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Abstract

Genome-wide association studies (GWAS) have highlighted that almost any trait is affected by many vari-
ants of relatively small effect. On one hand this presents a challenge for inferring the effect of any single variant
as the signal-to-noise ratio is high for variants of small effect. This challenge is compounded when combin-
ing information across many variants in polygenic scores for predicting trait values. On the other hand, the
large number of contributing variants provides an opportunity to learn about the average behavior of variants
encoded in the distribution of variant effect sizes. Many approaches have looked at aspects of this problem, but
no method has unified the inference of the effects of individual variants with the inference of the distribution of
effect sizes while requiring only GWAS summary statistics and properly accounting for linkage disequilibrium
between variants. Here we present a flexible, unifying framework that combines information across variants
to infer a distribution of effect sizes and uses this distribution to improve the estimation of the effects of indi-
vidual variants. We also develop a variational inference (VI) scheme to perform efficient inference under this
framework. We show this framework is useful by constructing polygenic scores (PGSs) that outperform the
state-of-the-art. Our modeling framework easily extends to jointly inferring effect sizes across multiple cohorts,
where we show that building PGSs using additional cohorts of differing ancestries improves predictive accu-
racy and portability. We also investigate the inferred distributions of effect sizes across many traits and find that
these distributions have effect sizes ranging over multiple orders of magnitude, in contrast to the assumptions
implicit in many commonly-used statistical genetics methods.
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1 Introduction
The central problem in statistical genetics is understanding the role of genetic variation in shaping observed
phenotypic variation. This map from genotype to phenotype can be understood at multiple scales of granularity.
At one extreme, elucidating the functional impact of individual variants can provide biological insights into
molecular mechanisms or pathways [51] and for phenotypes related to disease status can be used for drug
discovery [13, 44]. At the other extreme, we can discover broad features of the genotype to phenotype map
without knowing the effect of any particular variant. For example, with polygenic scores (PGSs) we can
use genotypes to predict disease risk to implement more cost-effective screening programs without accurately
knowing how any single variant is acting [17, 20, 33]. We can also learn summaries of the distribution of effect
sizes such as the proportion of phenotypic variance explained by genetic variation (heritability), how polygenic
a trait is, or if particular types of genomic regions are enriched for contributions to a trait. Looking across traits
or across cohorts, we can analogously consider the joint distribution of effect sizes and infer the extent to which
the effect of variants is correlated across those traits or cohorts. Across all these scales of granularity there are
interesting questions and important medical applications.

Unfortunately, there are challenging statistical problems at all scales. Correlations between genotypes at
nearby loci (linkage disequilibrium; LD) make it difficult to disentangle the effect of a variant at one locus
from the effects of correlated variants. Compounding these issues, genome wide association studies (GWAS)
often only release the summary statistics of marginal tests of association performed separately for each variant,
which do not adjust for the effect of linked variants. As a result, methods must account for LD while only
having access to these summary statistics.

When inferring the effects of particular variants there is an additional problem: at present sample sizes, there
is no simple way to estimate the effect of a variant while accounting for all other variants. Sample sizes are
often in the thousands to the hundreds of thousands, while the number of variants can be in the millions, making
tools from classical statistics like multiple regression impossible to apply. In principle, Bayesian methods or
regularization methods such as the LASSO [31, 57] or ridge regression [24, 59] can make the original ill-posed
problem well-posed. Yet, without a solid understanding of the distribution of effect sizes, choosing the form and
amount of regularization can be difficult. For example, LASSO regularization favors sparse solutions where
only a small proportion of variants have non-zero effects, and ridge regression favors solutions where no single
variant has a large effect. For many complex traits neither of these assumptions is appropriate: there are often
variants with relatively large effects, but simultaneously the vast majority of phenotypic variance is explained
by many variants of tiny effect [8, 51].

While having a large number of variants can be thought of as a typical “curse of dimensionality” for infer-
ring the effect of any particular variant, in the context of learning about the distribution of effect sizes the large
number of variants can also be seen as a blessing. Each variant provides some information about the distribution
of variant effect sizes, and so by pooling information across variants we might hope to discover features of this
distribution. Using an estimated distribution of effect sizes, one can apply more sensible regularization when
inferring the effects of individual variants. This highlights that while we can try to understand the genotype
to phenotype map at each resolution or degree of granularity separately, there is information to be gained by
considering all scales jointly.

There have been many approaches to interrogate these different aspects of the genotype to phenotype map,
but no sufficiently flexible unifying framework has been developed. Many methods have been developed for
estimating individual effect sizes, usually within a single genetic locus, especially under the assumption than
only one or a small number of variants are causal. This setting is known as fine-mapping, and some of these
methods require only GWAS summary statistics [2, 61, 67]. A related line of work looks at multiple traits
(often an organism-level phenotype and gene expression) and tries to “colocalize” signals by determining if
the same variants can explain observed associations with both traits [25]. Yet, these methods typically do not
use information about the overall distribution of effect sizes to inform their predictions. On the other end of
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the spectrum, there are a number of methods that use either genotype data or summary statistics to estimate
features of the distribution of effect sizes without estimating the effects of individual variants. In particular,
variance component models and models based on the LD Score Regression framework have been used to
estimate heritability, which is related to the variance of the distribution of frequency-scaled effect sizes [10].
These models have also been used to estimate other aspects of this distribution of effect sizes, such as its
fourth moment, a measure of how heavy-tailed this distribution is [39]. For multiple traits or cohorts, there are
methods that can estimate the correlation of effect sizes [9]. Finally, recent work has looked at estimating the
full distribution of contributions to heritability, which is closely related to the distribution of effect sizes [38].
A series of methods that do leverage information in the variants to jointly estimate the effect size distribution
and then use that inferred effect size distribution to improve the estimation of individual effect sizes have also
been developed, but these require the variants to be independent. This side-steps issues of LD but necessitates
throwing away the information contained in linked SNPs [55].

A related line of work predicts phenotype from genotype using so-called “polygenic scores” (PGSs) or
“polygenic risk scores”. State-of-the-art approaches use some form of explicit regularization like the LASSO
[31], or perform Bayesian inference, where an assumed distribution of effect sizes is used as a prior and acts
as a regularizer. These methods typically specify a particular family of priors such a Normal with a point
mass at zero [59], mixture of a small number of Normals [30], or a particular scale-mixture of Normals [22],
and the user is required to choose a distribution from this family by tuning a hyperparameter using a held-out
validation dataset. Recent work has eliminated the need for a validation dataset by placing an additional prior on
the hyperparameters and then obtaining a posterior distribution over assumed effect size distributions [22, 65],
but this prior then contains hyperparameters which are fixed a priori. Furthermore, these methods, with the
exception of [65], often make restrictive and unrealistic assumptions about the distribution of effect sizes, such
as only having effect sizes from roughly a single order of magnitude [59], or coupling the probability that an
effect size is close to zero with the probability that an effect size is large [22]. Currently, only one method in this
framework, PRS-CSx [45], models effect sizes across cohorts, and this method implicitly assumes that while
the magnitude of effects are similar across cohorts, the genetic correlation across cohorts is zero in contrast to
what is seen in real data [9]. As such, while many aspects of the central problem of statistical genetics have
been tackled in isolation, no single method combines inference of a sufficiently flexible distribution of effect
sizes while also using such information to inform the inference of the effects of individual variants.

Here we present a unified framework that ties an extremely flexible, learnable family of effect size distribu-
tions to GWAS summary statistics, allowing for the simultaneous estimation of the effects of individual variants
along with the distribution of effect sizes. We extend our method to the case of multiple cohorts, potentially
with distinct LD structures, where we can learn the joint distribution of effects across cohorts and use informa-
tion contained in multiple GWAS to improve estimation of variant effect sizes across all cohorts. Our model
possesses several key features: 1) it is flexible, allowing effect sizes to vary across multiple orders of magnitude
with varying degrees of genetic correlation across cohorts; 2) it properly accounts for LD while only requiring
the use of GWAS summary statistics, making it amenable to use on publicly available data; 3) our model can
be fit efficiently using modern tools from variational inference (VI); 4) our model can incorporate prior infor-
mation, such as genomic annotations or molecular data, by using this information to create site-specific effect
size distributions; and 5) our model is easily extendable to model multiple traits instead of multiple cohorts.

As an example of the utility of our model, we focus specifically on the case of building PGSs. PGSs are
used to predict an individual’s phenotype or risk of disease and are becoming accurate enough to be clinically
useful [27]. Yet, PGSs typically explain far less trait variance than theoretically possible – the narrow-sense
heritability – showing that there is still room for improvement. Here, we show that PGSs derived using our
framework can be substantially more predictive than the current state-of-the-art method [22, 45].

PGSs typically suffer from poor portability, wherein PGSs built using data from a particular cohort perform
far worse when applied to sets of individuals that are genetically distant from the cohort used to build the PGS
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[34]. Given that the overwhelming majority of GWAS participants are of European ancestries [34], this lack
of portability threatens to exacerbate existing disparities in health outcomes [19] as PGSs begin to see clinical
use [34]. Because our framework can jointly model effect sizes across multiple genetically diverse cohorts,
it allows information to be shared across cohorts of different ancestries, which we show can increase PGS
performance both when applying PGS to ancestry-matched cohorts as well as when porting PGS to cohorts of
different ancestries.

Because our framework unifies the inference of the distribution of effect sizes with fitting effect sizes for
individual variants, we also examine the inferred distribution of effect sizes for many traits both within a single
cohort and across cohorts. We find that commonly-assumed models of effect sizes, such as the point-Normal
[59], are badly misspecified; instead, across traits, effect sizes are multi-scale, spanning several orders of magni-
tude. Standard summaries of effect size distributions, such as the variance of effect sizes or genetic correlation,
are sensitive to variants of large effect. Thus, our results call into question the utility of using these measures
as adequate summaries of the distribution of effect sizes. We also find that across traits there is no simple
relationship between sparsity and the heaviness of the distribution’s tail, highlighting the inadequacy of some
recently used models that conflate these two aspects of the distribution of effect sizes with a single parameter
[22]. When comparing two cohorts, we find that the inferred effect size distributions have different degrees of
correlation at different scales, and appear highly non-Normal, again suggesting that simple summaries of these
distributions are inadequate.

Finally, as an application of our framework’s ability to have different priors for different classes of variants,
we investigate the relationship between frequency and effect size and find that there is no simple universal
relationship between the two. Previous work has assumed that the variance of the effect size distribution for
variants of different frequencies, f , should scale like [f(1 − f)]α for various α typically between −1 and 0
[28, 46, 64]. In contrast, we find that while rarer variants tend to have larger effects, this general rule does not
hold for all traits, but α ≈ −0.4 provides a qualitative fit to many traits.

We have implemented our model in a software package called Vilma , which is available at https://
github.com/jeffspence/vilma.

2 Results

2.1 A flexible, unified modeling framework for variant effect sizes
We developed a modeling and inference framework linking the effects of individual variants to a learnable
distribution of effect sizes. To begin we considered what properties any such framework should have and then
worked to build a model with those properties while still being amenable to efficient inference. We posit that
any such model should:

• Have a flexible, learnable prior on effect sizes: In general, little is known about the distribution of
effect sizes for any given trait. Any modeling framework should learn this distribution from the data,
and the distributions it can possibly infer must be sufficiently rich to model traits with varying degrees of
polygenicity and effect sizes ranging over several orders of magnitude.

• Properly account for LD: The marginal effects estimated by GWAS include the effects of linked vari-
ants. This means that the effect of an individual variant is essentially double counted. It is counted once
in its own marginal effect estimate, but then appears again in the marginal effect estimated at each of its
LD partners. To avoid this double counting LD must be taken into consideration and properly modeled.

• Require only GWAS summary statistics: Only summary statistics are typically released from GWAS.
Any modeling framework should operate directly on summary statistics to avoid requiring access to
individual level data.

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.488696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.18.488696
http://creativecommons.org/licenses/by/4.0/


• Easily incorporate prior knowledge: We often have prior knowledge from additional data about which
variants are likely to have large effects. For example, we might expect the effect of a variant to differ
a priori depending on local chromatin context, expression patterns of nearby genes across tissues, or
variant attributes such as frequency, LD score, or being a protein coding variant.

• Be extensible to multiple cohorts and multiple traits: As dense phenotyping projects across genetically
diverse groups become the norm [21, 37, 56], frameworks should be easily to extend to multiple cohorts
or multiple traits.

• Allow for scalable, accurate inference: Any modeling framework must remain amenable to efficient
approximate inference schemes.

