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Abstract

Two-dimensional phase unwrapping is a key step, and often the most signi�cant error source,

in the analysis of synthetic-aperture-radar interferograms. In the interferometric technique,

very accurate measurements of the Earth's topography or its surface deformation are de-

rived from radar-image phase data. Phase, however, is de�ned only modulo 2� rad, so a

resulting 2-D array of measurements is wrapped with respect to some modulus or ambiguity.

These data must be unwrapped to provide meaningful information. For this purpose, we

introduce a new, nonlinear constrained-optimization approach in which i) de�ned cost func-

tions map particular unwrapped solutions to scalar costs and ii) a solver routine computes

minimum-cost solutions. Previous e�orts have focused mainly on simple cost functions

that have yielded eÆcient|but not necessarily accurate|algorithms. These inaccuracies

seriously degrade the e�ectiveness of the interferometric technique and can preclude useful

geophysical interpretation of the data. We propose a new set of nonconvex, statistically

based cost functions through which we treat phase unwrapping as a maximum a posteri-

ori probability estimation problem. That is, we derive approximate, application-speci�c

statistical models for the problem variables. Based on these models, we cast phase unwrap-

ping as an optimization problem whose objective is to �nd the most physically probable

unwrapped solution given the observable quantities: wrapped phase, image intensity, and

interferogram coherence. We prove that the resulting problem is NP-hard, and we develop

nonlinear network-
ow solver techniques for approximating solutions to this problem. Ex-

tending our statistical framework and network methods, we also present a tiling heuristic

for applying our algorithm to large data sets. Performance tests on topographic and defor-

mation data acquired by the ERS-1 and ERS-2 satellites suggest that our algorithm yields

superior accuracy and competitive eÆciency as compared to other existing algorithms.

iv



Acknowledgements

Many people have helped make this dissertation what it is; I'd like to express my deepest

and most sincere thanks to all who have had a hand in the graduate study concluded by

the following pages.

I am especially grateful to the Stanford faculty who supervised my academic research.

Professor Howard Zebker served as my principal adviser in this e�ort, and his mentorship

and support have been foundational to the work summarized here. Professor Len Tyler acted

as my associate adviser, and I have learned much from him as well. Likewise, Professors

Dwight Nishimura and Dawson Engler o�ered me fresh insights and new perspectives on

a number of issues while serving on my reading and oral-defense committees. Professor

Umran Inan provided me with invaluable guidance during my undergraduate and early

graduate years.

My gratitude goes also to the students and postdocs with whom I have had the good

fortune of working: Falk Amelung, Margrit Gelautz, Ramon Hanssen, Leif Harcke, Weber

Hoen, J�orn Ho�mann, Sigurj�on J�onsson, Jack Yi Liang, Mamta Sinha, and Haibin Xu.

These individuals have, among other things, shared with me their insights in technical

discussions, shared with me their insights in not-so-technical discussions, assisted me in

logistical matters, allowed me the use of their data, helped me with data processing, and

tutored me in the black art of running ROI. Moses Charikar gave me helpful feedback on

computational-complexity issues, and Bevan Baas aided with typesetting. I am grateful to

all of these people, and to the rest STARLab, for contributing to an environment which I

have found both enjoyable and rewarding.

I am further grateful for the data, software, and funding I have received. The European

Space Agency provided the radar data of the Death Valley and Hector Mine test areas. The

data and DEM for the Alaska test areas were provided by the Alaska SAR Facility; Rick

Guritz, Mark Ayers, Tom Logan, and Rudi Gens of ASF helped with data processing. The

v



software implementations of the MST and DCC algorithms draw upon ideas from the SPLIB

shortest-path codes written by Boris Cherkassky, Andrew Goldberg, and Tomasz Radzik.

The MCF algorithm implementation is based on the CS2 solver written by Goldberg and

Cherkassky and copyrighted by IG Systems, Inc. The residue-cut algorithm implementation

was written by Richard Goldstein, Howard Zebker, and Charles Werner; the PCG and

LPN algorithm implementations were written by Dennis Ghiglia and Mark Pritt and are

copyrighted by John Wiley and Sons, Inc. This research was funded by NASA and the

University of Alaska Geophysical Institute.

Issues of funding, software, and data would have been irrelevant had it not been for the

encouragement and support of those close to me, however. I can consequently do no less

than extend my heartfelt thanks to Niroshana, for her warmth, cheer, and love; to Adam,

for his understanding and his sharp wit; to Peter, for his spirit and optimism; and, �nally,

to my mother and father, for everything.

vi



Contents

Abstract iv

Acknowledgements v

List of Tables x

List of Figures xi

List of Symbols xiv

1 Introduction 1

1.1 Problem De�nition: 2-D Phase Unwrapping . . . . . . . . . . . . . . . . . . 1

1.2 Motivation: Synthetic Aperture Radar Interferometry . . . . . . . . . . . . 2

1.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Synopsis of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8

2.1 Assumptions and General Approach . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Residue-Cut Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Least-Squares Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Minimum Lp-norm Framework . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Network Flow Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Optimization Objectives and Complexity 22

3.1 Minimum Lp-norm Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



3.1.1 Lp Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Example Lp Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Setting up the Problem: Generalized Cost Functions . . . . . . . . . . . . . 30

