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by nonreference alleles that are known to be present in the  
sample10. However, personalized genomes do not fully address 
the mapping problem, because the genomic locations that are 
uniquely mappable in the reference and nonreference genome 
sequences differ (Fig. 1a). Although these types of errors might 
affect only a small number of sites, they constitute a large fraction 
of the most significant results when tests of allelic imbalance are 
performed genome-wide. Genomic DNA–sequencing reads can 
also be used to control for mapping bias; however, this method 
reduces the power to detect allelic imbalance11.

WASP overcomes mapping bias with a simple approach that 
can be readily incorporated into any read-mapping pipeline. First, 
reads are mapped normally with a mapping tool selected by the 
user; mapped reads that overlap single-nucleotide polymorphisms 
(SNPs) are then identified. For each read that overlaps an SNP, the 
allele that is present in the read is changed to match the SNP’s other 
allele, and the read is remapped. If a remapped read does not map 
to exactly the same location, it is discarded (Fig. 1b). Unknown 
polymorphisms in the sample are not considered but will typically 
have little effect, as the tests for allelic imbalance are performed 
only at known heterozygous sites. We performed a simulation to 
assess the effect of unknown polymorphisms and found that the 
proportion of heterozygous sites with biased mapping was very 
small (Supplementary Fig. 1 and Supplementary Note 1).

We evaluated the performance of WASP’s remapping method 
by simulating reads at heterozygous sites in a lymphoblastoid 
cell line (LCL) that has been completely genotyped and phased 
(GM12878). At each heterozygous SNP, we simulated all possible 
overlapping reads from both haplotypes, additionally allowing 
reads to contain mismatches at a predefined sequencing error 
rate. We mapped the simulated reads using three approaches to 
account for mapping bias: mapping to a genome with N-masked 
SNPs, mapping to a personalized genome using AlleleSeq10 and 
mapping to the genome using WASP. Whereas reads mapped to 
the N-masked and personalized genomes were substantially biased 
and gave rise to a large number of false positives, reads mapped 
using WASP were almost perfectly balanced (Fig. 1c,d).

One disadvantage of the WASP approach is that some reads are 
discarded, which can cause the overall expression level of a locus 
to be underestimated. Several statistical methods can recover 
ambiguously mapped reads12,13; however, they are not designed 
for unbiased allele-specific mapping, and incorporating them into 
WASP would be technically challenging.

WASP uses a number of techniques to remove noise and bias from 
mapped reads. Amplification bias is a common feature of experi-
ments that yield libraries with low complexity (e.g., ChIP-seq).  
To control for amplification bias, it is common to remove  
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allele-specific sequencing reads provide a powerful signal 
for identifying molecular quantitative trait loci (QtLs), but 
they are challenging to analyze and are prone to technical 
artifacts. here we describe WasP, a suite of tools for unbiased 
allele-specific read mapping and discovery of molecular 
QtLs. using simulated reads, rna-seq reads and chromatin 
immunoprecipitation sequencing (chiP-seq) reads, we 
demonstrate that WasP has a low error rate and is far more 
powerful than existing QtL-mapping approaches.

Next-generation sequencing data can be used to identify allele-
specific signals because reads that overlap heterozygous sites can 
be assigned to one chromosome or the other. Molecular QTLs are 
associated with allelic imbalance1–4, and thus allele-specific reads 
can potentially augment the power of statistical tests for QTL  
discovery5,6. However, the use of allele-specific reads can  
introduce artifacts into many stages of analysis. Uncorrected 
mapping of allele-specific reads can be highly biased and can 
easily yield false signals of allelic imbalance7,8. Homozygous sites 
that are incorrectly called as heterozygous are another source of 
false positives, and allele-specific read counts are overdispersed 
compared with the theoretical expectation of a binomial distribu-
tion9. Here we describe a suite of open-source tools called WASP 
(https://github.com/bmvdgeijn/WASP/ and Supplementary 
Software) that is designed to overcome these technical hurdles. 
WASP carefully maps allele-specific reads, corrects for incorrect 
heterozygous genotype calls and other sources of bias, and mod-
els the overdispersion of sequencing reads. By integrating allele- 
specific information into a QTL-mapping framework, WASP 
attains greater power than standard QTL-mapping approaches.

Mapping of reads to a reference genome is biased by sequence 
polymorphisms7. Reads that contain the nonreference allele may 
not map uniquely or might map to a different (incorrect) loca-
tion in the genome7. A common approach is to map to a ‘per-
sonalized’ genome in which the reference sequence is replaced 
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‘duplicate’ reads that map to the same location; however, existing 
tools retain the read with the highest mapping score, which will 
usually match the reference14. WASP provides a tool for filter-
ing duplicate reads at random, thereby eliminating reference bias 
from this step.