We propose a modeling framework that satisfies these design principles (Figure 1). The key components
of our framework are 1) the “regression with summary statistics” model [66], which provides a likelihoood for
observing a set of GWAS summary statistics given LD data and the true effects of each variant; and 2) a multi-
variate extension of the adaptive shrinkage prior [55], which can flexibly model a broad class of distributions,
while remaining amenable to efficient inference schemes. Here we focus on the case of a single trait measured
in either one or two cohorts.

Our framework can model a broad class of effect size distributions by using a dense scale mixture of
Normals. That is, we use a mixture distribution with a large number of mixture components, each of which is
a Normal distribution centered at the origin but with a different, pre-specified variance. By including a large
number of these mixture components and simply varying the mixture weights, we can model a rich class of
distributions while essentially only enforcing unimodality and sign symmetry, both of which are biologically
plausible. Unimodality with a mode at the origin encodes the intuition that there should be fewer variants
of large effect than small effect. Sign symmetry indicates that the distribution of effect sizes is invariant to
swapping which allele is labeled as 1 and which allele is labeled as 0, which is sensible as this labeling is
somewhat arbitrary. To extend this framework to multiple cohorts, we simply replace the univariate Normal
distributions with multivariate Normal distributions, which entails replacing the pre-specified variances with a
set of pre-specified covariance matrices. Mathematically, for P cohorts, our model takesK pre-specified P×P
covariance matrices Σ1, . . . ,ΣK (we will discuss how we pre-specify these matrices below) and models GWAS
summary data as

(β
(1)
j , . . . , β

(P )
j ) ∼

K∑
k=1

pkN (0,Σk) (1)

−−→
β̂(p)|
−−→
β(p)

ind.∼ N
(

S(p)X(p)
(
S(p)

)−1−−→
β(p), τ (p)S(p)X(p)S(p)

)
(2)

and learns the mixture weights, p1, . . . , pK , and GWAS noise “scaling factors”, τ (p), for each cohort from the
data. We will discuss the inference procedure we employ for this in more detail below. Here, β(p)j denotes the

true effect sizes within cohort p at locus j;
−−→
β(p) = (β

(p)
1 , . . . , β

(p)
M ) is the vector of true effect sizes across all

M SNPs in cohort p; analogously,
−−→
β̂(p) is the vector of marginal GWAS estimates across all SNPs in cohort p;

S(p) is a diagonal matrix containing the standard errors of the GWAS estimates in cohort p for each SNP along
the diagonal; and X(p) is the LD matrix – a matrix with X

(p)
jj′ denoting the correlation between the genotypes

at SNPs j and j′ in cohort p.
Despite the cumbersome notation, the model presented in Equations 1 and 2 has a simple intuitive interpre-

tation. Equation 1 is the joint distribution of effect sizes across cohorts, which acts as a prior on the true (but
unknown) effect sizes we see across cohorts at a given SNP. By learning the mixture weights, p1, . . . , pK , this
distribution is chosen from a rich class of unimodal, sign symmetric distributions to provide an optimal fit to
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Figure 1: Cartoon of our modeling framework, Vilma: Vilma models GWAS summary statistics using a
learnable prior on effect sizes and estimated LD structure. Using variational empirical Bayes and variational
inference, Vilma obtains estimates of the distribution of effect sizes as a well as estimates of the true effect sizes.
These estimates can then be used for building polygenic scores, measuring genetic correlation or polygenicity,
finemapping, or other downstream tasks.
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the observed GWAS summary statistics. Equation 2 follows from a central limit theorem type argument on the
joint distribution of the marginal effect size estimates and their estimated standard errors (see [66]). Intuitively,

the mean of the distribution, S(p)X(p)
(
S(p)

)−1−−→
β(p) comes from first converting the true effect sizes into Z-

scores, adding up these Z-scores across all SNPs correlated to a focal SNP in proportion to how correlated
the genotypes at the two SNPs are, and then converting from this standardized Z-score space back to the scale
of the original effect sizes to obtain the expected measured marginal effect sizes. Similarly, the variance term
comes from noting that the noise in the marginal effect size estimates at two SNPs will be proportional to how
noisy the effect size estimates at each SNP are (determined by the frequencies of the alleles at each SNP, which
affect the standard errors) as well as how correlated the genotypes are at those two loci (determined by the LD
matrix). That is, SNPs with highly correlated genotypes should have highly correlated marginal effect esti-
mates, and unlinked SNPs should have independent marginal effect size estimates. The scaling factor τ (p) in
our model acts to undo over- or under-correction of population structure, effectively scaling all of the standard
errors in a particular GWAS by a constant factor, analogous to the intercept term in LD Score Regression [10].

We can easily extend this model to place different priors on different SNPs (e.g. by allele frequency or
functional annotations). Instead of having a single p1, . . . , pK to determine the prior, we simply partition SNPs
into several classes and learn a different set of mixture weights per class.

Having formulated our model, we need to be able to efficiently perform inference on it. In particular, we

need to fit the hyperparameters p1, . . . , pK and τ (1), . . . , τ (P ), and infer a posterior over
−−→
β(1), . . . ,

−−→
β(P ). While

previous approaches have used cross-validation or a held out validation data to set model hyperparameters [22],
these approaches unfortunately require access to individual level genotype and phenotype data, negating the
applicability gained by modeling summary statistics as opposed to individual level data. Instead, we would want
to take an empirical Bayes approach, where we would set these hyperparameters by maximizing the likelihood
of the observed data after marginalizing out the unobserved true effect sizes. Intuitively, this approach treats
inferring the distribution of effect sizes from the GWAS summary statistics as its own maximum likelihood
estimation problem.

Unfortunately, marginalizing over the unobserved true effect sizes is analytically and computationally in-
tractable. One approach uses the fact that for fixed hyperparameters, Markov chain Monte Carlo (MCMC) can
be used to obtain an approximate posterior over the true effects, and given that approximate posterior, it is fea-
sible to maximize a particular function to obtain updated hyperparameter estimates. Alternating these steps of
MCMC and updating the hyperparameters is called Monte Carlo Expectation Maximization (MCEM), which
approximately finds a local maximum of the likelihood of the data with respect to the hyperparameters. Un-
fortunately, the need to repeatedly run MCMC makes MCEM notoriously slow. Furthermore, the correlations
between genotypes at nearby SNPs either make the MCMC mix slowly or requires costly block updates [22]
making it difficult to infer the posterior over the true effect sizes even when the hyperparameters are fixed.

We take an alternative approach, variational inference (VI), that solves both of these problems – setting
the hyperparameters via maximum likelihood, and obtaining a posterior over the true effect size. We provide
more details in Appendix D, but briefly, VI fits an approximate posterior by minimizing a discrepancy between
that approximate posterior and the true, unknown posterior [6]. This turns a computationally difficult sampling
problem, MCMC, into the more tractable optimization problem of choosing the parameters of the approximate
posterior that minimize this discrepancy. This optimization problem can be solved using standard approaches
like coordinate descent or gradient descent. Additionally, the hyperparameters appear in this optimization
problem, so we can also minimize this discrepancy between our inferred approximate posterior and the true
posterior with respect to our hyperparameters. It turns out that this is equivalent to maximizing a lower bound
on the likelihood of the data after marginalizing out the unknown true effect sizes, so this approach is similar
to standard empirical Bayes, but instead of maximizing a likelihood, we are maximizing a lower bound on that
likelihood [7].

Both MCMC and VI infer approximations of the posterior and in cases where MCMC does not mix well
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its approximation can be quite poor. VI has been benchmarked in similar contexts [11, 54] where it has been
shown to obtain point estimates that are of comparable accuracy to MCMC but using a fraction of the compute
budget.

In Section 4.1 and Appendix D we discuss implementation details of both the model and the inference
scheme. We also perform a thorough study of the impact of these design choices in Appendix A. Briefly, for
the results presented in the main text we consider either one or two cohorts. When there is one cohort, we
choose K to be 81, and Σ1, . . . ,ΣK are scalars, so we set them to be approximately uniformly spaced on a
log-scale over a data-driven estimate of the likely range of effect sizes. When there are two cohorts we choose
K to be 144, and since Σ1, . . . ,ΣK are now matrices, we must specify a variance within each cohort as well
as a correlation. We again using a gridding approach, approximately spacing the variances as in the single
cohort case, and then uniformly grid across correlations from -0.99 to 0.99. These choices of K are somewhat
arbitrary and we show in Appendix A.2 that the performance of our method does not depend heavily on the
precise number.

We approximate the LD matrix for each cohort by dividing the genome into approximately independent
LD blocks [3], and using a low rank approximation to the LD between all SNPs within each block, and setting
the LD between SNPs in different blocks to be zero. This approximation results in both computational and
memory savings, and has been suggested as a technique to “denoise” LD matrices when using out-of-sample
LD [49]. To solve the optimization problem in the VI framework, we perform up to 1000 rounds of coordinate
descent, potentially stopping earlier if a round of coordinate descent does not change any of the posterior mean
true effect sizes by more than 10−6 or if the evidence lower bound (an affine scaling of the objective that we
are optimizing that provides a lower bound on the likelihood of the data after marginalizing out the unknown
true effect sizes) does not improve by more than 0.1 log-likelihood units.

2.2 Application to Polygenic Scores
Polygenic scores (PGS) are a medically relevant use case of the modeling and inference framework presented
in the previous section. Under an additive genetic model (evidence for which is discussed extensively in [47]),
we could predict the phenotype of individual i in cohort p with genotypes Gi1, . . . , GiM across the M SNPs as

PGS
(p)
i =

M∑
j=1

Gijβ
(p)
j (3)

if we knew the true effect, β(p)j , of each variant. Since we do not know these true effects, classical Bayesian
decision theory indicates that substituting the posterior mean of the unknown true effects into Equation 3 is the
optimal point estimate of Equation 3 in a particular sense [60]:

P̂GS
(p)

i =

M∑
j=1

GijE
[
β
(p)
j

∣∣∣−−→β̂(1), . . . ,−−→β̂(P )

]
. (4)

This indicates that by using our modeling framework and extracting the posterior mean effect sizes we can
obtain PGSs that are approximately optimal in a specific sense under the assumption that effect sizes are drawn
from the distribution that we learned from the data.

In theory we should include as many SNPs as possible in this modeling framework to build the most accurate
PGSs. In practice, including additional variants introduces additional computational burden, and some variants
have imputation and data quality issues that can result in worse performance. Throughout we use approximately
one million variants from the HapMapIII project [15], but explore the impact of the variant set in Appendix A.3.
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2.2.1 Vilma builds state-of-the-art polygenic scores

To assess the utility of this modeling framework in the context of PGSs we used data from a number of traits
from the UK Biobank (UKBB) [56], Biobank Japan (BBJ) [37], and the Million Veteran Program (MVP)
[21]. The UKBB is a cohort of individuals living in the UK, with (depending on the exact trait considered and
after pruning to unrelated individuals) approximately 320,000 white British individuals, 24,000 individuals of
other European ancestries, 6,000 individuals of African ancestries, 7,000 individuals of South Asian ancestries,
and 1,000 individuals of East Asian ancestries. The BBJ cohort is a cohort of approximately 140,000 mainly
Japanese individuals. MVP is a cohort of veterans of the United States armed forces including approximately
60,000 African-American individuals in the version 2 release used here. We had individual-level access to the
UKBB, and so we used the white British individuals for building PGS and tested the accuracy of the PGS in
the other sets of individuals. For MVP and BBJ we only used GWAS summary statistics, and for some of
the following analyses used those in combination with summary statistics from the GWAS on white British
individuals. Across the different cohorts we considered various subsets of 37 blood and urine biomarkers as
well as standing height and BMI. Details about cohort delineations, phenotype definitions, and GWAS details
are presented in Section 4.2.

We used our modeling framework and Equation 4 to build PGSs using these GWAS data. To begin, we used
only the white British individuals from the UKBB, and considered the performance of this PGS in a standard
use case: applying the PGS to an “ancestry-matched” cohort, for which we used the individuals of other
European ancestries in the UKBB. To assess how well our PGSs perform compared to existing methods, we
compared to PRS-CS, which has previously been shown to be the state-of-the-art method for PGS construction
using data from a single cohort [22]. Up to some technical details discussed in more detail in Section A.4,
PRS-CS uses the same likelihood as our model (Equation 2), but instead of having a learnable prior like our
Equation 1, PRS-CS uses a continuous mixture of zero mean univariate Gaussians with the mixture weights
coming from a particular fixed distribution that is chosen to induce sparsity. Whereas our model learns the
entire unimodal distribution of effect sizes, PRS-CS has a single learnable hyperparameter, which can either
be learned from the data (by placing a somewhat informative fixed prior on it and obtaining a posterior) or can
be tuned using a validation set of individual level data. Since the main appeal of modeling summary statistics
instead of individual level data is to avoid needing access to individual level, we compared our method against
the version of PRS-CS that learns its hyperparameter from the data.

