
Theory

Trans Effects on Gene Expression Can Drive

Omnigenic Inheritance
Graphical Abstract
Conclusion: Most of the trait heritability is explained by
many small trans-regulatory effects from peripheral genes

Indirect trans-regulatory 
effects through network

+
+
+

+

+

-

-

-

peripheral 
genes

direct effects 
from core genes

Question: Why is the architecture of complex traits
dominated by huge numbers of small effect variants?

Approach: We built a quantitative phenotype model
based on core gene expression

core genes

Complex trait
phenotype
Highlights
d We propose a quantitative phenotype model based on core

and peripheral genes

d Model is parameterized using data on cis and trans

heritability of gene expression

d Analysis implies that heritability explained by trans-acting

variants is at least 70%

d Co-regulation of core genes can further amplify the

contribution of trans effects
Liu et al., 2019, Cell 177, 1022–1034
May 2, 2019 ª 2019 Elsevier Inc.
https://doi.org/10.1016/j.cell.2019.04.014
Authors

Xuanyao Liu, Yang I. Li,

Jonathan K. Pritchard

Correspondence
xuanyao@uchicago.edu (X.L.),
yangili1@uchicago.edu (Y.I.L.),
pritch@stanford.edu (J.K.P.)

In Brief

Development of the ‘‘omnigenic’’ model

to encompass specific effects on gene

expression provides a defined framework

for testing how variants in core and

peripheral genes reflect genetic

heritability.

mailto:xuanyao@uchicago.edu
mailto:yangili1@uchicago.edu
mailto:pritch@stanford.edu
https://doi.org/10.1016/j.cell.2019.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2019.04.014&domain=pdf


Theory
Trans Effects on Gene Expression
Can Drive Omnigenic Inheritance
Xuanyao Liu,1,* Yang I. Li,1,2,* and Jonathan K. Pritchard3,4,*
1Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
2Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
3Departments of Biology and Genetics and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
4Lead Contact

*Correspondence: xuanyao@uchicago.edu (X.L.), yangili1@uchicago.edu (Y.I.L.), pritch@stanford.edu (J.K.P.)

https://doi.org/10.1016/j.cell.2019.04.014
SUMMARY

Early genome-wide association studies (GWASs) led
to the surprising discovery that, for typical complex
traits, most of the heritability is due to huge numbers
of common variants with tiny effect sizes. Previously,
we argued that new models are needed to under-
stand these patterns. Here, we provide a formal
model in which genetic contributions to complex
traits are partitioned into direct effects from core
genes and indirect effects from peripheral genes
acting in trans. We propose that most heritability is
driven by weak trans-eQTL SNPs, whose effects
are mediated through peripheral genes to impact
the expression of core genes. In particular, if the
core genes for a trait tend to be co-regulated, then
the effects of peripheral variation can be amplified
such that nearly all of the genetic variance is driven
by weak trans effects. Thus, our model proposes a
framework for understanding key features of the ar-
chitecture of complex traits.

INTRODUCTION

During the past 12 years, genome-wide association studies

(GWASs) have been used to study the genetic basis for a wide

variety of complex traits ranging from diseases such as diabetes,

Crohn’s disease, and schizophrenia to quantitative traits such as

lipid levels, height, and educational attainment (Wellcome Trust

Case Control Consortium, 2007). These studies have identified

thousands of genetic loci associated with diverse complex traits,

and in some cases, it has been possible to dissect the molecular

mechanisms that link the identified GWAS variants to disease

(Claussnitzer et al., 2015; Sekar et al., 2016).

Nonetheless, early practitioners of GWASs were surprised to

find that even the strongest GWAS hits tend to have modest ef-

fect sizes on risk and that all the genome-wide significant hits in

combination explained only a small fraction of the expected ge-

netic component of risk (Manolio et al., 2009). For example, the

18 genome-wide significant loci for type 2 diabetes identified

by 2010 explained just 6% of the expected heritability; for

height, the 40 genome-wide significant loci explained just 5%
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of the heritability (Manolio et al., 2009). Since then, the fractions

of heritability explained by genome-wide significant loci have

only increased modestly, even with much larger sample sizes

and many more significant loci (Shi et al., 2016). The observa-

tion that genome-wide significant loci only capture a small pro-

portion of the expected genetic heritability became known as

the problem of ‘‘missing heritability.’’ Subsequent work has

largely resolved this initial mystery by showing that most of

the missing heritability is due to large numbers of small-effect

common variants that are not significant at current sample

sizes (Purcell et al., 2009; Yang et al., 2010; Loh et al., 2015;

Shi et al., 2016).

While the initialmystery hasbeen resolved, the resolution led to

another surprising finding: the large numbers of small-effect var-

iants tend to be spread extremely widely across the genome and

implicate a considerable fraction of all genes expressed in rele-

vant tissues. Indeed, formany traits,most of the genome contrib-

utes to heritability (Purcell et al., 2009). For example, between

71% and 100% of 1 megabase (Mb) windows in the genome

are estimated to contribute to the heritability of schizophrenia

(Loh et al., 2015). Similarly, a recent study of polygenic prediction

models found that for most of the diseases studied, the models

achieved peak accuracies when assuming that 0.1%–1% of

common SNPs have causal effects (Khera et al., 2018).

We recently argued that the data suggest a large fraction of all

genes expressed in relevant tissues can affect a phenotype and

thatmuch of the trait variance ismediated through genes that are

not directly involved in the trait in question (Boyle et al., 2017a).

These observations appear at odds with conventional ways of

understanding the links from genotype to phenotype. Indeed,

much of the progress in classical genetics has come from

detailed molecular work to dissect the biological mechanisms

of individual mutations. That work is predicated on the expecta-

tion that there is a relatively direct molecular pathway from geno-

type to phenotype. Yet the genetic basis of complex traits is

highly diffuse, and it remains unclear how we should conceptu-

alize the molecular mapping from genotype to phenotype.

Specifically, the data suggest several key questions:

Why does such a large portion of the genome contribute to

heritability?

Why do the lead hits for a typical trait contribute so little to

heritability?

What factors determine the effect sizes of SNPs on traits?
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In this paper, we develop a statistical model to explore these

questions. Our model necessarily simplifies a more complex re-

ality and elides specific details of biology and genetic architec-

ture that vary across traits. Nonetheless, we believe it is essential

for the field to develop conceptual models for understanding

complex trait architecture, and the model proposed here is a

step in that direction.

The central thesis of the present paper is that known proper-

ties of cis- and trans-regulatory effects (i.e., cis and trans expres-

sion- or protein-quantitative trait loci [eQTLs and pQTLs, respec-

tively]) provide essential clues to understanding key features of

the architecture of complex traits.
RESULTS

Key Observations
As discussed in our previous paper (Boyle et al., 2017a), a con-

ceptual model of complex traits should allow for the following

observations:

1. The most important loci contribute only a modest fraction

of the total heritability (Shi et al., 2016). Nevertheless, for

many traits the most significant signals are located near

genes that make functional sense. This has been estab-

lished both by detailed molecular dissection of top hits

as well as by enrichment analyses of significant loci

(although the strength of enrichment is generally modest

and varies among traits) (Jostins et al., 2012; Wood

et al., 2014; Fernandez-Tajes et al., 2018; Zhu and

Stephens, 2018).

2. The bulk of the heritability can be attributed to a huge num-

ber of common variants with very small effect sizes. More-

over, these variants tend to be spread very broadly across

the genome (Loh et al., 2015). For traits such as schizo-

phrenia and height, analyses suggest that as many as

half of all SNPs may be in linkage disequilibrium with

causal variants (Boyle et al., 2017a).