3.3 Solving the Problem: NP -hardness . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Implications of Intractability . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Statistical Cost Functions 36

4.1 MAP Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Phase-Noise Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Topography Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Topography and Intensity . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Correlation and Topography . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Topographic PDFs and Cost Functions . . . . . . . . . . . . . . . . 56

4.4 Deformation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Statistical Cost Functions and Lp Objectives . . . . . . . . . . . . . . . . . 68

5 Network-Flow Optimization Techniques 70

5.1 The Minimum Spanning Tree Algorithm . . . . . . . . . . . . . . . . . . . . 71

5.2 Dynamic-Cost Cycle Canceling . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Cycle Canceling with Arbitrarily Shaped Cost Functions . . . . . . . . . . . 82

5.4 The Pivot-and-Grow Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Tiling Strategies for Large Data Sets 89

6.1 Basic Tiling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Reliable Regions and Tile Subdivision . . . . . . . . . . . . . . . . . . . . . 93

6.3 Secondary Network Construction . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Tile Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Results 101

7.1 Topographic Data: Death Valley . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Deformation Data: The Hector Mine Earthquake . . . . . . . . . . . . . . . 108

7.3 A Large-Scale Data Example: The Alaska DEM Project . . . . . . . . . . . 109

7.4 Preprocessing Techniques for Topographic Data . . . . . . . . . . . . . . . . 124

viii



8 Conclusions 125

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.2 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A NP-hardness of the L0 Problem 129

Bibliography 134

ix



List of Tables

3.1 Lp algorithm resource requirements for Death Valley test data . . . . . . . . 28

4.1 Physical sources of topographic cost-function parameters . . . . . . . . . . . 62

4.2 Physical sources of deformation cost-function parameters . . . . . . . . . . . 66

7.1 Algorithm resource requirements for Death Valley test data . . . . . . . . . 106

7.2 Execution times for Alaska test data . . . . . . . . . . . . . . . . . . . . . . 123

x



List of Figures

1.1 SAR imaging geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Viewing geometry for SAR interferometry . . . . . . . . . . . . . . . . . . . 4

1.3 Topographic interferogram of the San Francisco Bay Area . . . . . . . . . . 5

2.1 One-dimensional phase unwrapping example . . . . . . . . . . . . . . . . . . 9

2.2 Wrapped phase values that result in a residue . . . . . . . . . . . . . . . . . 12

2.3 \Ascending and Descending," by M. C. Escher . . . . . . . . . . . . . . . . 13

2.4 Residues resulting from an example wrapped phase array . . . . . . . . . . 14

2.5 An example unwrapped solution from the residue cut algorithm . . . . . . . 14

2.6 An example network equivalent for the phase unwrapping problem . . . . . 20

3.1 Topographic phase residue arrangement and 
ow resulting from layover . . 25

3.2 Death Valley topographic test data . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Relative phase errors from Lp algorithms on Death Valley test data . . . . . 29

3.4 Cost functions for the Lp family of objective functions . . . . . . . . . . . . 32

4.1 Probabilities of discrete values of ��, assuming congruence . . . . . . . . . 38

4.2 Model phase-noise standard deviation � noise . . . . . . . . . . . . . . . . . . 41

4.3 Model interferometric phase-noise PDFs . . . . . . . . . . . . . . . . . . . . 42

4.4 Facet model for topography-brightness relationship . . . . . . . . . . . . . . 45

4.5 Example curve of model surface backscatter . . . . . . . . . . . . . . . . . . 46

4.6 Comparison of actual and simulated SAR intensity images . . . . . . . . . . 47

4.7 Model intensity as a function of slant-range elevation change . . . . . . . . 48

4.8 Normal incidence on the ground surface . . . . . . . . . . . . . . . . . . . . 48

4.9 Regimes of the slant-range slope �z(r) . . . . . . . . . . . . . . . . . . . . . 50

4.10 Pro�le of a mountain in layover . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



4.11 Model conditional PDFs f(��topojI) for range and azimuth . . . . . . . . . 53

4.12 Comparison of interferogram correlation and range-slope images . . . . . . 55

4.13 Model conditional PDFs f(�j��topo) for range and azimuth . . . . . . . . . 57

4.14 Model PDFs for topographic range gradients . . . . . . . . . . . . . . . . . 59

4.15 Model PDFs for topographic azimuth gradients . . . . . . . . . . . . . . . . 60

4.16 Example cost functions for topographic range gradients . . . . . . . . . . . 62

4.17 Example cost functions for topographic azimuth gradients . . . . . . . . . . 63

4.18 Comparison of deformation interferogram with correlation image . . . . . . 66

4.19 Example cost functions for deformation gradients . . . . . . . . . . . . . . . 67

5.1 Representations of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Comparison of a minimum spanning tree and a minimum Steiner tree . . . 73

5.3 A minimum spanning tree and the locations of 
ow . . . . . . . . . . . . . . 74

5.4 Cuts in the original and revised spanning tree algorithms . . . . . . . . . . 75

5.5 MST algorithm pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 A cycle-canceling improvement . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.7 Original and residual L0 arcs . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 DCC algorithm pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 An example pivot and its e�ect on tree structure . . . . . . . . . . . . . . . 85