Depending on the trait, our framework either performs comparably to PRS-CS or substantially better in
terms of Pearson’s correlation r, and the squared correlation, r2, which measures the amount of phenotypic
variance explained by the PGS, as a measure of predictive performance. The results are presented in Figure 2a.
Across traits this performance is statistically significant (p � 10−16; two-sided meta analysis over traits; see
Section 4.3 for statistical details). While much of this improvement derives from two traits related to bilirubin,
the increase in performance remains significant when restricting to the remaining traits (p = 3.2 × 10−10).
Bilirubin is an unusual trait in that there are several linked variants each with very large effects. Consistent
with this observation, we looked at features of the learned effect size distributions across these traits, and we
found that our modeling framework significantly outperforms PRS-CS on traits where Vilma predicts that there
are several variants with extremely large effects, which we will discuss further below. This highlights the utility
of having a flexible, learnable prior – Vilma can learn that while there are many variants of small effect, there
can still be a few variants with effect sizes that are orders of magnitude larger. In contrast PRS-CS has a single
learnable hyperparameter that must simultaneously fit the distribution of effect sizes across multiple scales,
necessarily trading off accuracy in fitting one part of the distribution with fitting another part.

We next investigated the improvement in prediction accuracy from modeling multiple cohorts. Given that
many traits have been estimated to have high genetic correlations across cohorts of different ancestries, we
expected that jointly modeling cohorts should improve effect size estimation [9]. We compared our method to
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PRS-CSx, an extension of PRS-CS that jointly models multiple cohorts, and which is the only other method
that performs joint inference of effect sizes across cohorts from summary statistics while properly accounting
for LD [45]. PRS-CSx assumes that the magnitude of effect sizes is similar across cohorts, but curiously (and
undesirably) assumes that the genetic correlation of the trait across cohorts is zero. For example, given that
a variant has a large trait-increasing effect in one cohort PRS-CSx assumes that the effect will also be large
in the other cohort, but assumes that it is equally likely that the variant increases or decreases the trait. A
model similar to that used in PRS-CSx was also used in the context of inferring whether variants are causal
across cohorts or in a cohort-specific manner [48]. There are, of course other approaches to combine data
across cohorts such as meta-analysis (improving marginal effect size estimates by averaging across cohorts, but
ignoring LD), mega-analysis (pooling individuals from multiple cohorts prior to performing GWAS, ignoring
effect size and LD differences across cohorts), or multi-PGS (taking linear combinations of PGS trained in
each cohort separately, which does not share information across cohorts when estimating the effect sizes within
each cohort) [32]. Yet, given that these methods are performing fundamentally different tasks, we restrict to
comparing Vilma against PRS-CSx.

We considered two cases of modeling multiple cohorts. We jointly modeled summary statistics from white
British individuals from the UKBB with summary statistics from either African American individuals from
MVP or primarily Japanese individuals from BBJ. We again considered the standard use case of applying these
PGS to an “ancestry-matched” cohort, assessing PGS quality in held-out individuals of European ancestries
from the UKBB. The results are presented in Figure 2b. We see that like in the single cohort case, across traits,
Vilma either performs comparably to PRS-CSx or provides substantial improvement. Across traits this increase
in performance is statistically significant (p = 3.0× 10−4 for MVP; p� 10−16 for BBJ). This shows that our
method is state-of-the-art.

We also wanted to explore how much predictive performance is increased by modeling an additional co-
hort. We compared PGS built using Vilma with a single cohort to PGS built using Vilma with two cohorts
(Figure 2c). We find that improvement is significant when adding BBJ (p � 10−16), and increased but non-
significant when adding MVP likely due to only considering four traits (p = 0.69 adding MVP). In both
cases the improvements are generally small (adding BBJ: median relative increase in r2 = 2.6%; max rela-
tive increase in r2 = 6.2%; adding MVP: median relative increase in r2 = 1.0%; max relative increase in
r2 = 1.7%). Thus, even by adding an “ancestry-mismatched” cohort of a smaller sample size, we can gain a
slight, but significant improvement in PGS performance compared to simply using a single “ancestry-matched”
cohort.

In Appendix A we show that Vilma is robust to our various design decisions. In particular, we show how
Vilma performs when we tweak various aspects of the model including the choice of dataset used to estimate
the LD matrix (Appendix A.1), how many mixture components we use in the prior (Equation 1; Appendix A.2),
which variants are included in the PGS (Appendix A.3), and whether we place the prior on effect sizes in their
natural scale or whether we first frequency-scale them by 1/

√
fj(1− fj) (Appendix A.4).

2.2.2 Vilma improves portability

PGSs are known to suffer from poor “portability”: the performance of PGSs significantly degrades when ap-
plied to individuals that are genetically not-well represented in the cohort used to build the PGS [34, 5, 42].
Various factors contribute to lack of portability, including differences in allele frequencies, LD, and true effect
sizes [62, 40]. Within a cohort, both the accuracy of GWAS estimates and the contribution to predictive ac-
curacy scale with fj(1 − fj) for a given effect size, indicating that variants that contribute the most to PGS
predictive accuracy also have the smallest standard errors. In contrast, when we move to a cohort of different
ancestries, these become uncoupled, so that the variants that contribute the most to PGS predictive accuracy in
the target cohort may not be well-estimated in the GWAS cohort. Similarly, when not all variants are included
in the PGS, the effect of a particular variant incorporates the effects of linked variants that are not included
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Figure 2: Polygenic score performance in an “ancestry-matched” cohort: (a) Pearson correlation between
European ancestry individuals’ true trait levels and PGS constructed by either Vilma or PRS-CS using white
British individuals from the UKBB. (b) Same as (a) but using information from both white British individuals
from the UKBB and either the BBJ cohort or African Americans from MVP. (c) Relative increase in r2 when
comparing Vilma PGS built using both white British individuals and either BBJ or MVP individuals to PGS built
using only white British individuals.
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in the PGS, and the extent to which these linked effects should be incorporated depends on LD. LD differs
between different ancestries so this too can contribute to the portability problem. The true effect sizes may
also differ across cohorts due to differences in epistatic or gene-environment interactions [40]. In any case,
given that the overwhelming majority of GWAS participants have European ancestries, this lack of portability
threatens to exacerbate disparities in standard of care as PGSs see clinical use [34]. Since we saw improved
predictive accuracy in an “ancestry-matched” cohort when jointly modeling multiple cohorts, we considered
if this joint modeling could also improve predictive accuracy when porting PGSs to a cohort with different
ancestries.

We first considered the case of building a PGS in one cohort and then porting it to an “ancestry-mismatched”
target cohort. We consider two cases. In both cases we started with a PGS trained using the white British in-
dividuals from the UKBB. In one case we compared the performance on individuals with African ancestries in
the UKBB to the performance when jointly modeling the UKBB white British individuals with African Amer-
icans from MVP. In the other case, we compared the performance on individuals with East Asian ancestries in
the UKBB to the performance when jointly modeling the UKBB white British with the BBJ cohort.

Across traits we can see (Figure 3a) the portability problem in PGSs built using just the white British.
In European ancestry individuals, r2 is much higher than it is in other target cohorts (across traits, median
r2South Asian/r

2
European = 0.75; median r2East Asian/r

2
European = 0.52; median r2African/r

2
European = 0.17) and meta-

analyzing across traits the drop is significant for porting to any cohort (p� 10−16). Yet, we also see (Figure 3b)
that including an “ancestry-matched” cohort substantially improves r2 in the target cohort (median relative
increase in r2 = 11.8% in East Asians, p = 5.9× 10−12; median relative increase in r2 = 48.0% in Africans,
p = 1.3 × 10−9). Indeed, the median ratio of r2 in the target cohort compared to r2 in European ancestry
individuals increases from 0.52 to 0.65 in East Asians and from 0.14 to 0.22 in Africans when including an
additional cohort, even after accounting for the improved performance in European ancestry individuals that
we saw in Figure 2c.

We also looked at the portability problem when neither modeled cohort is “ancestry-matched” to the target
cohort. In particular we looked at jointly modeling African Americans in MVP with white British from UKBB
and applying the PGS to individuals of East Asian or South Asian ancestries in the UKBB or jointly modeling
the BBJ cohort with white British from the UKBB and applying the PGS to individuals of African or South
Asian ancestries in the UKBB. The results are shown in Figure 3c. While the gains are more modest compared
to adding an “ancestry-matched” cohort, we again see substantial improvement by incorporating additional
data. When adding BBJ, the median relative increase in r2 = 10.5% for Africans (p = 3.4× 10−6), and 6.5%
for South Asians (p� 10−16). When adding MVP, the median relative increase in r2 = 15.3% for East Asians
(p = 1.3× 10−3) and 1.2% for South Asians (p = 0.03). We also see that the r2 in the target cohort does again
improve relative to the r2 in European ancestry individuals even after accounting for the improved performance
in European ancestry individuals (for BBJ, median r2African/r

2
European improves slightly from 0.174 to 0.184,

and median r2South Asian/r
2
European improves slightly from 0.782 to 0.824; for MVP median r2East Asian/r

2
European

improves from 0.561 to 0.636, but the median r2South Asian/r
2
European remains essentially unchanged, from 0.586

to 0.585), indicating a slight overall increase in portability across almost all cohorts.
We show in Supplemental Figures A1 and A2 that across all of these portability scenarios we continue to

either perform comparably to competing methods or substantially better depending on the trait. Across cohorts
and traits Vilma performs significantly better than PRS-CS (p� 10−16), and adding BBJ to Vilma outperforms
running PRS-CSx with the same cohorts (p � 10−16), and again Vilma outperforms PRS-CSx when adding
MVP (p = 0.02).

In all cases, we see that jointly modeling multiple cohorts improves predictive performance, whether in an
“ancestry-matched” cohort or when porting to a cohort with different ancestries. We also see that modeling
multiple cohorts improves the portability of PGSs regardless of whether the additional cohort is “ancestry-
matched” to the target cohort.
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Figure 3: Portability of polygenic scores: (a) Squared Pearson correlation, r2, between true trait values in an
“ancestry-mismatched” target cohort and the PGS predicted by Vilma using the white British individual from the
UKBB relative to the r2 for individuals of European ancestries. (b) The relative increase in r2 for PGS built using
Vilma when adding an “ancestry-matched” cohort. That is, for East Asian ancestry individuals we compare a
PGS built using white British individuals and the BBJ cohort to one built using just the white British; for African
ancestry individuals we perform the same comparison using African Americans from MVP. (c) Relative increase
in r2 when adding an “ancestry-mismatched” cohort.
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2.3 Estimated Effect Size Distributions
Our framework jointly estimates the effect sizes of individual variants and the overall distribution of variant
effects. In the previous section, we considered applying this framework to build PGSs, which relies on the
accuracy of the individual variant estimates. Here we turn to the estimated distributions of effect sizes, which
are automatically obtained during the course of fitting the models in the previous section.

We can compare these inferred effect size distributions to the distributions that are commonly used as
priors in statistical genetics, to test how reasonable such distributions might be. Throughout statistical and
population genetics, effect sizes are typically assumed to follow simple distributions such as the Normal, or
a Normal with a point mass at zero. An important feature of such distributions is that effect sizes tend to be
of a characteristic order of magnitude. That is, most non-zero effect sizes are on the order of one standard
deviation away from zero. In contrast, given that different genes may have more or less direct impacts on a
trait, and variants can range from slightly perturbing expression to totally disrupting protein function, we might
expect from first principles that effect sizes range over many orders of magnitude. Even beyond assuming a
particular distributional form, summarizing effect size distributions by their second moments is ubiquitous in
statistical genetics. For example, traits are often summarized by their heritabilities when thinking about a single
cohort [10] or their genetic correlation across cohorts [9]. Both heritability and genetic correlation are related
to the variance (second moment) of the effect size distribution. Given that second moments are dominated by
variants of large effect, and effect sizes might span several orders of magnitude, second moments are relatively
uninformative summaries multi-scale distributions.

One note of caution in interpreting these inferred effect size distributions is that we only include approxi-
mately one million HapMapIII SNPs that pass our filtering criteria [15]. SNPs that are not included in this set
but are in linkage with one or more SNPs in this set will have their effect on the trait absorbed into the linked
SNPs. Since we account for linkage between the SNPs within our SNP set the effects of these “phantom” SNPs
will not be overcounted, but the effects attributed to any single SNP could be an amalgamation of the effect of
a variant at that particular SNP as well as some component of linked but untyped SNPs.

