - Human) show overlapping synonymous
divergence values to allele comparisons between humans and other species—for example, between human and
OWM alleles in HLA-DRB1. B) In HLA-B, the human-human dS distribution overlaps the human-NWM dis-
tribution in exon 2, but not in exon 3 or the whole CDS. See Supplementary Figures S16-S20 for dS results for
the other genes and regions.

In summary, our data support deep TSP at all six classical MHC genes considered here. The HLA-A, -C,
-B, and -DPB1 trees show TSP between human, chimpanzee, and gorilla, while HLA-B and -DPB1 addi-
tionally show TSP between human and orangutan. HLA-DRB1 reveals even more extensive TSP, back to
our ancestor with OWM. The deepest strongly-supported TSP is at HLA-DQB1, with TSP between hu-
mans and NWMs indicating the persistence of ancient lineages for at least 45 million years. The HLA-A,
-B, -DRB1, -DQB1, and -DPB1 trees also indicate extensive TSP among OWM. Our dS results corrobo-
rate deep TSP at all loci.
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From Evolution to Function. Alongside the evidence for ancient TSP, the MHC region is also notable
for its high rate of missense substitutions (dN/dS)9,10 and its large number of GWAS hits for autoimmune
and infectious diseases8,62. We next aimed to understand how these observations relate to signals of TSP
and known features of the MHC proteins.

To explore these questions, we first estimated the per-site evolutionary rates within each gene. As in our
TSP analysis, we used the BEAST2 package SubstBMA, which estimates evolutionary rates at every site.
We averaged these rates over all states in the chain to get per-site evolutionary rates for each site, then
calculated their fold-change relative to the average rate among 4-fold degenerate sites. The results were in-
sensitive to whether the analysis included the entire CDS or smaller subsets (Supplementary Figure S21).

Figure 5A shows the substitution rate fold-change for each nucleotide along the concatenated coding se-
quence of HLA-A and -DRB1. Exon boundaries are indicated by red dashed lines. We found that nearly
all the rapidly-evolving sites lie within the exons that encode the peptide-binding domains of each protein:
for example, 80% of sites evolving at more than 4 times the rate of the 4-fold degenerate sites were located
in exons 2 and 3 for the Class I gene HLA-A, and 86% of such sites were located in exon 2 for the Class II
gene HLA-DRB1. This pattern holds true for the other Class I and Class II genes as well (Supplementary
Figure S22).

We then examined where the rapidly-evolving sites lie within the physical protein structures. To do this,
we averaged the per-site rates within each codon to get per-amino-acid rates, and mapped these onto the
known protein structures. As shown in Figure 5B, rapidly-evolving amino acids (red) tend to be located
within the peptide-binding groove. To quantify this, we measured the minimum distance between each
amino acid and the bound peptide. Amino acids closer to the peptide have significantly higher evolution-
ary rates than amino acids further from the peptide, as shown in Figure 5C (see also Supplementary Fig-
ures S23-S24). These results are consistent with the expectation that rapid evolution and diversity at the
MHC would be mediated by selective pressures for changes in peptide binding.
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Figure 5: Rapidly-evolving sites from BEAST2. A) Rapidly-evolving sites are primarily located in exons 2
and 3. Here, the exons are concatenated such that the cumulative position along the coding region is on the
x-axis. The y-axis shows the substitution rate at each site, expressed as a fold-change (the base-2 logarithm of
each site’s evolutionary rate divided by the average rate among 4-fold degenerate sites within the gene). B)
Rapidly-evolving sites are located in each protein’s peptide-binding pocket. Structures are Protein Data Bank63

6D2T64 for HLA-B and 2IAM65 for HLA-DRB1, with images created in PyMOL
66. Substitution rates for each

amino acid are computed as the mean substitution rate of the three sites composing the codon. Red indicates
rapidly-evolving amino acids, while blue indicates conserved amino acids. The top ten fastest-evolving amino
acids of each protein are labeled on the structures. C) Rapidly-evolving amino acids are significantly closer to
the peptide than conserved amino acids. The y-axis shows the BEAST2 substitution rate, and the x axis shows
the minimum distance to the bound peptide, measured in PyMOL

66. Each point is an amino acid. The red line
is a regression of substitution rate on minimum distance, with slope and p-value annotated on each panel.