5.10 A cycle's residual cost in terms of node potentials. . . . . . . . . . . . . . . 86

5.11 Pivot-and-grow algorithm pseudocode. . . . . . . . . . . . . . . . . . . . . . 88

6.1 Representation of an unwrapping artifact due to tiling . . . . . . . . . . . . 90

6.2 E�ects of an unwrapping error on tile di�erences . . . . . . . . . . . . . . . 92

6.3 Secondary network for the tile set of Fig. 6.2 . . . . . . . . . . . . . . . . . 93

6.4 Example region-growing network model . . . . . . . . . . . . . . . . . . . . 95

6.5 Example region-based secondary network . . . . . . . . . . . . . . . . . . . 97

7.1 Death Valley topographic test data . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 SNAPHU results with Death Valley data . . . . . . . . . . . . . . . . . . . 103

7.3 MST results with Death Valley data . . . . . . . . . . . . . . . . . . . . . . 105

7.4 Relative phase errors with Death Valley test data . . . . . . . . . . . . . . . 107

7.5 Deformation test data and SNAPHU results . . . . . . . . . . . . . . . . . . 110

7.6 Alaska test interferogram from ERS pair 23942-4269 . . . . . . . . . . . . . 112

xii



7.7 Coherence map for 23942-4269 interferogram . . . . . . . . . . . . . . . . . 113

7.8 Relative unwrapped phase error for 23942-4269 interferogram . . . . . . . . 114

7.9 Alaska test interferogram from ERS pair 24222-4549 . . . . . . . . . . . . . 116

7.10 Coherence map for 24222-4549 interferogram . . . . . . . . . . . . . . . . . 117

7.11 Relative unwrapped phase error for 24222-4549 interferogram . . . . . . . . 118

7.12 Test data and results for 22210-2537 pair . . . . . . . . . . . . . . . . . . . 119

7.13 Enlargement of 22210-2537 interferogram . . . . . . . . . . . . . . . . . . . 120

7.14 Enlargement of 22210-2537 coherence map . . . . . . . . . . . . . . . . . . . 121

7.15 Enlargement of 22210-2537 error image . . . . . . . . . . . . . . . . . . . . . 122

A.1 An L0 network formulation for an RST problem instance . . . . . . . . . . 130

A.2 An L0 solution before and after breaking a 
ow loop . . . . . . . . . . . . . 133

xiii



List of Symbols

1-D one dimensional.

2-D two dimensional.

3-D three dimensional.

A ground surface area of imaged pixel (m2).

a arbitrary arc.

B? perpendicular component of interferometer baseline (m).

C arbitrary constant.

c arc residual cost.

d network distance.

dr range component of surface displacement (m).

DCC dynamic-cost cycle canceling.

DEM digital elevation model.

E[�] expected value operator.

ERS-1 European Space Agency Earth Remote Sensing satellite 1.

ERS-2 European Space Agency Earth Remote Sensing satellite 2.

f(�) probability density or mass function.

G(�) optimization objective function.

g(�) phase-di�erence cost function.

gd cost of shear shelf in deformation cost function.

glay cost of layover shelf in topographic cost function.

g
(a)
lay cost of layover shelf in topographic azimuth cost function.

g
(r)
lay cost of layover shelf in topographic range cost function.

I SAR image intensity.

i arbitrary integer.

j
p�1; arbitrary integer.

xiv



K arbitrary constant integer.

k arbitrary integer.

kds ratio of di�use to specular scattering.

Lp optimization norm.

l0 length of optimal L0 
ow.

lR length of subset of optimal L0 
ow.

lRST length of optimal RST.

LPN minimum Lp-norm algorithm.

M number of rows in a 2-D array.

m arbitrary integer.

MAP maximum a posteriori probability.

MCF minimum cost 
ow.

MR magnetic resonance.

MST minimum spanning tree.

N number of columns in a 2-D array.

n scattering model parameter; arbitrary integer.

Nc number of complex looks.

Ni equivalent number of independent looks.

NP-complete problem complexity class.

NP-hard problem complexity class.

p Lp-norm exponent parameter; arbitrary network node.

PDF probability density function.

q arbitrary network node.

R subset of optimal L0 
ow.

r range (m).

Rr slant range resolution (m).

RST rectilinear Steiner tree.

S set of network nodes.

s complex pixel value of SAR image.

SAR synthetic aperture radar.

SNAPHU statistical-cost, network-
ow algorithm for phase unwrapping.

T network tree.

u arbitrary network node.

xv



USGS United States Geological Survey.

w phase di�erence weight.

x across-track ground coordinate (m).

y along-track ground coordinate (m).

ymax greatest coordinate in y of arcs ay.

ymin least coordinate in y of arcs ay.

Z set of all real integers.

z elevation (m).

Æ 
ow increment.

�r SAR sample spacing in range (m).

�x ground projection of SAR range sample spacing (m).

�y ground projection of SAR azimuth sample spacing (m).

�z local topographic slope.

�z(a) azimuth component of local topographic slope.

�z(r) range component of local topographic slope.

�z
(r)
0 range slope for shadow condition.