We begin by visualizing and summarizing the effect size distributions for various traits in a single cohort.
We use the results from models trained using summary statistics from white British individuals from the UKBB.
As seen in Figure 4a, the effect size distributions are far from Normal, and across all traits possess some
standard features, leading us to posit that these are likely to be universal features of the effect size distribution
for sufficiently complex traits. First, the effect size distributions across all traits possess some mass near zero,
but a significant amount of mass away from zero, suggesting that at least for this variant set, many – but far
from all – variants contribute to each trait. Second, the effect size distributions are multi-scale in that they have
substantial mass across multiple order of magnitude, suggesting that there are sets of variants with different
“scales” of effect sizes. Finally, these two properties appear to be relatively uncoupled: the percentage of
variants with essentially zero effect does not strongly depend on how many variants we would expect under the
learned prior to have an effect of at least 0.1 standard deviations of the phenotype (Figure 4b).

Given that Vilma substantially outperformed PRS-CS on a handful of traits, we sought to further under-
stand this difference in performance. In particular, we wanted to see if any features of the inferred effect size
distribution stand out for the traits where Vilma outperforms PRS-CS. We find that for these traits, there are
several variants of large effect (Figure 4c), and we hypothesize that since PRS-CS has only a single hyper-
parameter that is learned from the data, that hyperparameter must trade off accurately modeling the sparsity
simultaneously with modeling variants of large effect. For traits for which there are a large number of variants
of small effect, PRS-CS is forced to choose a distribution of effect sizes with an appreciable amount of mass
near zero, but this then over-shrinks the variants with large effects resulting in poor performance.

Our modeling framework can also infer flexible joint distributions of effect sizes across cohorts. This
allows us to go beyond estimating genetic correlations and begin looking more thoroughly at how effect sizes
are shared across cohorts. In Appendix B we investigate some of these joint distributions of effect sizes.
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Overall, these results highlight the utility of inferring effect size distributions both for learning about com-
plex trait biology, as well as for improving the accuracy of individual effect size estimates.

2.4 Frequency-stratified effect size distributions
How the distribution of effect sizes depends on frequency has been a matter of debate [53]. One set of statistical
genetics tools is based on the assumption that all variants are expected to contribute equally to heritability,
which is equivalent to assuming that variants with frequency f , come from a distribution of effect sizes with
variance σ2/(f [1−f ]) [10, 59]. This relationship between frequency and effect size distribution is an emergent
property for variants of large effect in certain models of stabilizing selection [50]. Another set of statistical
genetics tools makes the opposite assumption that all variants have the same distribution of effects. Recent
work has suggested interpolating between these two by assuming that conditioned on, f , effect sizes come
from a distribution with variance σ2 × (f [1 − f ])α for some α. At α = −1 all variants contribute equally to
heritability, and at α = 0 effect size and frequency are independent [46, 64]. For most traits α lies between these
extremes suggesting that neither of the standard models adequately describe empirical observations [28, 46, 64].

Our modeling framework can easily estimate different distributions of effect sizes for different sets of
variants, and so we investigated the relationship between frequency and effect size distribution by binning
variants by frequency. By comparing effect size distributions across these frequency bins, we can begin to
more thoroughly explore the relationship between effect size and frequency, as opposed to summarizing this
relationship by a single parameter.

For the results presented here, we group variants by their minor allele frequency quintile. For the set
of variants we considered this resulted in minor allele frequency breakpoints of ≈ 9%, 18%, 28%, and 39%,
and approximately 200 thousand variants per bin. We also considered using 10 or 50 bins. The results were
qualitatively similar to those discussed below.

Across traits we find that lower frequency variants do tend to have larger effects, but the story is much more
complicated than a single parameter would suggest, as can be seen for three representative traits in Figure 5a.
This is especially the case for the variants with the largest effects, where frequency bin is less predictive of
overall effect size.

We also looked at how the variance of the effect size distribution depends on frequency given its prominence
in previous models. The results are shown in Figure 5b and show that while the variance consistently increases
for rarer variants, this relationship varies by trait to some extent. An α model with α = −0.42 is qualitatively
similar to the behavior across traits, but does not perfectly describe all traits. This is in line with previous
estimates of α across a broad range of traits [28, 46, 53, 64]. Note that this only shows a qualitative fit of
the α model to the variance of the effect size distribution as a function of frequency. We reiterate that these
heavy-tailed distributions are poorly summarized by their variances.

3 Discussion
Here we presented a flexible modeling framework to tie the distribution of effect sizes in one or more cohorts to
the summary statistics obtained from GWAS. This framework infers the overall distribution of effect sizes, but
also estimates the effects of individual variants while properly accounting for LD. We showed the utility of our
approach on two downstream tasks: building accurate, portable PGSs, and investigating the genetic architecture
of complex traits.

Our method improves PGS performance. In particular, our results show the importance of flexible priors.
Our results also show that including information from multiple cohorts can improve PGS performance whether
applying the PGS in an “ancestry-matched” cohort, or when “porting” it to a cohort with different ancestries.
This increase in performance is most substantial in cases where the additional cohort used in the model is
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Figure 4: Learned effect size distributions: (a) Inferred effect size distributions, plotted as 1 − CDF, which is
P(|βj| > b) as a function of b. All traits where Vilma produced a PGS with r2 > 0.02 are plotted. Overlaid in
dashed lines are 1 − CDF under the assumption that βj is Normally distributed. The dotted line is at 1/#SNPs,
providing a cutoff below which we do not expect to find any variants in our SNP set. (b) A measure of how
heavy-tailed the learned trait distributions are plotted against a measure of the sparsity of the trait. We measure
heaviness of the tails using the expected number of SNPs of very large effect (#SNPs×P(|βj| > 0.1), with a very
large effect being greater than 0.1 standard deviations. To assess sparsity we use the proportion of variants with
an effect size greater than 0.001 standard deviations. (c) The relative improvement in r2 for Vilma PGSs relative
to PRS-CS PGSs, both trained using white British individuals form the UKBB and tested on European ancestry
individuals in the UKBB plotted against the expected number of SNPs of large effect as in (b). Vilma has the
largest performance gains relative to PRS-CS for traits where Vilma infers that there are many variants with large
effects.
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Figure 5: Frequency dependence of effect sizes: (a) Effect size distributions for variants in different minor
allele frequency quintiles as encoded in 1 − CDF for three representative traits. The dashed line is at 1/#SNPs,
providing a cutoff below which we do not expect to find any variants in our SNP set. (b) Variance of effect size
distributions across minor allele frequency quintiles for all traits where Vilma produced a PGS with r2 > 0.02
(colored lines). The black dashed line is the prediction from an α model with α = −0.42, which provides a
qualitative fit to the behavior of the effect size variance-frequency relationship across traits. We note that variance
is not a good summary of the distributions in (a) due to their heavy tails.

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.488696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.18.488696
http://creativecommons.org/licenses/by/4.0/


“ancestry-matched” for the target cohort. Taken together, these results highlight the utility of our model and
its ability to incorporate information from multiple cohorts, but also highlight the importance of collecting
genotype and phenotype data from diverse cohorts. Finally, in Appendix A.4 and Appendix A.5 it is clear
that at least in terms of PGS prediction using common variants, the relationship between effect size and allele
frequency is not strong enough to be important for PGS with current datasets. That is, the predictive benefit of
flexibly modeling the frequency dependence of the effect size distribution does not outweigh the statistical cost
of inferring separate effect size distributions across frequency bins.

In the context of building PGS using data from multiple cohorts, it should be noted that our modeling
framework infers effect sizes for each cohort. Here we always used the effect sizes estimated for the white
British cohort, but deciding which effect sizes to use in practice to build a PGS for a particular individual
is an interesting open problem. Previous approaches, including PRS-CSx, use a validation dataset to learn
a linear combination of multiple PGSs [32, 45]. Such approaches could certainly be applied to the output
of Vilma in a straightforward fashion, so we did not explore them here. These approaches do have a few
undesirable features. First, requiring an individual-level validation dataset limits the utility of directly modeling
only GWAS summary statistics, and even if individual-level data is available, it is unclear how to optimally split
those individuals into a GWAS cohort for estimating effect sizes and building PGSs and a validation cohort for
learning hyperparameters and how to weight component PGSs. Second, such approaches assume that when
the PGS should be applied to a particular individual, its accuracy on that individual is well-estimated by its
performance in the validation cohort. However, genetic ancestry is continuous in nature, whereas PGSs built
in different cohorts must necessarily treat those different cohorts as discrete entities. As such, the optimal
weighting of component PGSs may vary from individual to individual in a way that is predictable from their
genetics. In any case, determining how to optimally combine the multiple PGSs output by Vilma or PRS-CSx
is an interesting area for future study.

Beyond PGSs, we used our framework to infer effect size distributions and found that the architecture
of complex traits is more complicated than previously assumed. Effect sizes are universally multi-scale so
standard models such as Normal or Normal plus a point mass at zero are grossly misspecified. Even less
standard distributions such as that used in PRS-CS cannot capture the complexity of the distribution of effect
sizes with a single hyperparameter. A simple example is that we observe that the sparsity and heaviness of tails
of the distribution of effect sizes can independently vary across traits, so no family of distributions determined
by a single parameter can simultaneously fit both of these important features of the underlying effect size
distribution. Furthermore, the multi-scale nature of effect size distributions calls into question the utility of
using summaries based on second moments of the distribution – like heritability or genetic correlation – to
compare traits. These measures are sensitive to the behavior of variants of large effect and may not be indicative
of the behavior of the vast majority of variants.

We also investigated how the distribution of effect sizes depends on frequency. This relationship is com-
plicated and varies from trait to trait, although in general it does seem that rarer variants tend to have larger
effects. Yet, given the multi-scale nature of these distributions, it seems inadequate to summarize this relation-
ship using a single parameter such as α. These results highlight the importance of considering variants of large
effect when thinking about evolutionary models and the interplay between effect sizes, natural selection, and
allele frequencies [16, 28, 50, 63].

Given the simplicity and extensibility of our framework, there are a number of natural avenues for future
work. Here we explored inferring different distributions of effect sizes for variants with different frequencies,
but it would be trivial to extend this to other functional categories as has been done in different contexts, such
as grouping variants by the cell type in which they are active, or whether they lie in enhancer-like or promoter-
like regions and so on [18]. Beyond discrete annotations, the distribution of effect sizes for a particular variant
could depend on covariates, and this relationship could be modeled via regression, deep learning, or any other
machine learning method, and the parameters of such a model could be obtained in a variational empirical
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Bayes framework similar to how we infer the mixture weights in Equation 1.
We also focused on the case of jointly modeling multiple cohorts, but it would be possible to share informa-

tion across multiple traits instead of or in addition to multiple cohorts. Some care in the likelihood model needs
to be taken in the case where the same individuals were used in each trait’s GWAS. In such a case, the likeli-
hoods of the different traits (analogous to Equation 2) would no longer be independent as an individual’s value
of the different traits may be correlated due to correlated measurement or environmental noise. Fortunately,
this can be relatively easily fixed as has been done in other contexts [58].

Another potential direction for future work would be to apply Vilma to multiple cohorts with similar an-
cestries, but different environments. Here we considered genetically differentiated cohorts, but recent work has
shown that PGSs have poor portability even within an ancestry group when comparing cohorts with different
socioeconomic statuses [36]. Similarly, many traits are highly but not perfectly correlated between males and
females [4], suggesting that it may be beneficial to consider GWAS separately in males and females and then
jointly analyze the results using our framework.

Throughout this work we divided individuals into discrete cohorts as a statistical modeling convenience, but
this obscures the fact that no human populations exist in the sense of discrete, non-interacting, panmictic groups
[35]. Beyond this, even within a single cohort there will be heterogeneity in individuals’ local environments
with consequences for the genotype-phenotype relationship [36]. As noted above, our method can be applied to
any set of cohorts regardless of the genetic ancestries or local environments of the individuals involved although
we expect there to be more statistical gains when the cohorts are differentiated genetically or environmentally.
But we again emphasize that this grouping is a modeling convenience and not indicative of the existence of
discrete ancestry groups.