Lastly, since the rapidly-evolving sites are likely involved in peptide binding, they also influence the re-
sponse to pathogens and self-antigens, presumably a↵ecting risk for infectious and autoimmune diseases.
To bridge the gap between evolution and complex traits, we therefore tested whether these sites had known
associations with peptide binding, TCR usage, and human disease.

We collected HLA fine-mapping studies for infectious, autoimmune, and other diseases (Supplementary
Table S2). These studies report associations between a disease or trait and classical HLA alleles, SNPs,
and amino acid variants, often with multiple independent hits per gene, as indicated by the colored blocks
in Figure 6A. As expected, we found that all six genes harbor many associations with diverse traits and
diseases.
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Figure 6: Disease associations in HLA-DRB1. A) The six classical HLA genes studied here (x-axis) are as-
sociated with many disease and immune-related phenotypes (y-axis). Colored blocks indicate an association
between the indicated disease or trait at either SNPs, amino acids, or classical alleles within the correspond-
ing gene. The number of independent associations is indicated when > 1. For the peptide-binding pocket in
the bottom row, the printed number indicates the number of critical residues. B) Associations between amino
acids in HLA-DRB1 and human diseases from HLA fine-mapping studies. The polymorphic amino acid positions
(> 1% MAF) within HLA-DRB1 are on the x-axis, and the diseases and traits are on the y-axis. Associations
are colored according to whether they were the top hit, second independent hit, and so on. For peptide bind-
ing, a pink box indicates that the amino acid is present (P) among the critical residues. The x-axis is annotated
with colored boxes representing BEAST2 evolutionary rates at codon-level. Red indicates rapidly-evolving posi-
tions and blue indicates conserved positions. C) The BEAST2 evolutionary rate is significantly associated with
the total number of associations for all six genes.
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Moreover, the sites that are rapidly-evolving in the primate analysis show specific enrichment for pheno-
typic associations in HLA fine-mapping studies. This is illustrated in Figure 6B; the x-axis indicates poly-
morphic amino acid positions, each annotated with the evolutionary rate from BEAST2. The amino acid
positions most frequently associated with disease are largely concordant with the rapidly-evolving posi-
tions, particularly positions 11, 13, 57, 70, and 71. Supplementary Figures S25-S29 show the associations
for the other genes.

Indeed, Figure 5D shows that BEAST2 evolutionary rate is significantly associated with the number of
disease and immune-phenotype associations for all six genes. Together, these results suggest that highly
functional sites within the peptide-binding domain are both rapidly-evolving and highly enriched for asso-
ciations. We wondered whether high variability might be a confounding factor – i.e., that highly polymor-
phic sites are more likely to harbor significant associations. Indeed, while the number of amino acid alleles
at each position is significantly associated with the number of associations, the evolutionary rate remains
significant for 5 of the 6 genes in a multiple regression controlling for number of alleles, even though this
analysis is highly conservative (Supplementary Table S5). Thus, in summary, we find that rapid evolution
has primarily targeted amino acids within the peptide-binding region of each gene, and that these specific
positions are primary drivers of phenotypic associations at the MHC locus.

Discussion

The MHC region contains the clearest signals of balancing and directional selection in mammalian genomes,
including extreme diversity, ancient trans-species polymorphism, and high rates of nonsynonymous evolu-
tion between allelic lineages. In humans, MHC/HLA variation is associated with risk for infectious and
autoimmune diseases and many other traits, and HLA matching is critical for successful tissue transplan-
tation.

Despite the evolutionary and clinical importance, the extreme diversity of the MHC makes it challenging
to study, and basic questions about its evolutionary history remain unresolved. Although past work has
hinted at ultra-deep TSP at this locus, in this study we re-examined the region with modern, comprehen-
sive data and a unified analysis framework. Using Bayesian evolutionary analysis, we report conclusive
evidence for long-term TSP in all six studied genes, including between humans and OWM at HLA-DRB1,
and even between humans and NWM at HLA-DQB1. Thus, remarkably, lineages at HLA-DQB1 have been
maintained for at least 45 million years. The evidence for deep TSP is mainly concentrated within the ex-
ons that encode the peptide-binding region for each gene (exons 2 and 3 for Class I, and exon 2 for Class
II). Comparisons of synonymous divergence within and between species provide further support for ex-
tremely ancient lineages, while obviating concerns about model misspecification in the phylogenetic analy-
sis.