�z
(r)
I range slope estimated from intensity.

�zlay maximum slope expected from layover given intensity.

�� array or vector of unwrapped phase di�erences (rad).

�� unwrapped phase di�erence between neighboring samples (rad).

��(a) unwrapped phase di�erence in azimuth (rad).

��(r) unwrapped phase di�erence in range (rad).

��
(r)
0 topographic unwrapped phase gradient for shadow condition (rad).

��back topographic unwrapped gradient of layover back slope (rad).

��crit unwrapped gradient at discontinuity regime transition point (rad).

��defo deformation component of unwrapped phase di�erence (rad).

��I topographic unwrapped gradient estimated from intensity (rad).

��lay layover cuto� of topographic unwrapped gradient PDF (rad).

��max upper cuto� of topographic unwrapped gradient PDF (rad).

��noise noise component of unwrapped phase di�erence (rad).

��signal signal component of unwrapped phase di�erence (rad).

��topo topography component of unwrapped phase di�erence (rad).

��
(a)
topo topographic part of unwrapped gradient in azimuth (rad).

xvi



��
(r)
topo topographic part of unwrapped gradient in range (rad).

��� correlation cuto� of topographic unwrapped gradient PDF (rad).

�	 array or vector of wrapped phase di�erences (rad).

� wrapped phase di�erence between neighboring samples (rad).

� arbitrary cycle in network.

� SAR look angle with respect to nadir (rad).

�i local incidence angle (rad).

� network path.

� SAR signal wavelength (m).

� ratio of circumference of circle to its diameter.

�p linear network potential of node p.

�in inward potential of node on nonlinear network.

�out outward potential of node on nonlinear network.

� interferogram complex correlation coeÆcient.

�̂ estimate of interferogram complex correlation coeÆcient.

�s spatial decorrelation factor.

�min correlation threshold for detecting deformation discontinuity.

�other factor accounting for nonspatial sources of decorrelation.

�0 normalized radar cross section.

�lay standard deviation of phase-parameter uncertainty from layover (rad).

�meas standard deviation of phase-parameter measurement error (rad).

���noise standard deviation of unwrapped phase-di�erence noise (rad).

� noise standard deviation of wrapped phase noise (rad).

� arbitrary scalar potential.

� 2-D unwrapped phase �eld or array (rad).

�̂ estimate of 2-D unwrapped phase �eld or array (rad).

� unwrapped phase value (rad).

�defo deformation component of unwrapped phase value (rad).

�noise noise component of unwrapped phase value (rad).

�signal signal component of unwrapped phase value (rad).

�topo topography component of unwrapped phase value (rad).

� arc 
ow.

	 2-D wrapped phase �eld or array (rad).

xvii



 wrapped phase value (rad).

 noise noise component of wrapped phase (rad).

xviii



Chapter 1

Introduction

Two-dimensional (2-D) phase unwrapping is a key data-processing step in many applications

of synthetic aperture radar (SAR) interferometry. As interferometric radar applications

have found widespread use in recent years, the phase unwrapping problem has emerged as

a research topic of great importance for the remote sensing community. Despite no small

amount of e�ort, however, the problem remains unresolved.

Driven by these motivations, we examine in this dissertation both theoretical aspects

of the phase unwrapping problem as well as practical algorithms for its solution. Focusing

our attention on the unique needs of SAR interferometry, we anchor our investigation in

the speci�c context of this application. We thus begin with a de�nition of the problem and

a brief explanation of the circumstances in which it arises.

1.1 Problem De�nition: 2-D Phase Unwrapping

Two-dimensional phase unwrapping is the process of recovering unambiguous phase values

from a 2-D array of phase values known only modulo 2� rad. This problem arises when, as

in many applications, phase is used as a proxy indicator of a physical quantity, such as time

delay, from which other information can be inferred. Since phase is observable only on a

circular, repeating space, measurements derived from phase data are wrapped with respect

to some modulus or ambiguity that is the physical equivalent of 2� rad. The observed

data must therefore be unwrapped, or mapped back into the full range of real numbers, if

meaningful results are to be obtained.

1



CHAPTER 1. INTRODUCTION 2

1.2 Motivation: Synthetic Aperture Radar Interferometry

Current interest in 2-D phase unwrapping has been motivated largely by the advent of SAR

interferometry. In this technique, multiple coherent radar images of the earth are combined

to form interferograms, and, depending on how the data are processed, the interferometric

phase can be used to make extremely �ne measurements of surface topography, deforma-

tion, or velocity, as explained below. There are many geophysical applications for such

data, but the data must usually be unwrapped before they can be made useful. In fact,

incorrect phase unwrapping is often the most signi�cant source of error in interferometric

SAR measurements. For this reason, the main goal of our research is the development of an

accurate, eÆcient, and robust phase unwrapping algorithm that is applicable to the speci�cs

of SAR interferometry.

SAR interferometry is an extension of classical radar techniques that date back to the

�rst half of the twentieth century. In such radar techniques, the range to a target is deter-

mined through a measurement of the time delay between the transmission of a signal and

the reception of the signal's echo from the target (see the text by Skolnik [1980], for exam-

ple). A SAR system is an instrument, usually aboard an aircraft or a spacecraft, that forms

high-resolution images of the earth by examining a series of radar echoes from the surface.

