
Large-Scale Differentiable
Causal Discovery of Factor Graphs

Romain Lopez1,2, Jan-Christian Hütter1,
Jonathan K. Pritchard2,3,†, Aviv Regev1,†

1 Division of Research and Early Development, Genentech
{lopez.romain, huettej1, regeva}@gene.com

2 Department of Genetics, Stanford University
pritch@stanford.edu

3 Department of Biology, Stanford University

† These authors contributed equally to this work.

Abstract

A common theme in causal inference is learning causal relationships between
observed variables, also known as causal discovery. This is usually a daunting
task, given the large number of candidate causal graphs and the combinatorial
nature of the search space. Perhaps for this reason, most research has so far
focused on relatively small causal graphs, with up to hundreds of nodes. However,
recent advances in fields like biology enable generating experimental data sets with
thousands of interventions followed by rich profiling of thousands of variables,
raising the opportunity and urgent need for large causal graph models. Here, we
introduce the notion of factor directed acyclic graphs (f -DAGs) as a way to restrict
the search space to non-linear low-rank causal interaction models. Combining
this novel structural assumption with recent advances that bridge the gap between
causal discovery and continuous optimization, we achieve causal discovery on
thousands of variables. Additionally, as a model for the impact of statistical noise
on this estimation procedure, we study a model of edge perturbations of the f -DAG
skeleton based on random graphs and quantify the effect of such perturbations
on the f -DAG rank. This theoretical analysis suggests that the set of candidate
f -DAGs is much smaller than the whole DAG space and thus may be more suitable
as a search space in the high-dimensional regime where the underlying skeleton
is hard to assess. We propose Differentiable Causal Discovery of Factor Graphs
(DCD-FG), a scalable implementation of f -DAG constrained causal discovery
for high-dimensional interventional data. DCD-FG uses a Gaussian non-linear
low-rank structural equation model and shows significant improvements compared
to state-of-the-art methods in both simulations as well as a recent large-scale
single-cell RNA sequencing data set with hundreds of genetic interventions.

1 Introduction

Characterizing causal dependencies between variables is a fundamental problem in science [1, 2, 3].
Such relationships are often described via a directed acyclic graph (DAG) where nodes represent
variables and directed edges encode causal links between pairs of variables. One may then consider a

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
6.

07
82

4v
2

 [
st

at
.M

L
]

 8
 O

ct
 2

02
2

Table 1: Comparison with related work. d denotes the number of features, m denotes the number of
learned factors. Because m remains low (e.g., 20), we have m≪ d. †additive cubic model only.

Related work non-linear likelihood eval. DAG penalty eval. intervention
link function complexity complexity model

NO-TEARS [19] 7 O(d2) O(d3) 7
NO-BEARS [26] 3† O(d2) O(d2) 7
NO-TEARS-LR [20] 7 O(md) O(d3) 7
DCDI [6] 3 O(d2) O(d3) 3
DCD-FG (this work) 3 O(md) O(md) 3

set of conditional probability distributions in addition to the DAG to define a causal graphical model
(CGM) [4]. The graphical model is referred to as “causal” because it provides a clear semantic for
defining the effect of interventions on the joint likelihood [5].

The combinatorial nature of the set of DAGs and its size make inference of causal structure from data a
hard problem. Indeed, the number of DAGs (or the number of permutations) grows super exponentially
in the number of nodes, limiting the practical application of most methods to tens of nodes [6, 7, 8].
This highlights a disparity between the development of the field and emerging data from real-world
problems in finance [9, 10], neuroscience [11, 12] and high-throughput biology [13, 14, 15, 16]. For
example, experimental advances in biology have enabled the generation of data sets where expression
profiles of thousands of RNA transcripts are measured in hundreds of thousands of cells following
genetic interventions in each of hundreds or thousands of different genes.

To reduce this computational burden, a promising direction is to limit the complexity of the search
space. This idea has become commonplace at the interface of statistics and optimization, where
sparsity [17] as well as low-rank assumptions [18] are often exploited in machine learning algorithms.
Although sparsity is widely used in causal structure learning [7, 19], the use of low-rank constraints
in this specific setting remains largely under-explored, with a few notable exceptions [20, 21]. This
may be due to the fact that such an assumption may be hard to incorporate into common methods for
DAG learning that rely on graphical constraints or on permutations.

Recently, the NOTEARS methodology [19] introduced a continuous relaxation of DAG learning,
effectively closing the gap between causal structure learning and continuous optimization. NOTEARS
facilitates incorporating more flexible structural assumptions into DAG learning, such as neural
network parametrizations of the conditional probability distributions. Although NOTEARS has been
the subject of several follow-up works [22, 23, 24, 25, 26], including learning from interventional
data [6], several challenges remain. First, the likelihood function usually decomposes as a product
of local likelihoods for each node, and existing options for those local models are either fast to fit
but likely underfitting the data (linear models [19]) or are computationally expensive and prone to
overfitting (a neural network taking as input all of the other nodes [6]). Second, most methods rely
on a differentiable penalty for acyclicity whose evaluation has cubic complexity in the number of
nodes. As a result, these methods are impractical for graphs with more than a hundred nodes.

In this work, we investigate both challenges and propose a methodology for large-scale discovery of
causal structure and prediction of unseen interventions that scales to millions of samples and thousands
of nodes. Our key idea is to limit the search space to what we refer to as factor directed acyclic
graphs (f -DAGs), a class of low-rank graphs defined in Section 3.1. This constraint assumes that
many nodes share similar sets of parents and children, which is the case in scale-free topologies [20]
and many biological systems, where genes act together in programs [3, 27, 28]. Based on this class
of graphs, we design a flexible model and a scalable inference procedure (Table 1) that we refer to as
Differentiable Causal Discovery of Factor Graphs (DCD-FG).

After introducing the necessary background (Section 2), we define the class of f -DAGs (Section 3)
and draw connections to several flavors of matrix factorization. In particular, we show connections
between the number of factors in an f -DAG and the Boolean rank [29] of its adjacency matrix. We
exploit these connections to present a scalable acyclicity score with linear complexity in the number
of observed variables. Finally, we characterize the identifiability of these graphs under an Erdős-
Rényi random graph model and prove the instability of the Boolean rank under edge perturbations.
The latter analysis highlights that restricting inference to f -DAGs is more efficient in the high-

2

dimensional causal discovery regime. Then, we posit a flexible class of likelihood models as well as
a scalable inference method for our DCD-FG framework (Section 4). Finally, we present runtime
experiments, simulation studies, and a case study on single-cell RNA sequencing data with hundreds
of genetic interventions (Section 5). In this last challenging instance of interventional data with
high-dimensional measurements, we show that our framework outperforms current state-of-the-art
causal discovery approaches for predicting the effect of held-out interventions.

2 Background

Our work builds upon continuous relaxations of the causal structure learning problem. We therefore
first briefly introduce causal graphical models and then how the inference problem is solved with a
gradient-based optimization framework.

2.1 Causal Graphical Models

Following the framework introduced in [5], let X = (X1, . . . ,Xd) denote a set of random variables
with a joint probability distribution P . Let G = (V,E) be a DAG where each vertex vi ∈ V is
associated with a random variable Xi and each edge (vi, vj) represents a causal relationship from Xi

to Xj . A correspondence between the graph and the probability distribution P is obtained via the
factorization condition

P (X1, . . . ,Xd) =
d

∏
j=1

P (Xj ∣Xπ(j)), (1)

where Xπ(j) denotes the vector of random variables formed by all parents of node vj in G. We refer
to a pair (P,G) that satisfies the factorization condition as a causal graphical model (CGM).

Unlike classical graphical models, CGMs provide a principled way to model interventions [30]. With
interventional data, each observation is measured under a specific regime k with interventional joint
density P (k). For each regime, a subset of the target variables Ik is subject to intervention. Each of
these interventions affects the relationship between the target node and its parents, by altering the
conditional distribution. In the case of perfect interventions [8], the dependency of intervened upon
nodes from their parents is removed, and the interventional joint density P (k) becomes

P (k) = ∏
j∉Ik

P (Xj ∣Xπ(j)) ∏
j∈Ik

P (k)(Xj), (2)

where P (k) models the effect of the perfect (stochastic) interventions on each targeted feature of Ik.

2.2 Differentiable Causal Structure Learning

A significant challenge is to identify and learn CGMs from data when the causal relationships between
features are not known beforehand. Several methods have been proposed for this problem, such as
constraint-based methods (e.g., the PC algorithm [8]), score-based methods (e.g., GSP [31]), and
their extensions for modeling interventions (e.g., IGSP [7]), all reviewed in [32].

The NOTEARS methodology [19] proposes to solve a continuous relaxation of the optimization
problem of score-based methods, which in the case of observational data can be written as

min
W

1

n

n

∑
i=1

∥Xi
−WXi∥

2

2
+ λ ∥W∥1 such that Tr exp{W ○W} = d, (3)

where n denotes the total number of i.i.d. observations, Xi ∈ Rd denotes the i-th observation of X , ○
denotes the Hadamard product, W ∈ Rd×d denotes the parameters of a linear Gaussian conditional
distribution, assuming equal variance for all nodes, and λ > 0 denotes a tuning parameter. The search
space is restricted to DAGs by enforcing that the trace of the exponential (tr-exp) of W ○W is equal
to its dimension d. Importantly, evaluating the tr-exp of W ○W as well its gradient with respect to
W has O(d3) time complexity, which makes it potentially prohibitive for large-scale applications.

This fundamental work has been subject to multiple extensions, of which the most relevant ones are
listed in Table 1. First, different models of relationships between variables were introduced with

3

v1 v2 v3 v4

f1 f2

v5

f3

v6 v7

(a) Complete graph Gf

f1 f2

f3

(b) Half-square G2
f [F]

v1 v2 v3 v4

v5

v6 v7

(c) Half-square G = G2
f [V]

Figure 1: A factor graph and its induced half-square graphs. Red circles represent variable nodes.
Orange diamonds represent factor nodes.

the aim of better fitting the data, including several non-linear models, such as neural networks [6,
22, 24, 33, 23]. Because these methods use one neural network per conditional distribution (or one
deep sigmoidal flow), they are computationally expensive, as emphasized in [6]. The additive cubic
model proposed by NOBEARS [26] does not have these scalability issues, but may be of limited
flexibility. To reduce the number of parameters, graph neural networks have been proposed [25], but
that architecture cannot be easily applied to the case of interventional data. In addition, NOTEARS-
LR [20] proposes a low-rank decomposition of the linear model from NOTEARS but did not consider
that the computational complexity could become a bottleneck for large graphs.

Second, studies also investigated variants of the acyclicity penalty. [25] proposes a matrix power
variant of the trace exponential criterion, for numerical stability. NOBEARS [26] uses an algebraic
characterization of acyclicity based on the spectral radius of the adjacency matrix, that can be
approximated in O(d2). LoRAM [21] exploits a low-rank assumption to obtain a O(d2m) acyclicity
score, where m denotes the rank. However, the proposed framework is tailored to projections of DAG
into a low-rank space but not to causal discovery learning.

3 Factor Directed Acyclic Graphs

Next, we introduce factor directed acyclic graphs (f -DAGs) and draw connections to low-rank
matrix factorizations. Then, we motivate their use in causal inference by studying the effect of
edge perturbation on their rank. Additionally, we provide two differentiable acyclicity penalties
computable in linear time in the number of nodes for a fixed set of factors by exploiting the low-rank
structure.

3.1 Definitions and relationship to low-rank decomposition

Factor graphs, especially undirected ones, are commonly used in the graphical models literature to
factorize probability distributions and describe the complexity of message passing algorithms [34].
In this work, we use them to construct causal graphs over features. In addition to the set of feature
vertices V = {v1, . . . , vd}, we consider a set of factor vertices F = {f1, . . . , fm}, for m ∈ N. When
the edge set E links only vertices of different types, the graph Gf = (V,F,E) is a bipartite graph
and we refer to it as a factor directed graph (f -DiGraph). If Gf additionally does not contain cycles,
we call it an f -DAG. Gf canonically induces two half-square graphs G2

f [V] and G2
f [F], defined

by drawing an edge between vertices of V (or F) of distance exactly two in Gf (see example in
Figure 1). Unless otherwise mentioned, we will refer to G = G2

f [V] as the half-square of Gf over
vertices. We define the set of half-square graphs of f -DiGraphs with d variables and m factors as

G
m
d = {G = G2

f [V] ∣ Gf = (V,F,E) is a factor directed graph and ∣F ∣ =m} . (4)

Intriguingly, the set Gmd may be identified as the set of matrices with Boolean rank [29] of at most m.
Proposition 1 (Bounded Boolean rank of half-square adjacency matrix). For a factor graph Gf =
(V,F,E), let U ∈ {0,1}d×m (resp. V ∈ {0,1}m×d) be the binary matrix encoding the presence
or absence of edges directed towards factor nodes (resp. variable nodes), according to E. The
adjacency matrix A(G) of the half-square graph G may be decomposed as A(G) =U ◇V where ◇
denotes the Boolean matrix product, (U ◇V)ij = ⋁

m
k=1 Uik ∧Vkj , i, j ∈ [d]. Consequently, A(G)

4

has Boolean rank bounded above by m. Conversely, every adjacency matrix over the feature nodes
with Boolean rank bounded by m can be written as half-square of an f -DiGraph with m factors.

This result, proven in Appendix A, establishes a connection between inference of causal f -DAGs
and Boolean matrix factorization. Additionally, it is easy to notice that the (integer-valued) matrix
product UV provides a valid (weighted) adjacency matrix for G. In this work, we show that the
Boolean decomposition is suited for theoretical analysis of the method, while the linear one is useful
for efficient algorithm design. We further note that this proposed class of graphs is smaller than the
one arising from adjacency matrices with (unconstrained) linear matrix rank bounded by m, which
we detail further in Appendix A.4.