We presented a unifying framework for jointly estimating the genetic architecture of a trait and the effect
sizes of individuals. Applying this framework to building PGSs we found that our framework improves over
the state-of-the-art method. We also found that across all of the traits we considered the distribution of effect
sizes was extremely heavy-tailed, and that the relationship between frequency and effect sizes is much more
complicated than commonly assumed in existing methods.
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4 Methods

4.1 Vilma
In this section we describe the model behind Vilma and a number of implementation details.

4.1.1 Model

It has been derived previously that the GWAS marginal effects are approximately multivariate Normal condi-
tioned on the true effects [66]:

−→
β̂ |
−→
β ∼ N

(
SXS−1

−→
β ,SXS

)
.

A first thought might be to estimate the true effect sizes using maximum likelihood. After a few lines of algebra,
one obtains the maximum likelihood estimator (MLE)

−→
β MLE = SX−1S−1

−→
β̂ .

From a frequentist perspective, the variance of this estimator, however, is

Var(
−→
β MLE) = SX−1S.

Importantly, SNPs in tight LD cause X to have extremely small eigenvalues, which in turn cause X−1 to have
extremely large eigenvalues. This means that the MLE will be extremely noisy, translating into poor predictive
performance. Even if we limit ourselves to independent SNPs, we see that the noise is proportional to the
squared standard error. This implies that including SNPs for which the standard error is larger than the true
effect size will introduce more noise than signal resulting in a worse estimator. Given that much of the signal
in many complex traits is explained by SNPs with small effects [8] the MLE is forced to either throw out much
of the signal to avoid the attendant noise, or introduce so much noise as to lose any benefit of including those
SNPs. To get around this issue, we can place a prior on the true effect sizes, which will regularize our estimates,
preventing the variance from exploding.

Unfortunately, it is difficult to model the distribution of true effect sizes. Little is known about how this
distribution should look, and for arbitrary complex traits there is no way to use first-principles arguments to
derive a simple distribution of effect sizes. A sensible approach would be to try to directly infer the distribution
from the data, but then we must decide the class of distributions over which to search. This introduces a key
tension in this setup: on one hand, little is known about this effect size distribution and so we would like to
make few or no assumptions; on the other hand, if we allow the prior distribution to be arbitrarily flexible
there will not be enough regularization resulting in a poorly conditioned and noisy estimator. We therefore
must make some assumptions, and we make two simple and sensible assumptions. First, we assume that the
distribution of true effect sizes is unimodal, which just means that we expect large effects to be more rare than
small effects. Second, we assume that the distribution of true effect sizes is symmetric, which is sensible given
that a priori we have no reason to suspect that a particular allele will have a particular directional effect. The
first assumption always seems sensible, but the second assumption may need to be relaxed in future work if
additional information such as local chromatin state or affect on protein coding sequence is incorporated into
the model.

Given that we seek to only enforce unimodality and symmetry, we use the adaptive shrinkage prior [55].
The main idea is that many symmetric, unimodal distributions can be approximated by a scale mixture of
Gaussians. Concretely, consider this hierarchical construction of a Gaussian scale mixture prior for the true
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effect size at site j, βj :

σ2j ∼ Dσ2

βj |σ2j ∼ N
(
0, σ2j

)
.

We may approximate a wide class of symmetric, unimodal distributions centered at zero by varying the mixture
distribution over the variances, Dσ2 , an arbitrary distribution over the positive real numbers.

We may therefore consider an idealized version of our problem as follows:

σ2j ∼ Dσ2

βj |σ2j ∼ N
(
0, σ2j

)
−→
β̂ |
−→
β ∼ N

(
SXS−1

−→
β ,SXS

)
,

We seek to solve two problems. First, we need to find the distribution Dσ2 that maximizes the likelihood of the
data. Then, with our estimate of Dσ2 in hand, we can obtain a posterior over β. This immediately runs into
a practical consideration. If we allow Dσ2 to be arbitrary, then we must infer an arbitrary function which will
require us to infer and store an infinite number of parameters to represent the function. Instead, following [55],
we make a further approximation of discretizing the values that σ2 can take, considering only a finite number
of possible values. We fix this discretization, and then we simply need to infer the mixture weights for this
distribution. Concretely, we can consider a set of values of σ2 – call them 0 ≤ σ21 < σ22 < · · · < σ2K – and
we can consider mixture weights ∆ = (∆1, . . . ,∆K) such that ∆k ≥ 0 and

∑K
k=1 ∆k = 1. Our model then

becomes

Zj ∼ Categorical(∆)

βj |Zj ∼ N
(

0, σ2Zj

)
−→
β̂ |
−→
β ∼ N

(
SXS−1

−→
β ,SXS

)
.

where Zj acts to index which mixture component a particular SNP draws its effect size from.
Our first problem has now been simplified to finding the K dimensional parameter ∆ that maximizes the

likelihood of β̂.
To extend this model to P ≥ 1 cohorts, we note that given the true effect sizes the model of obtaining

GWAS data within each cohort remains the same as it only depends on sampling noise that is independent
across cohorts. We therefore only need to deal with how to couple the true effect sizes across cohorts. Our
generalization is essentially to replace the variances σ21, . . . , σ

2
K with arbitrary P × P covariance matrices

Σ1, . . . ,ΣK . Let βj = (β
(1)
j , . . . , β

(P )
j ) be the true effect sizes in each of the P cohorts at position j,

−−→
β(p) =

(β
(p)
1 , . . . , β

(p)
M ) be the M true effect sizes across the genome in cohort p, and define

−−→
β̂(p) similarly. Let X(p) be

the LD matrix in cohort p and S(p) by the standard errors collected into a diagonal matrix for the GWAS from
cohort p. Our model is finally:

Zj ∼ Categorical(∆)

βj |Zj ∼ N
(
0,ΣZj

)
(5)

−−→
β̂(p)|
−−→
β(p) ∼ N

(
S(p)X(p)

(
S(p)

)−1−−→
β(p),S(p)X(p)S(p)

)
By allowing each Σk to be an arbitrary covariance matrix, our model can capture the genetic covariance

between cohorts, which is to say that the model can capture that we expect the true effect sizes to be similar
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across cohorts. By varying the genetic covariance across Σ1, . . . ,ΣK we can allow the model to learn the
extent to which effect sizes are correlated across cohorts.

We also found a slight but consistent improvement in performance by learning a scaling factor for the
standard errors in the model. Concretely, we add an additional hyperparameter per cohort, τ = (τ (1), . . . , τ (P ))
to the likelihood in Equation 5:

−−→
β̂(p)|
−−→
β(p) ∼ N

(
S(p)X(p)

(
S(p)

)−1−−→
β(p), τ (p)S(p)X(p)S(p)

)
.

Intuitively, τ (p) can account for overcorrection or undercorrection for population structure in the GWAS in
cohort p analogous to the intercept term in LD Score Regression [10]. We provide additional reasoning behind
including these hyperparameters in Appendix C.

With our model in hand, in Appendix D we discuss how to approximately solve the two problems described
above: first, optimizing the likelihood over ∆ and τ to obtain the prior that best fits the data, and second
obtaining a posterior over all of the true effect sizes.

4.1.2 Incorporating discrete annotations

Our model can be easily extended to incorporate prior biological knowledge by separating SNPs into different
annotations and then inferring annotation-specific effect size distributions. This allows us to formalize the
intuition that, for example, SNPs in coding regions might be expected to behave differently on average than
SNPs in non-coding regions. To incorporate annotations consider that we have A distinct annotations, and a
mapping A that maps a SNP index to an annotation. That is, A : {1, . . . ,M} → {1, . . . , A} so that A(j)
is the annotation of SNP j. Then, instead of specifying the distribution of effect sizes via a single vector ∆,
we have a distinct distribution for each annotation, which we specify via annotation-specific mixture weights
∆(1), . . . ,∆(A). Finally, we replace the prior on Zj in our model, Equation 5 with

Zj ∼ Categorical(∆(A(j))).

This simple change then results in SNPs with the same annotation having the same prior distribution, with that
prior being distinct from the prior on SNPs with other annotations.

In principle one could extend the model to more complex annotations by having a function that maps a SNP
index to a vector of mixture weights and then learn that function via empirical Bayes. Such a function could
also use additional information about each SNP such as its chromatin state in relevant cell types as a principled
way to incorporate such genomics assays into this framework. We leave such an extension for future work.

4.1.3 Computing and approximating the LD matrix

Computing and storing the entire M ×M LD matrix X would be computationally prohibitive. It would also
make the parameter update steps derived in Appendix D take O(M2) time which would again be prohibitive
for the hundreds of thousands or millions of SNPs we considered here. We follow previous approaches [22, 59]
by approximating X as a block diagonal matrix. In particular, we divide the genome into approximately inde-
pendent blocks [3] and assume that the LD between SNPs in different blocks is zero. We further approximate
the LD matrix by assuming that each each block in the block matrix is low rank. This approximation has been
shown to “denoise” the estimated LD matrix when using out-of-sample LD [49], although theoretical justifica-
tion of this procedure is left for future work. In order to decide on the rank of each block in the block matrix, we
perform the singular value decomposition (SVD) and keep only those components with singular values greater
than 0.106. This value guarantee that pairs of SNPs with r2 smaller than 0.8 are guaranteed to be linearly
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independent in the low rank approximation. In practice, however, many pairs of SNPs with LD much higher
than these values can still be linearly independent depending on their values of r with other SNPs.

The white British LD matrix–used for GWAS summary statistics derived from the white British cohort
of the UKBB–was computed using 10,000 randomly sampled unrelated white British individuals from the
UKBB, and the block sizes were determined as in [3] using the 1000 Genomes EUR superpopulation [14].
The European ancestry LD matrix was constructed similarly, but using 10,000 randomly sampled unrelated
individuals of European ancestry in the UKBB to compute the pairwise correlations between sites. The African
LD matrix–used for the MVP results–was constructed using 6,497 unrelated African ancestry individuals in the
UKBB and using block sizes determined from the 1000 Genomes AFR superpopulation. The East Asian LD
matrix–used for the BBJ results–was computed using 1,154 unrelated East Asian ancestry individuals in the
UKBB and using block sizes determined from the 1000 Genomes EAS superpopulation.

4.1.4 Implementation details and runtimes

Our framework is implemented in a software package, Vilma , available at https://github.com/jeffspence/
vilma. Inference is heavily optimized using numpy [23] and numba [29], allowing crucial routines to be
compiled. We also provide tools for reading and writing PLINK [12, 43] format files containing GWAS sum-
mary statistics and constructing LD matrices. For a single cohort and approximately one million variants, Vilma
runs in a matter of hours using 20 cores. For two cohorts and approximately one million variants, Vilma runs
in ≈ 30 hours.

4.2 GWAS, cohort definitions, and summary statistic acquisition
Genome-wide association studies for serum biomarkers were performed in individual ancestries from the
UKBB as previously described [52]. Briefly, individuals in the UKBB were separated by global PCs into
European-ancestry (self-identified White British versus self-identified other European ancestries), South Asian
ancestry, East Asian ancestry, and African ancestry. Only unrelated individuals were included in the analyses to
avoid confounding with family structure. Across all ancestries, biomarker measurements were log-transformed
and adjusted for age indicators, sex, fasting time indicators, global principal components, month of assessment,
day of sample analysis, and estimated dilution factor of samples. Then, for each ancestry, GWAS were run with
genotyping array and within-ancestry PCs as covariates. The For Biobank Japan GWAS, summary statistics
were downloaded from JENGER as previously described [26].

For standing height and BMI, individuals with values five or more standard deviations from the mean were
removed. These traits were then residualized on age, sex, genotyping array, and the first 18 PCs. We then
dropped any individuals whose residualized trait values were five or more standard deviations from the mean
and re-residualized, repeating this process until the values converged.

4.3 Statistical comparison of PGS
Throughout we compare the performance of PGS by computing the Pearson correlation, r, in a set of held-
out test individuals. Even for a fixed PGS, the finite sample size of the held-out test set means that for a
different test set from the same ancestries we would expect the r we calculate in this alternate test set to be
somewhat different. In this sense, the r that we calculate is an uncertain estimate of some true “population”
r which would be the correlation across all individuals in the broader population. As such, any difference in
performance between two PGSs might be small enough to be due entirely to chance, and which PGS is better
may switch on a different test set from the same population. To calculate the statistical significance of the
difference in r between two PGSs say rPGS1 and rPGS2 we bootstrap over individuals in the held-out test set and
compute rPGS1−rPGS2 on that bootstrapped dataset. Across bootstraps, this gives us an estimate of the variance
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of rPGS1 − rPGS2 , which we can then use to compute a Z score for the difference in r, assuming asymptotic
Normality. When considering multiple traits, we meta-analyze across traits, summing our estimates of the
difference in r, rPGS1 − rPGS2 across traits. To obtain the variance of this test statistic we sum the variances of
the difference in r across traits, which implicitly assumes that the traits are independent. We then convert this
statistic to a Z score by dividing by the square root of the estimated variance, and compute p-values using a
two-sided Z-test.