Typically, the SAR system is designed with a side-looking geometry so that as the platform

moves, the area scanned by the radar's antenna beam sweeps out a swath on the ground (see

Fig. 1.1). This swath comprises the imaged area. The brightness of each pixel in the image

is related to the radar re
ectivity of the ground surface at that location. Resolution in the

direction perpendicular to the 
ight track is obtained through knowledge of the time delay,

and hence the range, of every sample of each pulse return. Resolution in the along-track

direction is obtained through aperture synthesis techniques whereby echoes from multiple

locations along the 
ight track are linearly combined in order to form, e�ectively, a large

antenna aperture. A radar image is thus rendered with respect to coordinates in range and

azimuth, the across-track and along-track directions, respectively; surface features appear-

ing in the image are projected into this coordinate system. Note that as a consequence of

this projection, radar images often exhibit distortion phenomena known as foreshortening

and layover in areas of signi�cant surface topography. More detail about these and other

topics related to SAR imaging can be found in texts such as the one by Curlander and

McDonough [1991].
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Antenna beam

Flight path
Radar

Imaged area

Figure 1.1 SAR imaging geometry. SAR systems typically employ a side-looking geometry as
shown here. Features on the ground are projected into a range-azimuth coordinate system in the
radar image.

Since radar signals are coherent and narrowband, the amplitude and phase of each image

pixel derive from the random complex superposition of the echoes from many individual

ground scatterers within the resolution element. Therefore, the amplitude values of a SAR

image are usually characterized by speckle, and the phase values are usually unrelated to

one another. However, the relative phase of a pixel in one SAR image may be related to the

relative phase of the corresponding pixel in another SAR image of the same area. Thus, if

the two images are acquired from appropriate viewing geometries, the di�erences in phase

between corresponding pixels may serve as a very precise indicator of range variations or

signal path-length di�erences between the two image acquisitions.

Consider the special case in which two individual SAR images are obtained with iden-

tical viewing geometries, and the ground surface remains completely unchanged between

the times that the images are acquired. The two images will be the same, thermal noise

notwithstanding, so the di�erences in phase between corresponding pixels of the two images

will be zero. Suppose now that the viewing geometries are slightly di�erent, so that the

images are acquired from locations separated by a known, nonzero baseline as shown in

Fig. 1.2. Since the observed phase di�erences are related to the path length di�erences

r1� r2, the phase di�erences can be used to measure the surface topography very precisely

[Zebker and Goldstein, 1986; Zebker et al., 1994a]. Consider next the case in which the

viewing geometries of the two images are identical, but the surface deforms during the time

between image acquisitions. Instead of topography, the observed phase di�erences can be
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Flight paths

Mountain

Radars
Baseline

Imaged area

r1

r2

Figure 1.2 Viewing geometry for SAR interferometry. Phase di�erences between the two complex
images are related to the range di�erences r1 � r2. If the viewing locations have a known, nonzero
baseline as shown, the interferometric phase signature contains variations due to the relative surface
elevation. The phase signature may also contain variations due to relative line-of-sight surface
deformation during the time between image acquisitions.

used to measure the line-of-sight components of relative surface displacement [Gabriel et al.,

1989; Massonnet et al., 1993; Zebker et al., 1994b] or velocity [Goldstein and Zebker, 1987;

Goldstein et al., 1993].

These types of measurements|ones derived from phase di�erences between images|are

the subject of SAR interferometry. An interferogram formed from two complex 2-D images

has phase values that are equal to the di�erences in phase between corresponding pixels of

the individual images:

s1s
�
2 = js1jjs2j exp (j (�1 � �2)) : (1.1)

Here, s1 and s2 are the complex values of corresponding pixels from the two images, \�"

denotes complex conjugation, j =
p�1, and �1 and �2 are the phases of s1 and s2. Thus,

by de�nition, the phase of the interferogram can only be observed modulo 2� rad. An

example topographic interferogram of the San Francisco Bay Area is shown in Fig. 1.3. As

is evident from the wrapping of color fringes in the phase image, the phase data must be

unwrapped before useful topographic information can be obtained.

For interferometry to be e�ective, the relative positions of individual scatterers within

a resolution element cannot change much between image acquisitions. If they do, as from
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(a) (b) (c)

Figure 1.3 Topographic interferogram of the San Francisco Bay Area: (a) the interferogram
magnitude, which is related to the radar re
ectivity of the earth surface; (b) the interferogram
phase, which in this case represents surface topography, wrapped; (c) a combined image showing
the magnitude in gray-scale brightness and the wrapped phase in color. The phase is meaningless
in areas covered by water because of temporal decorrelation e�ects.

geometric or temporal e�ects for example, the phases of the individual images decorrelate,

making the interferogram more noisy [Zebker and Villasenor, 1992]. Such phase-noise e�ects

can be reduced in some cases through spatial averaging, a process also called `taking looks,'

but in locations where the images are completely decorrelated, the interferometric phase

simply does not contain meaningful information. Together with spatial undersampling of

the true signals under observation, decorrelation makes phase unwrapping nontrivial, and

sometimes exceedingly diÆcult, for most SAR interferograms of any interest.