3. Consistent with the latter observations, genes with pu-

tatively relevant functions (e.g., neuronal functions for

schizophrenia and immune functions for Crohn’s dis-

ease) contribute only slightly more to the heritability

than do random genes, as measured on a per-SNP

basis. While gene functional annotations are imperfect,

it is worth noting that other kinds of experiments, such

as genome-scale CRISPR screens, often yield much

stronger functional enrichments than seen in most

GWAS data (Bassik et al., 2013; Parnas et al., 2015;

Kramer et al., 2018). The clearest functional pattern

is that genes not expressed in relevant cell types

do not contribute significantly to heritability (Boyle

et al., 2017a).

4. Similarly, the per-SNP heritability in tissue-specific regula-

tory elements is only modestly increased relative to SNPs

in broadly active regulatory elements, provided that they

are active in relevant tissues (Boyle et al., 2017a). Thus,

various lines of evidence indicate that the heritability of a

typical complex trait is driven by variation in a large num-

ber of regulatory elements and genes, spread widely
across the genome, and mediated through a wide range

of gene functional categories.

5. For most complex traits, the heritability is dominated by

common variants (Shi et al., 2016; Yang et al., 2010; Glass-

berg et al., 2019). While rare variants with large effect sizes

do exist for some complex traits, and often highlight genes

with key biological roles (Clément et al., 1998; Dron and

Hegele, 2016), rare variants are generally not major con-

tributors to the overall phenotypic variance.

6. SNPs in active chromatin and protein-coding variants

are both significantly enriched for contributing to com-

plex traits. However, protein-coding variants are rela-

tively rare in the genome and thus contribute only a

small fraction of heritability. Instead, the heritability is

generally dominated by noncoding variants, especially

variants in gene regulatory regions (Pickrell, 2014;

Trynka et al., 2013; Finucane et al., 2015). There is

strong enrichment of both cis- and trans-eQTLs among

GWAS hits, albeit still a considerable gap in linking all

hits to eQTLs (Ardlie et al., 2015; Westra et al., 2013;

Emilsson et al., 2018; Chun et al., 2017; Võsa

et al., 2018).

Together, these points suggest an architecture in which

some genes (and their regulatory networks) are functionally

proximate to disease risk. These genes tend to produce the

biggest signals in common- and rare-variant association

studies, and they tend to be the most illuminating from the

point of view of understanding disease etiology. However,

they are responsible for only a small fraction of the genetic vari-

ance in disease risk. Instead, the bulk of the heritability is medi-

ated through genes that have a wide variety of functions, many

of which have no obvious functional connection to disease.

Lastly, most of the GWAS hits are in noncoding, putatively reg-

ulatory regions of the genome, indicating that the primary links

between genetic variation and complex disease are via gene

regulation.
The Omnigenic Model
We previously proposed the omnigenic model as a conceptual

framework to explain the observations above (Figure 1) (Boyle

et al., 2017a, 2017b). The omnigenic model partitions genes

into core genes and peripheral genes. Core genes can affect dis-

ease risk directly, while peripheral genes can only affect risk indi-

rectly through trans-regulatory effects on core genes. Two key

proposals of the omnigenic model are (1) that most, if not all,

genes expressed in trait-relevant cells have the potential to

affect core-gene regulation and (2) that for typical traits, nearly

all of the heritability is determined by variation near peripheral

genes. Thus, while core genes are the key drivers of disease, it

is the cumulative effects of many peripheral gene variants that

determine polygenic risk.

As defined in this paper, ‘‘omnigenic’’ has a more precise

meaning than the term ‘‘polygenic.’’ Polygenic can be used to

describe the involvement of anything from tens of loci to every

variant in the genome and would include omnigenic as a special

case, toward the high end of the polygenic spectrum. We also

use the term ‘‘omnigenic model’’ to refer to our specific model
Cell 177, 1022–1034, May 2, 2019 1023
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Figure 1. Our Model Starts by Defining ‘‘Core’’ Genes as the Set of Genes that Exert Direct Effects on a Trait, i.e., Not Mediated through

Regulation of Other Genes

(A) Core genes are embedded in gene regulatory networks; other expressed genes (i.e., peripheral genes) may affect core-gene expression through the network

and thus affect the trait indirectly.

(B) According to the model, most cis-regulatory variants for peripheral genes are also weak trans-QTLs for core genes, and the direction of effect varies across

core genes. Thus, typical peripheral variantsmake tiny contributions to heritability, but because there are somany, they are responsible for most of the heritability.

(C) Some peripheral genes drive coordinated regulation of multiple core genes with shared directional effects and can thus stand out as relatively strong GWAS

hits. As discussed later in the paper, likely examples include KLF14 and IRX3/5 (Claussnitzer et al., 2015; Small et al., 2018).
of complex trait architecture in which heritability is mainly driven

by peripheral genes that trans-regulate core genes. It is also

worth distinguishing our model from Fisher’s classic infinitesimal

model (Fisher, 1918; Barton et al., 2017). The infinitesimal model

was originally developed in the pre-molecular era. While funda-

mentally important for understanding patterns of inheritance, it

does not tell us how many causal variants to expect in practice

nor about the molecular mechanisms linking genetic variation

to phenotypes.

Definitions

We define a gene as a ‘‘core gene’’ if and only if the gene product

(protein, or RNA for a noncoding gene) has a direct effect—not

mediated through regulation of another gene—on cellular and

organismal processes leading to a change in the expected value

of a particular phenotype. This definition improves on our previ-

ous definition of core genes, which was less precise.

All other genes expressed in relevant cell types are considered

‘‘peripheral genes’’ and can only affect the phenotype indirectly

through regulatory effects on core genes. Here, we use the term

‘‘regulatory’’ to include diverse forms of regulation of core genes

by other gene products within a cell: this includes regulation

of mRNA or protein expression levels, and transcript usage;

post-translational modifications such as phosphorylation and

glycosylation; and protein localization. We exclude detection of

extracellular signaling such as hormones or cytokines from

this definition, such that signaling receptors can be core genes

(see Discussion).

These definitions imply that the phenotype of an individual is

conditionally independent of the peripheral genes, given the

expression levels and coding sequences of the core genes

(Figure 2).
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Lastly, genes that are ‘‘unexpressed’’ in trait-relevant tissues

are assumed not to contribute to heritability.

While most peripheral genes make small contributions to her-

itability, some peripheral genes, such as transcription factors

and protein regulators, play important roles because they regu-

late multiple core genes (Figure 1C). As discussed below,

when a single peripheral gene coordinately regulates multiple

downstream core genes with shared directions of effect, there

is a potential for relatively large effect sizes at that peripheral

gene. We refer to such genes as ‘‘peripheral master regulators.’’

In the Discussion, we provide examples to illustrate these

definitions.

The Role of Natural Selection in Shaping Genetic

Architecture

In this article, we consider all of the parameter values—including

SNP allele frequencies and effect sizes and the structure of reg-

ulatory networks—as fixed (though generally not known at the

present time) and seek to understand how these drive the archi-

tecture of complex traits.

However, it is important to note that these parameters are

evolved properties of the biological system. In particular, natural

selection acts most strongly against the largest-effect variants

(Simons et al., 2018). This limits the potential contributions of

the most constrained genes, and thus, the genes that are biolog-

ically most important for a given trait may contribute less to her-

itability than would be expected from their intrinsic importance

(O’Connor et al., 2018). For example, it has been argued

that master regulators are under particularly strong selective

constraint; hence, they may not show up well in association

studies of common variants (Chen et al., 2017). We plan to

expand on these points in a future manuscript.
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By definition, only the core genes exert direct ef-

fects on the phenotype. We assume that they do so

mainly through variation in expression levels.

(A) cis- and trans-regulatory effects are funneled

through core genes to affect the phenotype.

