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RNA splicing is a primary link
between genetic variation and disease
Yang I. Li,1 Bryce van de Geijn,2 Anil Raj,1 David A. Knowles,3,4 Allegra A. Petti,5

David Golan,1 Yoav Gilad,2* Jonathan K. Pritchard1,6,7*

Noncoding variants play a central role in the genetics of complex traits, but we still
lack a full understanding of the molecular pathways through which they act. We quantified
the contribution of cis-acting genetic effects at all major stages of gene regulation
from chromatin to proteins, in Yoruba lymphoblastoid cell lines (LCLs). About ~65%
of expression quantitative trait loci (eQTLs) have primary effects on chromatin, whereas
the remaining eQTLs are enriched in transcribed regions. Using a novel method, we also
detected 2893 splicing QTLs, most of which have little or no effect on gene-level
expression. These splicing QTLs are major contributors to complex traits, roughly on a par
with variants that affect gene expression levels. Our study provides a comprehensive view
of the mechanisms linking genetic variation to variation in human gene regulation.

E
xpression quantitative trait loci (eQTLs)
are highly enriched among the risk loci for
complex diseases (1, 2), suggesting that risk
variants often act by affecting aspects of
gene regulation. Previous attempts to elu-

cidate the mechanisms underlying eQTLs re-
vealed that a large fraction of eQTLs are due to
single-nucleotide polymorphisms (SNPs) that
affect transcription factor binding or other as-
pects of chromatin function at enhancers or
promoters (3–9). Moreover, SNPs that lie within
active chromatin regions in relevant cell types
are highly enriched among the signals obtained
throughgenome-wideassociation studies (GWASs)
(10, 11). In a few cases, specific links were iden-
tified between genetic variation, variation in chro-
matin, gene expression differences, and disease

risk (12). Genetic variation might also affect
gene regulation and function through pre-mRNA
splicing by affecting either the expression levels
or amino acid sequences of the resulting proteins
(13). There are reports of splicing variants con-
tributing to complex traits (14); however, a recent
comprehensive study of splicing found no enrich-
ment of predicted splicing variants among sig-
nals identified in GWASs (15).
We aimed to compile a detailed accounting of

the effects of genetic variants on gene regulation
from chromatin to proteins. To do this, we an-
alyzed molecular data for eight regulatory traits
measured in lymphoblastoid cell lines (LCLs) de-
rived from Yoruba individuals (Fig. 1A), for which
genome sequence data are available (16). Alto-
gether, data are available for all eight molecular

phenotypes in 32 individuals and at least six
phenotypes in 68 individuals (table S8).
Seven of the eight main molecular measure-

ments analyzed in this study were characterized
previously (4–6, 17–19). We additionally mea-
sured transcription rates in 65 individuals, using
4sU-labeled RNA sequencing (4sU-seq). The 4sU
assay uses a pulse ofmodified uridine to label the
accumulation of new transcripts during a fixed
time interval, in order tomeasure the rate of RNA
synthesis (16). To confirm that the 4sU-seq data
do indeedmeasure transcription rates, we exam-
ined them in the context of mRNA decay mea-
surements for the same LCLs (Fig. 1B). Steady-state
mRNA levels should reflect a balance between
transcription and decay. We found that the ratio
of new transcript levels (based on 4sU data) to
steady-state RNA levels is negatively correlated
with RNA decay estimates (P = 10−167, c2 good-
ness of fit).
We also computed correlations between read

counts across five molecular measurements (Fig.
1C). As expected, 4sU and RNA-seq data are highly
correlated [Spearman correlation (rho) > 0.90].
Histone H3 lysine 27 acetylation (H3K27ac) read
counts at transcription start sites (TSSs) are more
strongly correlated with 4sU-seq than with RNA-
seq data (P = 4 × 10−7, permutation). This is
consistent with the expectation that the effect of
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Fig. 1. Systematicmapping of genetic variation that affects the gene-regulatory cascade. (A) QTLs mapped for eight cellular phenotypes in LCLs. For 4sU,
30m and 60m refer to differentmeasurement time points. For RNA-seq,G andP refer to data from two studies (6, 17).TF, transcription factor. (B) Steady-state RNA
levels reflect abalancebetween transcriptionanddecay.NormalizedmRNAdecay rates (xaxis) areplottedagainst the ratioof newmRNAtosteady-statemRNA(yaxis).
Each data point is a gene. (C) A correlationmatrix of seven data sets reflects the expected order of steps in gene regulation. Each entry in thematrix shows the correlation
across genes betweenmeasurements of a pair of samples and/or data types.The plot shows 10 different random samples for each data type.
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Fig. 2. Percolation of genetic effects through the gene regulatory cas-
cade. (A) Correlation of effect sizes across different measurements from
eQTLs identified in the GEUVADIS YRI sample (6). Txn rate, transcription rate.
(B) QTLsharingacross the regulatorycascade. Eachpanel shows the estimated
fraction of QTLs identified at one stage that are preserved at the next stage of
regulation.The four bars in each panel correspond to the P-value threshold for
ascertaining QTLs in each assay, using the linear regression t statistics. Bars
represent 80%confidence intervals on π1, the fraction of true positives (16).The
enhancer→TSSpanel considers the effect of H3K27acQTLs on the nearest TSS.