Our evidence for TSP at HLA-DQB1 spanning at least 45 million years places this among the most an-
cient examples of balancing selection known in any species, and almost certainly the oldest in primates.
Aside from MHC, the deepest example within primates is at the ABO locus controlling blood type; it ex-
hibits trans-species polymorphism between humans and gibbons, an age of 20 million years28. In various
chimpanzee species, OAS1, which helps inhibit viral replication, contains alleles up to 13my old67. TSP
between chimpanzee and human includes LAD1, a protein that maintains cell cohesion (6my)68, retrovi-
ral transcription factor TRIM5↵ (4-7my in apes and > 8my in OWM)69,70, and ZC3HAV1, an antiviral
protein leading to viral RNA degredation (6my)71, among others26.

Looking more broadly across the tree of life, ancient trans-species polymorphism occurs widely, albeit
rarely. Several of the best examples are found in the MHC locus: MHC polymorphisms have been main-
tained for 35my in cetaceans72, 40my in herons73, 48my in mole rats74, 70my in tree frogs75, and over
105my in salmonid fishes76,77. There are examples in non-MHC loci as well; in cyanobacteria, polymor-
phism at the HEP island controlling heterocyst function has been maintained for 74 million years78, in
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plants, S-genes determining self-incompatibility exhibit TSP spanning 36 million years79,80, and in Formica
ants, alleles at a supergene underlying colony queen number have been maintained for over 30 million
years81 (See the Supplement for more examples).

Paradoxically, given the extremely long-lived balancing selection acting in these lineages, many authors
have also reported strong directional selection82–84. Indeed, within the phylogeny we find that the most
rapidly-evolving codons are substituted at around 5–7-fold the neutral rate. For all six genes, these rapidly-
evolving sites lie within the peptide binding regions of the corresponding proteins, usually very close to
the peptide-contact surfaces. Moreover, the primary role of MHC proteins is to present peptides for T cell
recognition; we found that the same rapidly-evolving amino acids are consistently associated with shaping
T cell receptor (TCR) repertoires.

We further connected our evolutionary results to their functional consequences by examining published
associations between HLA variants and immune-related phenotypes. The peptide-presentation and recog-
nition process is integral to the immune response and a↵ects our ability to fight infections and recognize
self-antigens. After collating HLA fine-mapping studies of human disease, including infectious, autoim-
mune, and other diseases, we found that the same rapidly-evolving amino acids are also key sites of disease
association.

Taken together, we begin to see a comprehensive picture of the nature of primate MHC evolution. In re-
sponse to rapidly-changing pathogen pressures, the PBRs of classical MHC proteins evolve to bind chang-
ing pathogen antigens and present them to TCRs. Broad lineages of MHC alleles are maintained over
tens of millions of years by strong balancing selection, providing defense against a wide variety of di↵er-
ent pathogens. Yet within these lineages, alleles turn over quickly in response to new specific threats. This
reconciles evidence for TSP, the presence of thousands of alleles, and the existence of rapidly-evolving
sites. Because it is challenging to detect pathogens with both specificity and sensitivity, many MHC al-
leles also happen to bind self-peptides. This results in rapidly-evolving amino acids being associated with
both infections and autoimmune conditions, as well as TCR phenotypes and peptide-binding residues.