(B) From the vantage point of a regulatory QTL SNP,

effects fan out through cellular regulatory networks

to affect one or more core genes.
A Quantitative Phenotype Model Based on Core-Gene
Expression
To model the contribution of core and peripheral genes to com-

plex trait heritability, we now propose a quantitative model that

links phenotypic variation to the expression levels of core genes

in a disease-relevant tissue:

Yi =Y +
XM
j = 1

gj

�
xi; j � xj

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
M core genes; gjs0

+
XN

j =M+ 1

03
�
xi; j � xj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
N�M peripheral genes; gj = 0

+ εYi: (1)

Here Yi denotes the phenotype value in individual i, and Y is

the population mean phenotype. gj denotes the direct effect

of a unit change in expression of core gene j on EðYiÞ, and xi;j
is the expression of gene j in individual i (with population mean

xj). There are M core genes out of N total expressed genes.

The random error term εYi represents environmental and sto-

chastic effects. It has mean 0 and is assumed to be

independent of genotype and gene expression. A summary of

notation and further modeling details appears in the STAR

Methods.

Importantly, this model assumes that each core gene affects

the expected phenotype value as a linear function of its expres-

sion level (with slope gj). Although the expression levels of

peripheral genes do not have direct effects on phenotype Y,

peripheral genes can affect Y indirectly by modifying the expres-

sion of core genes as trans-QTLs. This model assumes the

simplest possible relationship between expression levels of

core genes and the phenotype: namely that the expression of

each core gene is linearly related to the expected phenotype

value and with no additional interaction terms.

Though we do not consider it here, many traits are affected

by distinct biological processes acting in different tissues.

This would be easy to model by adding tissue-specific sub-

scripts to the notation. Then, assuming no interaction terms

between tissues, the GWAS effect size on SNP l is just the

sum of tissue-specific effects. We also note that, although

this model is described in terms of quantitative phenotypes,

presence or absence of a disease can be modeled by

assuming that disease risk is determined by an underlying

quantitative liability scale.
Cis and Trans Contributions to

Heritability

We next use this model to explore the rela-

tionship between cis- and trans-QTL ef-
fects and heritability. Equation 1 models the relationship be-

tween the phenotype value Y and the expression of the core

genes. Then, using the laws of probability, the phenotypic vari-

ance is given by

VarðYiÞ=
XM
j = 1

g2
j Varðxi; jÞ+

XM
j = 1

Xj�1

k = 1

2gjgkCovðxi; j; xi;kÞ+VarðeYiÞ;

(2)

where the variances and covariances in gene expression (xi;j) are

computed across individuals (subscript i). Here, the first sum

adds up the variances of expression of the core genes, and the

second sum adds the covariances of expression between all

pairs of core genes. Based on this relationship, we can now

obtain our key result, by writing the phenotypic variance

VarðYiÞ in terms of genetic variances and covariances of the

expression of core genes (STAR Methods, cis and trans Contri-

butions to Heritability):

VarðYiÞ=
XM
j = 1

g2
j Vj;cis|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

M core terms

+
XM
j = 1

g2
j Vj;trans|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

M trans terms

+
XM
j = 1

Xj�1

k = 1

2gjgkCj;k|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
M2�M covariance terms

+Nongenetic Variance (3)

Here Vj;cis measures the genetic variance in expression of core

gene j that is determined by cis effects, and Vj;trans is the corre-

sponding quantity for trans effects. Cj;k denotes the genetic

covariance of expression of genes j and k. (The ‘‘nongenetic vari-

ance’’ equals
P

jg
2
j Varðexi;jÞ +

P
k < j2gjgkCovðexi;j;exi;kÞ + VarðeYi

Þ,
where exi;j is the random nongenetic variation in expression of

gene j and where eYi
is random nongenetic variation in Yi not

mediated through core-gene expression.)

Equation 3 illustrates the key factors determining how cis- and

trans-eQTL effects on core genes impact complex trait heritabil-

ity. The first two groups of terms on the right-hand side of this

expression depend on the relative importance of cis and trans ef-

fects in determining expression heritability of core genes. As dis-

cussed in the next section, for typical genes, about 70% of

expression heritability is caused by trans effects. The third group

of terms depends on genetic covariances between pairs of core
Cell 177, 1022–1034, May 2, 2019 1025



Table 1. Studies of cis versus trans Heritability

Percent h2 in trans Tissue/Organism Platform Sample Size Method Reference

88% LCL from admixed inds Affymetrix Array 89 African-European ancestry Price et al. (2008)

76%, 61% Drosophila, whole body RNA-seq multi-fly pools fly hybrids McManus et al. (2010)

76%, 63% adipose, blood custom array 638, 687 cis/trans IBD in families Price et al. (2011)

70%, 65%, 64% adipose, LCL, skin Illumina Array 856 twin design Grundberg et al. (2012)

77%, 69% peripheral blood Affymetrix Array 2,752 twin design, LD Score Wright et al. (2014);

Liu et al. (2017)

72% yeast segregants RNA-seq 1012 cis versus trans eQTLs Albert et al. (2018)

62% mouse liver RNA-seq 192 GCTA This study; data

(Chick et al., 2016)

72% mouse liver (proteins) Mass Spec 192 GCTA This study; data

(Chick et al., 2016)

78% human plasma (proteins) protein aptamers 3301 LD Score Regression This study; data

(Sun et al., 2018)

Despite some variability across species, cell types, and analytic methods, these studies all indicate that most heritability of gene expression is due to

trans variation. Data refer to mRNA expression, except the last two rows, which are for protein expression. As a simplifying assumption, these studies

assume that QTLs within a pre-specified physical distance of the target gene, such as 1 Mb, act as cis-regulatory variants, and all others act in trans.

See the STAR Methods, Table S1, and Figure S1 for further notes on these studies.
genes. Aside from the special case of core genes that are adja-

cent in the genome, these genetic covariances must arise from

trans effects. As there are many more pairs of core genes (nearly

M2) than core genes (M), we argue that these terms may domi-

nate the heritability for most traits.

Core-Gene Effects on Heritability
The Heritability of Expression Is Dominated by Many

Small Trans Effects

To interpret Equation 3, we need to measure the relative impor-

tance of cis versus trans effects in driving the heritability of gene

expression. Measuring the importance of trans effects is not

straightforward, as most studies are hugely underpowered to

detect trans-eQTLs, and thus, estimates of trans heritability

must rely on statistical methods that aggregate weak signals.

However, the literature is reassuringly consistent across a range

of study designs, indicating that around 60%–90% of genetic

variance in expression is due to trans-acting variation (Table 1;

Figure S1). For clarity, we will refer to the fraction of trans herita-

bility as 70%, while noting uncertainty in the precise value.

Despite the overall importance of trans effects, trans-eQTLs

are notoriously difficult to find in humans (Petretto et al., 2006;

Westra et al., 2013; Battle et al., 2014, 2017). This is partly due

to the extra multiple testing burden on trans-eQTLs but is mainly

due to the small effect sizes of trans-eQTLs. To illustrate this, Fig-

ure 3 plots the cumulative distributions of cis and trans effects in

a sample of 913 individuals in whole blood, showing that trans ef-

fects are uniformly small compared to cis effects, with only a

handful reaching significance. Given that most trans-eQTLs are

far below the detection threshold for current eQTL studies, it is

difficult at present to estimate how many trans-eQTLs act on a

typical gene. Nonetheless, since �70% of the heritability of

expression is in trans, this implies that typical genes must have

very large numbers of weak trans-eQTLs.

If we assume that typical complex traits have, perhaps, hun-

dreds of core genes, each of which is likely affected by many
1026 Cell 177, 1022–1034, May 2, 2019
weak trans-eQTLs, this model starts to explain why so much of

the genome contributes heritability for typical traits.

Most Trait Heritability Is Likely Mediated through Trans
Effects

With these results in hand, we can now return to Equation 3.

Recall that this result expresses complex trait heritability as a

sum of cis and trans contributions to core-gene expression, as

well as genetic covariances of expression of core-gene pairs.