GC content often affects read depth in a manner that is 
inconsistent between sequencing experiments3,15. In addition, 
the distribution of read depths across the genome differs from 
experiment to experiment. For example, ChIP-seq experiments 
with more efficient pulldowns tend to have more reads in peaks. 
WASP corrects for both of these issues by fitting polynomials to 
the genome-wide read counts and calculating a corrected read 
depth for each region (Supplementary Note 2).

Both allele-specific and total read-depth counts are more dis-
persed than expected under models of binomial and Poisson 
sampling9,16. To accommodate overdispersion in the data, WASP 
estimates separate overdispersion parameters for each individual 
and genomic region used in a study (Supplementary Note 3). 
Finally, to account for any remaining unknown covariates, WASP 
allows principal components to be included in the model fitting 
procedure (Supplementary Note 4).

After bias correction, WASP uses a statistical test, the combined 
haplotype test (CHT), to identify cis-acting QTLs. The CHT tests 
whether the genotype of a ‘test SNP’ is associated with the total 
read depth and allelic imbalance in a ‘target region’ (Fig. 2a). 
The CHT jointly models two components: the allelic imbalance 
at phased heterozygous SNPs, and the total read depth in the tar-
get region. The two components of the test are linked by shared 
parameters that define their effect sizes.

For a target region and test SNP pair, the CHT models the expected 
number of reads for an individual as a function of the individual’s 
genotype, the effect size, the GC content, additional covariates (such 
as principal-component loadings) and the total number of mapped 

reads in the region (across all individuals). The probability of the 
observed number of reads in the target region is calculated using the 
expected number of reads and two overdispersion parameters.

Allelic imbalance of reads overlapping heterozygous SNPs in 
a target region is modeled as a function of the shared effect-size 
parameters. The probability of the observed allele-specific read 
counts is then defined by the effect size and a single overdisper-
sion parameter. We also allow for the possibility of genotyping 
errors by assuming that allele-specific read counts are drawn 
from a mixture, with a small probability that a given individual 
is a mistyped homozygote. WASP combines information across  
multiple heterozygous sites, and the current implementation 
assumes that haplotype phasing is correct. Incorrect phasing will 
decrease WASP’s power to detect associations (Supplementary 
Note 5) but will not increase the number of false positives.

To evaluate the performance of WASP on a small data set, we 
used it to call novel QTLs genome-wide using data from H3K27ac 
ChIP-seq experiments that were performed in ten LCLs16. 
Remarkably, WASP identified 2,426 H3K27ac QTLs (10% false 
discovery rate (FDR)), whereas a linear regression approach did 
not identify any (Fig. 2b and Supplementary Note 5).

We also evaluated the ability of WASP to call gene expression 
QTLs (eQTLs) in a larger data set (Fig. 2c and Supplementary 
Note 5). We obtained a set of 2,098 eQTLs identified in 373 LCLs 
derived from European individuals17. We tested whether we could 
identify these eQTLs using an independent RNA-seq data set from 
69 Yoruba LCLs3. WASP discovered 627 of the eQTLs at an FDR 
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figure 1 | Mapping of allele-specific reads. (a) Mapping to personalized 
genomes can result in allelic bias because reads from one allele might  
not map uniquely. (b) Read-mapping pipeline to remove allelic bias.  
(c) The percentage of simulated 100-bp reads at heterozygous sites where 
a read with one allele mapped correctly and the corresponding read with 
the other allele did not. Reads were simulated with sequencing errors 
introduced at several different rates. (d) The fraction of false positives 
as a function of the effect size determined using a nominal Benjamini-
Hochberg FDR of 10% (yellow dashed line). We simulated 100-bp  
allele-specific reads under null (odds ratio = 1) and alternative models 
(odds ratio > 1) of allelic imbalance at heterozygous sites in the genome. 
We assumed that 90% and 10% of sites were null and alternative sites, 
respectively. We mapped reads using WASP, personal-genome (AlleleSeq10) 
or N-masked–genome mapping strategies and called allele-specific sites 
using a binomial test.
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figure 2 | The combined haplotype test and 
its performance. (a) A test SNP is tested for 
association with mapped reads within a target 
region. All reads are used by the read-depth 
component of the test; allele-specific reads are 
used by the allelic-imbalance component of 
the test. (b) Identification of novel QTLs using 
H3K27ac ChIP-seq data from ten Yoruba LCLs. 
(c) Identification of European eQTLs from the 
GEUVADIS consortium using an independent 
RNA-seq data set from 69 Yoruba LCLs. Red 
dashed lines in b and c represent the null values.
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of 10%, which is impressive considering (1) the smaller number 
of individuals used by WASP (69 instead of 373), (2) that some  
fraction of the original eQTLs were false positives, and (3) that 
some of the European eQTLs were absent or at a very low fre-
quency in the Yoruba LCLs. This number increased to 673 eQTLs 
when five principal components were included as covariates. By 
comparison, when we adopted a standard eQTL-discovery method 
(linear regression on quantile-normalized and GC-corrected  
data), we identified only 446 eQTLs (617 when five principal 
components were included as covariates). P values obtained by 
running the CHT on the same data set with permuted genotypes 
did not depart substantially from the null expectation, indicating 
that the test is well calibrated (Supplementary Fig. 2).