Although the primate MHC has been of interest to evolutionary biologists for more than 30 years, there is
still much to be done to more fully document the evolution of the MHC genes within and between species.
Moreover, we still have limited understanding of how sequence changes map to functional di↵erences among
alleles, and how these relate to allele-specific profiles of pathogen protection (and autoimmunity risk).
However, functional and computational advances will provide key opportunities for progress on these prob-
lems1,85.
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Materials and Methods

Data. MHC allele sequences for HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 were downloaded from the
IPD Database6,7. The database contains tens of thousands of alleles, but we selected only the alleles for
which the entire coding sequence (all exons) was available. In humans, this consisted of 2,819 HLA-A al-
leles, 3,338 HLA-B alleles, 3,055 HLA-C alleles, 522 HLA-DPB1 alleles, 297 HLA-DQB1 alleles, and 200
HLA-DRB1 alleles. Excluding humans, there were 14 species and 240 alleles for HLA-A, 24 species and
1,334 alleles for HLA-B, 6 species and 61 alleles for HLA-C, 13 species and 185 alleles for HLA-DPB1, 16
species and 288 alleles for HLA-DQB1, and 15 species and 231 alleles for HLA-DRB1. Note that we use
the familiar human-centric names (with prefix “HLA-”) to refer to these genes in all species, although the
gene names with prefix “MHC-” are more accurate in an evolutionary context.

BEAST2 is computationally limited by the number of sequences. Thus, when hundreds or thousands of
alleles were available for a single species, we reduced each set to a representative set spanning the species’
allelic diversity, according to the alleles’ two-digit designations. The final set consisted of 149 alleles for
HLA-A, 197 for HLA-B, 61 for HLA-C, 100 for HLA-DPB1, 122 for HLA-DQB1, and 122 for HLA-DRB1
(lists of alleles provided as Supplementary Files).

Alleles for each gene were aligned using MUSCLE 86 in MEGA X 87 with default settings.

Modern human data was obtained for 2504 unrelated individuals from Phase 3 of the 1000 Genomes Project,
from the re-sequencing done at the New York Genome Center and mapped to GRCh3888,89.

Nucleotide Diversity. The classical MHC region is defined as chr6:28,510,120-33,480,577 (GRCh38)2.
Nucleotide diversity (⇡) was calculated on the modern human data using VCFtools (0.1.15) 90. For the
entire MHC region (Figure 1A), ⇡ was calculated in 5000bp sliding windows with a step size of 1000bp.
For each gene separately (Figure 1B-C and Supplementary Figure S1), ⇡ was calculated in 50bp sliding
windows with a step size of 10bp.

Bayesian Phylogenetic Analysis. We constructed phylogenetic trees using BEAST2 53,54 with pack-
age SubstBMA55. SubstBMA implements a spike-and-slab mixture model that simultaneously estimates
the phylogenetic tree, the number of site partitions, the assignment of sites to partitions, the nucleotide
substitution model, and a rate multiplier for each partition. Since we were chiefly interested in the par-
titions and their rate multipliers, we used the RDPM model as described by Wu et al. 55 . In the RDPM
model, the number of nucleotide substitution model categories is fixed to 1, so that all sites, regardless of
rate partition, share the same estimated nucleotide substitution model. This reduces the number of pa-
rameters to be estimated and ensures that only evolutionary rates vary across site partitions, reducing
overall model complexity. Even though the substitution rate is known to be di↵erent over the evolutionary
time we consider, Wu et al. 55 demonstrated virtually no di↵erence in likelihoods or site partitions when
using a strict vs. relaxed molecular clock. Thus, we used a strict clock to further simplify our analyses.

Priors. For the Dirichlet process priors, we used the informative priors constructed by Wu et al. 55

for their mammal dataset. This is appropriate because they include several of the same species
and their mammals span approximately the same evolutionary time that we consider in our study.
We also use their same priors on tree height, base rate distribution, and a Yule process coalescent
prior. We did not specify a calibration point—a time-based prior on a node—because we did not
expect our sequences to group according to the species tree.

Running BEAST2. We ran BEAST2 on allele sequences from the IPD Database5–7, consider-
ing subsets of the coding sequence: 1) the entire coding sequence, 2) exon 2 only, 3) exon 3 only,
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4) exons 2 and 3 together (the peptide-binding region), and 5) all other exons (excluding exons 2
and 3). Because BEAST2 runtime scales with the number of samples, we restricted the number
of alleles used for each gene. We only considered alleles that 1) have the entire coding sequence
available in the database (because many submitted alleles are the result of sequencing exon 2 and
3 alone), 2) do not have a nonsense mutation, and 3) adequately represent the diversity of the
species. For example, we restricted human alleles to include at least one allele representing every
major type (2-field name). For macaques, which have even more MHC diversity than humans, we
limited alleles to 5 randomly-chosen alleles per species that also span several types.