At the present time, we have limited knowledge about themagni-

tude of the covariance terms, and so we consider two main bio-

logically plausible cases, depending on whether the average of

gjgkCj;k is around zero or substantially positive (Figure 4). (The

third possibility, in which gjgkCj;k is substantially negative, seems

less biologically relevant as it requires a preponderance of gene

pairs with configurations such as anti-correlated expression but

shared directional effects.)

Model 1: Core Genes Generally Not Co-regulated. Suppose

that core genes tend to be dispersed in gene regulatory networks

or that the signs of their effects on disease are not coordinated.

In this case, the average value of gjgkCj;k , computed across pairs

of core genes, is approximately 0, and we can ignore the last

group of terms in Equation 3.

Then the fraction of complex trait heritability that is due to cis

variants at core genes simply reflects the average fraction of

expression heritability due to cis effects. If we assume that

core genes are typical of genes overall, then about 30% of trait

heritability would be due to cis-regulatory variants acting on

core genes, and 70% to trans effects, mainly from peripheral

genes. These estimates assume that the effects gj on the trait

are independent of the cis and trans genetic variance in expres-

sion (Vj;cis and Vj;trans). However, in the plausible case that the ef-

fect sizes and cis-genetic variance are negatively correlated

(e.g., due to purifying selection), the heritability explained by var-

iants cis to core genes would be further reduced.

Model 2: Core Genes Generally Co-regulated. In contrast to

model 1, suppose instead that a considerable fraction of core



Figure 3. Cumulative Distributions of Signal Sizes for the Strongest

cis- and trans-eQTLs for Each Expressed Gene in Whole Blood

(n = 913)

The signals are plotted as jZj scores; note that Z2 is proportional to the genetic

variance contributed by each SNP. To reduce the biasing effects of winner’s

curseand theverydifferent numbersof tests incisand trans,wefirst identified the

most significantcis andmost significant trans signal for every gene inonedataset

(Wright et al., 2014) and plot here the distribution ofZ scores for those SNP-gene

pairs in a replication dataset (Battle et al., 2014) (Key Resources Table).
genes are either co-regulated with shared directions of effects or

negatively co-regulated with opposite directions of effects (i.e.,

gjgkCj;k > 0). In this case, the sum of covariance terms can domi-

nate the genetic variance for trait Y because there are nearly

M-fold as many covariance terms in Equation 3 as variance

terms. Since covariances are primarily driven by trans effects,

co-regulated networks could potentially act as strong amplifiers

for trans-acting variants that are shared among core genes in

those networks.

For example, a recent paper by Gandal et al. identified several

co-expressed gene modules that are either upregulated or

downregulated in various psychiatric conditions, compared to

controls (Gandal et al., 2018).We hypothesize that suchmodules

may often contain multiple core genes with covarying directions

of effects, as well as genetic co-regulation. If this is the case,

then most of the heritability may be driven by (trans-acting)

covariance terms.

There has been little work so far on measuring the genetic ba-

sis of gene expression correlations. Nonetheless, the work to

date shows that expression covariance is substantially driven

by genetic factors. For example, Goldinger et al. (2013) studied

heritability of principal components (PCs) in a dataset of

whole-blood gene expression from 335 individuals. They re-

ported a strong genetic component in the lead PCs, with an

average heritability of 0.39 for the first 50 PCs.

Similarly, Lukowski et al. (2017) tested for genetic covariance

between gene pairs and identified 15,000 gene pairs (0.5% of all

gene pairs) with significantly nonzero genetic covariance at 5%

false discovery rate (FDR). Since the significance test is likely un-

derpowered, there are likely many more gene pairs with genetic

covariance. For example, for the 10%of gene pairs with the high-

est phenotypic correlation, the average genetic correlation is

0.12 (STAR Methods; Table S2). This magnitude is potentially
large enough to make an important contribution to heritability

(Figure 4B). However, their data show roughly equal numbers

of positive and negative genetic correlations overall (Figure S2).

Since the overall contribution of the covariance terms depends

on the average of gjgkCj;k , this means that in order for the covari-

ance terms to contribute to phenotypic variance, either the core

gene pairs would have to be enriched for positive covariances or

the sign of the covariance for a given pair would have to match

the sign of gjgk more often than not. Both scenarios seem plau-

sible but will require further study.

In summary, each core gene is likely affected by large numbers

of weak trans-acting (peripheral) variants. Assuming that a

typical trait might have hundreds of core genes, this may help

to explain why somany loci across the genome contribute to her-

itability for typical traits. Furthermore, this model suggests that

most trait heritability is mediated through trans effects, espe-

cially if core genes tend to be positively co-regulated.
SNP Effect Sizes on Disease Risk
In the previous section, we focused on the behavior of the model

from the point of view of core genes, which collect QTL effects

from cis and trans variants. We now turn our attention to a

SNP-centric viewpoint. The effects of a single SNP potentially

fan through multiple core genes to affect the phenotype (Figures

2B and 5). The SNP effect sizes that are measured in GWASs

correspond to the aggregated effects of each SNP on all core

genes, as described next.

SNP Effect Sizes

Suppose that SNP l is an eQTL for core gene j. As before, al; j

is the effect size of SNP l on the expression of gene j (each addi-

tional copy of the alternate allele at l increases expression of j by

al;j units). We denote the expected change in phenotype Y due to

one additional copy of the alternate allele as Dl. Suppose that

gene j is the only core gene for which l is an eQTL. Then the effect

size of l on phenotype Y is Dl = al; jgj. Since trans-eQTLs tend to

have very small effect sizes, we can expect that Dl will tend to be

very small if l is in trans to j, compared to when l is in cis.

Next, what happens if l is a trans-QTL for multiple core genes?

Now, the total phenotypic effect of l is a sum of trans effects as

mediated through each core gene j:

Effect of l on phenotype =Dl =
XM
j = 1

al; jgj =Mal; jgj: (4)

First, consider a regulatory variant that affects multiple core

genes but not in a coordinated way. In other words, the effects

of SNP l, as mediated through different core genes may be

both trait increasing and trait decreasing. Specifically, if we as-

sume that al;jgj has an expected value of 0 and is uncorrelated

across j, then

E½Dl�= 0
�
al; jgj uncorrelated across core genes

�
Var½Dl�=

XM
j = 1

�
al; jgj

�2
=M

�
al; jgj

�2
:

(5)

Although the effects tend to cancel out on average, the vari-

ance of the phenotypic effects scales with M. Although not
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Figure 4. Modeling Predicts that 70% to Nearly 100% of Heritability Is Driven by Weak Trans Effects

(A) In model 1, we assume that expression of core genes tends to be relatively independent. In this case, we predict that about 30% of heritability is in cis to the

core genes. In model 2, we assume that core genes are often co-regulated, with coordinated directions of effects. In this case, for any given individual, the

aggregated effects of peripheral variants are partially shared across core genes, while the directions of cis effects at core genes may be up, or down, inde-

pendently across genes. This effectively transfers most of the heritability out to a large number of peripheral regulators.

(B) Illustration of the fraction of genetic variance due to trans variance and covariance effects (Equation 3). Simplifications for plotting: Vj and
		gj

		 constant

across j. The different curves show different values of the ‘‘scaled correlation’’ E½signðgjgkÞ,Cj;k �=
ffiffiffiffiffiffiffiffiffiffi
VjVk

p
. See also Figure S2.
shown here, any correlations in al;jgj among core genes would

further increase the variance.

In summary, while most SNPs would have effect sizes near

zero in thismodel, some SNPsmay have appreciable effect sizes

if a preponderance of the al;jgj happen to share the same direc-

tion of effect by chance.We hypothesize that the bulk of complex

trait heritability is driven by weak random effects of this type from

peripheral genes.