We also consider relative improvement in r2, where we perform the same routine as above, but instead use
(r2PGS1

− r2PGS2
)/r2PGS2

as a test statistic, and use bootstraps to estimate its variance.
To compare r across cohorts say rpop1 and rpop2 we no longer have to worry about dependencies between

the two cohorts, so we compute the variances of rcohort1 and rcohort2 separately by indpenedently bootstrapping
the two cohorts. To compute the variance of rcohort1 − rcohort2 we then add the variances of the rcohort1 and
rcohort2 as they are independent.
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[59] Bjarni J. Vilhjálmsson, Jian Yang, Hilary K. Finucane, Alexander Gusev, Sara Lindström, Stephan Ripke,
Giulio Genovese, Po-Ru Loh, Gaurav Bhatia, Ron Do, et al. Modeling linkage disequilibrium increases
accuracy of polygenic risk scores. The American Journal of Human Genetics, 97(4):576–592, 2015.

[60] Abraham Wald. Contributions to the theory of statistical estimation and testing hypotheses. The Annals
of Mathematical Statistics, 10(4):299–326, 1939.

[61] Gao Wang, Abhishek Sarkar, Peter Carbonetto, and Matthew Stephens. A simple new approach to variable
selection in regression, with application to genetic fine mapping. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 82(5):1273–1300, 2020.

[62] Ying Wang, Jing Guo, Guiyan Ni, Jian Yang, Peter M. Visscher, and Loic Yengo. Theoretical and empir-
ical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nature commu-
nications, 11(1):1–9, 2020.

[63] Sivan Yair and Graham Coop. Population differentiation of polygenic score predictions under stabilizing
selection. bioRxiv, 2021.

[64] Jian Zeng, Ronald De Vlaming, Yang Wu, Matthew R. Robinson, Luke R. Lloyd-Jones, Loic Yengo,
Chloe X. Yap, Angli Xue, Julia Sidorenko, Allan F. McRae, et al. Signatures of negative selection in the
genetic architecture of human complex traits. Nature genetics, 50(5):746–753, 2018.

[65] Geyu Zhou and Hongyu Zhao. A fast and robust Bayesian nonparametric method for prediction of com-
plex traits using summary statistics. PLoS genetics, 17(7):e1009697, 2021.

[66] Xiang Zhu and Matthew Stephens. Bayesian large-scale multiple regression with summary statistics from
genome-wide association studies. The Annals of Applied Statistics, 11(3):1561, 2017.

[67] Yuxin Zou, Peter Carbonetto, Gao Wang, and Matthew Stephens. Fine-mapping from summary data with
the “Sum of Single Effects” model. bioRxiv, 2021.

28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.488696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.18.488696
http://creativecommons.org/licenses/by/4.0/


Appendix A Robustness of Vilma and additional results

A.1 Vilma is robust to LD misspecification
By requiring only summary statistics (as opposed to individual-level data), Vilma necessarily must make use of
LD information. A key assumption underlying the derivation of the likelihood we use is that the LD between
SNPs in the sample used in the GWAS is (asymptotically) the same as that in the cohort used to compute the
LD matrix [66]. If both cohorts are drawn uniformly at random from the same larger population then this
assumption is met. In practice, there are numerous biases in the enrollment of any GWAS cohort which might
differentiate it from the cohort used to compute the LD matrix. Furthermore, there may be subtle or substantial
ancestry differences between the two cohorts.

To test the extent to which violations of this assumption affect the predictive accuracy of Vilma PGSs we
compared the results when using three increasingly misspecified LD panels on summary stats derived from a
GWAS of white British individuals in the UKBB. First, we used an “in-sample” LD panel constructed using a
subset of 10,000 white British individuals. Second, we considered an “ancestry-matched” but “out-of-sample”
LD panel, constructed using 10,000 individuals of European ancestries that were not included in the white
British GWAS cohort. Finally, we built an “ancestry-mismatched” LD panel, using 6,497 individuals of African
ancestries in the UKBB.

When comparing the performance of the polygenic scores constructed using these three LD panels we see
virtually no difference between the “in-sample” and “out-of-sample” LD panels. The “out-of-sample” LD
panel in fact performs slightly better, but the difference is small (mean increase in r across traits and cohorts:
0.001; median increase in r across traits and cohorts: 0.0007; p = 0.003). There is, however, a substantial drop
in performance when moving from an “ancestry-matched” to “ancestry-mismatched” panel (mean decrease in
r across traits and cohorts: 0.05; median decrease in r across traits and cohorts: 0.05; p � 10−16). Taken
together, this suggests that it is certainly not necessary to obtain an in-sample LD estimate to obtain good
performance, but some care should be taken to ensure that the cohort used to estimate the LD panel and the
GWAS cohort are as genetically similar as possible. These results are summarized in Figure A3.

A.2 Performance does not strongly depend on the number of mixture compo-
nents
The only part of the Vilma model that is not fit from the data is the pre-specified grid of covariance matrices.
In principle adding additional covariance matrices could slightly improve performance at the cost of additional
computational expense – several parts of the Vilma method scale linearly in K, the number of mixture compo-
nents. To see if this additional computational cost is worth the benefit we considered performing a gridding of
the prior variances, σ2k, keeping the lowest and highest points of the grid fixed, but changing, K, the number
of points in the grid (approximately gridding uniformly in log space from the low end to the high end). We
considered K ∈ {25, 81, 289, 625}, and we found that while there was a slight improvement in performance
in going from K = 25 to K = 81 (p = 0.001 in Europeans, but p = 0.927 across cohorts), there was no
significant improvement in going form K = 81 to K = 289 (p > 0.05 in each cohort, and across all cohorts),
and only a tiny improvement when porting to individuals of African ancestries at K = 625 (mean increase in
r of 0.0008 in Africans, p = 2 × 10−6; p > 0.05 in each other cohort and across all cohorts). As a result we
used K = 81 for all of the other single cohort analyses. These results are summarized in Figure A4.
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Figure A1: Comparison of Vilma and PRS-CS across traits and cohorts. PGSs were built using a GWAS
performed on the UKBB white British, and then tested in one of four target cohorts. Each point is a trait in a
particular target cohorts of held out individuals in the UKBB.
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Figure A2: Comparison of Vilma and PRS-CSx across traits and cohorts. PGSs were built using a GWAS
performed on the UKBB white British combined with a GWAS performed in BBJ (left) or MVP (right), and then
tested in one of four target cohorts of held out individuals in the UKBB.
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Figure A3: Comparison of Vilma PGS performance using different LD panels. The horizontal axis of each
plot shows the performance of a PGS built using Vilma with an in-sample LD matrix. The vertical axis shows
the performance when using either an out-of-sample but “ancestry-matched” sample constructed using held-out
individuals of European ancestries (left) or an out-of-sample and “ancestry-mismatched” sample constructed using
held-out individuals of African ancestries (right). Each point represents a single trait in a particular held-out target
cohort.
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Figure A4: Comparison of Vilma PGS performance using different numbers of mixture components. The
horizontal axis of each plot shows the performance of a PGS built using Vilma with K = 81 mixture components
– the number used throughout the main text for all single cohort analyses. The vertical axis shows the performance
when using a different number of components, either K = 25 (left), K = 289 (center), or K = 625 (right). Each
point represents a single trait in a particular held-out target cohort.
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A.3 Using poorly imputed variants can degrade performance
In the main text we exclusively used HapMapIII [15] SNPs that passed our filtering criteria (minor allele
frequency > 0.001, INFO score > 0.3) resulting in a set of approximately one million SNPs. In contrast, we
can impute approximately twelve million SNPs with minor allele frequency > 0.001 and INFO score > 0.3.
INFO score is a measure of imputation accuracy and roughly corresponds to the effective proportion of the
sample size at that SNP when performing GWAS. That is, for SNPs with an INFO score of 0.5, the power to
detect an association is roughly equal to the power in a sample of half the size where that SNP was directly
genotyped.

It has previously been reported that variant sets can affect PGS accuracy to some extent for certain methods
[42] and we wanted to see the effect on Vilma . To explore this, we divided the twelve million SNPs passing
our filters into 4 roughly equal quartiles based on their INFO scores. That is, the first quartile contains the
approximately 3 million worst imputed SNPs that pass our filters. When comparing the results of Vilma using
any of these quartile of INFO scores to the results when using the HapMapIII SNPs, we find that there are
traits and target cohorts for which one or the other SNP sets perform significantly better than the other. That is,
there are always situations in which one quartile outperforms the HapMapIII SNPs and vice-versa. Yet, there
are dramatic overall trends as seen in Figure A5. In general, even though the quartiles contain approximately 3
times as many SNPs as the HapMapIII SNP set, when those SNPs are poorly imputed the performance of Vilma
suffers substantially, which has also been ovserved in [41]. Indeed for the lowest and second lowest quartiles,
we see huge drops in performance when looking across traits and target cohorts (p � 10−16 in both cases
with median drops in r of 0.08 and 0.02 respectively). For best imputed and second best imputed quartiles, we
obtain slightly better performance than using the HapMapIII SNPs, although it depends on the trait (p� 10−16

and p = 0.00 and median increases in r of less than 0.005 in both cases).

A.4 Model of effect sizes in scaled vs. unscaled space
There is a subtle difference between our model, Equation 5, and several existing PGS models [59, 22, 30]: we
place our prior on the effect of each additional allele, whereas other models place a prior on the effect of each
addition allele scaled by the standard error of the GWAS estimate of the marginal effect size of that allele. This
introduces a dependency between the expected magnitude of the effect size and the frequency of the allele,
namely that the variance of the prior for SNP j is proportional to [fj(1 − fj)]−1. This scaling of effect sizes
makes some sense in the single cohort case as this dependence between frequency and effect size is exactly
what is expected under a model of stabilizing selection on the trait and a high degree of pleiotropy [50], and
it simplifies the math to some extent. Unfortunately, this makes less conceptual sense once we move to more
than one cohort – if an allele has different frequencies in two cohorts but the distribution of effect sizes in the
scaled space is perfectly correlated across cohorts, then the allele actually has different effects in the cohorts.
In a sense the prior assumes that alleles somehow “know” their frequencies in the two cohorts and adjust their
effect sizes accordingly. As such we thought it more sensible to place the prior on unscaled effect sizes so that
if the distribution of effect sizes is highly correlated across cohorts then alleles actually have similar effects in
the two cohorts. Similar considerations arise in the context of genetic correlations. For example see [9].

In any case, we implemented a version of Vilma that places its prior on scaled effect sizes and tested it in
the single cohort case. The results are presented in Figure A6. Overall we find that while PGS accuracy differs
depending on whether the prior is place on scaled or unscaled effect sizes, the differences tend to be small with
the unscaled prior performing very slightly better (median increase in r of 6.1 × 10−4 across traits and target
cohorts; p = 0.003), and one approach is not clearly better than the other as the best-performing PGS varies
from trait to trait. In some sense this is consistent with the results presented in Figure 5 and the following
section (Section A.5). Putting a prior on the scaled genotypes is equivalent to assuming that the variance of the
effect size distribution scales like [fj(1−fj)]−1 whereas putting a prior on the unscaled genotypes is equivalent
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Figure A5: Comparison of Vilma PGS performance using different SNP sets. The horizontal axis of each
plot shows the performance of a PGS built using Vilma with the SNP set used throughout the paper – the SNPs
in HapMapIII that have minor allele frequency > 0.001 and INFO score > 0.3. The vertical axis shows the
performance when using a different SNP set. From left to right, the plots show the performance when using
quartiles of increasing INFO scores of all approximately 12 million SNPs with minor allele frequency > 0.001
and INFO score > 0.3. That is, the leftmost plot uses the approximately 3 million SNPs with the lowest INFO
scores that pass our filters, the next plot uses the next approximately 3 million SNPs in terms of INFO scores.
Therefore the plots are arranged in terms of increasing imputation accuracy. Each point represents a single trait
in a particular held-out target cohort.

to assuming that the variance of the effect size distribution scales like [fj(1 − fj)]0. In contrast, we find that
the variance of the effect size distribution scales more like [fj(1− fj)]−0.42, highlighting that both priors may
be somewhat inappropriate but in different directions.