The xml files we used to run BEAST2 were based closely on those used for the mammal dataset
with RDPM model and strict clock in Wu et al. 55(https://github.com/jessiewu/substBMA/
blob/master/examples/mammal/mammal_rdpm_sc.xml). However, due to the complexity of the
MHC, we ran each for 40,000,000 states (instead of 25,000,000), using the first 10% as burn-in and
sampling every 10,000 states. The xml files required to run all our analyses are provided as Sup-
plementary Files. Additionally, we ran 4-12 replicates (4 at a time) for each of the 6 genes and
each of the 5 subsets of the coding sequence, until we obtained at least 4 replicates whose likeli-
hood and posterior parameter distributions all agreed, as recommended by BEAST2 and explored
in Tracer version 1.7.191. This ensures that all of the replicates were exploring the same param-
eter space and were converging upon the same global optimum, allowing the � 4 independent
runs to be justifiably combined. We combined the matching replicates using LogCombiner ver-
sion 2.6.392, which aggregates the results across all states. We then used the combined results to
perform our analyses.

HLA-B. Running BEAST2 on HLA-B proved di�cult due to the number of sequences included
as well as the considerable diversity among them. To improve convergence, we employed coupled
MCMC in BEAST2 for the entire coding sequence (subset 1) and exons 2 and 3 combined (subset
4). Coupled MCMC is essentially the same as the regular MCMC used in BEAST2, except that it
uses additional “heated” chains with increased acceptance probabilities that can traverse unfavor-
able intermediate states and allow the main chain to move away from an inferior local optimum93.
Using coupled MCMC sped up these more-di�cult BEAST2 runs and allowed us to obtain 4 valid
replicates that could be used for the analysis. Xml files for these runs are also provided as Supple-
mentary Files.

Phylogenetic Trees. Since we sampled every 10,000 states for each BEAST2 replicate, discarded the
first 10% as burn-in, and obtained 4-7 acceptable replicates per gene/sequence subset, we obtained 14,101
- 25,207 phylogenies per gene/sequence subset. We used TreeAnnotator version 2.6.392 to summarize each
set of possible trees as a maximum clade credibility tree, which is the tree that maximizes the product of
posterior clade probabilities. Since BEAST2 samples trees from the posterior, one could in principle per-
form model testing directly from the posterior samples; the complete set of trees can typically be reduced
to a smaller 95% credible set of trees representing the “true” tree56. However, given the high complexity
of the model space, all our posterior trees were unique, meaning this was not possible in practice. (Since
the prior over tree topologies is unstructured, this e↵ectively puts minuscule prior weight on trees with
monophyly. Thus, sampling directly from the posterior provides an unacceptably high-variance estimator.)

Bayes Factors. Because we could not perform model testing directly on the full phylogenies, we used an
alternative approach—computing Bayes factors for TSP within manageable subsets of the data, i.e., quar-
tets of alleles. Let D be a sample of phylogenies from BEAST2, sampled from the posterior with uniform
prior. For a chosen species, we have a null hypothesis H, that human alleles form a monophyletic group,
and an alternative hypothesis, Hc, that is also the complement of H—that the human alleles do not form
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a monophyletic group. The Bayes factor, K, is a ratio quantifying support for the alternative hypothesis:

K =
Pr(D|Hc)

Pr(D|H)
=

Pr(Hc|D)

Pr(H|D)
· Pr(H)

Pr(Hc)

where the first term on the right hand side is the posterior odds in favor of the alternative hypothesis and
the second term is the prior odds in favor of the null hypothesis. Bayes factors above 100 are considered
decisive support for the alternative hypothesis58.

Because it is di�cult to evaluate monophyly using a large number of alleles, we evaluate Bayes factors
considering 4 alleles at a time: 2 alleles of a single species and 2 alleles of di↵erent species. For example,
to assess support for TSP between humans and chimpanzees, we could use 2 human alleles and 2 bonobo
alleles. Or, to assess support for TSP between humans and OWM, we could use 2 human alleles, one ba-
boon, and one macaque allele. Because there are many possible sets of 4 alleles for each comparison, we
tested a large number of comparisons, including sets chosen at random and sets that appear to support
TSP in the BEAST2 summary trees. We reported the maximum Bayes factor among all tested allele sets
to represent evidence for TSP for that species comparison, because our aim was to find any evidence of
TSP among any set of 4 alleles.