3.2 Statistical Properties of Random Causal Factor Graphs

An important theoretical question pertains to the assumptions necessary for identification of acyclic
graphs in Gmd (which we denote by Dmd) from data. Under the classical set of assumptions (causal
sufficiency, causal Markov property and faithfulness), we may identify the causal DAG from ob-
servational data only up to its Markov equivalence class (MEC) [35]. However, graphs in Dmd can
have many v-structures (emerging from having several feature parents), potentially making them
identifiable. Indeed, we prove in Appendix B that under an adapted Erdős-Rényi random graph
model [36] over Dmd , graphs are identifiable with high probability (i.e., their MEC is reduced to one
graph). We also verified this with simulations (Figure 2A).

Although valid, the previous result may be disconnected from real-world applications in high-
dimensional regimes for which stronger assumptions are required (e.g., strong faithfulness [37]), but
rarely hold [38]. More concretely, we expect errors in the estimated skeleton of the feature node
graph. As a toy model of these errors, we assume the true causal graph G is in Gmd and apply a
stochastic edge perturbation operator Λ that randomly removes or adds one edge to G. While there
are no general rules as to how identifiability is changed under these perturbations [39] (i.e., the size
of the MEC could increase or decrease), we show that the Boolean rank of the graph strictly increases
with high probability:

Theorem 1 (Boolean rank instability for edge perturbation). Let G ∈ Gmd be sampled according to
an Erdős-Rényi random directed graph model. The probability that adding or removing an edge
increases the Boolean rank is arbitrarily high for large d:

P (RankB (Λ(G)) > RankB (G)) ≥ 1 − αqd, (5)

where RankB denotes the Boolean rank, and α > 0 and q ∈ (0,1) depend on m and the parameters of
the random graph model.

Precise definitions of the random graph model and proof appear in Appendix C. This result, analogous
to the upper semicontinuity of the matrix rank, suggests that in noisy settings, the skeleton of graphs
in Dmd may be more easily recoverable compared to arbitrary DAGs. We verified those results with
simulations (Figure 2B) for small graphs using a mixed integer linear programming approach [40].
We performed a larger-scale analysis by randomly perturbing a fraction q of the edges in the graph
and reporting the resulting matrix rank1 of the adjacency matrix for larger graphs (Figure 2C).

3.3 Characterizing Acyclicity of Factor Graphs

We start by relating the acyclicity of a f -DiGraph with the one of its induced half-squares. A simple
graphical argument is enough to show that acyclicity for a f -DiGraph need only be enforced on the
smaller of its half-square graphs.

Lemma 1 (Induced acyclicity). Let G = (V,F,E) be an f -DiGraph. Then,

Gf is acyclic ⇔ G = G2
f [V] is acyclic ⇔ G2

f [F] is acyclic. (6)

The proof can be found in Appendix D. We further note that the matrix UV (VU, resp.) counts the
number of paths between two nodes in V (F , resp.) and is thus a valid (weighted) adjacency matrix

1Using the matrix rank is only a heuristic approximation of the quantitative increase in complexity of the
underlying matrix, because in general it provides neither an upper nor a lower bound on the Boolean rank [41].

5

20 40 80 100 200 400 800
Number of nodes

100

101

102

103

Si
ze

MEC (m=10)
MEC (m=15)

20 40 60 80 100
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

B
oo

le
an

 R
an

k
In

cr
ea

se

samples (m=5)
LogReg (m=5)
samples (m=10)
LogReg (m=10)

0 100 200 300 400
Linear Rank (d=500; m=40)

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

q=0
q=0.01
q=0.05
q=0.1
q=0.15
q=0.2

A. B. C.

Figure 2: Properties of simulated Erdős-Rényi random f -DiGraphs. (A) Size of MEC of the simulated
half-square graph with varying m and d. (B) Probability of increase of Boolean rank after edge
perturbation (Theorem 1). A single point denotes the result of an experiment, the solid line is the
probability estimated by logistic regression. (C) Matrix rank change after multiple random edge
perturbations.

102 103 104

Number of nodes

10− 3

10− 2

10− 1

100

101

Pe
na

lty
 g

ra
di

en
t r

un
tim

e
(s

/it
)

Tr-exp
Power
Spectral Radius
Tr-exp Factor
Spectral Factor

102 103 104

Number of nodes

10− 3

10− 2

10− 1

Li
ke

lih
oo

d
gr

ad
ie

nt
 ru

nt
im

e
(s

/it
)

Linear-dense
Linear-LR
MLP Dense
MLP Factor

102 103 104

Number of nodes

10− 2

10− 1

100

To
ta

l r
un

tim
e

(s
/it

)

NOTEARS
NOBEARS
NOTEARS-LR
DCDI
DCD-FG
DCD-FG (linear)

A. B. C.

Figure 3: Runtime analysis. Time for gradient calculation of likelihood (A), penalty (B) or their sum
(C) for different variants of optimization-based DAG inference method (on one NVIDIA Tesla T4
GPU with 15Gb of RAM). We selected a batch size of 128 datapoints and a number of m = 40 factors
for all experiments. If a value is non-reported, a memory error was raised at runtime. NOTEARS and
NOTEARS-LR have almost identical runtime in this analysis.

for G (G2
f [F], resp.). As a result, we may characterize acyclicity by applying the tr-exp penalty to

the matrix VU in time O(m3 +m2d) compared to the O(d3 +md2) steps needed for evaluating the
penalty on UV. Alternatively, we may use the spectral radius of the adjacency matrix as an acyclicity
score [26] that can be approximately computed in O(Tmd) steps, with T iterations of the power
method between each gradient step (details in Appendix D). The resulting computational gains are
showcased in Figure 3A. For small m, both variants have a similar runtime.

4 Differentiable Discovery of Causal Factor Graphs

To define a CGM, we couple the f -DiGraph with a likelihood model. We follow recent work that
partitions the parameter space into conditional distribution parameters Θ, and parameters Φ encoding
the causal graph [6]. In particular, let us assume we have at our disposal a parameterized distribution
M(Φ) = [U(Φ),V(Φ)] over adjacency matrices of f -DiGraphs. The score function, assuming
perfect interventions, is defined as:

S(Φ,Θ) = EM′
∼M(Φ)

⎡
⎢
⎢
⎢
⎢
⎣

K

∑
k=1

E
X∼P

(k)
data

∑
j∉Ik

log pjΘ(Xj ;M
′

j ,X−j)

⎤
⎥
⎥
⎥
⎥
⎦

− λ ∥E [M(Φ)]∥1 , (7)

where P (k)data denotes the distribution of data points X under regime k, pjΘ denotes a density model for
feature Xj , conditioned on all other features X−j that are parents of the feature j according to the

6

sampled matrix M′

j . We optimize the score function S under an acyclicity constraint,

max
Φ,Θ
S(Φ,Θ) such that C(E[M(Φ)]) = 0, (8)

where C may correspond to either the spectral radius, or the tr-exp characterization of acyclicity.
Numerically, first-order optimization techniques with reparameterized gradients and the augmented
Lagrangian method are used to solve problem (8). We outline here some key features of DCD-FG,
and provide the complete implementation details in Appendix E.

Differentiable Sampling of Factor Graphs A first important challenge specific to our work
is constructing a density M(Φ) over f -DiGraphs. The DCDI framework [6], and a few earlier
methods [23, 42], parameterize the set of adjacency matrices with entry-wise Gumbel-sigmoid [43]
samples, and zeros in the diagonal entries. Naively applying this parameterization for sampling
matrices M = [U,V] causes the induced feature graphs to have a large number of self-loops, i.e.,
edges of the form (v, v) that we found to be detrimental to the performance of the model. To
circumvent this issue, we propose an alternative model in which the matrices U and V are correlated.
More precisely, for W ∈ {0,−1,1}d×m sampled according to a Gumbel-softmax distribution [43],
the entries of U and V are constructed from W as Uij = 1{Wij = 1} and Vji = 1{Wij = −1}
for i ∈ [d], j ∈ [m]. Because the entries Uij and Vji may never be both equal to 1, there are no
self-loops in the induced half-square graph.

A hybrid likelihood model A second important challenge is to propose flexible density models pΘ

that have reasonable runtime as well as enough capacity for practical purposes. For this, we further
exploit the semantics of the factor graph by introducing deterministic factor variables hf at each
factor node f ∈ F . These variables are calculated as the output of a multi-layer perceptron on the
input variables of each factor defined by the matrix U, hf = MLP(U∶,f ○X; Θf), for neural networks
parameters Θf . Then, the conditional distribution of each node depends linearly on its parent factors
defined by the matrix V, Xj ∼ Normal (α⊺j (V∶,j ○ h) + βj , σ

2
j) for parameters αj ∈ Rm, βj ∈ R,

σj > 0. The resulting computational gains are highlighted in Figure 3B,C. Although we present here
the specific case of a Gaussian likelihood model, the same strategy may be adopted for more complex
distributional models such as sigmoidal flows [6].

5 Experiments

We tested DCD-FG on both synthetic and real-world data sets with d = 100 to d = 1,000, and
a large number of observations (n ≥ 50,000). In this large-scale setting, many state-of-the-art
causal discovery methods fail to terminate (DCDI and IGSP). Therefore, we compared DCD-FG
to NOTEARS [19], its additive non-linear variant NOBEARS [26] and its linear low-rank variant
NOTEARS-LR [20]. In order to have a baseline that is external to the NOTEARS framework, we
applied IGSP (after feature aggregation via clustering with different resolutions when necessary for a
reasonable runtime). For every model, we performed a hyperparameter search using a goodness of fit
metric on a small validation set. We provide further details on all experiments, including the grids
used for hyperparameter search, as well as supplementary experiments, in Appendix F.

5.1 Gaussian Structural Causal Models

We consider synthetic data sets with perfect interventions and known targets. Each data set has
d = 100 nodes and n = 50,000 observations, sampled from interventional distributions governed by
either a linear causal mechanism [44] or a nonlinear causal mechanism with additive noise (NN) [45].
Graphs are sampled from an Erdős-Rényi random directed graph model with m = 10 factors. A total
of K = 100 interventions were performed, each sampling up to 3 target nodes. Datapoints from 20
interventional regimes were held-out for model evaluation.

We assessed the performance of each method by the negative log-likelihood of datapoints from
unseen interventions (Interventional NLL) [46], as well as two metrics comparing the estimated
graph to the ground truth graphs: the structural Hamming distance (SHD), and the precision and
recall of edge detection. We report results for 10 randomly generated graphs and data sets in Figure 4.
NOTEARS-LR and DCD-FG both outperformed all methods for all metrics on the linear dataset
(p < 0.01, Wilcoxon signed-rank test), showing that both effectively exploit the low-rank structure

7

0.5 0.6 0.7
I-NLL

IGSP

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

0 500 1000
SHD

Linear (d=100; m=10)

0.0 0.5 1.0
Precision

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

1.425 1.450 1.475
Interventional NLL

IGSP

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

400 600
SHD

NN (d=100; m=10)

0.0 0.2 0.4
Precision

0.0

0.2

0.4

Re
ca

ll

Figure 4: Results on simulated Gaussian structural causal models (Section 5.1).

of the causal graph. On the non-linear (NN) dataset, DCD-FG outperformed all methods in terms
of interventional NLL, as well as recall and F1-score (combining precision and recall, Appendix F)
(p < 0.01, Wilcoxon signed-rank test). DCD-FG has high SHD but we attribute this to the fact that all
methods besides DCD-FG discover very sparse graphs.

5.2 Genetic Interventions and Gene Expression Data

As an application to real world data, we present an experiment focused on causal learning of
gene regulatory networks from gene expression data with genetic interventions, a central problem in
modern molecular biology [3, 47, 48]. Although this particular task has been studied by computational
biologists for over two decades, there have been substantial experimental advances in the last few
years. In particular, a method called Perturb-Seq now allows us to perform interventions targeting
hundreds or thousands of genes and measure the effect on full gene expression profiles in hundreds
of thousands of single cells using single cell RNA-seq [13]. Surprisingly, however, little to no causal
learning work has focused on these advanced datasets. A few notable exceptions, such as [35],
focused on early data for which the benchmarked methods were tractable (d = 24 genes).

We focus on a recent Perturb-CITE-seq experiment [14] that contains expression profiles from 218,331
melanoma (cancer) cells, after interventions targeting each of 249 genes. Each measurement from a
single-cell combines the identity of the intervention (target gene) and a count vector where each entry
is the expression level of each gene in the genome. Because of experimental limitations [49], we
observe signal only for a subset of several thousand genes (here we selected d = 1,000 genes) out of
the approximately 20,000 genes in the genome. This dataset includes patient-derived melanoma cells
with same genetic interventions but exposed to three conditions: co-culture with T cells derived from
the patient’s tumor (73,114 cells) (which can recognize and kill melanoma cells), interferon (IFN)-γ
treatment (87,590 cells) and control (57,627 cells) that we treat as three separate datasets. The goal
of the experiment was to identify gene networks in the melanoma cancer cells that either confer
resistance or sensitivity to T cell mediated killing, to identify targets for therapeutic intervention
in cancer. For every dataset, we retain cells from 20% of the interventions as a test set unavailable
during training.

We applied our baseline methods as well as DCD-FG to each of the three datasets. Because we
do not have a ground truth causal graph, we use datapoints from held-out interventions to evaluate
the models [46], reporting both the interventional NLL (I-NLL) and the mean absolute error (I-
MAE) across those interventions (Figure 5). Note that accurately predicting the outcome of genetic
interventions that were not measured experimentally is of high utility to biologists.