Peripheral Master Regulators. In some cases, the lead hits

from GWASs do not tag core genes but master regulators such

as KLF14 (diabetes) and IRX3/5 at the FTO locus (obesity) (Small

et al., 2018; Claussnitzer et al., 2015). Given that individual trans-

eQTLs tend to be very weak, it seems likely that these genes

drive coordinated effects on many downstream target core

genes, such that the sign of al;jgj for a given SNP tends to be sys-

tematically positive (or negative). In this case, the effect of SNP l

is given by Mal;jgj. If al;jgj tends to have the same sign across

different core genes (j), this may potentially add up to a relatively

large effect (Figure 5D).

One recent study suggests that this pattern may be a common

disease architecture. Reshef et al., (2018) found a number of

transcription factor-disease pairs for which SNPs in the tran-

scription factor binding sites showed a persistent directional ef-

fect such that the alleles that increase binding tend to increase

(or alternatively, to decrease) disease risk. We interpret this as

implying that increased binding of the transcription factor tends

to drive directional effects on disease risk across many target

genes. Thus, a single variant that affects the protein or expres-

sion of the transcription factor may have a coordinated effect

on many target genes.

Pleiotropy
Lastly, this model suggests a conceptual framework for inter-

preting variants that affect multiple traits (STARMethods, Pleiot-
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ropy and Genetic Covariance of Traits; Figure 6) (Sivakumaran

et al., 2011; Evans and Davey Smith, 2015; Bulik-Sullivan et al.,

2015; Pickrell et al., 2016).

First, suppose that two traits have core genes in different parts

of the network (i.e., that there is no genetic covariance in the

expression of the core genes). In this case, individual variants

may affect both traits in a sporadic fashion: Dl for both traits

is nonzero but with the direction of effects uncorrelated

(see e.g., Figure 5C). We previously referred to these random

effects as ‘‘network pleiotropy’’ (Boyle et al., 2017a), and this is

related to the concept of ‘‘type 1 pleiotropy’’ (Wagner and Zhang,

2011).

Second, suppose that two traits either share core genes or that

both traits have core genes in the sameco-regulated networks. In

these cases, the two traits can potentially have correlated SNP

effects; i.e., they share genetic covariance (Bulik-Sullivan et al.,

2015; Shi et al., 2017). Let gj;A and gk;B measure the effects of

expression of genes j and k on traits A and B, respectively, ex-

tending the previous gj notation to multiple traits. Then the ge-

netic covariance will be nonzero if the directions of the gene

effects tend to line up in a consistent way, as follows (STAR

Methods, Pleiotropy and Genetic Covariance of Traits). For

shared core genes we simply need the product gj;Agj;B to tend

to be consistently positive or consistently negative. Similarly,

co-regulated core genes would need to have consistently shared

(or consistently opposite) directions of effects and co-regulation

(i.e., that the sum of gjAgkBCj;k across all pairs of core genes is

substantially nonzero). These conditions may be met if traits are

driven by overlapping genes or gene networks (as seems to be

the case for psychiatric diseases [Gandal et al., 2018; Anttila

et al., 2018]). More trivially, this is almost guaranteed to occur if

one trait contributes causally to another, downstream of genetic

effects—for example, lipid levels contribute causally to coronary

artery disease (Pickrell et al., 2016).



A

B

C

D

Figure 5. Effect Sizes of Cis- and Trans-Regu-

latory Variants on a Trait

Here, the as are eQTL effect sizes of SNPs on core

genes, and the gs are effect sizes of core genes on the

phenotype.

(A and B) For a single core gene, cis-regulatory vari-

ants will tend to have larger effect sizes on the trait

compared to trans variants, as cis-eQTLs tend to be

much stronger than trans-eQTLs.

(C) trans-acting variants that affect many core genes

will usually, but not always, have small effect sizes on

the trait if the directions of effects on core genes are

uncorrelated.

(D) trans-regulators can have large effects on a trait if

they act on many core genes in a correlated manner.

Black and red arrows indicate positive and negative

effects, respectively. ‘‘+’’ and ‘‘-‘‘ indicate the sign of

al;jgj for each core gene.
DISCUSSION

The field of human genetics has made huge strides toward

elucidating the genetic basis of a wide range of complex traits.

However, there is a paucity of new conceptual models for the

links between genetic and phenotypic variation. In particular,

how should we understand the observations that (1) an enor-

mous number of variants, spread widely across most of the

genome affect any given trait and that (2) together, the biggest

GWAS hits generally contribute just a small fraction of the

total heritability? Our main goal in this paper is to flesh out

details of the omnigenic model that we proposed previously

as a candidate framework for understanding complex trait

architecture.

1. Ourmodel partitions genes into core genes (i.e., thosewith

direct effects on the phenotype in question) and peripheral

genes (non-core genes that are expressed in disease-rele-

vant tissues). We proposed an equation that relates the

expression of the core genes to the expected phenotype

value (Equation 1).

2. Most of the heritability of gene expression (�70%) is

controlled in trans (Table 1), and yet individual trans ef-

fects are almost uniformly tiny (Figure 3). This implies

that the expression of a typical gene is affected by

huge numbers of trans-eQTLs. If we hypothesize that

there are at least hundreds of core genes for typical dis-
ease phenotypes, each with many

trans-eQTLs, these observations

may start to explain why such a

large part of the genome is impli-

cated in any given trait.

3. This model allows us to predict

the fraction of complex trait herita-

bility that is mediated through cis ef-

fects at core genes versus through

trans effects (Figure 4). If the regula-

tion of core genes tends to be

uncorrelated, then the heritability
located near core genes simply matches the fraction of

heritability that is due to cis-regulatory variants in gen-

eral—i.e., �30%. In contrast, if core genes are often co-

regulated, with shared directions of effects, as seems

likely, then nearly all heritability would be due to trans

effects.

4. Figure 5 suggests predictions regarding the effect sizes

of regulatory variants. Because cis-eQTLs usually have

much larger effect sizes than trans-eQTLs, we can

expect that many of the biggest signals in GWASs are

cis regulators of core genes. Second, peripheral gene-

regulatory variants may become notable hits if they

are trans-eQTLs for many core genes with correlated

directions of effect. Third, we hypothesize that the

bulk of trait heritability is driven by a huge number

of peripheral variants that are weak trans-eQTLs for

core genes.

5. Lastly, the model provides a conceptual framework for

pleiotropic effects between traits (Figure 6). Even for unre-

lated traits, it is likely that a large fraction of variants may

have small effects on both traits, but with uncorrelated di-

rections of effects. For traits that share core genes, or for

which some of the core genes are in the same co-regu-

lated networks, we can expect genetic correlation if the

products gj;Agk;B for shared core genes and gj;Agk;BCj;k

across pairs of core genes are substantially positive, or

negative, on average.
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eQTL
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Uncorrelated Core Genes
(Random Pleiotropy)

Shared or Coregulated Core Genes
(Genetic Covariance of Traits)

B Figure 6. Pleiotropy and Genetic Correlation

(A) If the core genes for two traits are uncorrelated,

then variants that are trans-eQTLs may affect both

traits but with uncorrelated directions of effect.

(B) If some of the core genes are shared between

traits or expression of the core genes is genetically

correlated, then thismay lead to genetic covariance

of the traits. Genetic covariance of the traits occurs

if the directions of trans-regulation and effect sizes

tend to line up between the two traits in a coordi-

nated way (i.e., that sums of gj;Agj;B for shared

core genes, and gj;Agk;BCj;k across pairs of core

genes, are either substantially positive or negative

overall).
While our model is both an abstraction and a simplification of

complex trait architectures, it may be helpful to interpret this

model in the light of well-studied traits.