(C) The fraction of expressionQTLs that also affect chromatin-level phenotypes,
as estimated by twomodels, and formatched control SNPs. About 35% of gene
eQTLs do not appear to affect chromatin traits. QTLs for H3K4me1 and
H3K4me3 are from (8). (D) Functional context of eQTL SNPs that are not
associated with chromatin changes (“unexplained”) versus those eQTLs
that are also chromatin QTLs. 5′ untranslated regions were excluded from
the “gene exons” annotation. Five annotations with bootstrap P > 0.05 are
not shown. (E) Summary of the effects of regulatory QTLs and of their sharing
through the regulatory cascade.
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promoter function on transcription rate is more
direct than on steady-state mRNA levels. Over-
all, the correlation structure reflects the fact that
promoter activity, transcription rates, mRNA ex-
pression levels, translation levels, and protein
expression levels are regulated in a sequential
ordered cascade.
We next performed mapping of QTLs across

the eight molecular phenotypes, using a uniform
QTL mapping pipeline [Fig. 2 and table S1 (16)].
We found that effect sizes are correlated across

all phenotypes, with a minimum correlation of
0.23 between H3K27ac marks and protein lev-
els (Fig. 2A). Effect sizes for the RNA-related
phenotypes are all highly correlated (minimum
r2 = 0.87). Effect sizes at the protein level are
smaller on average than for translation (P= 0.002,
Mann-Whitney U test), which is consistent with
a previous report of potential protein expression
buffering (fig. S4) (19).
The high correlations of QTL effect sizes across

regulatory stages suggest high proportions of

shared QTLs. To quantify this, we considered the
set of significant QTLs at each phenotype and
estimated the sharing of QTLs at downstream
stages of regulation (16) (Fig. 2C and fig. S2). Start-
ing with enhancers, we observed that ~25% of
H3K27acQTLs [histoneacetylationQTLs (haQTLs)]
affect the expression levels of their nearest genes
and ~50% affect the expression of any gene with-
in 500 kb (fig. S2). In contrast, the majority of
promoter haQTLs also affect expression (>65%)
(Fig. 2B).
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Fig. 3. Properties of sQTLs. Most sQTLs act independently from eQTLs:
Positional distributions of (A) eQTLs and (B) sQTLs at 5% FDR are consistent
with our mechanistic understanding of gene transcription and splicing. (C) The
distance between the best eQTL and best sQTL for genes with both types of
QTL is typically large, suggesting distinct causal variants. (D) A hierarchical
model reveals distinct genomic features that are most relevant for eQTLs
and sQTLs, respectively. (E) QTLs for CTCF binding, and H3K27ac levels are
more likely to be sQTLs thanmatched SNPswithin CTCFandH3K27ac ChIP-
seq peaks, respectively. (F) Example of an sQTL (rs6269) that is also a QTL

for CTCF, DNaseI sensitivity, and DNA methylation. The allele that is as-
sociated with increased CTCF occupancy is also associated with increased
use of an alternative upstream splice site for an exon of the catechol-O-
methyltransferase gene,COMT, which is consistent with the model that PolII
pausing at CTCF binding sites can promote upstream exon inclusion (21).
COMT, which regulates dopamine, has possible roles in neuropsychiatric
conditions (25). In Europeans, the sQTL is in nearly complete linkage dis-
equilibrium with a missense variant, rs4680, which has been the main focus
of attention to date.
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When we used the same approach starting at
transcription, we found that over 85% of QTLs
were shared from one regulatory stage to the
next, from 4sU to protein (Fig. 2B and fig. S2E).
Using a Bayesian model to quantify QTL sharing
among traits, we estimated that 73% of QTLs
that affect transcription rates also affect protein
expression (16) (fig. S3). These observations are
consistent with a general percolation of genetic
effects from transcription through the regulatory
cascade; however, it remains possible that some
QTLs might affect multiple aspects of posttrans-
criptional regulation independently.
We next examined how often eQTLs can be