8

1.1 1.2
I-NLL

IGSP

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

0.7 0.8
I-MAE

Control

1.1 1.2 1.3
I-NLL

0.7 0.8
I-MAE

IFN

1.1 1.2 1.3
I-NLL

0.70 0.75
I-MAE

Co-culture

Figure 5: Results on the Perturb-CITE-seq dataset [14] (Section 5.2, lower is better).

DCD-FG outperformed all variants of the NOTEARS method by a large margin, including NOTEARS-
LR, and for all metrics (p < 0.01, Wilcoxon signed-rank test). In order to diagnose the poor perfor-
mance of the competing methods, we looked at the number of inferred edges by each method. All
variants of NOTEARS identified extremely sparse graphs (less than a hundred edges for NOTEARS
and NOBEARS, and a few thousand edges for NOTEARS-LR), which may explain their inability to
predict the effect of held-out interventions. Interestingly, IGSP identified hundreds of thousands of
edges, a number that was comparable to DCD-FG, but still had poor performance. This suggests that
the IGSP-inferred graph did not recapitulate well the causal relationships between genes.

In particular, we carefully examined the f -DAG Gf obtained with the best performing model from
our hyperparameter sweep on the IFN-γ treated cells. That model has m = 20 factors, and the
half-square G2

f [V] has 196,303 edges. On average, each module has 194 ingoing edges and 116
outgoing edges. To facilitate visualization, we display the half-square over factors G2

f [F] in Figure 6.

0

1

2

3 4

5

67

8

9

10

11

12

13

14

15

16

17

18

19 JAK1JAK2

STAT1

CDK4

CDK6

HLA-A HLA-C

SERPINE2

HLA-BHLA-E IRF1

HLA-F

IFNGR1

IFNGR2

CDK6

Antigen processing and presentation
Cell cycle
Chemokine signaling pathway
Interferon signaling
Interleukin-1 regulation of extracellular matrix
Interleukin-2 signaling pathway
M phase pathway
Response to elevated platelet cytosolic calcium
TGF-beta regulation of extracellular matrix
TNF-alpha effects on cytokine activity

Upstream gene (JAK/STAT & CDK4/6)

Downstream gene (ICR pathway)IRF1

Figure 6: Half-square G2
f [F] (completed with a few genes) of an f -DAG identified by DCD-FG on

IFN-γ treated malignant cells with interventions. Circles: factors, colored by the gene set enrichment
analysis result for its incoming and outgoing genes. Empty nodes: genes, labelled name. Red/blue:
genes expected to be up or downstream (resp.) by prior biological knowledge.

To begin to assess the biological relevance of the graph, we performed two analyses. First, we tested
the list of incoming and outgoing genes for each factor for enrichment in genes from known biological
processes (via [50]). The top hits (node colors in Figure 6) captured many relevant processes in
perturbed malignant cells treated by IFN including antigen presentation (needed for recognition by
the T cells), multiple innate immune and related signaling pathways (chemokine, interferon, TNF-α,
and TGF-β signaling; all can affect the ability of immune cells to target cancer cells) and stages of
the cell cycle. Thus, the graph captured key regulated processes in the response. Second, and more
crucially, to highlight key genes in the context of the graph, we displayed them onto the half-square
G2
f [F] based on their strongest link (details in Appendix F). As a proof of concept, we focused

on two classes of genes: key known regulators we expect to be positioned upstream, such as the
interferon receptors (IFNGR1 and 2) which sense the IFN signal, JAK/STAT, needed to transduce the
signal, and CDK4 and 6, which regulate the cell cycle but also repress antigen presentation genes; and
others we expect to be downstream, in particular those from an immune cancer resistance pathway
we previously discovered in patient tumors (ICR [51]; downstream) in Figure 6. Excitingly, while no
such information was used to constrain the model, it captured these ordered relations, including a
causal path from the interferon receptors to interferon signaling modules, from JAK to interferon
signaling to STAT, IRF1 and HLA genes, from CDK4 to the cell cycle, and from CDK6 and the
IFNGR1 to HLA genes (antigen presentation, MHCI genes) ([14, 51] and references therin). Notably,

9

there are also some connections that may not be borne out biologically, such as the separation of
CDK4 / CDK6 to different pathways. Overall, DCD-FG is a promising starting point for deciphering
gene regulation at the scale of the whole transcriptome with Perturb-seq data, and predicting the
outcome of interventions that were not tested experimentally.

6 Discussion

We have proposed DCD-FG, a novel approach for large-scale causal discovery that restricts the
search space to factor directed acyclic graphs, and efficiently exploits this structure during infer-
ence. Our theoretical results suggest that this class of graphs offers statistical benefits under either
the faithfulness assumption or under some stochastic edge perturbation model in random graphs.
Our numerical experiments show that in important real-world examples, our method outperforms
NOTEARS, NOBEARS as well as low-rank variants of those methods.

Since the publication of NOTEARS [19], two manuscripts highlighted that the method’s evaluation
may be confounded by the design of the simulations [52, 53]. However, those studies exclusively focus
on causal discovery from observational data. The recent results obtained by DCDI on interventional
data with a more suitable simulation design [6], as well as the results of this manuscript on real data
show the potential promise of the overall framework.

Recently, several other papers identified the acyclicity constraint as a bottleneck for causal discovery
learning, and propose to either use the constraint as a soft penalty [54], or discard it from the
objective function [55] by using a different parameterization of the causal graph learning approach,
and interventional data. Although the approach from [54] is currently restricted to learning linear
causal models from observational data, [55] could complement our approach by simplifying the
optimization procedure but still explicitly model low-rank interactions.

We presented an application of DCD-FG to a large-scale high-throughput gene expression dataset with
genetic perturbations ("Perturb-Seq"). The method had better predictive performance for held-out
perturbations than state-of-the-art, and identified both well established relations and new intriguing
ones, offering great utility to biologists. Notably, some of the causal relationships may not be
accurate, and it is likely that several assumptions of the underlying model may be violated. The
biological evaluation and validation of the method will therefore be important to more deeply assess
the performance of DCD-FG.

Future work will explore the specification of the noise model, for which count distributions (potentially
as part of a latent variable model) may be more appropriate [56], as well as the absence of confounding
variables such as cell cycle [14]. Additionally, we plan to investigate extending the framework of
DCD-FG to the inference of causal models with feedback loops [57] in order to generate an even more
exact and biologically interpretable causal graph. Finally, having a Bayesian alternative of DCD-FG
(e.g., based on [58]) would allow scientists to apply those methods for automated experimental design
and scientific discovery.

Acknowledgments and Disclosure of Funding

We thank Sébastien Lachapelle, Philippe Brouillard, Alexandre Drouin, Chandler Squires and
Gonçalo Rui Alves Faria for insightful conversations about causal structure learning problems. We
thank Natasa Tagasovska, Stephen Ra, and Kyunghyun Cho for general conversations about causal
inference and biology. We also acknowledge Katie Geiger-Schuller, Chris Frangieh, Taka Kudo, Josh
Weinstock and Basak Eraslan for discussions about Perturb-seq and the Perturb-CITE-seq dataset. We
warmly thank Geoffrey Négiar, Natasa Tagasovska, and Tara Chari for their constructive criticisms
on draft of this paper.

Disclosures: Romain Lopez and Jan-Christian Huetter are employees of Genentech. Jan-Christian
Huetter has equity in Roche. Jonathan Pritchard acknowledges support from grant R01HG008140
from the National Human Genome Research Institute. Aviv Regev is a co-founder and equity holder of
Celsius Therapeutics and an equity holder in Immunitas. She was an SAB member of ThermoFisher
Scientific, Syros Pharmaceuticals, Neogene Therapeutics, and Asimov until July 31st, 2020; she has
been an employee of Genentech since August 1st, 2020, and has equity in Roche.

10

References
[1] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal protein-

signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

[2] Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee, Alexei A Podtelezhnikov,
Chunsheng Zhang, Tao Xie, Linh Tran, Radu Dobrin, et al. Integrated systems approach identifies genetic
nodes and networks in late-onset alzheimer’s disease. Cell, 153(3):707–720, 2013.

[3] Eran Segal, Dana Pe’er, Aviv Regev, Daphne Koller, and Nir Friedman. Learning module networks.
Journal of Machine Learning Research, 6(4), 2005.

[4] Daphne Koller and Nir Friedman. Probabilistic Graphical Models. MIT Press, 2009.

[5] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference - Foundations and
Learning Algorithms. MIT Press, 2017.

[6] Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre
Drouin. Differentiable causal discovery from interventional data. In Advances in Neural Information
Processing Systems, 2020.

[7] Yuhao Wang, Liam Solus, Karren Dai Yang, and Caroline Uhler. Permutation-based causal inference
algorithms with interventions. In Advances in Neural Information Processing Systems, 2017.

[8] Peter Spirtes, Clark N. Glymour, and Richard Scheines. Causation, Prediction, and Search. The MIT
Press, 2000.

[9] Theo Diamandis, Yonathan Murin, and Andrea Goldsmith. Ranking causal influence of financial markets
via directed information graphs. In Annual Conference on Information Sciences and Systems (CISS), 2018.

[10] Katerina Rigana, Ernst C Wit, and Samantha Cook. Using network-based causal inference to detect the
sources of contagion in the currency market. arXiv, 2021.

[11] Rakesh Malladi, Giridhar Kalamangalam, Nitin Tandon, and Behnaam Aazhang. Identifying seizure onset
zone from the causal connectivity inferred using directed information. IEEE Journal of Selected Topics in
Signal Processing, 10(7):1267–1283, 2016.

[12] Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million variables and
more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models,
with an application to functional magnetic resonance images. International Journal of Data Science and
Analytics, 3(2):121–129, 2017.

[13] Atray Dixit, Oren Parnas, Biyu Li, Jenny Chen, Charles P Fulco, Livnat Jerby-Arnon, Nemanja D
Marjanovic, Danielle Dionne, Tyler Burks, Raktima Raychowdhury, et al. Perturb-seq: dissecting molecular
circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell, 167(7):1853–1866, 2016.

[14] Chris J Frangieh, Johannes C Melms, Pratiksha I Thakore, Kathryn R Geiger-Schuller, Patricia Ho,
Adrienne M Luoma, Brian Cleary, Livnat Jerby-Arnon, Shruti Malu, Michael S Cuoco, et al. Multimodal
pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nature
Genetics, 53(3):332–341, 2021.

[15] Thomas M Norman, Max A Horlbeck, Joseph M Replogle, Alex Y Ge, Albert Xu, Marco Jost, Luke A
Gilbert, and Jonathan S Weissman. Exploring genetic interaction manifolds constructed from rich single-
cell phenotypes. Science, 365(6455):786–793, 2019.

[16] Joseph M. Replogle, Reuben A. Saunders, Angela N. Pogson, Jeffrey A. Hussmann, Alexander Lenail,
Alina Guna, Lauren Mascibroda, Eric J. Wagner, Karen Adelman, Jessica L. Bonnar, Marco Jost, Thomas M.
Norman, and Jonathan S. Weissman. Mapping information-rich genotype-phenotype landscapes with
genome-scale Perturb-seq. Cell, 2022.

[17] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical Learning with Sparsity: The Lasso
and Generalizations. Chapman & Hall/CRC, 2015.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[19] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. DAGs with NO TEARS: continuous
optimization for structure learning. In Advances in Neural Information Processing Systems, 2018.

[20] Zhuangyan Fang, Shengyu Zhu, Jiji Zhang, Yue Liu, Zhitang Chen, and Yangbo He. Low rank directed
acyclic graphs and causal structure learning. arXiv, 2020.

[21] Shuyu Dong and Michèle Sebag. From graphs to DAGs: a low-complexity model and a scalable algorithm.
arXiv, 2022.

[22] Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based neural
DAG learning. In International Conference on Learning Representations, 2020.

11

[23] Ignavier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, and Jun Wang. Masked
gradient-based causal structure learning. In SIAM International Conference on Data Mining (SDM), 2022.

[24] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. Learning sparse nonpara-
metric DAGs. In International Conference on Artificial Intelligence and Statistics, 2020.

[25] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural networks.
In International Conference on Machine Learning, 2019.

[26] Hao-Chih Lee, Matteo Danieletto, Riccardo Miotto, Sarah T. Cherng, and Joel T. Dudley. Scaling structural
learning with NO-BEARS to infer causal transcriptome networks. In Pacific Symposium on Biocomputing,
2019.

[27] Brian Cleary, Le Cong, Anthea Cheung, Eric S Lander, and Aviv Regev. Efficient generation of transcrip-
tomic profiles by random composite measurements. Cell, 171(6):1424–1436, 2017.

[28] Graham Heimberg, Rajat Bhatnagar, Hana El-Samad, and Matt Thomson. Low dimensionality in gene
expression data enables the accurate extraction of transcriptional programs from shallow sequencing. Cell
Systems, 2(4):239–250, 2016.

[29] Pauli Miettinen and Stefan Neumann. Recent developments in Boolean matrix factorization. In Interna-
tional Joint Conferences on Artificial Intelligence, 2021.

[30] Frederick Eberhardt and Richard Scheines. Interventions and causal inference. Philosophy of Science,
2007.

[31] Liam Solus, Yuhao Wang, and Caroline Uhler. Consistency guarantees for greedy permutation-based
causal inference algorithms. arXiv, 2017.

[32] Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based on graphical
models. Frontiers in Genetics, 10:524, 2019.

[33] Joris M Mooij, Sara Magliacane, and Tom Claassen. Joint causal inference from multiple contexts. Journal
of Machine Learning Research, 2020.