We compared the CHT to several other methods by simulat-
ing reads under null and alternative models of genetic association 
(Supplementary Fig. 3 and Supplementary Note 6). For small sam-
ples (10 or 20 individuals), the CHT outperformed all other tests, 
but for large samples (50 or 100 individuals) TReCASE6 performed 
similarly well. Like the CHT, TreCASE uses both allelic imbal-
ance and read-depth information; however, it does not account 
for overdispersion, genotyping errors or biased mapping, which  
increase the false positive rate when real data are being used.

WASP can test only for gene-level expression differences and 
does not consider the expression of individual transcript isoforms. 
Some QTLs detected by WASP may therefore be attributable to 
differences in isoform usage rather than differences in overall 
gene expression18,19.

Our results demonstrate that WASP is a powerful approach for 
the identification of molecular QTLs, particularly when sample sizes 
are small. WASP accounts for numerous biases in allele-specific data 
and is flexible enough to work with different read mappers and 
multiple types of sequencing data such as ChIP-seq and RNA-seq 
data. By modeling biases and dispersion differences directly, WASP 
eliminates the need for quantile normalization of the data, thereby 
making estimated effect sizes more easily interpretable.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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onLine methods
Unbiased read mapping with WASP. To detect differences  
in molecular phenotypes from sequencing data, it is essential  
to remove read-mapping biases, which are a major source of 
false positives. The WASP read-mapping pipeline accomplishes 
this task by ensuring that the mapping of each individual read  
is unbiased.

The user first maps reads to the genome using any mapper  
that outputs in BAM or SAM format (Supplementary Fig. 4). For 
example, ChIP-seq reads can be mapped by BWA or Bowtie 2,  
and RNA-seq reads can be mapped using Tophat. WASP then 
identifies mapped reads that overlap known polymorphisms. 
For each read that overlaps a polymorphism, all possible allelic 
combinations that differ from the original read are generated 
and remapped to the genome. For example, when a read overlaps 
two biallelic SNPs, four allelic combinations are possible, three 
of which will differ from the original read. The original read is 
discarded if any of the allelic combinations map non-uniquely or 
map to another location. Reads that overlap insertion or deletion 
polymorphisms are currently discarded by WASP.

This simple method works with almost any existing mapping 
pipeline and handles reads with sequencing errors, which are a 
major source of biased mapping7.

Discovery of QTLs with WASP. To discover molecular QTLs, 
WASP uses a statistical test, the CHT. As input, the CHT takes 
genotype probabilities at known SNPs as well as mapped reads 
from sequencing-based experiments such as ChIP-seq and RNA-
seq. The CHT combines two types of information: the depth of 
mapped reads and the allelic imbalance of mapped reads that 
overlap heterozygous sites. The CHT models the overdispersion 
of read counts (both across regions and across individuals) and 
accounts for variability introduced by GC content and the fraction 
of reads that fall within peaks (Supplementary Fig. 5).

The combined haplotype test. The CHT determines whether  
the genotype of a test SNP m is associated with read depth  
and allelic imbalance in a nearby target region j on the same 
chromosome (Fig. 2a). Each test is performed on a test SNP– 
target region pair h = {m, j}. A target region may be discontigu-
ous and span multiple genomic loci. For example, the exons of a 
gene can be used as a target region in a search for for expression  
QTLs using RNA-seq reads. The test SNP is not required to  
be in the target region, but it is assumed to be nearby and cis-
acting. This allows the user to combine information from across 
phased heterozygous SNPs and assign reads to one haplotype or 
the other. Mathematical variables for the CHT are summarized 
in Supplementary Table 1.