Next, we calculated the prior odds of the null hypothesis (that the chosen species, i.e. humans, form a

monophyletic group). The prior odds Pr(H)
Pr(Hc) = 1

2 , because if the trees were assembled at random, there
is 1 possible unrooted tree where the 2 human alleles would form a monophyletic group and 2 possible un-
rooted trees where the 2 human alleles would not form a monophyletic group, as shown in Figure 7.

Figure 7: Possible unrooted trees of 4 alleles. There is one tree where the human alleles are monophyletic,
and two trees where they are non-monophyletic.

The data, D, is the set of BEAST2 trees, so the posterior odds Pr(Hc|D)
Pr(H|D) is the fraction of BEAST2 trees

where the 2 human alleles do not form a monophyletic group divided by the fraction of BEAST2 trees
where the 2 human alleles do form a monophyletic group. If either fraction is 0, we set its probability to
p = 1

n+1 , where n is the number of BEAST2 trees for that gene/sequence subset, and set the comple-
ment’s probability to 1 � p. This is the reason that some labels in Figure 3 contain a > sign (e.g. if no
trees in a set of 14, 000 were monophyletic, then the Bayes factor must be at minimum 7, 000).

Bayes factors K were then computed as follows and interpreted according to the scale given by Je↵reys 58 .

K =
Pr(Hc|D)

Pr(H|D)
· 1
2
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For each gene and genic region, we tested for TSP between human and chimpanzee, gorilla, orangutan,
gibbon, OWM, and NWM. We also computed TSP for groups not involving humans, including among
OWM themselves, between OWM and NWM, and among NWM themselves. Lastly, we tested for TSP
between humans and the outgroups, for which we did not expect to see any evidence of TSP.

Rapidly-Evolving Sites. BEAST2 places sites into partitions and estimates evolutionary rates for each
partition. We averaged these rates over all sampled states, resulting in an overall evolutionary rate for
each nucleotide position. To normalize the rates, we divided them by the average evolutionary rate among
4-fold degenerate sites. 4-fold degenerate sites for each gene were identified from our codeml analysis using
the entire coding sequence.

We expressed the normalized per-site rates as fold-changes by taking the base-2 logarithm. We calculated
per-amino-acid rates by averaging the per-site rates among the three sites composing each codon.

Protein Structures. We used PyMOL version 2.4.266 to visualize the per-codon evolutionary rates on
each gene’s protein structure. We used model 4F7P94 from Protein Data Bank63 (https://www.rcsb.
org/) for HLA-A, 6D2T64 for HLA-B, 4NT695 for HLA-C, 4P4K96 for HLA-DPB1, 1UVQ97 for HLA-
DQB1, and 2IAM65 for HLA-DRB1.

We calculated the distances between all amino acids of the HLA molecule and all amino acids of the pep-
tide in PyMOL, then took the minimum distance to represent that amino acid’s overall distance to the
peptide. We averaged the minimum distances over three alternative structures for each gene, to prevent
relying too heavily on a particular structure. We used models 4F7P94, 6J1V98, and 3MGO99 from Protein
Data Bank63 for HLA-A; 6D2T64, 3BVN100, and 6PYJ101 for HLA-B; 4NT695, 5W67102, and 5VGE103

for HLA-C; 4P4K96, 3LQZ104, and 3WEX105 for HLA-DPB1; 1UVQ97, 2NNA106, and 4D8P107 for HLA-
DQB1; and 2IAM65, 6ATF108, and 5LAX109 for HLA-DRB1.