[34] Hans-Andrea Loeliger. An introduction to factor graphs. IEEE Signal Processing Magazine, 21(1):28–41,
2004.

[35] Karren D. Yang, Abigail Katcoff, and Caroline Uhler. Characterizing and learning equivalence classes of
causal DAGs under interventions. In International Conference on Machine Learning, 2018.

[36] Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publication of the Mathematical
Institute of the Hungarian Academy of Sciences, 5(1):17–60, 1960.

[37] Samuel Wang and Mathias Drton. High-dimensional causal discovery under non-Gaussianity. Biometrika,
107(1):41–59, 10 2019.

[38] Caroline Uhler, Garvesh Raskutti, Peter Bühlmann, and Bin Yu. Geometry of the faithfulness assumption
in causal inference. The Annals of Statistics, pages 436–463, 2013.

[39] Marco F Eigenmann, Preetam Nandy, and Marloes H Maathuis. Structure learning of linear gaussian
structural equation models with weak edges. In Uncertainty in Artificial Intelligence (UAI), 2017.

[40] Reka A Kovacs, Oktay Gunluk, and Raphael A Hauser. Binary matrix factorisation via column generation.
In AAAI Conference on Artificial Intelligence, volume 35, pages 3823–3831, 2021.

[41] Derek DeSantis, Erik Skau, Duc P. Truong, and Boian Alexandrov. Factorization of binary matrices: Rank
relations, uniqueness and model selection of boolean decomposition. ACM Transactions on Knowledge
Discovery Data, 2022.

[42] Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag. Structural
agnostic modeling: Adversarial learning of causal graphs. arXiv, 2018.

[43] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation
of discrete random variables. In International Conference on Machine Learning, 2017.

[44] Chandler Squires, Yuhao Wang, and Caroline Uhler. Permutation-based causal structure learning with
unknown intervention targets. Uncertainty in Artificial Intelligence, 2020.

[45] Diviyan Kalainathan and Olivier Goudet. Causal discovery toolbox: Uncover causal relationships in
python. Journal of Machine Learning Research, 21:1–5, 2020.

[46] Amanda Gentzel, Dan Garant, and David Jensen. The case for evaluating causal models using interventional
measures and empirical data. In Advances in Neural Information Processing Systems, pages 11722–11732,
2019.

[47] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using Bayesian networks to analyze
expression data. Journal of Computational Biology, 7(3-4):601–620, 2000.

12

[48] Dana Pe’er, Aviv Regev, Gal Elidan, and Nir Friedman. Inferring subnetworks from perturbed expression
profiles. Bioinformatics, 17, 2001.

[49] Dominic Grun, Lennart Kester, and Alexander van Oudenaarden. Validation of noise models for single-cell
transcriptomics. Nature Methods, 2014.

[50] Edward Y Chen, Christopher M Tan, Yan Kou, Qiaonan Duan, Zichen Wang, Gabriela Vaz Meirelles,
Neil R Clark, and Avi Ma’ayan. Enrichr: interactive and collaborative HTML5 gene list enrichment
analysis tool. BMC Bioinformatics, 14(1):1–14, 2013.

[51] Livnat Jerby-Arnon, Parin Shah, Michael S Cuoco, Christopher Rodman, Mei-Ju Su, Johannes C Melms,
Rachel Leeson, Abhay Kanodia, Shaolin Mei, Jia-Ren Lin, et al. A cancer cell program promotes t cell
exclusion and resistance to checkpoint blockade. Cell, 175(4):984–997, 2018.

[52] Marcus Kaiser and Maksim Sipos. Unsuitability of NOTEARS for causal graph discovery. arXiv, 2021.

[53] Alexander G. Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated DAG! causal
discovery benchmarks may be easy to game. In Advances in Neural Information Processing Systems, 2021.

[54] Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and dag constraints for learning
linear dags. In Advances in Neural Information Processing Systems, 2020.

[55] Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
constraints. In International Conference on Learning Representations, 2022.

[56] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling
for single-cell transcriptomics. Nature Methods, 15(12):1053–1058, 2018.

[57] Jacob W Freimer, Oren Shaked, Sahin Naqvi, Nasa Sinnott-Armstrong, Arwa Kathiria, Christian M
Garrido, Amy F Chen, Jessica T Cortez, William J Greenleaf, Jonathan K Pritchard, et al. Systematic
discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune
networks. Nature Genetics, 54(8):1133–1144, 2022.

[58] Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. DiBS: Differentiable bayesian
structure learning. Advances in Neural Information Processing Systems, 34, 2021.

[59] Tom S. Verma and Judea Pearl. Equivalence and synthesis of causal models. In Uncertainty in Artificial
Intelligence, 1990.

[60] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila. The discrete
basis problem. IEEE transactions on knowledge and data engineering, 20(10):1348–1362, 2008.

[61] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with Gumble-Softmax. In Interna-
tional Conference on Learning Representations, 2017.

[62] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[63] Alexander Wolf, Philipp Angerer, and Fabian J Theis. SCANPY: large-scale single-cell gene expression
data analysis. Genome Biology, 19(1):1–5, 2018.

[64] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence and Statistics, 2010.

[65] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running average
of its recent magnitude. Coursera: Neural networks for machine learning, 2012.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] (Discussion section)
(c) Did you discuss any potential negative societal impacts of your work? [Yes] (Discussion

section)
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] (Appendix)
(b) Did you include complete proofs of all theoretical results? [Yes] (Appendix)

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] (Appendix)
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] (Appendix)
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] (Box plots in main figure)
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] (Appendix)
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] (Appendix)
(b) Did you mention the license of the assets? [Yes] (Appendix)
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

(Appendix)
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

Appendices
In Appendix A, we present definitions for f -DiGraphs and f -DAGs, as well as general properties of
these graphs. In particular, we describe the relationship between adjacency matrices of these graphs
and low-rank matrices. In Appendix B, we discuss the concept of identifiability of f -DAGs and
Markov Equivalence Classes (MEC). In particular, we show that for a set of fixed factors F and a
growing number of variable nodes, random f -DAGs can be identified from observational data. In
Appendix C, we prove our main theoretical result on Boolean-rank instability under edge perturbation.
In Appendix D, we discuss the time complexity of calculating differentiable acyclicity scores in the
case of f -DAGs. In Appendix E, we present the implementation details for DCD-FG. In Appendix F,
we provide details on our numerical experiments.

A Factor Directed Acyclic Graphs

In this section, we present general definitions and properties of Factor Directed Graphs.

A.1 Definitions

Let d ∈ N be the number of feature vertices and m ∈ N be the number of factor vertices. We start with
a few definitions.
Definition 1. (Factor Directed Graph) Let V = {v1, . . . , vd} denote the set of feature vertices (which
we also call feature nodes, variable vertices, or variable nodes), and F = {f1, . . . , fm} the set of
factor vertices (or factor nodes). Let E be a set of directed edges, such that there are no edges
between two nodes of same type (factors or features). We define a Factor Directed Graph (f -DiGraph)
as the bipartite graph Gf = (V,F,E).
Definition 2. (Set of factor graphs with m modules and d nodes) The subset of factor graphs Gmd
with d variables and m factors is defined as:

Gmd = {Gf ∣ Gf = (V,F,E) is a factor directed graph and ∣V ∣ = d, ∣F ∣ =m} . (9)

Definition 3. (Half-square graphs and induced feature graph) Gf canonically induces two half-
square graphs G2

f [V] and G2
f [F]. G2

f [V] is defined as the graph on V with an edge between two
vertices of V if there is a path of length exactly two between these vertices in Gf . G2

f [F] is defined
similarly on the nodes F . We specifically write G = G2

f [V] and refer to it as the feature graph (as
opposed to the factor graph Gf).
Definition 4. (Set of feature graphs with m modules and d nodes) The set of feature graphs Gmd
formed from half-square graphs with d variables and m factors is defined as:

G
m
d = {G = G2

f [V] ∣ Gf ∈ G
m
d } . (10)

A.2 General properties

We start by outlining some general properties of f -DiGraphs. First, we observe that every graph may
be written as the feature graph of a bipartite graph.
Proposition 2. (Representation) Let G denote the set of all feature graphs, i.e., directed graphs on
V . Then we have

G =
∞

⋃
m=1

G
m
d . (11)

Proof. By definition, we have that Gmd ⊂ G for all m, which proves the reverse set inclusion.
Therefore, we focus on the direct set inclusion. Let G = (V,E) ∈ G. We set F = E and define the set
of edges E′ as

E′
= ⋃
e=(v1,v2)∈E

{(v1, e), (e, v2)} . (12)

Then, for the bipartite graph G′

f = (V,F,E′) ∈ G∣E∣d , we obtain G′2
f [V] = G as desired.

15

Second, we discuss the size of the set of DAGs within Gmd compared to G. We start with a lemma for
a fixed topological ordering σ.
Lemma 2. Denote by Dd the subset of acyclic graphs in G with d nodes, and by Dmd the subset of
acyclic graphs in Gmd . For σ, a permutation of {v1, . . . , vd}, we denote by Dmd (σ) (resp. Dd(σ)) the
subset of graphs in Dmd (resp. Dd) for which σ is a topological ordering. Then, we have:

∣Dd(σ)∣ = 2
d(d−1)

2 , (13)

∣D
m
d (σ)∣ ≤ (

d +m

m
)2dm. (14)

Proof. If σ is a valid topological ordering for a graph, then its adjacency matrix is upper triangular
(with zero on the diagonal) under this ordering of the rows and columns.

In the case of Dd(σ), we must simply count the number of binary matrices that are upper triangular
with zeros on the diagonal. As such matrices have d(d−1)

2
entries potentially taking one of two values,

this proves the first part of this proposition.

The case for Dmd (σ) is slightly more technical. In this setting, we have d variable nodes, and m
factors. We are able to arrange the factors in between the features to obtain all possible topological
orderings of factor graphs compatible with σ,

(v1, . . . , vi1 , f1, vi1+1, . . . , vim , fm, vim+1, . . . , vd), (15)
with 1 ≤ i1 < . . . < im ≤ d, where, without loss of generality, we assumed the identity permutation on
factors and features separately. We note that there are (

d+m
m

) such possible combinations.

For a fixed arrangement, we may now observe that a variable node va can only be connected to one
or several factor nodes appearing before va in the topological ordering, and each factor node fj may
only be connected to one or several feature nodes appearing before fj in the topological ordering.
We define the number of such possible adjacency patterns as I .

More precisely, each factor vertex fj has 2ij potential incoming edge patterns. Also, each feature
vertex va appearing after fj gives rise to 2j potential edge patterns and there are ij+1 − ij such
vertices. Therefore, writing im+1 = d, we have:

log2 I =
m

∑
j=1

ij +
m

∑
j=1

j(ij+1 − ij) (16)

=
m

∑
j=1

ij +
m−1

∑
j=1

jij+1 + dm −
m

∑
j=1

jij (17)

= dm +
m

∑
j=1

ij +
m

∑
j=2

(j − 1)ij −
m

∑
j=2

jij − i1 (18)

= dm +
m

∑
j=1

ij −
m

∑
j=1

ij +
m

∑
j=2

jij −
m

∑
j=2

jij (19)

= dm. (20)
Because several factor graphs may yield the same half-square graph, we only have an upper bound,
as claimed,

∣D
m
d (σ)∣ ≤ (

d +m

m
)2dm.

We can use this lemma to prove the following bound for the cardinality of the entire set of graphs:
Proposition 3. (Cardinality of Directed Acyclic Graphs and half-square of f -DAGs) Denote by Dd
the subset of acyclic graphs in G with d nodes, and by Dmd the subset of acyclic graphs in Gmd . For
d ≥m, we have the inequality

∣Dmd ∣

∣Dd∣
≤(1 +

d

m
)

m+1/2

exp{−
d2

2
+ d(m log 2 + log(m + d) +

log 2

2
− 1)} (21)

≤ exp{dm + 4d log(m + d) −
log 2

2
d2

} , (22)

16

and therefore for fixed m, ∣D
m
d ∣

∣Dd∣
→ 0 when d→ +∞.

Proof. Let us first provide a (loose but sufficient) lower bound on ∣Dd∣. In the light of the previous
result for a fixed permutation, there are at last 2

d(d−1)
2 DAGs in ∣Dd∣.

Next, we want to establish an upper bound on ∣Dmd ∣. Because for each permutation σ, there are at
most ∣Dmd (σ)∣ distinct graphs, an upper bound on ∣Dmd ∣ is given by d!(d+m

m
)2dm.

Putting this together, and using a non-asymptotic version of Stirling’s formula, we obtain

∣Dmd ∣

∣Dd∣
≤

(d +m)!

m!
2dm2−

d(d−1)
2 (23)

≤

√
2π(m + d)(m+d/e)m+d

√
2πm(m/e)m

2dm2−
d(d−1)

2 e
1

12(m+d)−
1

12m+1 (24)

≤ (m + d)
m+d+ 1

2 2dm−
d(d−1)

2 (25)

≤ exp{(m + d +
1

2
) log(m + d) + dm log 2 −

log 2

2
d2
+
d log 2

2
} (26)

≤ exp{dm + 4d log(m + d) −
log 2

2
d2

} (27)

if d ≥m. By comparing coefficients inside the exponential, for fixed m, this upper bound tends to 0
as d→∞.

A.3 Relationship to low-rank matrices

We now discuss properties of the mapping ζ ∶ Gf ↦ G = G2
f [V] defined over the set of factor graphs.