1.3 Other Applications

SAR interferometry is not the only application in which phase unwrapping is required.

Some of the earliest work on 2-D phase unwrapping was carried out in the context of

wavefront distortion estimation for adaptive-optics (compensated-imaging) systems [Fried,

1977; Hudgin, 1977]. In this application, phase measurements from a 2-D sensor array are

unwrapped to provide estimates of atmospheric turbulence e�ects on an optical imaging

system. These atmospheric distortions are then removed through the use of a deformable

focusing mirror.
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Phase unwrapping can be important in magnetic resonance (MR) imaging as well. De-

pending on the application and how the data are acquired, phase measurements from 2-D

or 3-D MR images can be used for such purposes as estimating blood 
ow rates [Herment

et al., 2000] or separating water and fat signals [Glover and Schneider, 1991; Hedley and

Rosenfeld, 1992].

In each of these cases, the phase unwrapping problem is similar on a fundamental level to

the phase unwrapping problem posed by SAR interferometry. The latter calls for markedly

di�erent unwrapping algorithms, however. This is because the phase characteristics of

SAR interferograms are usually distinct from those observed in other applications (see

Chapter 4). Consequently, we focus our attention here on phase unwrapping algorithms for

applications of SAR interferometry. By thus narrowing the scope of the problem, we are

able to attain more accurate results. Of course, the methodology of our approach may well

apply elsewhere, but we leave the exploration of that topic for future work.

1.4 Synopsis of Research

In Chapter 2, we provide a brief overview of existing phase unwrapping methods and ideas.

Of these ideas, one of the most important is the notion that phase unwrapping can be

treated as a constrained optimization problem. In Chapter 3, we introduce the two main

issues raised by the optimization approach: setting up the problem and solving it. We

examine these issues in Chapters 4 and 5. In Chapter 4, we pose phase unwrapping as a

maximum a posteriori probability (MAP) estimation problem, and we derive models for

approximating the joint statistics of interferometric SAR data. We then incorporate these

statistics into nonlinear cost functions, thereby setting up the optimization problem. To

solve the problem, albeit only approximately, we develop in Chapter 5 eÆcient nonlinear

optimization routines based on network-
ow techniques. Our algorithm, SNAPHU, results

from the ideas of those two chapters. In Chapter 6, we develop a tiling heuristic for eÆciently

applying the algorithm to large data sets. We demonstrate the algorithm's performance on

interferometric data sets in Chapter 7. We then conclude this work in Chapter 8 with

comments regarding the implications of our research and suggestions for future work.



CHAPTER 1. INTRODUCTION 7

1.5 Contributions

The contributions of this research are summarized as follows:

1. Proof of the intractability of the general phase unwrapping optimization problem.

The proof is based on the ideas of NP-hardness.

2. Suggestion of a MAP framework that provides a physical basis for the phase unwrap-

ping optimization problem. The framework generalizes existing Lp-norm approaches.

3. Derivation of models for approximating the joint statistics of interferometric SAR

data, as required by the MAP framework, for the cases of both topography and

deformation measurement. The models are quanti�ed through the use of nonlinear

cost functions.

4. Design and implementation of eÆcient, nonlinear network-
ow solvers for use with

the statistical cost functions described above.

5. Development of a tiling heuristic for eÆciently applying the above algorithm to large

data sets.

6. Evaluation of the performance of the above approach, as compared to existing tech-

niques, on interferometric SAR data.



Chapter 2

Background

Many varied approaches to 2-D phase unwrapping have been proposed over the past several

years, but only a limited number are currently in common use. In this chapter, we review

the most popular of existing phase unwrapping algorithms, and by examining how they are

related to one another, we identify several fundamental concepts upon which the following

chapters rely.

2.1 Assumptions and General Approach

Strictly, phase unwrapping is an impossible problem because an unwrapped phase array

necessarily contains information that is not available in the corresponding wrapped ar-

ray. That is, given only an ambiguous wrapped phase array, there is no de�nitive way to

determine which of the many possible unambiguous unwrapped solutions is correct. All

algorithms therefore rely on at least some assumptions, the most basic and most common

of which is that the Nyquist criterion is met throughout most|but not necessarily all|of

the scene. That is, the spatial sampling rate is assumed to be high enough in most parts of

the complex interferogram that aliasing is avoided. Thus, the true unwrapped phase values

of neighboring pixels may be assumed to lie within one-half cycle (� rad) of each other

almost everywhere.

Consider the simple one-dimensional (1-D) wrapped phase example of Fig. 2.1(a), in

which the numbers represent phase values in cycles. Based on the regularity of the data, we

might reasonably surmise that the wrapped phase values are derived from the smooth ramp

of unwrapped values in Fig. 2.1(b). Of course, any other solution obtained through the

8
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0.5 0.75 0.0 0.5 0.75 0.0 0.250.25

(a)

−0.5 −0.25 0.0 0.5 0.75 1.0 1.250.25

(b)

−0.5 −0.25 1.5 1.75 2.251.25 2.01.0

(c)

Figure 2.1 One-dimensional phase unwrapping example: (a) wrapped phase values modulo one
cycle; (b) unwrapped values obtained under the assumption of adequate (Nyquist) sampling; (c) a
possible unwrapped solution that violates the assumption of adequate sampling. The unwrapped
phase di�erence at the location indicated by the arrow is outside the [�0:5; 0:5) cycle interval.

addition of a constant, integer-cycle phase o�set to these values is equally plausible, but the

determination of the exact o�set is usually not regarded as part of the phase unwrapping

problem; phase unwrapping is the estimation of unwrapped phase values relative only to

each other.