explained by inter-individual variation in chroma-
tin properties (Fig. 2C), by estimating the fraction
of eQTLs that are also QTLs for a chromatin-level
trait, such as DNaseI-sensitive sites, DNA meth-
ylation, H3K27ac, and H3K4me1 and H3K4me3
QTLs as determined in (8). We confirmed that
the majority of eQTLs are also nearby chromatin
QTLs (65 versus 20% for matched control SNPs),
which is consistent with previous reports (4).
Thus ~35% of eQTLs are not associated with

known chromatin QTLs. To investigate whether
these represent a distinct functional class, we
askedwhether the unexplained eQTLs are biased
toward particular genomic regions or function-
al annotations (Fig. 2D). Indeed, compared to
eQTLs that also affect chromatin, the chromatin-
independent eQTLs were enriched within gene
bodies (exons: P = 5.4 × 10−8; and introns: P =
0.006; Mann-Whitney U test). Further, there is
particular enrichment in regions associated with

transcriptional elongationmarks (P = 3.0 × 10−21;
Mann-Whitney U test). Hence, many of the un-
explained eQTLs may affect transcriptional or
posttranscriptional processes, alongside the more
widely studied effects on chromatin function.
Together, these analyses help us provide an over-
view of the genetic effects on diverse aspects of
gene regulation (Fig. 2E).
We next turned to the effects of genetic var-

iation on pre-mRNA splicing (Fig. 3).Most studies
of splicing QTLs (sQTLs) have measured either
expression levels of individual exons or of tran-
script isoforms (6, 14, 17,). Because both of these
are difficult to estimate accurately from short-
read data, we developed a new method to detect
splicing variation, LeafCutter (20), which focuses
on reads that span splice junctions (16). Using
this approach, we identified 2893 sQTLs in 2313
genes at 10% false discovery rate (FDR) (16).
We verified that sQTLs and eQTLs tend to be

independent. Unlike eQTLs, which are enriched
near TSSs, the sQTLs are enriched within gene
bodies and in particular within the introns they
regulate (Fig. 3, A and B). Moreover, most of the
sQTLs are not associated with gene expression
levels (74% have P values >10−2, t test; fig. S9).
We examined 275 genes associated with both

an sQTL and an eQTL at 10%FDR. The lead eQTL
and sQTL SNP is the same for only 14 of these
genes. In most cases, the lead SNPs are more
than 10 kb apart, suggesting that the majority of
these effects are independent (Fig. 3C and fig.
S12). Although most sQTLs do not affect overall
expression, themajority (89%) affect the predicted

coding sequences, thereby potentially affecting
protein function (fig. S10).
We used a hierarchical model to identify which

genomic annotations aremost relevant to splicing
versus gene expression (16). As expected, genetic
variants located in active promoters, strong en-
hancers, andweak promoters weremost likely to
affect gene expression. In contrast, splicing was
most strongly affected by variants near splice
sites and by synonymous and missense variants
(Fig. 3D).
Although active chromatin does not seem to

be the primary driver of sQTLs, DNA-binding
proteins such as the CTCF transcription factor
may affect transcription speed and thereby affect
splicing, which occurs cotranscriptionally (21).
sQTL SNPs show a modest enrichment for as-
sociation with chromatin QTLs (17.5%) com-
pared to matched control SNPs (13.3%). Overall,
we identified 171 sQTLs associated with two or
more chromatin-level phenotypes (table S7; ex-
ample in Fig. 3F). Specifically considering QTLs
for CTCF (16) and for H3K27ac, we found that
chromatin QTLs aremore likely to affect splicing
thanmatched control SNPs (P = 2 × 10−5 and P =
1 × 10−34, respectively, likelihood-ratio test; Fig. 3E).
Variations in CTCF binding and H3K27ac levels
have been shown to correlate with differences in
splicing (21, 22). Our findings, however, provide
direct evidence that genetic variation can affect
splicing by altering chromatin-level traits.
Our results indicate that splicing is a primary

target of common genetic variation, which, in
most cases, has direct effects on protein sequences.
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Fig. 4. Contribution of regulatory variants to complex
traits. (A) Annotations identified with significant enrichment
for GWAS traits by fgwas (23). (B) Annotations identifiedwith
significant enrichment for GWAS traits by polyTest (16).
(C) Quantile-quantile (Q-Q) plot for multiple sclerosis GWAS
suggests that splicing plays an important role in the etiology
of multiple sclerosis. (D) Model of the regulatory mechanisms
through which common variants affect complex traits.
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Although studies have implicated variants in ac-
tive chromatin regions and eQTLs as contrib-
uting significantly to complex traits (2, 8, 10, 23),
the importance of splicing remains unclear. We
therefore wondered what role common sQTLs
might play in complex diseases.
Owing to the extensive sharing of QTLs across