First, we remark that, in general, ζ is not injective, as shown by the following counterexample.
Example 1. (Induced half-square is not injective) Let V = {v1, v2, v3} and F = {f1, f2}.
Let E1 = {(v3, f2), (v3, f1), (v2, f2)} ∪ {(f1, v2), (f2, v1)} and E2 = {(v3, f2), (v2, f1)} ∪

{(f1, v1), (f2, v1), (f2, v2)}. For Gf,1 = (V,F,E1) and Gf,2 = (V,F,E2), we have the identity
G2
f,1[V] = G2

f,2[V], in the sense that both graphs have the same set of vertices and edges.

Second, we characterize the image ζ(Gmd) = Gmd in terms of the Boolean rank of the associated
adjacency matrices. Let us define the adjacency matrix A(Gf) of a factor graph Gf ∈ Gmd . Because
the graph is bipartite, up to a permutation of the rows and columns, we may write it in block form,

A(Gf) = [
0d×d U
V 0m×m

] , (28)

where U ∈ Rd×m (resp. V ∈ Rm×d) denotes the binary matrix encoding the presence or absence of
edges towards factor nodes (resp. variable nodes) according to the edge set E. We now relate these
two matrices to the adjacency matrix of the half-square graph.
Proposition 1 (Bounded Boolean rank of half-square adjacency matrix). For a factor graph Gf =
(V,F,E), let U ∈ {0,1}d×m (resp. V ∈ {0,1}m×d) be the binary matrix encoding the presence
or absence of edges directed towards factor nodes (resp. variable nodes), according to E. The
adjacency matrix A(G) of the half-square graph G may be decomposed as A(G) =U ◇V where ◇
denotes the Boolean matrix product, (U ◇V)ij = ⋁

m
k=1 Uik ∧Vkj , i, j ∈ [d]. Consequently, A(G)

has Boolean rank bounded above by m. Conversely, every adjacency matrix over the feature nodes
with Boolean rank bounded by m can be written as half-square of an f -DiGraph with m factors.

Proof. Let Gf be a factor graph, and let U and V be defined as in (28). The adjacency matrix A(G)

of the half-square graph G = G2
f [V] can be calculated as

∀(i, j) ∈ [d]2, A(G)ij =
m

⋁
k=1

Uik ∧Vkj , (29)

where ∧ and ∨ denote the logical AND and OR operators, respectively.

17

Indeed, by definition, there is an edge between two nodes va and vb of G if and only if there exists a
path of length two between those two nodes in Gf . Because edges may exist only between factor and
feature nodes, this condition is met if and only if there exists an edge between va and f as well as f
and vb for at least one factor node f .

This proves that every adjacency matrix of a graph in Gmd can be written as the matrix product of a
d×m and a m×d matrix for the Boolean arithmetic. By definition [29],A(G) therefore has Boolean
rank bounded above by m.

The converse follows by observing that, by definition, an adjacency matrix with Boolean rank bounded
above by m admits the decomposition (29) with binary matrices U, V. Defining an f -DiGraph with
these adjacency matrices according to (28) yields the claim.

For one direction of Proposition 1, we have a similar result for the weighted adjacency matrices UV.

Proposition 4 (Bounded rank of weighted half-square adjacency matrix). For a factor graph Gf
and matrices U and V, the (regular matrix) product UV counts the number of paths of length
two between two variable nodes in Gf , and therefore is a valid (weighted) adjacency matrix for
G = G2

f [V]. Additionally, UV has matrix rank bounded above by min(d,m).

Proof. Replacing ∨ by + and ∧ by × in (29), we obtain the matrix product UV. Because of this,
individual entries in the matrix UV indeed count the number of distinct paths of length two between
two feature nodes in Gf . As a consequence, UV has a zero entry if and only if A(G) has a zero
entry. This proves that UV is a valid weighted adjacency matrix. By construction, its matrix rank is
bounded above by min(d,m).

A.4 Alternate definitions of low-rank graphs

Here, we introduce various notions of low-rank constraints on graphs, and make precise the class we
are concerned with in this paper. Towards this end, one could consider a variety of subsets of G, the
set of all graphs on d nodes, in particular:

1. Gmlin: graphs that admit a weighted adjacency matrix W that has a matrix factorization of
rank ≤m.

2. Gmlin,nonneg: graphs that admit a weighted adjacency matrixW that has a non-negative matrix
factorization of rank ≤m.

3. Gmbool: graphs that admit a weighted adjacency matrix W that has a Boolean matrix factor-
ization of rank ≤m.

Note that in the definition of Gmlin, we allow for W to encode the presence of an edge in G with any
non-zero entry, positive or negative. In this context, we have the following set inclusions:

G
m
bool = G

m
lin,nonneg ⊊ G

m
lin ⊊ G, (30)

for m < d. To understand this result, it is important to note that for a given matrix, its non-negative
rank and Boolean rank do not necessarily coincide, but Gmbool = G

m
lin,nonneg since we allow for arbitrary

weighted adjacency matrices in the definition of Gmlin,nonneg.

The previous low-rank work [20] searches for graphs in Gmlin. By contrast, we do not consider Gmlin,
but instead choose to exclusively work with Gmbool. Considering Gmbool instead of Gmlin gives further
rise to an intuitive way of restricting the nonlinear functional relationships on top of the graphical
structure while maintaining low asymptotic computational complexity, as presented in Section 4.
Besides being more immediate when starting from a linear structural equation model, we see no
particular reason for favoring Gmlin over Gmbool in light of the practical benefits outlined in the later
sections of this paper. Moreover, the only linear low-rank models not captured in Gmbool are those in
which the contributions of multiple factors cancel out to produce more zeros than expected from the
sparsity pattern of the factors U,V , corresponding to a lack of faithfulness of the factor graph. We
consider these models edge cases that could safely be excluded from the search space.

18

B Identifiability of f -DAGs

In this section, we investigate the identifiability of Factor Directed Acyclic Graphs from observational
data in the context of causal discovery. We first define the concept of Markov Equivalence Class
(MEC), and we introduce a Boolean-rank restricted equivalence class. We show that the latter is in
general smaller (and sometimes strictly smaller) than the MEC.

B.1 Markov equivalence classes

Under the classical set of assumptions commonly employed in causal discovery, namely causal suffi-
ciency, causal Markov property, and faithfulness, we may identify the causal DAG from observational
data only up to its Markov Equivalence Class (MEC) [59]:

Definition 5. (Markov Equivalence Class) The MEC of the half-square graph D ∈ Dmd is M(D) =

{D′ ∣D′ ∼D} where ∼ denotes Markov equivalence.

A graphical rule for Markov equivalence is that two graphs are Markov equivalent if they share the
same skeleton and v-structures [59]. Ideally, we wish to characterize the complexity of searching for
a DAG only in a subset of the Markov equivalence class that is composed of graphs in Dmd .

Definition 6. (f -MEC) The f -MEC Mm
f (D) of a half-square graph D ∈ Dmd is the set of DAGs that

are Markov equivalent to D and arise as the half-square of a factor graph with at most m factors:
Mm
f (D) =M(D) ∩Dmd .

We represent a MEC with an essential graph, defined as the union of all vertices and edges in the
MEC. In particular, we say that an edge is unoriented if there exists an edge and its reverse orientation
in the MEC.

Although by definition, we have the inclusion Mm
f (D) ⊂M(D), it is worth noting that this inclusion

is in general not equal.

Example 2. Let V = {v1, v2, v3}, F = f1 and E = {(v3, f1), (f1, v1), (f1, v2)}. The graph
Gf = (V,F,E) is a valid factor graph with one factor. The half-square graph G has two edges
{(v3, v1), (v3, v2)} that are both unoriented for the (classical) Markov equivalence class. Indeed,
M(G) contains three graphs, obtained by flipping edges (except for the configuration that creates
a v-structure). However, M1

f (G) has only a unique graph, because the two other graphs in M(G)

require two factors when being described as a factor graph.

We leave the problem of providing an algebraic characterization of an f -MEC as future work.

B.2 Identifiability of Boolean low-rank graphs

Because graphs in Dmd potentially contain many v-structures, we obtain a simple condition for
identifiability.

Lemma 3. (Unoriented edges in Boolean low-rank graphs) Let Df = (V,F,E) be an f -DAG and
D = D2

f [V] ∈ Dmd . For every unoriented edge (vi, vj) in the essential graph of D, there exists a
factor f with unique parent vi. Consequently, if every factor f ∈ F has at least two parents in Df ,
then the MEC of D reduces to the singleton {D}.

Proof. Let Df be a factor directed graph such that D =D2
f [V]. Let (vi, vj) be an edge of Df that is

unoriented in M(D). By definition of the factor directed graph, there exists f ∈ F such that the edges
(vi, f) and (f, vj) are part of G. Because the edge is unoriented, it cannot be part of a v-structure.
Consequently, there are no other feature vertices vk connected to f or it would create a v-structure in
D.

In the case that every factor f ∈ F has at least two parents, there can be no unoriented edges, and
therefore the graph is identifiable, i.e., it is alone in its MEC.

In order to quantify how frequent this configuration is, we introduce a random factor directed acyclic
graph model, inspired by the Erdős-Rényi model [36]:

19

Definition 7. (Random sequence of growing f -DAGs) Let (Df,d)
∞

d=0 denote a random sequence
of factor directed graphs defined recursively, with Df,0 = (∅, F,∅) and ∣F ∣ = m. Let Df,d =

(Vd, F,Ed) be the graph at step d, and σd a permutation of F ∪ Vd that specifies a topological
ordering {σ(v1), . . . , σ(vd)}. We define Vd+1 = Vd∪{vd+1} where vd+1 denotes a new variable node.
We extend the permutation σd into a new permutation σd+1 of F ∪Vd+1 by randomly inserting the node
vd+1 into the linear order induced by σd (out of the d +m + 1 possible choices). To obtain Ed+1, we
add to Ed edges of the form (vd+1, f) (resp. (f, vd+1)) if (σ(vd+1) ≤ σ(f) (resp. (σ(f) ≤ σ(vd+1))
independently with probability p ∈ (0,1). Finally, we define Df,d+1 = (Vd+1, F,Ed+1) and have
Dd+1 =D

2
f,d+1[V] ∈ Dmd+1.

We show that the probability of having at least one unoriented edge in M(Dd) for a fixed m is small
for large d.
Proposition 5. For Dd sampled according to Definition 7, the size of the MEC (and, by inclusion, of
the f -MEC) converges to 1 with high probability for fixed m:

P(∣M(Dd)∣ = 1) ≥ 1 − φ(d,m, p), (31)

with φ(d,m, p)→ 1 when p and m are fixed, and d→∞. Consequently, as the number of variable
nodes d grows, the DAG becomes identifiable.

Proof. According to the graphical rule in Lemma 3, if all factors f ∈ F have at least two parents then
the MEC M(Dn) of the DAG Dn reduces to a singleton {Dn} . Consequently, we have the lower
bound

P(∣M(Dd)∣ = 1) ≥ P(∀f ∈ F ∶ ∣Pa(f)∣ ≥ 2). (32)

Calculating the right-hand side of the previous inequality essentially corresponds to calculating the
distribution of the number of parents ∣Pa(f)∣ for each factor f . To bound this probability, we first
note that we can obtain the probability distribution (on graphs) in Definition 7 equivalently by fixing
an order on the feature nodes and inserting m factor nodes randomly, one by one, into the order,
finally assigning edges independently as before. In this construction, for each factor f , the number
of preceding feature nodes and the number of parents are independent. The number of parents
follows a binomial distribution with parameters (Kf , p) where Kf is the number of feature nodes
Kf appearing before f in the topological ordering σd. By construction, Kf is independently sampled
from a uniform distribution Kf ∼ Categorical({0, . . . , d}). Therefore, it follows that

P(∀f ∈ F ∶ ∣Pa(f)∣ ≥ 2) = [P(a fixed f ∈ F verifies ∣Pa(f)∣ ≥ 2)]m (33)
= [1 − P(a fixed f ∈ F verifies ∣Pa(f)∣ ∈ {0,1})]m (34)
≥ 1 −mP(Ad), (35)

where we introduce the probabilistic event Ad = {a fixed f ∈ F verifies ∣Pa(f)∣ ∈ {0,1}}. Then,
conditioning on Kf , we obtain

P(Ad) =
1

d + 1

d

∑
k=0

[(1 − p)k + kp(1 − p)k−1] (36)

=
1

d + 1

d

∑
k=0

(1 − p)k +
p

(d + 1)(1 − p)

d

∑
k=0

k(1 − p)k (37)

=
1 − (1 − p)d+1

(d + 1)p
+

p

(d + 1)(1 − p)
[

1 − p

p2
(1 − (1 − p)d+1

) −
d + 1

p
(1 − p)d+1

] (38)

=
2(1 − (1 − p)d+1)

(d + 1)p
− (1 − p)d, (39)

where we recognized the closed-form expression of a geometric series, and a finite arithmetico-
geometric series, respectively. Hence, because P(Ad)→ 1 when d→∞, we have that P(∣M(Dd)∣ =

1)→ 1 when d→∞.

B.3 Empirical validation

To simulate f -DAGs, we used a random graph model equivalent to Definition 7 and specified as
follows. For d variable nodes and m factor nodes, we sample a random permutation σ that specifies a

20

topological ordering on [d +m]. For each node i in this topological ordering {σ(1), . . . , σ(d +m)},
we draw the absence or the presence of an edge between node i and each of its potential parents
based on a Bernoulli distribution. If node i is a variable node, then it may only be connected to
factors present in {σ(1), . . . , σ(i)} with probability pv . Similarly, if node i is a variable node, then it
may only be connected to factors present in {σ(1), . . . , σ(i)} with probability pf . This is a natural
extension of the simulations provided in [6], further adding the factor semantic.