A.5 PGS performance when binning by allele frequency
In the main text we discussed models where SNPs in different allele frequency bins had different effect size
distributions. In such models we found that rarer SNPs tended to have larger effects, which suggests that PGS
performance might improve if we allow different priors in different allele frequency bins. Yet, there is a trade-
off here in that fitting additional prior distributions results in less information sharing across SNPs (SNPs with
different annotations do not mutually share information) but if the SNPs within an annotation are similar to
each other but distinct from other SNPs then the added flexibility may improve PGS performance. As such, we
explored this empirically by constructing PGSs in models where we divide SNPs into B bins based on their
allele frequencies. We considered B ∈ {5, 10, 50}. The results are presented in Figure A7.

Overall, we found that using a single prior across all SNPs very slightly outperformed any model with
different priors for different frequency bins (median increase in r of 0.008, 0.0015, 0.0018 across traits and
target cohorts when comparing a single frequency bin to 5 bins, 10 bins, or 50 bins respectively, with p =
0.0009, 0.0003, 0.0002). This indicates that while effect size distributions might change across allele frequen-
cies they do not change by enough to outweigh the additional noise introduced by adding more parameters to
the model. This is consistent with Figure 5 in that while there is some signal for differences in distributions
across frequency bins, the difference is small, and it seems more important for PGS accuracy to correctly model
that multi-scale nature of the effect size distribution than it is to model the relationship between effect size and
frequency.

A.6 PGS performance when keeping τ fixed
In Section C we provide theoretical motivation for including a standard error scaling factor τ in Equation 2. To
see if it actually produces better PGS in practice we compared our standard model to an implementation of our
model that keeps τ fixed at 1, which assumes that the standard errors are properly scaled. Across target cohorts
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Figure A6: Comparison of Vilma PGS performance with a prior on scaled or unscaled effect sizes. The
horizontal axis shows the performance of a PGS built using Vilma with the default of having a prior on the
unscaled effect sizes. The vertical axis shows the performance when instead the prior is placed on frequency-
scaled effect sizes as done in many other PGS methods. Each point represents a single trait in a particular held-out
target cohort.

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

r w
ith

 a
nn

ot
at

io
ns

5 Frequency Bins
Test in Africans
Test in East Asians
Test in Europeans
Test in South Asians

0.0 0.1 0.2 0.3 0.4 0.5

10 Frequency Bins

0.0 0.1 0.2 0.3 0.4 0.5

50 Frequency Bins

r without annotations

Figure A7: Comparison of Vilma PGS performance with varians annotated by various numbers of fre-
quency bins. The horizontal axis shows the performance of a PGS built using Vilma with the default of having
all variants have the same prior. The vertical axis shows the performance when instead separate priors are learned
for SNPs in different frequency bins. We considered either 5 bins (left), 10 bins (center), or 50 bins (right). Each
point represents a single trait in a particular held-out target cohort.

34

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 19, 2022. ; https://doi.org/10.1101/2022.04.18.488696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.18.488696
http://creativecommons.org/licenses/by/4.0/


and across traits, we find that learning τ from the data slightly but consistently and significantly improves PGS
performance (median increase in r of 0.002 across cohorts and traits, p = 1.8 × 10−6. The results are shown
in Figure A8.

Appendix B Cross-cohort effect size distributions
Our modeling framework can infer flexible joint distributions of effect sizes across cohorts. This allows us to
go beyond estimating genetic correlations and begin looking more thoroughly at how effect sizes are shared
across cohorts. As such we trained two-cohort models using white British individuals from UKBB and then
either African Americans from MVP or the BBJ cohort.

As we see in Figures A9a and A9b the effect sizes are far from Normal with different degrees of correlation
emerging at different scales. Comparing representative joint distributions for the UKBB white British and BBJ
(Figure A9a) to the joint distributions for the UKBB white British with MVP African Americans (Figure A9b),
we see generally higher degrees of correlation in effect sizes between UKBB white British and BBJ than
between UKBB white British and MVP African Americans. We infer these effect size distributions using a
subset of all SNPs, however, and so effects such as different LD patterns in different cohorts likely play a role
in this observation. Finally, we note that there is generally a greater degree of correlation at variants of large
effect, suggesting that large, direct effects are more likely to be shared across cohorts than small effects, which
may be mediated by more complex pathways allowing for a greater degree of epistatic or gene-environment
interactions to result in different effects in different cohorts.

Appendix C Motivation for the standard error scale factor, τ
In the derivation of the likelihood of our model, Equation 2, we implicitly assumed that the squared standard
errors from the GWAS can safely be used as plug-in estimates for the true marginal variances. We will show
below that this holds approximately for uncorrected GWAS in unstructured populations, but that uncorrected
or overcorrected population structure can result in significant deviations between the GWAS squared standard
errors and the true marginal variances.

To begin, we consider the usual additive model for the value of the phenotype, Yi, of individual i as a
function of their genotypes G(i) = (Gi,1, . . . , Gi,M ), effect sizes β = (β1, . . . , βM ), and some residual noise
εi. We assume εi is uncorrelated across individuals, has mean 0, and variance σ2ε .

Yi = 〈G(i), β〉+ εi

An uncorrected GWAS estimates the marginal effect at SNP j as

β̂j =
〈Gj , Y 〉
‖Gj‖22

=
1

‖Gj‖22
GTj (Gβ + ε)

where Gj = (G1,j , . . . , GN,j) is the collection of genotypes across individuals at locus j, G is the genotype
matrix, and Y and ε are the trait values and noise terms collected across individuals.

The squared estimator, s2j , of the standard error of β̂j is in turn

s2j =
(Gβ + ε)T

(
I− 1

‖Gj‖22
GjG

T
j

)
(Gβ + ε)

(N − 1)‖Gj‖22
.

As is usual in asymptotic arguments, we rely on the large sample size of GWAS to assume that s2j is close
to its expected value. We will show that if there is no population structure, then the expected values of s2j
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Figure A8: Comparison of Vilma PGS performance when learning τ or fixing τ = 1. The horizontal axis
shows the performance of a PGS built using Vilma with the default of learning the standard error scale factor, τ ,
in Equation 2. The vertical axis shows the performance τ is instead fixed to be 1. Each point represents a single
trait in a particular held-out target cohort.

is approximately the true variance of β̂j , but if there is population structure, then the expected value of s2j is
approximately equal to the true variance of β̂j times a multiplicative factor that does not depend on j.

To make this rigorous, we consider the model under which to take expectations. In Section 4.1.3 we
discussed how we approximate the LD matrix as being block diagonal, which indicates that under the likelihood
in Equation 2, each block is independent. In reality, even SNPs that are in linkage equilibrium will have an
in-sample r2 of approximately 1

N indicating that even though we treat separate blocks as being independent,
there is weak correlation between SNPs in separate blocks. While an r2 of 1

N may seem negligible, even in
the largest modern studies M � N indicating that while each individual unlinked SNP asserts a negligible
influence on a focal SNP, the large number of unlinked SNPs exert a macroscopic effect on the correlation
observed at the focal SNP. Writing β(b), for the true effects of the SNPs within the bth independent block, and
assuming that j is in that block, we consider

E
[
s2j | β(b)

]
and Var

(
β̂j | β(b)

)
, (6)

treating the effects of SNPs in different LD blocks as being random effects. In particular, we assume that
E[βk] = 0 and Var(βk) = σ2G < ∞ for all k, and we assume that β and ε are uncorrelated, but do not make
any particular distributional assumptions. To compute the quantities in Equation 6, we will use the notation
G(b) for the genotypes in the bth block and β(−b) and G(−b) for the true effect sizes and genotypes across the
genome exclude block b.
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(a)

(b)

Figure A9: Effect size distributions across cohorts: Inferred joint effect size distributions represented as contour
plots learned for three representative traits using data from (a) white British individuals in the UKBB and the BBJ
cohort or (b) white British individuals in the UKBB and African American individuals from MVP. Plots are on a
semi-log scale, with effects smaller in magnitude than 10−2 being plotted in linear scale and larger effects being
plotted on a log-scale.
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To begin, we can note that

E
[
s2j | β(b)

]
=

1

(N − 1)‖Gj‖22
E
[ (

G(b)β(b) + G(−b)β(−b) + ε
)T

(
I− 1

‖Gj‖22
GjG

T
j

)
(
G(b)β(b) + G(−b)β(−b) + ε

) ∣∣∣β(b)]
=

1

(N − 1)‖Gj‖22

{(
G(b)β(b)

)T (
I− 1

‖Gj‖22
GjG

T
j

)(
G(b)β(b)

)
+ E

[(
G(−b)β(−b)

)T (
I− 1

‖Gj‖22
GjG

T
j

)(
G(−b)β(−b)

)]
+ E

[
εT
(

I− 1

‖Gj‖22
GjG

T
j

)
ε

]}

since β and ε are uncorrelated and have mean zero. We assume that block b only contains a small fraction of
the SNPs and that the true effect sizes in block b are not too much larger than what we might expect to see in
other blocks. Together these assumptions mean that the term(

G(b)β(b)
)T (

I− 1

‖Gj‖22
GjG

T
j

)(
G(b)β(b)

)
is negligible compared to the other terms. We can now use the formula for expectations of quadratic forms to
obtain

E
[ (

G(−b)β(−b)
)T (

I− 1

‖Gj‖22
GjG

T
j

)(
G(−b)β(−b)

) ]
= σ2G

[
Trace

((
G(−b)

)T
G(−b)

)
− 1

‖Gj‖22
GTj

(
G(−b)

)T
G(−b)Gj

]

= σ2G

∑
k 6∈b
‖Gk‖22 −

1

‖Gj‖22
GTj

(
G(−b)

)T
G(−b)Gj


Now, by assumption, block b does not contain too many SNPs, and so

∑
k 6∈b
‖Gk‖22 ≈

M∑
k=1

‖Gk‖22.

Furthermore, we assume that the r2 between SNPs in different blocks is approximately σ2LD. In unstructured
populations, σ2LD = 1

N , but if structure is overcorrected or undercorrected, then σ2LD could differ from 1
N . With
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this assumption,

1

‖Gj‖22
GTj

(
G(−b)

)T
G(−b)Gj =

1

‖Gj‖22

∑
k 6∈b
〈Gj , Gk〉2

=
∑
k 6∈b

〈 Gj
‖Gj‖2

,
Gk
‖Gk‖2

〉2
‖Gk‖22

≈ σ2LD
∑
k 6∈b
‖Gk‖22

≈ σ2LD
M∑
k=1

‖Gk‖22

Now, we use that ε has mean zero and the formula for expectations of quadratic forms again to obtain

E
[
εT
(

I− 1

‖Gj‖22
GjG

T
j

)
ε

]
= σ2εTrace

(
I− 1

‖Gj‖22
GjG

T
j

)
= (N − 1)σ2ε .

Combining we see

E
[
s2j | β(b)

]
≈ 1

‖Gj‖22

(
σ2ε +

σ2G(1− σ2LD)

N − 1

M∑
k=1

‖Gk‖22

)
.

Meanwhile we can readily compute the true variance of β̂j :

Var
(
β̂j | β(b)

)
= Var

(
1

‖Gj‖22
GTj

(
G(b)β(b) + G(−b)β(−b) + ε

) ∣∣∣β(b))
=

1

‖Gj‖42

(
σ2G‖GTj G(−b)‖22 + σ2ε‖Gj‖22

)
≈ 1

‖Gj‖22

(
σ2LDσ

2
G

M∑
k=1

‖Gk‖22 + σ2ε

)
.

Taking ratios, we see
E
[
s2j | β(b)

]
Var
(
β̂j | β(b)

) ≈ σ2ε +
σ2
G(1−σ

2
LD)

N−1
∑M

k=1‖Gk‖22
σ2ε + σ2LDσ

2
G

∑M
k=1‖Gk‖22

Now, recall that for unstructured populations σ2LD = 1
N , in which case the right hand side reduces to exactly

1 implying that the standard errors are good estimators of the actual sampling variation. On the other hand, if
we overcorrect or undercorrect for population structure, then σ2LD will differ from 1

N (and possibly be O(1))
and the ratio of the expectation of our estimate of the variance to the true variance will not be 1. Importantly,
however, this ratio is approximately equal to something independent of j suggesting that the estimated variances
are off from the true variances by some constant universal factor. We denote this factor in cohort p by 1

τ (p)
. In

general we do not know σ2G a priori and σ2LD cannot be estimated without access to the genotype data, and so
we learn τ (p) from the data by treating it as a hyperparameter.