Synonymous Diversity. Synonymous diversity of the IPD alleles was calculated pairwise using codeml 59,60

on subsets of the coding sequence. We used a larger set of alleles than we used in BEAST2, because codeml
is not as computationally limited by the number of samples. We used all alleles that both 1) have the en-
tire coding sequence available in the database (because many submitted alleles are the result of sequencing
exons 2 and 3 alone) and 2) do not have a nonsense mutation. This set consisted of 289 alleles for HLA-A,
423 for HLA-B, 138 for HLA-C, 255 for HLA-DPB1, 352 for HLA-DQB1, and 287 for HLA-DRB1 (lists of
alleles provided as Supplementary Files). This larger set is a superset of the alleles used for the BEAST2
analysis. We ran codeml using runmode=−2 for pairwise calculation (to avoid relying on a species tree),
seqtype=1 for codon-based, CodonFreq=1 to estimate the equilibrium codon frequencies from the average
nucleotide frequencies, model=0 and NSsites=0 to specify the basic codon substitution model, fix kappa=0
to estimate the  parameter with initial kappa=3 for all genes except HLA-C, where initial kappa=2, and
fix omega=0 to estimate the ! parameter with initial omega=0.5. codeml also outputted 4-fold degenerate
sites, which we used for normalization of the BEAST2 rates, as described above.

Disease Literature. We conducted a literature search for papers that used HLA fine-mapping to dis-
cover disease associations, limiting our selection to those including at least 1000 cases and which identified
putatively independent signals via conditional analysis. We included all independent signals identified as
significant by the original authors, regardless of whether they were entire alleles, amino acids, or SNPs. If
there was more than one study for the same disease, but in di↵erent populations, we included all unique
independent hits. References for studies are listed in Supplementary Table S2. We also collected associa-
tions between amino acids and TCR phenotypes, with references listed in Supplementary Table S3. Refer-
ences for the anchor residues that make up the peptide-binding pocket are listed in Supplementary Table
S4.
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Polymorphic Amino Acid Positions. Amino acid allele frequencies were obtained from Luo et al. 110 ,
who imputed HLA variation in 1000G using SNP2HLA (https://github.com/immunogenomics/HLA-TAPAS/
blob/master/resources/1000G.bglv4.FRQ.frq). Amino acid positions with MAF> 1% were considered
polymorphic for the purposes of plotting.
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men Pilar Simeón-Aznar, Norberto Ortego-Centeno, Susanna M. Proudman, Nicolas Hunzelmann,
Gianluca Moroncini, Jeska K. De Vries-Bouwstra, Gisela Orozco, Anne Barton, Ariane L. Herrick,
Chikashi Terao, Yannick Allanore, Matthew A. Brown, Timothy R.D.J. Radstake, Carmen Fonseca,
Christopher P. Denton, Maureen D. Mayes, and Javier Martin. Comprehensive analysis of the ma-
jor histocompatibility complex in systemic sclerosis identifies di↵erential HLA associations by clinical
and serological subtypes. Annals of the Rheumatic Diseases, 80(8):1040–1047, 2021. ISSN 14682060.
doi: 10.1136/annrheumdis-2021-219884.

[172] Nikolaos A. Patsopoulos, Sergio E. Baranzini, Adam Santaniello, Parisa Shoostari, Chris Cotsapas,
Garrett Wong, Ashley H. Beecham, Tojo James, Joseph Replogle, Ioannis S. Vlachos, Cristin Mc-
Cabe, Tune H. Pers, Aaron Brandes, Charles White, Brendan Keenan, Maria Cimpean, Phoebe
Winn, Ioannis Pavlos Panteliadis, Allison Robbins, Till F.M. Andlauer, Onigiusz Zarzycki, Bénédicte
Dubois, An Goris, Helle Bach Søndergaard, Finn Sellebjerg, Per Soelberg Sorensen, Henrik Ullum,
Lise Wegner Thørner, Janna Saarela, Isabelle Cournu-Rebeix, Vincent Damotte, Bertrand Fontaine,
Lena Guillot-Noel, Mark Lathrop, Sandra Vukusic, Achim Berthele, Viola Pongratz, Dorothea Buck,
Christiane Gasperi, Christiane Graetz, Verena Grummel, Bernhard Hemmer, Muni Hoshi, Benjamin
Knier, Thomas Korn, Christina M. Lill, Felix Luessi, Mark Mühlau, Frauke Zipp, Efthimios Dar-
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antigen HLA-A2 at 2.6 Å resolution. Journal of Molecular Biology, 219(2):277–319, 1991. ISSN
00222836. doi: 10.1016/0022-2836(91)90567-P.