Core Genes in Example Traits
Some of the best-understood examples of core genes come

from studies of plasma lipid levels (LDL, HDL, and triglyceride

levels), which are important risk factors for heart disease. The ge-

netics of lipid levels include both monogenic syndromes (collec-

tively referred to as dyslipidemias) and a polygenic component

that drives most of the population-level variance. At least nine

genes are currently implicated in familial hypercholesterolemia,

and additional genes cause other forms of dyslipidemia (Dron

and Hegele, 2016). The monogenic syndrome genes are closely

involved in aspects of lipid metabolism or regulation and should

likely be considered core genes for these traits. For example,

APOB encodes Apolipoprotein B, the primary protein in low-

density lipoprotein (LDL) particles. The LDL-R protein is a recep-

tor for LDL particles, removing them from the bloodstream and

transporting them into cells, thus reducing plasma levels of

LDL. Presumably additional core genes have not yet been iden-

tified as such.

Notably, most of the dyslipidemia genes are also linked to

GWAS signals, indicating that common variants at these loci

also contribute to lipid levels (Teslovich et al., 2010; Willer

et al., 2013; Lu et al., 2017; Liu et al., 2017; Hoffmann et al.,

2018). For example, 7 out of 10 genes associated with mono-

genic disorders of LDL-cholesterol levels are within the set of

57 genome-wide significant hit regions from a GWAS of LDL

levels (Dron and Hegele, 2016; Willer et al., 2013).

However, while the genome-wide significant hits are highly

enriched with putative core genes for this trait, it is striking

that they are responsible for only a modest fraction of the her-

itability of LDL levels. The 57 genome-wide significant loci

explain �20% of the heritability, while all variation tagged in

current GWASs together explains �80% (Shi et al., 2016).

One study estimated that 54% of 1 Mb windows in the genome

contribute to the heritability of extreme lipid levels (Loh et al.,

2015). Thus, in the case of LDL levels, we have clear evidence

for the involvement of core genes, yet they contribute only a

small fraction of the genetic variance in the trait. Our model

predicts that much of the remaining variance is due to the com-
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bined contributions of many small trans effects being funneled

through the core genes.

However, in most diseases it is currently much harder to

enumerate likely core genes. In part this is because most com-

plex diseases are poorly understood compared to lipid levels.

But more fundamentally, many diseases likely have much larger

core gene sets, potentially affecting multiple biological mecha-

nisms and potentially in multiple tissue types. For example,

schizophrenia is substantially more polygenic than lipid levels

(Loh et al., 2015; Shi et al., 2016), and analyses of large-effect

rare variants have nominated broad pathways of enrichment

but thus far have not identified many genes that are individually

significant (Fromer et al., 2014; Purcell et al., 2014). We hypoth-

esize that a disease such as schizophrenia likely has a very large

number of core genes and master regulators and that no single

core gene has large effects on its own.

Furthermore, some traits of interest are themselves impacted

by multiple other complex traits. Recent work on educational

attainment provides an extreme example (Lee et al., 2018). The

measured phenotype of educational attainment is affected by

many different aspects of behavior and health; presumably,

each of these has its own core genes (Turkheimer, 2000), and

the measured effect sizes for each SNP on educational attain-

ment represent weighted averages across all these simpler

traits.

Lastly, it is important to note that our definition of core genes is

a simplification of amore complex reality. There are various edge

cases that are hard to classify. For example, PCSK9, which is an

important drug target for lipid levels, acts by degrading LDL re-

ceptor proteins. It is tempting to label this as a core gene, though

strictly speaking it acts through protein regulation of the LDLR

gene and by our definition should thus be considered peripheral.

As another example, many receptor genes are involved in

receiving extracellular signals such as hormones or cytokines

and then driving internal cellular regulatory networks. We are in-

clined to regard these as potential core genes as they interact

directly with external signals, leading to changes in cellular func-

tion; however, they do not fit neatly within our definition.

Peripheral Master Regulators
Because trans-eQTL effect sizes tend to be extremely small,

most peripheral genes exert small effects on traits. But there



are now several examples of variants that likely affect many core

genes in a coordinated way and thus stand out as important

GWAS hits (Figure 1C). Such variants may affect trans-regulation

in steady-state contexts or may act by altering developmental

trajectories.

For example, a variant at the KLF14 locus is associated with

dyslipidemia, insulin dependence, and type 2 diabetes (Small

et al., 2018). This variant, which is a cis-eQTL for KLF14, is a

trans-eQTL for a network of 385 other genes in adipose tissue.

Several of the target genes are strong candidates for driving as-

pects of the organism-level phenotypes, and it is likely that the

overall effects of KLF14 are mediated through multiple core

genes in this network.

Similarly, a SNP at the FTO locus that is a cis-eQTL for IRX3

and IRX5 is associated with triglyceride levels, obesity, and dia-

betes (Willer et al., 2013; Smemo et al., 2014; Claussnitzer et al.,

2015). These two alleles control the fractions of adipocyte pre-

cursors that differentiate into white and beige adipocytes,

respectively (Claussnitzer et al., 2015), thereby acting as a devel-

opmental switch. In both the KLF14 and FTO examples, the

SNPs alter transcriptional programs with downstream conse-

quences on disease risk.

As a third example, circadian rhythms are controlled by a

well-understood set of transcriptional regulators and repressors

that drive daily cycling of thousands of genes (Takahashi, 2017;

Ruben et al., 2018). A recent GWAS for whether people are

‘‘morning people’’ or ‘‘evening people’’ identified 351 loci,

with strong enrichment of signal among genes expressed in

the brain and pituitary (Jones et al., 2019). Notably, the peaks

included nearly all of the key circadian regulators. In our termi-

nology, these are not core genes as they do not exert direct

causal effects on chronotype but instead act as coordinated

master regulators of many downstream core genes that drive

daily physiological cycling.

We anticipate that many of the examples of transcription fac-

tors, chromatin modifiers, and other regulatory genes that have

emerged as strong hits in disease studies act as peripheral

master regulators, driving coordinated regulation of many core

genes. Such genes are of particular interest for understanding

biological drivers of a trait; however, they are often under partic-

ularly strong selective constraint and may thus be missed in

GWASs (Chen et al., 2017; O’Connor et al., 2018).

Next Steps in Deciphering Complex Traits
Genetic studies of complex traits can contribute to genetic med-

icine in two broad areas: (1) prediction of individuals at risk of

disease and (2) elucidation of biological mechanisms and identi-

fication of potential therapeutic targets.

With recent progress on polygenic risk scores, the GWAS field

is now making meaningful strides toward the goal of risk predic-

tion in clinical applications (Khera et al., 2018; Torkamani et al.,

2018). Accurate polygenic risk prediction depends on having ac-

curate estimates of tiny effect sizes across millions of SNPs.

Polygenic prediction can be done without a deep understanding

of biological mechanisms of disease, but it does require enor-

mous sample sizes. Therefore, to achieve the full potential of

polygenic prediction, it will be essential to continue building

larger GWAS samples for the major diseases. Fortunately, the
cost and difficulty of building large GWAS samples continue to

drop through both public and private efforts.

A more difficult question will be how to determine the best

paths forward for linking GWAS data to biological mechanisms.

In our view, the biggest current gap is the very limited knowledge

of trans-regulatory networks. If we had high-quality trans-regula-

tory networks and trans-QTL information, then these could

potentially be combined with GWAS effect-size estimates to

enable a complete description of core and peripheral genes

and the flow of genetic effects through the regulatory network.

Existing methods that combine GWAS and eQTL data, such as

PrediXcan and TWAS, use cis-eQTLs to identify genes that lie

upstream in causal pathways of disease (Gamazon et al.,

2015; Gusev et al., 2016). With high-quality network information,

it may be possible to extend this concept to perform joint infer-

ence on all genes to identify which genes are core genes, which

are master regulators, and which are weaker peripheral genes.