Appendix D Variational Inference Scheme
Unfortunately our model, Equation 5, is analytically intractable. Throughout this section, we will suppress
the vector notation and simply write β for (β

(1)
1 , . . . , β

(1)
M , . . . , β

(P )
1 , . . . β

(P )
M ) and similarly for β̂. In order to
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compute polygenic risk scores, we need to be able to compute the posterior mean of β, E
[
β|β̂
]
. Trouble arises

because the βj are not independent under the posterior. Even in a single cohort, consider two SNPs in strong
LD: if the GWAS shows that they are both associated with the trait, it could be that just the first of these SNPs
is associated with the trait and the other is only associated through its linkage with the first or vice versa. In
particular, if it was known that one of the SNPs had a true effect on the trait that explained the GWAS signal
at both SNPs, then we would expect the other SNP to not have much of an effect. This non-independence
means that the posterior mean for any βj depends on what is happening at all linked sites. In order to compute
the posterior mean we would need to integrate over the value of Zj′ for each of these linked j′, which would
require O(K# Linked SNPs) time.

Since it is infeasible to obtain the posterior analytically, we must turn to methods to compute an approximate
posterior. Classically, posteriors in intractable models are approximated by using MCMC. Yet, MCMC can
have trouble mixing, resulting in poor approximations to the posterior, and it can be difficult to assess whether
it has converged or not. In the last few decades, VI has become an attractive alternative to MCMC. VI finds an
approximate posterior by optimizing an objective function that is equivalent to minimizing the Kullback-Leibler
divergence (KL)

KL(q(β, Z)||p(β, Z, |β̂) := Eq log q(β, Z)− Eq log p(β, Z, |β̂)

between the density of a variational posterior, q(β, Z) and the density of the true posterior, p(β, Z|β̂) [6].
Minimizing this KL divergence turns out to be equivalent to maximizing a lower bound on p(β), the evidence
lower bound (ELBo):

ELBo(q) := Eq log p(β̂|β)− KL(q(β, Z)||p(β, Z)). (7)

This optimization problem, in turn, can be more tractable, leading to fast algorithms for fitting complex models.
There are concerns that VI finds lower quality posteriors than MCMC, but both methods find approximate
posteriors, and the posterior mean under the variational posterior is often very close to the true posterior mean
even if other aspects of distributions differ. VI schemes for models similar to those described here have been
shown to approximate the posterior mean at least as well as MCMC [11, 54], indicating that our use of VI is
justified.

The key to speeding up variational inference is defining the family of distributions over which to search
for the approximate posterior. By requiring the variational posterior to respect certain independence assump-
tions, we can avoid the exponential runtime of computing the true posterior. This improved computational
performance comes with a statistical price, however: additional independence assumptions can only degrade
the quality of the variational posterior. A common approach is to make the “mean field” assumption that all
variables are completely independent under the variational posterior [6]. In our case, we can still derive efficient
updates making a slightly less draconian independence assumption. We only make the mean field assumption
across SNPs – this allows us to capture the dependency in the posterior across cohorts at a SNP. Concretely, we
assume that the posterior factorizes as

q(β, Z) =

M∏
j=1

qj(βj , Zj),

which assumes independence across SNPs, but not across cohorts.
We then assume that each of these qj is an indexed mixture of Gaussians:

Zj
qj∼ Cat (δj1, . . . , δjK)

βj |Zj
qj∼ N

(
µjZj ,VjZj

)
,
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so that for the kth mixture component, βj is Normally distributed with mean µjk and covariance matrix Vjk.
In this formulation δj1, . . . , δjK are the mixture weights for the K different Gaussian components.

One way to think of this is as a mixture of K distributions, where for each component distribution βj is a
Gaussian and Zj is fixed to take a particular, distinct value between 1 and K. If we take the mixture weights to
be δj1, . . . , δjK , then this exactly matches the above. Furthermore, each of these components is an exponential
family and they are non-overlapping in the joint space of Zj and βj . One way to see this is that Zj is fixed to
be a distinct value in each component of the mixture, so one component cannot put mass on the same part of
the joint space of Zj and βj as another. Hence, the results of [54] show that this indexed mixture of Gaussians
forms an exponential family with natural parameters

ηµjk := V−1jk µjk,

ηVjk
:= −1

2
V−1jk , (8)

ηδjk := log
δjk
δjK
− 1

2
µTjkV

−1
jk µjk −

1

2
log |Vjk|+

1

2
µTjKV−1jKµjK +

1

2
log |VjK |,

and corresponding sufficient statistics:

Tµjk(βj , Zj) := I {Zj = k}βj
TVjk

(βj , Zj) := I {Zj = k}βjβTj (9)

Tδjk(βj , Zj) := I {Zj = k}

and remains conjugate to the multivariate normal likelihood.
Exponential families play a special role in VI. In particular, that our variational family forms a conjugate

exponential family in turn allows us to derive simple coordinate-wise parameter updates using the results of [6].
In particular, letting q−j be

∏
j′ 6=j qj′(βj′ , Zj′), we have that for fixed q−j the ELBo is optimized with respect

to qj at

qj(βj , Zj) ∝ exp

log p (βj |Zj) + log p (Zj) +
P∑
p=1

Eq−j
[
log p

(
β̂(p)|β(p)

)] (10)

and this is in the same exponential family as the prior. We therefore just need to find the coefficients of
the sufficient statistics (Equations 9) in Equation 10, which will give us the optimal values for the natural
parameters. We can then solve Equations 8 to obtain the more standard parameters of a mixture of multivariate
Gaussians from the natural parameters.

Expanding the exponent of Equation 10 we see (where we abuse notation and use ∝ to denote that we are
now dropping additive constants here):

log qj(βj , Zj) ∝
K∑
k=1

I {Zj = k}

−1

2
βTj Σ−1k βj −

1

2
log |Σk|+ log ∆k +

P∑
p=1

Eq−j
[
log p

(
β̂(p)|β(p)

)] .

To tackle the terms like Eq−j
[
log p

(
β̂(p)|β(p)

)]
we will drop the (p) notation below for convenience, and

re-add it once we again consider the likelihood in multiple cohorts. As discussed in Section 4.1.3 we use a low-
rank approximation to the LD matrix X, and as such throughout we will abuse notation and write X−1 for the
pseudo-inverse of X. Importantly, XX−1 is not the identity matrix. As such we write X◦ := XX−1 = X−1X.
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Noting that we only care about terms that vary with βj :

Eq−j
[
log p

(
β̂|β
)]
∝ − 1

2τ
Eq−j

[(
β̂ − SXS−1β

)T
(SXS)−1

(
β̂ − SXS−1β

)]
∝ − 1

2τ

(
Eq−j

[
βTS−1XS−1β

]
− 2β̂TS−1X◦S−1Eq−j [β]

)
∝ − 1

2τ

S−2jj Xjjβ
2
j +

2S−1jj

∑
j′ 6=j

S−1j′j′
(
Xjj′E[βj′ ]−X◦jj′ β̂j′

)− 2S−2jj X◦jj β̂j

βj


and we can compute these expectations as:

Eq−j [βj′ ] =

K∑
k=1

δj′kµj′k.

Plugging these into Equation 10, we obtain that the coefficients of the sufficients statistics are

ηµjk ←

 1

τ (p)

S
(p)−2
jj X

(p)◦
jj β̂

(p)
j − S

(p)−1
jj

∑
j′ 6=j

S
(p)−1
j′j′

(
X

(p)
jj′

(
K∑
k=1

δj′kµ
(p)
j′k

)
−X

(p)◦
jj′ β̂

(p)
j′

)
p=1,...,P

ηVjk
← −1

2

(
Σ−1k + diag

(
S
(1)−2
jj X

(1)
jj /τ

(1), . . . ,S
(P )−2
jj X

(P )
jj /τ

(P )
))

ηδjk ← log ∆k −
1

2
log |Σk| − log ∆K +

1

2
log |ΣK |.

We can then solve Equations 8 to obtain the standard parameterization of our distribution:

Vjk = −1

2
η−1Vjk

µjk = Vjkηµjk

log
δjk
δjK

= ηδjk +
1

2
µTjkV

−1
jk µjk +

1

2
log |Vjk| −

1

2
µTjKV−1jKµjK −

1

2
log |VjK |

δjk =
exp log

δjk
δjK∑K

k′=1 exp log
δjk′
δjK

One thing that we can immediately note is that ηVjk
and ηδjk do not depend on the data, β̂, or on the

variational parameters at any other position j′. As such, for fixed τ and ∆ we can immediately set those
parameters to their optimal values for all j and all k. All that remains is finding the optimal ηµjk for all k and
j. One option would be to do coordinate ascent, but to take advantage of parallelism, we instead use the fact
that the update for ηµjk can be viewed as a step in the direction of the natural gradient [1, 6]. As such, call the
update for ηµjk ∇nat

ηµjk
, we can then collect this across all j and k to obtain∇nat

ηµ . We can then consider a step in
the direction of the natural gradient as:

η(t+1)
µ ← (1− ε)η(t)µ + ε∇nat

η
(t)
µ

where we use (t) to index the gradient step iteration, ε to denote a step-size between 0 and 1, and use ηµ to
denote the ηµjk collected across all j and k. In practice we perform a line-search on ε to ensure that the ELBo
actually increases after a given step, and then we perform natural gradient steps until the ELBo improves less
than a given tolerance threshold.
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We now know how to update the variational posterior, but we still need to optimize the hyperparameters
τ (1), . . . , τ (P ) and ∆1, . . . ,∆K . Ideally, we would set them by maximizing the marginal likelihood, but that
is intractable. Instead, we follow the usual approach of maximizing a lower bound on the marginal likelihood
(i.e., the ELBo) with respect to these hyperparameters. We can write the ELBo and note explicitly where the
hyper parameters appear

ELBo(q) =
P∑
p=1

Eq log p(β̂(p)|β(p), τ (p))− Eq(Z) [KL(q(β|Z)||p(β|Z))]− KL(q(Z)||p(Z|∆))

Taking the partial derivative with respect to τ (p) we see

∂ELBo
∂τ (p)

=
∂

∂τ (p)
Eq log p(β̂(p)|β(p), τ (p))

=
∂

∂τ (p)

[
− 1

2
log
∣∣∣τ (p)S(p)X(p)S(p)

∣∣∣
− 1

2τ (p)
Eq
[(
β̂(p) − S(p)X(p)S(p)−1β

)T (
S(p)X(p)S(p)

)−1 (
β̂(p) − S(p)X(p)S(p)−1β

)]]
= − 1

2× rank(X(p))× τ (p)

+
1

2
(
τ (p)

)2Eq [(β̂(p) − S(p)X(p)S(p)−1β
)T (

S(p)X(p)S(p)
)−1 (

β̂(p) − S(p)X(p)S(p)−1β
)]

= − 1

2× rank(X(p))× τ (p)

+
1

2
(
τ (p)

)2
[
β̂(p)T

(
S(p)X(p)S(p)

)−1
β̂(p) − 2β̂(p)TS(p)−1X(p)◦S(p)−1Eq

[
β(p)

]
+ Eq

[
β(p)TS(p)−1X(p)S(p)−1β(p)

] ]
.

Therefore, the optimal τ (p) is

τ (p) =
1

rank(X(p))

[
β̂(p)T

(
S(p)X(p)S(p)

)−1
β̂(p) − 2β̂(p)TS(p)−1X(p)◦S(p)−1Eq

[
β(p)

]
+ Eq

[
β(p)TS(p)−1X(p)S(p)−1β(p)

] ]
,

where

E
[
β
(p)
j

]
=

K∑
k=1

δjkµ
(p)
jk

Eq
[
β(p)TS(p)−1X(p)S(p)−1β(p)

]
= Eq

[
β(p)T

]
S(p)−1X(p)S(p)−1Eq

[
β(p)

]
+

P∑
j=1

S
(p)−2
jj X

(p)
jj

[(
K∑
k=1

δjk

(
µ
(p)2
jk + (Vjk)(p)(p)

))
− Eq

[
β
(p)
j

]2]
.
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Similarly, taking the gradient with respect to ∆ and including a Lagrange multiplier to enforce that
∑K

k=1 ∆k =
1, we obtain

∂

∂∆k

[
ELBo + λ

(
1−

∑
k=1K

∆k

)]
=

∂

∂∆k

Eq
 M∑
j=1

log pj(Zj)

− λ
=

∂

∂∆k

 M∑
j=1

δjk log ∆k

− λ
=

∑M
j=1 δjk

∆k
− λ

This immediately implies that the optimal ∆k is

∆k ∝
M∑
j=1

δjk

and in fact the constant of proportionality can be obtained by summing across k:

∆k =

∑M
j=1 δjk∑M

j=1

∑K
k′=1 δjk′

In our implementation we alternately update q, τ and ∆ until the ELBo stops improving by a sufficient amount,
the posterior means remain essentially unchanged, or a user-specified number of iterations is performed.
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