Using this framework, we sampled T = 50 f -DAGs with d nodes and m modules (pv = pf = 0.5),
and calculated the size of the MEC using the causaldag Python package (Figure 2A).

C Boolean-rank instability under edge perturbation

In this section, we prove the Boolean-rank instability result (Theorem 1). The key idea behind the
proof is to identify a sufficient condition for the perturbation to induce a Boolean rank increase in the
half-square graph that happens often for large d and fixed m. The proof consists of four parts. First,
we introduce a technical lemma regarding the overlap of random sets. Namely, any pair of distinct
union of sets of random subsets from an alphabet differ in at least two elements with high probability
(Lemma 4). Second, we introduce another lemma showing that the sampling of patterns in a binary
vector becomes exhaustive after enough independent draws (Lemma 5). Third, we relate those
two conditions to a sufficient condition for the increase of the Boolean rank of the half-square of a
f -DiGraph (Lemma 6). Putting everything together, we finally prove the main theorem (Theorem 1).

C.1 Random subset non-overlapping lemma

Lemma 4. Let {U1, . . . ,Um} be m random subsets of the alphabet Ω = [d], where the inclusion
of each letter i ∈ Ω in each subset Uk ⊂ Ω for k ∈ [m] is defined by sampling a Bernoulli random
variable with parameter p, independently over k ∈ [m] and i ∈ [d]. Further, let S1 ≠ S2 be two
distinct fixed subsets of [m]. Then, the two sets defined as the unions of subsets of {U1, . . . ,Um}

indexed by S1 and S2 have low probability of completely overlapping:

P
⎛

⎝

RRRRRRRRRRR

⎛

⎝
⋃
j∈S1

Uj
⎞

⎠
△

⎛

⎝
⋃
j′∈S2

Uj′
⎞

⎠

RRRRRRRRRRR

≤ 1
⎞

⎠
≤ γqdA, (40)

where ∆ denotes the symmetric set difference, γ = 1 + d/(1−p(1−p)m) > 0, and qA = 1 − p(1 − p)m ∈

(0,1).

Proof. We introduce XSi
w , the random variable that denotes whether letter w ∈ Ω is present in

⋃j∈Si
Uj . We observe that a letter w gives rise to an element in the symmetric difference of the

two sets S1 and S2 if XS1
w ≠ XS2

w . Although the sets {U1, . . . ,Um} are constructed independently,
there may be correlations in the union sets we consider in the case of overlap between S1 and S2.
Therefore, we decompose the sets S1 and S2 into their overlapping and non-overlapping parts:

S1 = S
′

1 ∐ S3 (41)

S2 = S
′

2 ∐ S3, (42)

where ∐ denotes a disjoint union, S3 = S1 ∩ S2, S′1 = S1 ∖ S3 and S′2 = S2 ∖ S3. Under these
conditions, we may write

Aw ∶= {XS1
w ≠XS2

w } =

⎧⎪⎪
⎨
⎪⎪⎩

w ∈ ⋃
j∈S1

Uj ∩w ∉ ⋃
j∈S2

Uj

⎫⎪⎪
⎬
⎪⎪⎭

´¹¹¸¹¹¹¶
=∶Āw

∪

⎧⎪⎪
⎨
⎪⎪⎩

w ∈ ⋃
j∈S2

Uj ∩w ∉ ⋃
j∈S1

Uj

⎫⎪⎪
⎬
⎪⎪⎭

. (43)

Noticing that these events are symmetric in S1 and S2, we focus on the first one which we denote by
Āw. In each of the above events, w cannot be in the union over S3 because in that case, it would be
in the union over both S1 and S2. Therefore, we can decompose Āw as

Āw = {w ∈ ⋃
j∈S′1

Uj} ∩ {w ∉ ⋃
j∈S′2

Uj} ∩ {w ∉ ⋃
j∈S3

Uj}. (44)

21

By the independence of {U1, . . . ,Um}, we have that

P(Āw) = (1 − (1 − p)∣S
′
1∣) (1 − p)∣S

′
2∣(1 − p)∣S3∣ (45)

= (1 − (1 − p)∣S
′
1∣) (1 − p)∣S2∣. (46)

Then, because ∣S′1∣, ∣S2∣ ∈ {0, . . . ,m}, we have the bound

P(Aw) ≥ P(Āw) ≥ p(1 − p)m. (47)

Now, noting the independence of the letters, we have that

P
⎛

⎝

RRRRRRRRRRR

⎛

⎝
⋃
j∈S1

Uj
⎞

⎠
∆

⎛

⎝
⋃
j′∈S2

Uj′
⎞

⎠

RRRRRRRRRRR

≤ 1
⎞

⎠
= P(At most one Aw is true) (48)

= (1 − P(Aw))d + dP(Aw)(1 − P(Aw))d−1 (49)

≤ (1 − P(Aw))d + d(1 − P(Aw))d−1 (50)

≤ (1 − p(1 − p)m)
d
+ d(1 − p(1 − p)m)

d−1 (51)

≤ (1 +
d

1 − p(1 − p)m
)(1 − p(1 − p)m)

d. (52)

This concludes the proof.

C.2 Exhaustive binary pattern coverage lemma

Lemma 5. Let V = [v1, . . . , vm] ∈ {0,1}m be a random vector with each entry independently
sampled from a Bernoulli distribution with parameter p. Denote by B the following probabilistic
event:

B = {∃x ∈ {0,1}m that is not observed at least twice in d independent draws from V}.

Then, the probability of B is small for large d, in particular,

P(B) ≤ δqdB (53)

with δ = 2m (1 + d
1−max{pm,(1−p)m}

) and qB = 1 −min{pm, (1 − p)m} ∈ (0,1).

Proof. By a union bound, we obtain

P(B) = P (∃x ∈ {0,1}m ∶ x appears at most once in d draws) (54)
≤ 2m max

x∈{0,1}m
P (a fixed x ∈ 2m appears at most once in d draws) . (55)

We simply need to upper bound this probability. For a fixed x ∈ {0,1}m, denote by ∣x∣ the number of
non-zero entries in the binary vector x. We then have, by independence:

P (a fixed x ∈ 2m appears at most once in d draws) = (1 − px)
d
+ dpx(1 − px)

d−1, (56)

where

px = p
∣x∣
(1 − p)m−∣x∣

∈ (pβ , pα), (57)

with pα = max{pm, (1 − p)m} and pβ = min{pm, (1 − p)m}. This inequality directly follows from
distinguishing the cases p ≤ 1/2 and p > 1/2. Plugging this into the first bound above, we have

P(B) ≤ 2m (1 +
d

1 − pα
) (1 − pβ)

d, (58)

which concludes the proof.

22

C.3 Boolean rank increase lemma

Lemma 6. Let Gf ∈ Gmd be a (fixed) f -DiGraph, with partial adjacency matrices U and V. We
denote by G its half-square G = G2

f [V]. Let us state two assumptions.

First, we say that the matrix U satisfies the non-overlapping condition if

∀(x1, x2) ∈ {0,1}m, x1 ≠ x2 Ô⇒ dH (U ◇ x1,U ◇ x2) ≥ 2 (non-overlap)

where dH denotes the Hamming distance between two binary vectors.

Second, we say that the matrix V satisfies the coverage condition if its columns cover the whole set
of possible patterns at least twice, i.e.,

∀x ∈ {0,1}m ∃i1 ≠ i2 ∈ [d] ∶V∶,i1 =V∶,i2 = x. (coverage)

If both conditions are satisfied for U and V, resp., then the adjacency matrix A = U ◇V of the
half-square graph G has 2m distinct columns (treated as binary vectors), and A has Boolean rank
m. Moreover, for every entry (i, j) of the adjacency matrix, the matrix A′ obtained by replacing
(U ◇V)ij by 1 − (U ◇V)ij has Boolean rank m + 1.

Proof. The reader will notice that (non-overlap) for U in this lemma is a matrix formulation of the
hypothesis in lemma 4 for all sets S1, S2 ⊆ [m], and that (coverage) for V is a direct reformulation
of the hypothesis in lemma 5.

Let us note that one consequence of (non-overlap) is that two different patterns in the columns of V
will incur different patterns in the columns of A (the Hamming distance is bounded away from zero).
Also, as a consequence of (coverage), we know that each pattern occurs at least once, and therefore
the matrix A has 2m distinct columns. Because at least m factors in a Boolean decomposition are
necessary to express 2m distinct column patterns, A is of Boolean rank m [60].

To show the second claim, for a fixed entry of the adjacency matrix, let (i, j) be its indices. We
replace (U ◇V)ij by 1 − (U ◇V)ij in A to create A′. By (non-overlap), the jth column of A′ is
distinct from all other columns in A′, since it differs in exactly one entry from all the other columns,
but these columns have a Hamming distance of at least two from each other. Moreover, since every
pattern occurs at least twice in A by (coverage), all 2m original column patterns in A are still present
in A′. Therefore, A′ has 2m + 1 distinct columns. By the same argument as above, at least m + 1
factors are necessary to express A′ with a Boolean decomposition, and thus RankB (A′) =m+1.

C.4 Proof of the main theorem

We introduce a random factor graph model over Gmd , inspired by the Erdős-Rényi model [36]:
Definition 8. (Random sequence of growing f -DiGraphs) Let (Gf,d)∞d=0 denote a random sequence
of factor directed graphs defined recursively, with Gf,0 = (∅, F,∅). Let Gf,d = (Vd, F,Ed) be the
graph at step d. We define Vd+1 = Vd ∪ {vd+1} where vd+1 denotes a new variable node. To obtain
Ed+1, we connect the new variable node into and out of each factor independently with probability
p ∈ (0,1). Finally, we define Gf,d+1 = (Vd+1, F,Ed+1) and have Gd+1 = G

2
f,d+1[V] ∈ Gmd+1.

The reader will note that those graphs are not necessarily acyclic, but our result for the Boolean rank
is true for the more general class of f -DiGraphs under this model. We now introduce our toy model
for edge perturbations.
Definition 9. (Stochastic edge operator) Let G ∈ Gmd . We denote by Λ the stochastic operator that
samples a random entry of the adjacency matrix A(G) and either removes the present edge, or adds
the absent edge.
Theorem 1 (Boolean rank instability for edge perturbation). Let G ∈ Gmd be sampled according to
an Erdős-Rényi random directed graph model. The probability that adding or removing an edge
increases the Boolean rank is arbitrarily high for large d:

P (RankB (Λ(G)) > RankB (G)) ≥ 1 − αqd, (5)

where RankB denotes the Boolean rank, and α > 0 and q ∈ (0,1) depend on m and the parameters of
the random graph model.

23

Proof. Let us denote the rank increase event by R = {RankB (Λ(Gd)) > RankB (Gd)}. Thanks to
Lemma 6, if the random matrices U and V corresponding to G fulfill (non-overlap) and (coverage),
the rank increases no matter which edge is flipped due to Λ. Therefore, we have

P(R̄) ≤ P ({not (non-overlap)} or {not (coverage)}) (59)
≤ P ({not (non-overlap)}) + P ({not (coverage)}) (60)

≤ P
⎛

⎝
⋃
S1,S2

{∣(∪j∈S1Uj)△ (∪j′∈S2Uj′)∣ ≤ 1}
⎞

⎠
+ P ({not (coverage)}) (61)

≤ 22m P (for fixed S1, S2 ∶ ∣(∪j∈S1Uj)△ (∪j′∈S2Uj′)∣ ≤ 1) + P ({not (coverage)}) (62)

≤ 22mγqdA + δq
d
B (63)

≤ (22mγ + δ) (max{qA, qB})
d
, (64)

where we used union bounds and Lemmas 4 and 5 to bound the probabilities. Folding the linear
dependence of γ and δ on d into the exponential term qd then concludes the proof.

C.5 Empirical validation

We simulated f -DAGs using the same methodology presented in Appendix B.3 with pv = pf = 0.5.

Boolean rank For each combination of d ∈ {10,20, . . . ,90,100} and m ∈ {5,10}, we simulated
T = 2 f -DAGs. In the first simulation, we added an edge at random. In the second, we removed
an edge at random. In Figure 2B, we calculated the Boolean rank of the adjacency matrix of the
half-square graph G before and after perturbation, using the methodology and the code from [40] to
approach the NP-hard problem of Boolean matrix factorization. More precisely, [40] provide a solver
for the best Boolean rank m̃ approximation of a matrix A in Frobenius norm. Starting from the linear
rank of the matrix UV as an initial guess, we repeatedly used this solver to obtain the smallest m̃
that resulted in a Frobenius norm residual of 0, i.e., perfect matrix reconstruction using m̃ factors.
After edge perturbation, we re-ran the solver and classified the graph as leading to a rank increase if
the residual was 1 and as not leading to a rank increase if the residual was 0. Intuitively, an error of 1
means that the new edge cannot be described by any set of m̃ factors, and an error of 0 means that a
(potentially different) factorization with m̃ factors reconstructs the perturbed graph.

Out of the 400 simulations, there were two configurations where the resulting residual was neither 0
nor 1. In both cases, the algorithm had not converged in time, and we excluded these two runs from
the analysis. We found that the fraction of these suboptimal factorizations increased rapidly for larger
m and therefore limited the analysis to small values of m.

Matrix rank For larger values of m, we calculated the linear rank of the (binary) adjacency
matrix of the perturbed graph. We note that the linear rank is only a heuristic approximation of the
quantitative increase in complexity of the underlying matrix, because in general it provides neither
an upper nor a lower bound on the Boolean rank [41]. In this scenario, we chose a ratio of edges
to perturb in the half-square graph G = (V,E), given by the target False Discovery Rate (FDR) q.
Out of these q∣E∣ corruptions, we sampled a number N1 = Binomial(q∣E∣, 1/2) of edges present in
G uniformly at random to remove from the graph, and N2 = q∣E∣ −N1 of edges not present in G
uniformly at random to add. Then, we reported the linear rank before and after perturbations for
T = 200 configurations for every target FDR.