The key question then is how to infer regulatory networks. One

approach is through trans-eQTL mapping, but this requires

extremely large sample sizes. Studies of whole blood are starting

to approach the required sample sizes (Võsa et al., 2018), but

extremely large samples are far less practical for most other

tissues or cell types. Alternatively, we are optimistic that high-

throughput experimental perturbation methods may help to fill

this gap (Jaitin et al., 2016; Datlinger et al., 2017; Subramanian

et al., 2017).

Another open question is the value of deep sequencing to

identify rare variants of larger effects. These approaches have

so far had mixed success, depending on the disease (Rivas

et al., 2011; Purcell et al., 2014; Fuchsberger et al., 2016; Natar-

ajan et al., 2018). In principle, rare variants of larger effect can

provide orthogonal information to the common variant signal,

should generally be more proximate to the mechanism of action,

and may help to identify important genes that are refractory to

common variation. On the other hand, most of these studies

continue to be underpowered at current sample sizes. As

sequencing costs continue to drop, we believe that deep

sequencing will be an important tool that provides complemen-

tary information, while recognizing that it is no panacea. Ulti-

mately a full mechanistic dissection of complex traits will require

a combination of all these kinds of approaches, along with

detailed functional biology of key targets.

In summary, this paper aims to provide a simple, but formal,

model for the links between genetic variation, expression of

core genes, and disease risk. We have argued previously that

most of the heritability for typical complex traits is mediated

through genes that have only distant connections to disease

biology. Here, we have expanded on this theme, proposing

that this is a consequence of known features of cis- and trans-

eQTL architecture.
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Software and Algorithms

GCTA Yang et al., 2011 https://cnsgenomics.com/software/gcta/

LD Score Regression Finucane et al., 2015 https://github.com/bulik/ldsc

Deposited Data

RNA-seq and genotype data (Depression Genes

and Networks cohort)

Battle et al., 2014 https://www.nimhgenetics.org/request-access/

how-to-request-access

Expression Array and genotype data (Netherlands

Twin Register)

Wright et al., 2014 https://www.nimhgenetics.org/download-tool/NTR

RNA-seq and genotype data (Collaborative Cross) Chick et al., 2016 ftp://ftp.jax.org/scm/ ChickMungeretal2016_

DiversityOutbred.Rdata

protein QTLs summary statistics Sun et al., 2018 http://www.phpc.cam.ac.uk/ceu/proteins/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources, including computer code used in this study, should be directed to and will be fulfilled

by the lead contact, Jonathan K. Pritchard (pritch@stanford.edu).

METHOD DETAILS

Theoretical models
Summary of notation
Yi; Y; Var(Yi) Phenotype of individual i; mean phenotype; phenotypic variance

M ; N Number of core genes; total number of genes

gj Mean effect of a unit change in expression of gene j on Yi

xi,j ; xj Expression of gene j in individual i; mean expression of gene j

eYi Random variation in Yi not mediated through core gene expression

Var(eYi) Variance of random phenotypic effects (eYi)

Var(xi,j); Cov(xi,j, xi,k) Phenotypic variance of gene j; Phenotypic covariance of genes j and k

exij Random (nongenetic) variation in expression of gene j in individual i

l...L Index over causal sites (loci)

Vj; Vj,cis, Vj,trans Genetic variance for gene j; cis and trans genetic variances of j

Cj,k Genetic covariance of genes j and k

Dl Effect size of variant l on expression of gene j
Incorporating Genetic Variation into the Model
Suppose that there are Lj distinct eQTLs for core gene j, of which Lj,cis are in cis, and Lj - Lj,cis are in trans. Let al,j denote the effect size

of eQTL l on expression of gene j (each additional copy of the alternate allele at l increases expression of j by al,j units). Then, assuming

a linear model of eQTL effects with no interaction terms, the expression level of gene j in individual i depends on that individual’s ge-

notype as follows:

xij = xj +
XLj ;cis
l = 1

al;j

�
gi;l � 2pl

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Sum of cis eQTLs

+
XLj

l = Lj;cis+1

al;j

�
gi;l � 2pl

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sum of trans eQTLs

+ ej; (6)
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where g 2 {0, 1, 2} is the genotype of individual i at SNP l, and p
i,l l is the population allele frequency at SNP l (i.e., 2pl is the average

genotype). The random error term ej reflects nongenetic variation, and hasmean 0. Plugging Equation 6 into Equation 1 and assuming

no interaction effects, we can write the expected phenotype

Y for individual i in terms of their genotype:

EðYiÞ=Y +
XM
j = 1

XLj ;cis
l = 1

gjal;j

�
gi;l � 2pl

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SNPs cis to core genes

+
XM
j = 1

XLj
l = Lj ;cis+ 1

gjal;j

�
gi;l � 2pl

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SNPs trans to core genes

(7)

In this latter expression, SNPs or other variants near to core genes affect their expression as cis-eQTLs, and SNPs elsewhere in the

genome act as trans-eQTLs on core genes. The form of Equation 7 is reminiscent of a polygenic risk score, except that in a polygenic

score, the terms are re-organized into a sum over SNPs. In the following sections we will argue that most heritability is due to trans

effects from the second group of terms.

Cis and Trans Contributions to Heritability
Equation 1 models the relationship between the phenotype value Y and the expression of the core genes. Then, we can write the

phenotypic variance as in Equation 2. To evaluate this, we need to write the variances and covariances of expression in terms of ge-

netic contributions. As before, we assume fully additive models without GxG or GxE interaction terms, and in this case, linkage equi-

librium between eQTLs:

Var½xi;j�=
XLj ;cis
l = 1

a2
l;j,2plð1� plÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Vj;cis = var from cis

+
XLj

l = Lj;cis+ 1

a2
l;j,2plð1� plÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vj;trans = var from trans

+VarðejÞ (8)
Cov½xi;j; xi;k �=
X

l˛LjXLk

al;jal;k,2plð1� plÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cj;k =genetic convariance of j;k

+Covðej; ekÞ (9)

The equations above define the cis and trans components of expression variance of gene j (Vj,cis and Vj,trans, respectively), and the

genetic covariance C(j, k) of genes j and k. Lj and Lk denote the sets of eQTLs for genes j and k respectively. Var(ej) and Cov(ej, ek) are

the environmental and random variances and covariances of core genes, and gene pairs, respectively. Plugging the genetic variance

and covariance expressions into Equation 2 we obtain Equation 3.

Pleiotropy and Genetic Covariance of Traits
Consider two traits A and B, where Yi,A and Yi,B denote the phenotypes of individual i, and whereMA andMB denote the sets of core

genes for each trait, respectively. From Equation 1, the phenotypic covariance of these traits is

CovðYi;A;Yi;BÞ=E
h�

Yi;A � YA

��
Yi;B � YB

�i
=E

"(X
j˛MA

gj;A

�
xi;j � xj

�)
3

( X
k˛MB

gk;B

�
xi;k � xk

�)#
+ ei;Aei;B

(10)

The genetic component of the covariance then depends on a sum of terms due to core genes shared between the traits, and a sum

of terms based on genetic covariance of all pairs of core genes. Specifically, the genetic covariance of traits A and B isX
jeMAXMB

gjAgjBVj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
covariances of shared cores

+
X

jeMA ;keMB ;jsk

gjAgkBCj;k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
covariances of core gene pairs

(11)

Here the first sum indexes over shared core genes, and will contribute positive trait covariance if the core genes tend to have the

same directions of effects on both traits. The other sum indexes over pairs of core genes, andwill contribute positive trait covariance if

core gene pairs with positive expression covariance tend to have same-direction effects on both traits (and negatively correlated core

genes tend to have opposite- direction effects). Reversal of these conditions would produce negative trait covariances.