The basic CHT model. The CHT is a likelihood ratio test with 
two components. One component models the depth of mapped 
reads in the target region, and the other component models  
the allelic imbalance of reads that overlap heterozygous SNPs. 
Both components of the test are parameterized by αh and βh, 
which define the expected read depth from chromosomes with 
the reference and alternative alleles. As variants are assumed  

to be additive and cis-acting, the expected allelic imbalance in 
heterozygotes is
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Modeling the read depths. The number of reads mapping to 
a target region is often modeled using a Poisson distribution. 
However, the Poisson assumption that the variance is equal to the 
mean is often violated because read counts from target regions are 
overdispersed. Part of this overdispersion can be accommodated 
by modeling of the data with a negative-binomial distribution 
with a variance parameter for each test. However, the negative-
binomial distribution assumes that the mean and variance have 
a quadratic relationship that is consistent across individuals. We 
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and causes poor calibration of the tests, particularly when sample 
sizes are small. The CHT therefore includes negative-binomial 
overdispersion parameters for each individual (Ωi) and for each 
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where Gim is the genotype of individual i at test SNP m, and  
Ti is the total number of reads mapped genome-wide for  
individual i.

The likelihood of the parameters is then given by the  
equation 

L , , , Pr , ,a b f l fh h j ij hi i j
i

D X xΩ Ω•( ) = =( )∏
BNB  

where xij is the number of reads for individual i in target region j.
The CHT can additionally adjust the total number of reads 

for each target region and individual by taking into account the 
GC content and the fraction of reads found in target regions 
(Supplementary Note 2). To account for unknown covariates, 
the total reads can also be adjusted using principal-component 
analysis (Supplementary Note 4).

Modeling the allelic imbalances. Allele-specific read counts 
are sometimes modeled using the binomial distribution; how-
ever, we have found that allele-specific read counts are over-
dispersed. We instead model allele-specific read counts with 
a beta-binomial distribution and include a parameter ϒi  
(estimated separately) that captures the overdispersion for 
each individual. The likelihood of the parameters given the  
data is then 
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where yik is the number of allele-specific reads from the refer-
ence haplotype and nik is the total number of allele-specific reads 
for individual i at target SNP k. The expected fraction of allele- 
specific reads from the reference allele is 

ph
h

h h
=

+
a

a b

Correcting for incorrect genotype calls. SNP genotypes that 
are incorrectly called as heterozygous are a major source of 
false positives, as reads that overlap them appear to come from 
only one allele. To account for this issue, we assume that allele- 
specific reads are drawn from a mixture of two beta-binomials,  
with probabilities Hik and 1−Hik, where Hik is the probability 
that individual i is heterozygous for SNP k. Reads from hetero-
zygous individuals contain the reference allele with probability ph.  
We assume that reads from homozygous individuals still have 
a small probability of coming from the other allele as a result  
of sequencing errors, which occur with probability perr. The  
probability of observing yik reads from the reference allele for 
individual i at SNP k then is 
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We found that even SNPs with heterozygous probabilities of  
1.0 were occasionally miscalled, so we set heterozygous  
probabilities to a maximum value of 0.99. We then updated this 
heterozygous probability using sequencing data obtained from  
the same individual. Sequencing data may consist of DNA-
sequencing reads or reads aggregated across multiple types of 
experiments performed on the same individual (e.g., RNA-seq 
and ChIP-seq reads).

For an SNP with heterozygous probability H Hik ik= min( . , )0 99 obs , 
we define the updated heterozygous probability Ĥik  as 
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The combined-likelihood ratio test. The combined likelihood 
of both components of the model is 
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The overdispersion parameters for the combined-likelihood model 
can be estimated using a maximum-likelihood approach that uses 
data from many genomic regions (Supplementary Note 3).

To test for an association with genotype, we perform a likeli-
hood ratio test that compares the alternative hypothesis a bh h≠  
to the null hypothesis a bh h= .The CHT returns a likelihood ratio 
statistic 

L = L
L

1

0

( | )

( | )

ˆ

ˆ
q
q

D
D

where q̂1 and q̂0 are maximum-likelihood estimates of the param-
eters under the alternative and null hypotheses, respectively.  
P values can be calculated from the test statistic under the  
asymptotic assumption that −2log() is χ2 distributed with one 
degree of freedom.

The CHT is robust to nonadditive allelic effects (Supplementary 
Note 7) and has a running time that is linear with the number of 
individuals in the study (Supplementary Note 8).
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