D Characterization of acyclicity

We start by proving the graphical rule for acyclicity emerging from the structure of the bipartite graph.

Lemma 1 (Induced acyclicity). Let G = (V,F,E) be an f -DiGraph. Then,

Gf is acyclic ⇔ G = G2
f [V] is acyclic ⇔ G2

f [F] is acyclic. (6)

Proof. To prove this, by symmetry between the sets of nodes F and V , it is enough to prove the first
equivalence. We prove each implication of the first equivalence by contraposition.

24

Let us first assume that there exists a cycle in Gf , that is, that there exists a path starting and ending
at the same node. That node is either a feature node or a factor node. If the node is a feature node
v, then we may write the path as [(v, fi1), (fi1 , vj1), . . . , (vjω−1 , fiω), (fiω , v)]. By definition of the
half-square, all feature nodes in this path are directly connected by at least one factor node. Therefore,
the sequence [(v, vj1), . . . (vjω−1 , v)] is a path in G. However, this path links v to itself, so it is a
cycle. If the node is a factor, we may simply shift the cycle one step to obtain a path that starts from a
feature node.

Let us now assume that there exists a cycle in G, for example [(v, vj1), . . . (vjω−1 , v)]. For every
edge in G, there is by definition an edge of length 2 in Gf . Consequently, for every edge (vja , vja+1)
of the path in G, there exists a path of length 2 (vja , f), (f, vja+1) in Gf connecting vja and vja+1 .
By concatenating these paths, we obtain a cycle in Gf .

We also note the existence of a more algebraic proof, based on the two following arguments. First,
notice that for a matrix W ∈ Rn×n

+
= UV , where all entries of U and V are also non-negative, W is

nilpotent if and only W is a DAG. Second, V U is nilpotent if and only if UV is nilpotent.

D.1 Trace-exponential characterization

Interestingly, in the case of an f -DiGraph Gf , we can be more precise, and prove that the tr-exp
penalty applied to G can be related to the one applied to G2

f [F].

Proposition 6 (Tr exp penalty on f -DiGraphs). Let Gf = (V,F,E) be an f -DiGraph, and (U,V)

its partial adjacency matrices. Then, the two following quantities are identical,

Tr exp{UV} − d = Tr exp{VU} −m, (65)

and are both equal to zero if and only if Gf or, equivalently, any of its half-squares, is acyclic.

Proof. Because UV is a positively weighted adjacency matrix for G, we have that Tr exp{UV} = d
if and only if G is acyclic [19]. Similarly, Tr exp{VU} = m if and only if G2

f [F] is acyclic.
Considering the equivalences of acyclicity in Proposition 1, we must only prove the algebraic identity.
For this, we write

Tr exp{UV} − d = Tr [
∞

∑
k=0

(UV)k

k!
] − d (66)

=
∞

∑
k=1

Tr [(UV)k]

k!
(67)

=
∞

∑
k=1

Tr [U(VU)k−1V]

k!
(68)

=
∞

∑
k=1

Tr [(VU)k−1VU]

k!
(69)

=
∞

∑
k=1

Tr [(VU)k]

k!
(70)

= Tr exp{VU} −m, (71)

where we made use of the fact that Tr(AB) = Tr(BA).

D.2 Spectral characterization

We present here a version of the power iteration method tailored to the case of f -DiGraphs. It
calculates an approximation to the spectral radius of UV, in turn approximately characterizing
acyclicity of the corresponding graph G (as presented in [26]).

25

Algorithm 1 Factor power iteration

input Factor adjacency matrices (U,V) ∈ Rd×m ×Rm×d and number of iterations T ∈ N
1: Initialize p0 ∈ Rd and q0 ∈ Rd, either randomly or by warm-starting with previous estimates of

the leading singular vectors of UV
2: for t ∈ {0, . . . , T − 1} do
3: pt+1 =V⊺U⊺pt/ ∥V

⊺U⊺pt∥2
4: qt+1 =UVqt/ ∥UVqt∥2

output Approximate leading singular value ρ̂ = p⊺TUVqT
p⊺
T
qT

E Implementation details for DCD-FG

In this section, we present the implementation details for DCD-FG.

E.1 Factor MLP: Likelihood model and architecture details

For adjacency matrices U and V of the f -DiGraph Gf , we detail now how, for DCD-FG, we
construct a likelihood model that is both non-linear and uses the factor semantics. We define hf as a
(deterministic) variable attached to factor node f ∈ F , calculated as the scalar output of a multi-layer
perceptron (MLP) on the input variables of each factor defined by the matrix U,

hf = MLP(U∶,f ○X; Θf), (72)

for neural networks parameters Θf , andX ∈ Rd, where masking with U is a computationally efficient
way to restrict the input to the neural network to a potentially varying set of input variables. We
provide the default hyperparameters for these MLPs in Appendix F. Further, we let the conditional
distribution of each node depend linearly on its parent factors defined by the matrix V,

Xj ∼ Normal (α⊺j (Vj,∶ ○ h) + βj , σ
2
j) , (73)

for parameters αj ∈ Rm, βj ∈ R, σj > 0.

These equations correctly specify a density model pΘ(Xj ∣X−j) as long as the obtained likelihood
does not depend on feature Xj , but only on the other features X−j . In particular, this is true for all j
if diag(UV) = 0d×d (i.e., if there are no self-loops in G).

E.2 Linear model and relationship to NOTEARS-LR

We briefly explore connections between our factor architecture, and the NOTEARS-LR model [20].
In the context of our factor architecture with linear models, each factor variable hf is a linear
combination of X with weights rf ∈ Rd. Omitting bias terms for simplicity, we collect these weights
into a matrix R = [r1, . . . , rm]. Similarly, each feature Xj is a linear combination of hf with weights
αj ∈ Rm that we similarly condense into a matrix A = [α1, . . . αd]. In this case, the mean of our
Gaussian conditional likelihood model can be written as

E[Xj ∣X] =ARX. (74)

Interestingly, without further modifications, we observed that this model suffers from mis-
specification, as well as poor performance due to the possibility of self-loops. In the linear case,
a simple workaround to this problem is to mask contributions due to self-loops by removing the
diagonal of the matrix AR. This corresponds to modifying the likelihood model to

E[Xj ∣X] =Mno−loop ○ (AR)X, (75)

where Mno−loop = 11⊺ − Id×d is a self-loop removing mask. This modification is exactly the linear
model proposed by NOTEARS-LR. While this simple modification effectively eliminates self-loops,
it necessitates expanding the full matrix AR, which incurs a runtime cost of O(d2). Next, we
describe an alternative approach that avoids this step.

26

E.3 Removing self-loops in f -DAGs

Parametrizing the f -DAG adjacency matrix by M = [U,V] with otherwise unconstrained binary
matrices U and V causes the induced feature graphs to potentially have a large number of self-loops.
As emphasized before, this causes the local likelihood to not be correctly specified. We also found
this to be detrimental to the performance of the model, even though the acyclicity score should
promote the absence of self-loops in later stages of training. We hypothesize that when self-loops are
present, the model starts off training by predicting every variable by itself, which in turn prevents
any other signal from being picked up during the training stage. Therefore, the model never learns a
meaningful predictive model that can be accurately pruned into a DAG.

To circumvent this issue, we propose an alternative model in which the matrices U and V are
additionally constrained to explicitly remove self-loops. More precisely, we calculate M = [U,V]

as a deterministic mapping from a single d × m matrix W, taking value in {0,−1,1}d×m with
independent entries sampled according to a Gumbel-softmax distribution [61] with parameters Φ.

The intuition behind this single matrix is that each individual entry Wij decides whether there is an
edge between a factor fj and a feature vi, as well as its orientation. More precisely,

∀i ∈ [d], j ∈ [m], (Uij ,Vji) =

⎧⎪⎪
⎨
⎪⎪⎩

(1,0), for Wij = 1,
(0,1), for Wij = −1,
(0,0), for Wij = 0.

(76)

Because the entries Uij and Vji may never be both equal to 1, there are no self-loops in the induced
half-square graph. Indeed, the number of self-loops is simply the trace of the adjacency matrix, which
is equal to zero,

Tr(UV) =
d

∑
i=1

m

∑
j=1

UijVji = 0. (77)

In the case of DCD-FG, it is important to notice that the matrices U and V are not fixed, but sampled
from a random distribution M(Φ) (we drop dependence to the parameter Φ for convenience of
notation). For the purpose of later enforcing acyclicity, we calculate the expectation of the weighted
(random) adjacency matrices formed from M(Φ), which, by independence of the entries of W, is

∀i, j ∈ [d]2,E[UV]ij = {
(E[U]E[V])ij , for i ≠ j,
0, for i = j. (78)

Analogously, the expectation of the adjacency matrix of the induced factor graph is

∀k, ` ∈ [m]
2,E[VU]k` = {

(E[V]E[U])k`, for k ≠ `,
0, for k = `. (79)

E.4 Acyclicity penalties

We now show how acyclicity penalties can be applied to our factored representations (tr-exp factor
and spectral factor in the experiments), and that they have the claimed runtime bounds, i.e., that
they are linear in d. For both the tr-exp and the spectral radius penalty, we apply the continuous
acyclicity penalty C(E[M(Φ)]) to the expectation of M(Φ) = [U(Φ),V(Φ)], as in [6]. We leave
the investigation of instead calculating gradients of the expected penalty E[C(M(Φ))] with respect
to Φ using reparameterized samples of M(Φ) as future work.

Tr-exp factor penalty We apply the tr-exp penalty to E[VU], the weighted adjacency matrix on
the half-square G2

f [F] induced by the factor nodes. As described above in (79), E[VU] is calculated
by calculating the matrix product of the expectations of V and U, before setting the diagonal to
zero. This m ×m matrix can be calculated in O(m2d), and the gradient of the penalty h(E[M]) =

Tr exp{E[VU]} −m can be calculated in O(m3), yielding a total runtime of O(m3 +m2d).

Spectral radius factor penalty We apply the factor power iteration (Algorithm 1) to the matrix
E[UV] to maintain left and right eigenvectors for the leading singular value in O(Tmd) operations,
and then calculate the gradient of that singular value in time O(md). In this case, we use a simple
modification of Algorithm 1 with a diagonal offset, noticing that

E[UV] = E[U]E[V] − diag(E[U]E[V]), (80)
and that the matrix-vector multiplications in Algorithm 1 can be calculated in time O(md).

27

E.5 Augmented Lagrangian

This section is adapted from the supplementary materials of the work of Brouillard, Lachapelle et
al. [6] and outlines how the DAG-constrained optimization problem can be solved with first-order
methods.

Let us recall that the score function and the optimization problem for DCD-FG, assuming perfect
interventions, are defined as:

max
Φ,Θ
S(Φ,Θ) such that C(E[M(Φ)]) = 0, (81)

where S(Φ,Θ) = EM′
∼M(Φ)

⎡
⎢
⎢
⎢
⎢
⎣

K

∑
k=1

E
X∼P

(k)
data

∑
j∉Ik

log pjΘ(Xj ;M
′

j ,X−j)

⎤
⎥
⎥
⎥
⎥
⎦

− λ ∥E [M(Φ)]∥1 . (82)

The augmented Lagrangian transforms the constrained problem into a sequence of unconstrained
problems of the form

max
Φ,Θ
S(Φ,Θ) − γtC(E[M(Φ)]) −

µt
2

(C(E[M(Φ)]))
2
, (83)

where γt and µt are the Lagrange multiplier and the penalty coefficient of the t-th unconstrained
optimization problem, respectively. In all our experiments, we initialize γ0 = 0 and µ0 = 10−8.
Each such problem is approximately solved using a first-order stochastic optimization procedure
(RMSProp in our experiments). We assume that a subproblem has converged when (83) evaluated on
a validation set stops increasing. Let (Φ∗

t ,Θ
∗

t) be the approximate solution to subproblem t. Then,
γt and µt are updated according to the following rule:

γt+1 = γt + µtC(E[M(Φ∗

t)]) (84)

µt+1 = {
ηµt, if C(E[M(Φ∗

t)]) > δC(E[M(Φ∗

t−1)]),
µt, otherwise, (85)

with η = 2 and δ = 0.9. Each subproblem t is initialized using the previous subproblem’s solution
(Φ∗

t ,Θ
∗

t). The augmented Lagrangian procedure is stopped when C(E[M(Φ∗

t)]) < 10−8, or µt >
1032.

The gradient of (83) with respect to the parameters Φ and Θ is estimated on a minibatch of obser-
vations. To compute the gradient of the likelihood part with respect to Φ, we follow [6] and use a
Straight-Through Gumbel-Softmax estimator [61]. This approach relies on discrete Bernoulli samples
at the forward pass, but uses the reparameterized samples of the Gumbel softmax distribution for the
backward pass (with fixed temperature parameter T = 1).

E.5.1 Code Statement

We implemented DCD-FG in PyTorch, using the DCDI codebase as a starting point. We extensively
refactored and modified the original code (simulations, loss functions, training, evaluation) in order
to scale to thousands of variables, and to accommodate the simulation of factor graphs. The software
is available as open-source on GitHub at https://github.com/Genentech/dcdfg under the
Apache 2.0 licence.

F Details for empirical evaluation of DCD-FG

In this section, we provide the necessary details for reproducing the experiments in the paper.