Estimation of trans Heritability
In Table S1, we present additional considerations regarding the fraction of trans heritability estimated by different studies reported in

Table 1.
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cis and trans Heritability of Mouse RNA and Proteins
To estimate the proportion ofmRNA and protein expression level heritability due to cis and trans variants, we downloaded livermRNA

and protein expression level quantifications, and genetic information for each of the 192 Collaborative Crossmice (see Key Resource

Table). Because the genetic information for eachmousewas in the form of estimated founder dosage (from eight founder strains) and

not genetic dosage, we used the predicted founder dosage and the founder genotypes to convert founder dosage into genotype

dosage for each of the 192mice. In addition, because the founder dosage was reported at a restricted number of measuredmarkers,

we converted the founder dosage to genotype dosage only when SNPs were at most 10kb away from the measured marker. This is

rather conservative as the haplotype blocks in these mice were generally much larger than 10kb (often tens of MBs).

To compute heritability of gene expression and protein expression levels, we used GCTA (Yang et al., 2011) with standard param-

eters on 20,650 genes and 7,826 proteins, respectively, whose expression levels were measured in the 192 mice. We used 5 pheno-

type and 5 genetic PCs as covariates for all genes. To estimate the proportion of heritability explained by variants cis to a gene, we ran

GCTA using the genetic relation- ship matrix (GRM) created using all SNPs on the same chromosome as the gene. In contrast, we

estimated the proportion of heritability explained by variants in trans by running GCTA using the GRM computed using all SNPs from

the 21 other chromosomes.We note that our definition of genetic variants contributing to gene expression variation in cis is extremely

permissive, however, it is reasonable in our case as we are primarily interested in a lower bound for the heritability explained by var-

iants that function in trans.

In summary, we estimated that 62% of mRNA heritability and 72% of protein heritability are determined in trans. The larger trans

component for proteins is robust across the full spectrum of total heritability values (Figure S1).

cis and trans Heritability of Human Plasma Proteins
Genome-wide summary association statistics of protein QTLs (pQTLs) for 3,622 plasma proteins from Sun et al. (Sun et al., 2018)

were downloaded (see Key Resources Table). We applied LD Score Regression (LDSC) (Finucane et al., 2015) to the summary sta-

tistics to estimate cis and trans SNP heritability. We defined regions within 1Mb to the transcription starting sites (TSS) of each gene

as cis regions, and all regions larger than 5Mb away from TSS of the gene and the rest of the 21 chromosomes as trans regions. LDSC

analyses were run on the cis and trans regions of each protein. LDSC baseline annotations V2.0 were used, and we fixed the LDSC

regression intercept to 1 in order to reduce noise (Liu et al., 2017). Cis- heritability of 1,588 proteins and trans heritability of 2,483

proteins are in the 0-1 range. We computed the ratio of cis and trans heritability as the ratio of the average cis and trans heritability

obtained from these proteins.

eQTL Effects in the Netherlands Twin Register Dataset and Replication in the Depression Genes and Networks
Dataset
We wanted to compare the distribution of effect sizes between cis- and trans-eQTLs. This kind of analysis is challenging because

most studies are underpowered to detect trans-eQTLs, and because significant signals– especially those in trans–suffer from win-

ner’s curse (i.e., the effect that significant SNPs passing a significance threshold may have over-estimated effect sizes). To correct

for winner’s curse and obtain eQTL effect sizes that are less biased, we analyzed two gene expression datasets in this paper (see Key

Resource Table). Our strategy was to first select significant cis and trans eQTL associations in the Netherlands Twin Register (NTR)

dataset (Wright et al., 2014), and then replicate the association signals in the Depression Genes and Networks (DGN) dataset (Battle

et al., 2014).

The NTR dataset consists of two study cohorts: the Netherlands Twin Registry cohort and the Nether- lands Study of Depression

and Anxiety (NESDA) cohort. Genotype and expression quality control and genotype imputation were done in (Wright et al., 2014).

Summary statistics were first computed at probe level (each gene corresponds to one or more probes). Since the NTR cohort is

comprised of monozygotic and dizygotic twins, t-statistics were computed for each equal split twin set, and combined z-statistics

were calculated using empirical correlations among monozygotic and dizygotic twins. Meta-analyzed z-statistics of each probe for

NTR and NESDA cohorts were computed using inverse-variance weighting by sample size. We further combined probe-level sum-

mary statistics into gene level summary statistics of 17,118 genes, by averaging the z-statistics across probes belonging to the same

gene. For each gene, we determined the most significant eQTL variant in cis, and in trans, and then took these forward for replication

testing in the DGN dataset.

For the DGN dataset, we performed genotype and sample QC and quantified expression levels. More specifically, genotype QC

includes removal of SNPswithMAF<0.05, Hardy-Weinberg equilibrium smaller than 13 10-6, or missing rate exceeding 1%.We then

generated a genetic relationship matrix (GRM) and removed one of each pair of samples with relatedness greater than 0.05. Our final

QCed dataset of contains 913 individuals and 6,231,867 SNPs. To reduce false positive trans-associations due to biases in sequence

reads mapping, we only kept uniquely mapped reads and further discarded reads mapped genomic regions of low mappability

(mappability <1). The mappability of every 36-mer of the reference human genome (hg19) were computed by the ENCODE project.

We quantified expression levels of 13,634 genes using FeatureCount (Liao et al., 2014), which had measurable expression in at least

half of the samples. Gene expression levels were estimated as Reads per kilo base per million mapped reads (RPKM). For each sig-

nificant SNP-gene association identified in NTR, we tested its association while using the top 20 surrogate variables as covariates in a

linear model.
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Genetic Correlation of Gene Expression Levels
Genetic covariance and correlation estimates were computed by Lukowski et al. (2017) using expression array data fromwhole blood

for 1,748 unrelated individuals of European ancestry. We downloaded their estimates from http://computationalgenomics.com.au/

shiny/rg/. They reported genetic covariance and genetic correlation (r̂g ) between each pairwise combination of 2469 highly heritable

(h2g>0.25) transcripts. Genetic correlations were estimated using the bivariate GREML model, imple- mented in the GCTA software

(Yang et al., 2011). See also the Supplementary Information of Lukowski et al. for extensive analyses of these data.

It is well known that gene expression data often show strong correlation structure among individuals, and the Lukowski data

confirm that gene expression levels are heavily controlled by genetic variation. Using the data that they processed, we computed

that the Pearson correlation between r̂p and r̂gwas 0.16 (p << 2.23 10-16). At the tails of the r̂p distribution, which indicates co-expres-

sion of transcripts, the average r̂g are particularly large (Table S2), suggesting shared genetic control for co-expressed transcripts.

We observed that the distributions of pairwise phenotypic correlations (r̂p) and genetic correlations (r̂g) were approximately symmet-

ric around zero, albeit with slightly more weight in the positive tail of the r̂g distribution (Figure S2, Table S2). Together, these results

show that the magnitudes of the genetic correlations of gene expression are often large, supporting the idea that the genetic covari-

ance of core gene expression levels maymake an important contribution to disease heritability (depending on the signs of the effects

sizes and correlations).
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Supplemental Figures
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Figure S1. cis and trans Genetic Control of Gene and Protein Expression, Related to Table 1

The proportion of mRNA expression levels explained by variants in cis is systematically larger than the proportion of protein expression levels explained by

variants in cis. This is consistent with the idea that cis effects aremainlymediated through transcriptional regulation (Battle et al., 2015), while trans-effects can act

through pre- and post-transcriptional regulation.



Figure S2. Genetic and Phenotypic Correlation of Gene Expression, Related to Figure 4

Genetic and phenotypic correlation of gene expression estimated from Lukowski et al. The blue line represents a loess regression curve fitted to the data. The

dotted lines in the upper and right panels denote x = 0 and y = 0 at the center of the r̂p and r̂g density distributions, respectively.
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