cell types (2, 24), we reasoned thatQTLs identified
in LCLs should be informative about the relative
contribution of different regulatory mechanisms
to complex traits, in particular to immune-related
diseases (8). We thus compiled genome-wide
summary statistics for rheumatoid arthritis,mul-
tiple sclerosis, Alzheimer’s disease, schizophrenia,
height, and bodymass index (16). Using two tests
with different underlying statistical models, we
searched for functional annotations that are as-
sociated with GWAS signals (16, 23).
As expected, eQTLs and haQTLs are predicted

to contribute to rheumatoid arthritis, multiple
sclerosis, and height according to one or both
methods (Fig. 4). Consistent with the notion that
disease SNPs in histone modification peaks are
mediated through the SNPs’ effect on chromatin,
haQTLs are more enriched in risk loci than are
variants that lie within H3K27ac peaks overall
(Fig. 4C and fig. S14).
sQTLs appear to have effects of similar or even

larger magnitude than eQTLs. For instance, there
is an enrichment of sQTLs with low P values in
the multiple sclerosis GWASs, even when com-
pared to eQTLs (Fig. 4C and fig. S15). These en-
richments are robust to the eQTL and sQTL
detection cutoffs, suggesting that they are not
simply due to the power of detection (fig. S16).
We also found similar patterns when we com-
pared the effect of sQTLs on multiple sclerosis
to the effects of eQTLs identified in three puri-
fied immune cell types (fig. S17).
In conclusion, three main pathways mediate

the impact of genetic variation on gene regulation
with phenotypic and pathogenic consequences.
Of these, our work uncovers an unexpectedly
important role of RNA splicing in modulating
phenotypic traits (Fig. 4D). These findings in-
dicate that RNA splicing should be a focal point
in future work on connecting genetic variation to
complex disease.
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Broken detailed balance at
mesoscopic scales in active
biological systems
Christopher Battle,1,2* Chase P. Broedersz,2,3,4* Nikta Fakhri,1,2,5* Veikko F. Geyer,6

Jonathon Howard,6 Christoph F. Schmidt,1,2† Fred C. MacKintosh2,7†

Systems in thermodynamic equilibrium are not only characterized by time-independent
macroscopic properties, but also satisfy the principle of detailed balance in the
transitions between microscopic configurations. Living systems function out of
equilibrium and are characterized by directed fluxes through chemical states, which
violate detailed balance at the molecular scale. Here we introduce a method to probe for
broken detailed balance and demonstrate how such nonequilibrium dynamics are
manifest at the mesosopic scale. The periodic beating of an isolated flagellum from
Chlamydomonas reinhardtii exhibits probability flux in the phase space of shapes.
With a model, we show how the breaking of detailed balance can also be quantified in
stationary, nonequilibrium stochastic systems in the absence of periodic motion.
We further demonstrate such broken detailed balance in the nonperiodic fluctuations of
primary cilia of epithelial cells. Our analysis provides a general tool to identify
nonequilibrium dynamics in cells and tissues.

W
hen a system reaches thermodynamic
equilibrium, its properties become sta-
tionary in time, which requires a net
balance between rates of transitions into
and out of any particular microstate of

the system. Systems in thermodynamic equilib-
rium, however, are known to be balanced in an
even stronger way. They obey detailed balance,
in which transition rates between any two micro-
states are pairwise balanced (Fig. 1A). This means
there can be no net flux of transitions anywhere
in the phase space of system states. This principle
was identified and used by Ludwig Boltzmann
in his pioneering development of statistical me-
chanics, the microscopic basis for thermody-
namics (1). In contrast, living systems operate
far from equilibrium, and molecular-scale viola-
tions of detailed balance lie at the heart of their
dynamics. For instance, metabolic and enzymatic
processes drive closed-loop fluxes through the
system’s chemical states (Fig. 1B) (2).
Nonequilibrium driving can boost intracel-

lular transport (3–5), the fidelity of transcrip-
tion (6), chemotaxis (7, 8), and the accuracy of
sensory perception (9, 10). To understand cell
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Posttranscriptional mechanisms therefore play a large role in translating genotype to phenotype.
processes, not chromatin. Splice QTLs and expression QTLs are about comparable in their complex disease risk.
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