Our unwrapped solution of Fig. 2.1(b) is inferred through the implicit assumption of

adequate spatial sampling. For example, we assume that the true unwrapped phase di�er-

ence, or discrete derivative, between the second and third wrapped values (0.75 and 0.0) is

actually +0:25 rather than �0:75 cycles. Similarly, we assume that all true neighboring-

pixel phase di�erences are between �0:5 and +0:5 cycles, or between �� and � rad. By

integrating these estimated phase di�erences (derivatives) from pixel to pixel, we obtain the

unwrapped estimate.

The key to phase unwrapping thus lies not in directly estimating the unwrapped phase

values themselves, but in estimating the unwrapped phase di�erences between them. This il-

lustrates the fundamental premise of phase unwrapping|that under appropriate conditions,

an accurate estimate of the unwrapped solution can be determined from the relationships

between neighboring phase samples.
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Let us de�ne a wrapped phase di�erence as the di�erence in phase, wrapped into the

interval [��; �), between two neighboring samples in the data. The notion of adequate sam-
pling therefore reduces to the assumption that, locally, the true unwrapped phase di�erences

are equal to the observed wrapped phase di�erences.

When this assumption fails, however, the 1-D unwrapping strategy above results in se-

rious errors. Suppose, for example, that the true unwrapped phase di�erence between the

second and third samples of Fig. 2.1 is actually 1:25 cycles, so that the true unwrapped

solution is as shown in Fig. 2.1(c). The assumption of adequate sampling would then be vi-

olated, and the unwrapped estimate of Fig. 2.1(b) would be incorrect. The error, moreover,

would not be locally con�ned since the solution relies on the integration of phase di�erences;

all phase values on either side of the underestimated di�erence would be incorrect by one

cycle relative to the values on the other side. Thus, phase unwrapping errors often man-

ifest themselves as incorrect, integer-cycle relative phase o�sets between di�erent sections

or patches of the solution.

With 1-D data, little can be done to avoid these undersampling errors. For 2-D data,

however, neighboring-pixel phase di�erences in the row and column directions are not

independent, and their relationships can be exploited to avoid certain types of unwrap-

ping errors. In keeping with the literature, we use the term \gradient" to describe such

neighboring-pixel phase di�erences in the 2-D case as well as the 1-D case. That is, we

will sometimes use the term \gradient" to describe scalar, discrete directional derivatives

in the 2-D case, even though the term more often refers to a vector quantity. The use of

this terminology should be clear in context, however.

Most 2-D phase unwrapping approaches involve the assumption that the data are sam-

pled adequately in most, but not necessarily all, parts of the scene. Where the data are

indeed sampled adequately, the unwrapped phase gradients equal the observed wrapped

gradients, and an unwrapped estimate may be readily obtained through the integration

of these estimated gradients. The diÆculty of phase unwrapping, of course, stems from

the fact that most interesting interferograms contain gradients that exceed one-half cycle

in magnitude, and their incorrect integration leads to global errors. Such gradients arise

because of both decorrelation (i.e., noise) and true spatial variations of the signals under

observation. In either case, we call such gradients|those outside of the [��; �) interval|
discontinuities. The task of a 2-D phase unwrapping algorithm can be reduced to locating

and accommodating these discontinuities.
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2.2 Residue-Cut Algorithm

Following the 1-D example in the previous section, a very simple 2-D phase unwrapping

strategy would be to integrate the estimated unwrapped-phase gradients along some path

through the 2-D array. The choice of integration paths requires particular attention, how-

ever.

For most interferometric SAR applications, the unwrapped phase represents a well-

behaved physical quantity, such as topographic height or surface displacement, that can be

expressed mathematically as a 2-D potential or scalar function. Such functions follow the

vector identity [Thomas and Finney, 1988]

r�r� � 0: (2.1)

Equation (2.1) states that the curl of the vector gradient of any scalar potential � is iden-

tically zero. The vector gradient of an unwrapped phase �eld � is therefore a conservative

vector �eld, through which any closed loop integral is necessarily zero. An unwrapped

phase �eld is thus completely speci�ed, except for an additive constant, by its unwrapped

gradients; the gradients, if they are known, can be integrated along an arbitrary path to

recover the unwrapped phase �eld.

When only wrapped data are available, however, gradients that are truly outside the

[��; �) interval are observable only after having been wrapped into it. Therefore, as pointed
out by Goldstein et al. [1988], closed loop integrals of wrapped gradients can give nonzero

results, and wrapped gradient �elds are consequently nonconservative. Thus, if unwrapped

phase values are estimated by integrating the wrapped rather than the unwrapped gradients,

the resulting phase-�eld estimate does depend upon the choice of integration paths in the

2-D plane. In other words, some sets of observed wrapped gradients may not be self con-

sistent given the assumption that the underlying phase �eld represents a physical surface.