[180] Masazumi Matsumura, Daved H. Fremont, Per A. Peterson, and Ian A. Wilson. Emerging principles
for the recognition of peptide antigens by MHC class I molecules. Science, 257(5072):927–934, 1992.
ISSN 00368075. doi: 10.1126/science.1323878.

[181] Gareth Chelvanayagam. A roadmap for HLA-A, HLA-B, and HLA-C peptide binding specificities.
Immunogenetics, 45(1):15 – 26, 1996. doi: 10.1007/s002510050162.

[182] Xiaojiang Gao, Sue Lester, Anthony Veale, Barry Boettcher, Bart Currie, James McCluskey, and
Gareth Chelvanayagam. HLA class I alleles in Australian aborigines and their peptide binding pro-
files. In Masanori Kasahara, editor, Major Histocompatibility Complex: Evolution, Structure, and
Function, pages 446–462, Tokyo, 2000. Springer Japan. doi: 10.1007/978-4-431-65868-9.

[183] Gema Dı́az, Massimo Amicosante, Dolores Jaraquemada, Richard H. Butler, M. Victoria Guillén,
Miguel Sánchez, César Nombela, and Javier Arroyo. Functional analysis of HLA-DP polymorphism:
A crucial role for DP� residues 9, 11, 35, 55, 56, 69 and 84-87 in T cell allorecognition and peptide
binding. International Immunology, 15(5):565–576, 2003. ISSN 09538178. doi: 10.1093/intimm/
dxg057.

[184] Shaodong Dai, Guinevere A. Murphy, Frances Crawford, Douglas G. Mack, Michael T. Falta,
Philippa Marrack, John W. Kappler, and Andrew P. Fontenot. Crystal structure of HLA-DP2 and
implications for chronic beryllium disease. Proceedings of the National Academy of Sciences of the
United States of America, 107(16):7425–7430, 2010. ISSN 00278424. doi: 10.1073/pnas.1001772107.

[185] J. Routsias and G. K. Papadopoulos. Polymorphic structural features of modelled HLA-DQ
molecules segregate according to susceptibility or resistance to IDDM. Diabetologia, 38(11):1251–
1261, 1995. ISSN 0012186X. doi: 10.1007/BF00401756.

[186] E. Yvonne Jones, Lars Fugger, Jack L. Strominger, and Christian Siebold. MHC class II proteins
and disease: A structural perspective. Nature Reviews Immunology, 6(4):271–282, 2006. ISSN
14741733. doi: 10.1038/nri1805.

[187] George P. Bondinas, Antonis K. Moustakas, and George K. Papadopoulos. The spectrum of HLA-
DQ and HLA-DR alleles, 2006: A listing correlating sequence and structure with function. Immuno-
genetics, 59(7):539–553, 2007. ISSN 00937711. doi: 10.1007/s00251-007-0224-8.

39

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2022. ; https://doi.org/10.1101/2022.06.28.497781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.28.497781
http://creativecommons.org/licenses/by-nc/4.0/


[188] Lawrence J. Stern, Jerry H. Brown, Theodore S. Jardetzky, Joan C. Gorga, Robert G. Urban,
Jack L. Strominger, and Don C. Wiley. Crystal structure of the human class II MHC protein HLA-
DR1 complexed with an influenza virus peptide. Nature, 368(6468):215–221, 1994. ISSN 00280836.
doi: 10.1038/368215a0.

[189] Ivan Dimitrov, Panayot Garnev, Darren R. Flower, and Irini Doytchinova. Peptide binding to the
HLA-DRB1 supertype: A proteochemometrics analysis. European Journal of Medicinal Chemistry,
45(1):236–243, 2010. ISSN 02235234. doi: 10.1016/j.ejmech.2009.09.049.

[190] James Boocock, Meru J. Sadhu, Arun Durvasula, Joshua S. Bloom, and Leonid Kruglyak. Ancient
balancing selection maintains incompatible versions of the galactose pathway in yeast. Science, 371
(6527):415–419, 2021. ISSN 10959203. doi: 10.1126/science.aba0542.
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