F.1 Synthetic data sets

For each type of synthetic data set, we first sampled an f -DAG as explained in Appendix B.3, with
pv = 0.1 and pf = 0.2 and then we sampled the causal mechanisms, adapting the method from [6]
as follows. In each of our half-square graphs (d = 100), and for each intervention regime k ∈ [K],
where K = 100, intervention targets with a size of 1 to 3 nodes were chosen uniformly at random.
n/(K + 1) independent observations were sampled for each interventional setting. The data were
normalized, i.e., we subtracted the mean and divided by the standard deviation. In cases where IGSP

28

https://github.com/Genentech/dcdfg

required feature aggregation, we clustered the features using spectral clustering as implemented by
scikit-learn [62].

In the linear data sets, each node was set to be a linear function of its parent nodes (in the f -DAG), with
additional Gaussian noise of standard deviation σ = 0.4. The coefficients were sampled uniformly
from [−1,−0.25] ∪ [0.25,1] (to make sure they are bounded away from zero). Interventions were
handled by instead sampling the intervened-upon node from an isotropic Gaussian distribution with
unit variance.

In the non-linear data sets (NN), each node was set to be a non-linear function of its parents nodes (in
the f -DAG), with additional Gaussian noise of standard deviation σ = 0.4. The non-linear functions
were fully-connected neural networks with one hidden layer of 20 units and hyperbolic tangent as
nonlinearitiy in the hidden layer. The weights of each neural network were sampled from isotropic
Gaussian distributions with unit variance. Similarly to the linear model, interventions were handled
by instead sampling the intervened-upon node from an isotropic Gaussian distribution with unit
variance.

F.2 Preprocessing of the Perturb-CITE-seq data set

We downloaded the data set from the Single Cell Portal of the Broad Institute (accession code
SCP1064). We converted the data from log-normalized count per millions into raw counts for
processing with the scanpy package [63]. We removed cell profiles with less than 500 expressed
genes, and genes expressed in less than 500 cells. Then, we filtered the genes to include only the
genetically-perturbed genes and the most variable genes for a total of d = 1,000 genes. We finally
partitioned the cells from each of the three conditions (co-culture, IFNγ, and control) into distinct
datasets. We used spectral clustering as implemented in sklearn for clustering, and selected three
gene sets with 10,20 and 50 modules.

F.3 Baseline Methods

In this section, we provide additional details on the baseline methods and cite the implementations
that were used. NOTEARS [19] was extended to handle perfect interventions, and to use a Gaussian
likelihood (with unequal variance across features). In contrast to the original implementation that
used a second-order optimization method, the reimplementation used in this paper relies on first-
order optimization. A similar GPU reimplementation was used in the NO-BEARS manuscript [26]
and shown to be 100x faster for d = 300. NOTEARS-LR [20] and NOBEARS [26] were also
reimplemented to handle interventions, and use a Gaussian likelihood.

We noticed floating point overflow in most experiments (d > 100) using 16 bit precision when
calculating the tr-exp penalty. We first explored using 32 bit precision, but instead preferred scaling
the matrix before computation of the penalty. We have noticed that using the spectral radius of
the initialized adjacency matrix as scaling factor provided a nice safeguard, and have applied this
throughout all the models.

Finally, we noticed that for the NOTEARS baseline, thresholding the weight matrix at w∗ = 0.3 (as
done in the original NOTEARS paper) provided poor performance on this benchmark, and in the
biological dataset. Therefore, we adopted a single strategy for pruning the adjacency matrices into
DAGs for all of NOTEARS, NOBEARS, NOTEARS-LR and DCD-FG. We threshold the weighted
adjacency matrices (weights for NOTEARS, NOBEARS and NOTEARS-LR, and probabilities of
edge for DCD-FG) where the threshold t∗ is obtained by binary search with T = 20 evaluation of an
(exact) acyclicity test to find the largest possible DAG for each method.

For IGSP, we used the implementation from https://github.com/uhlerlab/causaldag. The
cutoff values used for alpha-inv was always the same as alpha. We used tools from the Python
package Causal Discovery Toolbox [45] for calculating the SHD metrics.

F.4 Default hyperparameters and hyperparameter search

For all methods, we performed an exhaustive hyperparameter grid search. The models were trained on
80% observations and evaluated on 20% of the remaining ones (distinct interventions were used in the
training and the held-out data used for evaluations). For all of NOTEARS, NOBEARS, NOTEARS-
LR and DCD-FG, we searched over the regularization coefficient for sparsity λ. Additionally, for

29

NOTEARS-LR and DCD-FG, we searched over the number of learned factors m. For DCD-FG, we
used the acyclicity penalty as a supplementary hyperparameter (spectral or trace of exponential). For
IGSP, we scored the output by using it as a mask for fitting a linear model, and we explored several
cutoff values alpha based on the value used in the original publication [7], and the best performing
value in the experiments of [6]. Because IGSP did not terminate in many scenarios (after 5 hours,
even with the Gaussian conditional independence), we ran the method in several instances of feature
aggregation and observation subsampling and report the best performance. Feature aggregation means
that we decreased the dimensionality of the dataset by summarizing the feature set into a cluster set
by averaging all features within a cluster, and mapping intervention targets from the feature set to the
cluster set. The complete hyperparameter search space for each algorithm is described in Table 2.

Table 2: Hyperparameter search spaces for each algorithm.

Hyperparameter space

DCD-FG
log10(λ) ∈ {−3,−2,−1,0,1,2}
m ∈ {10,15,20,30,50}
DAG penalty ∈ {spectral, tr-exp}

NOTEARS-LR
log10(λ) ∈ {−3,−2,−1,0,1,2}
m ∈ {10,15,20,30,50}
DAG penalty ∈ {spectral, tr-exp}

NOTEARS log10(λ) ∈ {−3,−2,−1,0,1,2}
DAG penalty ∈ {spectral, tr-exp}

NOBEARS log10(λ) ∈ {−3,−2,−1,0,1,2}

IGSP

alpha ∈ {1e − 3,1e − 5}
CI test ∈ {Gaussian,KCI}
Feature clustering (# clusters) ∈ {10,20,50}
Observation sub-sampling (only for bio dataset) ∈ {0.1,0.25,0.5}

DCD-FG, NOTEARS-LR, NOTEARS and NOBEARS share several default hyperparameters related
to the optimization procedure and the architecture of the neural networks (for DCD-FG only) that
we outline in Table 3 (values are similar to those in [6]). Neural networks were designed with
leaky-ReLU activation functions, and initialized following the Xavier initialization [64]. RMSprop
was used as the optimizer [65] with minibatches of size 64.

Table 3: Default hyperparameters for DCD-FG, NOTEARS, NOTEARS-LR and NOBEARS.

Hyperparameters

µ0 = 10−8, γ0 = 0, η = 2, δ = 0.9
Augmented Lagrangian constraint threshold: 10−8

Learning rate: 2.10−3

hidden units: 16 (DCD-FG only)
hidden layers: 2 (DCD-FG only)

F.5 Assessment of statistical significance

For every claim of the form “Algorithm X and Y outperformed Algorithm W and Z with respect
to metric h”, we applied a Wilcoxon signed-rank test to the difference of scores between the worst
performing model out of X, Y and the best performing model out of W, Z. We alternatively applied
an Mann–Whitney U test (unpaired test) by concatenating the results of each algorithm (X, Y) and
(W, Z) and recovered identical statistical significance assessments.

F.6 Additional experimental results

Here, we report the results of additional experiments intended to complement the experiments
presented in the main paper and to investigate the robustness of DCD-FG:

30

• Aggregation of precision and recall on our Gaussian causal structural models, as presented
in Figure 4, into a F1-score (Figure 7)

• Performance of DCD-FG for different values of the rank parameter (m) (Figure 8) on
Gaussian causal structural models. For this, we considered the same data as for Figure 4,
but performed hyperparameter search over all parameters besides m, for different choices of
m. We observe that the performance is fairly robust to a wide variety of choices of m, and
that validation likelihood is strongly correlated with the resulting performance, justifying
our selection of m by optimizing hold-out likelihood.

• Alternative benchmark for a different exogeneous noise distribution (uniform instead of
Gaussian; with matching variance; Figure 9). For this, we chose the same graph generative
and conditional likelihood model as in Figure 4, only changing the noise distribution. While
performance slightly degrades, the relative ordering of DCD-FG compared to NOTEARS-LR
and NOTEARS remained the same.

• Alternative benchmark with observational data (Figure 10). Using the same graph gener-
ative and conditional likelihood model as in Figure 4, we generated the same number of
observations, but without any interventions. Again, while performance decreases in this
regime, DCD-FG remains the best-performig method.

• Total runtime of methods on all experiments (Figure 11).

0.00 0.25 0.50 0.75
F1 score

IGSP

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

Linear (d=100; m=10)

0.0 0.2 0.4
F1 score

IGSP

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

NN (d=100; m=10)

Figure 7: F1-score for Gaussian causal structural models experiments.

0.00 0.25 0.50 0.75
F1 score

DCD-FG (m=10)

DCD-FG (m=15)

DCD-FG (m=20)

DCD-FG (m=30)

DCD-FG

Linear (d=100; m=10)

0.5 0.6 0.7
Validation likelihood

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

Linear (d=100; m=10)

Figure 8: Robustness of DCD-FG to the rank hyperparameter.

0.5 0.6 0.7
I-NLL

NOTEARS

NOTEARS-LR

DCD-FG

0.0 0.5
F1 score

Linear Uniform (d=100; m=10)

0.55 0.60
I-NLL

NOTEARS

NOTEARS-LR

DCD-FG

0.0 0.1 0.2
F1 score

NN Uniform (d=100; m=10)

Figure 9: Robustness of DCD-FG to the model mispecification.

F.7 Biological interpretation of the f -DAG

The f -DAG inferred by DCD-FG for the cells treated with IFNγ has m = 20 factors, and the half-
square G has 196,303 edges. We show a histogram of ingoing and outgoing edges to each factor in
Figure 12.

31

0.5 0.6 0.7
Val-NLL

NOTEARS

NOTEARS-LR

DCD-FG

0.0 0.2 0.4
F1 score

Linear No Intervention (d=100; m=10)

1.45 1.46 1.47
Val NLL

NOTEARS

NOTEARS-LR

DCD-FG

0.0 0.1
F1 score

NN No Intervention (d=100; m=10)

Figure 10: Performance of DCD-FG with observational data.

0 50 100 150
Runtime (min)

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

IGSP (50 clusters)

DCDI

Linear (d=100; m=10)

50 100
Runtime (min)

NOBEARS

NOTEARS

NOTEARS-LR

DCD-FG

IGSP (20 clusters)

DCDI MemoryError

Biological Datasets

Figure 11: Total runtime of DCD-FG on one NVIDIA Tesla T4 GPU with 15Gb of RAM.

In order to assign biologically meaningful names to the factors, we performed Gene Set Enrichment
Analysis (GSEA) via the enrichr method [50], applied independently to each factor f by considering
the set of genes that are connected to f in either direction. In order to place the genes onto the factor
half-square, we inferred for each gene the strongest factor-to-factor edge in which it appears. Indeed,
we noticed that the same gene may appear upstream and/or downstream of several factors. For better
interpretability, we selected the strongest parent factor and child factor based on the weights of the
model (either the linear model in case of link from factor to gene, or the first layer of the MLP in
case of link from gene to factor). We anticipate that further work will be necessary to visualize and
interpret those large graphs for more involved biological applications, but we currently leave this as
future work.

32

100 150 200 250 300
edges ingoing to a module

0

1

2

3

4

5

m

od
ul

e

50 100 150 200 250 300
edges outgoing from a module

0

1

2

3

4

5

6

7

m

od
ul

e

Figure 12: Distributions of ingoing and outgoing edges of modules in the f -DAG estimated on the
IFNγ treated cells.

33

	1 Introduction
	2 Background
	2.1 Causal Graphical Models
	2.2 Differentiable Causal Structure Learning

	3 Factor Directed Acyclic Graphs
	3.1 Definitions and relationship to low-rank decomposition
	3.2 Statistical Properties of Random Causal Factor Graphs
	3.3 Characterizing Acyclicity of Factor Graphs

	4 Differentiable Discovery of Causal Factor Graphs
	5 Experiments
	5.1 Gaussian Structural Causal Models
	5.2 Genetic Interventions and Gene Expression Data

	6 Discussion
	A Factor Directed Acyclic Graphs
	A.1 Definitions
	A.2 General properties
	A.3 Relationship to low-rank matrices
	A.4 Alternate definitions of low-rank graphs

	B Identifiability of f-DAGs
	B.1 Markov equivalence classes
	B.2 Identifiability of Boolean low-rank graphs
	B.3 Empirical validation

	C Boolean-rank instability under edge perturbation
	C.1 Random subset non-overlapping lemma
	C.2 Exhaustive binary pattern coverage lemma
	C.3 Boolean rank increase lemma
	C.4 Proof of the main theorem
	C.5 Empirical validation

	D Characterization of acyclicity
	D.1 Trace-exponential characterization
	D.2 Spectral characterization

	E Implementation details for DCD-FG
	E.1 Factor MLP: Likelihood model and architecture details
	E.2 Linear model and relationship to NOTEARS-LR
	E.3 Removing self-loops in f-DAGs
	E.4 Acyclicity penalties
	E.5 Augmented Lagrangian
	E.5.1 Code Statement

	F Details for empirical evaluation of DCD-FG
	F.1 Synthetic data sets
	F.2 Preprocessing of the Perturb-CITE-seq data set
	F.3 Baseline Methods
	F.4 Default hyperparameters and hyperparameter search
	F.5 Assessment of statistical significance
	F.6 Additional experimental results
	F.7 Biological interpretation of the f-DAG