This is illustrated by the 2 � 2 set of wrapped phase values in Fig. 2.2. Because the data

are not conservative, di�erent unwrapped solutions are obtained for di�erent integration

paths. Moreover, the closed loop integral shown gives a nonzero result called a `residue,'

and the data are hence analogous to the physically unrealizable staircase of the sketch by

M. C. Escher shown in Fig. 2.3.

In order to avoid such inconsistencies, Goldstein et al. [1988] proposed a method for

estimating a conservative set of unwrapped gradients from the observed wrapped gradients.
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Figure 2.2 A 2�2 example array of wrapped phase values that is inconsistent with the assumption
of adequate sampling. The clockwise loop integral of wrapped gradients indicated in (a) has a nonzero
(+1) result. The unwrapped solutions in (b) and (c) from simple wrapped-gradient integration
depend on the choice of integration path (shown as arrows). The lower-right values of the two
unwrapped solutions di�er.

In this approach, a clockwise loop integral of wrapped phase gradients is calculated for each

2 � 2 square of neighboring pixels in the input array (see Fig. 2.4). Because the wrapped

gradients are usually equal to the unwrapped gradients, these loop integrals evaluate to

zero throughout most of the array. In some places, however, residues of +1 or �1 cycle

arise. At such locations, the data are known to be inadequately sampled. Whether because

of decorrelation or high-spatial-frequency variations in the true unwrapped signal, nonzero

residues thus indicate local inconsistencies with the assumption that the unwrapped gradi-

ents equal their wrapped counterparts. Goldstein et al. [1988] pointed out that any closed

loop integral of wrapped gradients has a nonzero result if and only if it encloses unequal

numbers of positive and negative residues. Therefore, for a given wrapped phase array,

integration paths that do not enclose unbalanced residues give self-consistent solutions.

The residue-cut algorithm therefore entails the computation of an unwrapped solution

from some integration path that does not encircle unbalanced residues. To �nd such a path,

`cuts' are designated between residues. These cuts are de�ned as barriers over which the

phase gradients may not be integrated. They are arranged in tree-like structures such that

each tree spans equal numbers of positive and negative residues (i.e., there are the same

number of positive and negative residues on each tree). Thus, because integration paths

are disallowed from crossing any cuts, no integration path can encircle unbalanced residues.

Wrapped gradients along allowable paths may then be safely assumed to lie within the

[��; �) interval. In other words, phase gradients are allowed to exceed one-half cycle in

magnitude only at locations of cuts; by avoiding cuts, the remaining phase gradients can
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Figure 2.3 \Ascending and Descending," by M. C. Escher. The physically unrealizable staircase
represents a nonconservative gradient �eld. c
2001 Cordon Art BV, Baarn, The Netherlands. All
rights reserved. Used with permission.
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Figure 2.4 Residues resulting from an example wrapped phase array. The large numbers represent
wrapped phase values, in cycles, and the smaller numbers are the results of the clockwise wrapped-
gradient loop integrals.

1.0 1.3 1.2 1.1

0.9 1.1 1.4 1.3 0.9 0.8

0.8 0.9 0.6 0.5 0.8 0.7

0 0 0 0 0

0 +1 0 −1 0

0 0 0 0 0

0.7 0.8 0.7 0.6 0.7 0.6

1.2 0.9

Figure 2.5 An example unwrapped solution from the residue cut algorithm for the wrapped data
of Fig. 2.4. The large numbers represent unwrapped phase values, in cycles, while the heavy black
lines denote cuts connecting the positive and negative residues. Unwrapped phase gradients that
are not crossed by cuts are assumed to be in [��; �).
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be integrated to determine a self-consistent unwrapped solution (see Fig. 2.5).

Because cuts represent possible locations of phase discontinuities, the residue-cut algo-

rithm involves an attempt at minimizing the total length of cuts in the scene. Although

the exact minimum generally cannot be found, as discussed in Chapter 3, the residue-cut

algorithm is fast and usually quite accurate. A major drawback of the algorithm, however,

is that it does not always provide a complete solution. Since the algorithm produces cuts

that sometimes close on themselves in low-coherence, residue-dense parts of the input inter-

ferogram, large areas of the 2-D array may be closed o� from other areas with no allowable

integration paths connecting them. An unwrapped solution may thus contain holes.

Cusak et al. [1995] and Buckland et al. [1995] have both proposed variations on the

residue-cut algorithm that involve di�erent ways of selecting the arrangements of cuts. Col-

lectively, these approaches have in the literature been variously called residue-cut, branch-

cut, cut-line, and ghost-line algorithms. Here, we treat them together as versions of the

same basic residue-cut approach.

Note that this approach assumes that corresponding unwrapped and wrapped phase

values may di�er only by integer numbers of cycles. This property, called congruence, is an

a priori assumption in the algorithm's formulation of the phase unwrapping problem. Not

all algorithms assume congruence, however.

2.3 Least-Squares Algorithms

Like the residue-cut algorithm, least-squares algorithms are based on the assumption that

the observed wrapped phase �eld is adequately sampled nearly everywhere. Rather than

integrate gradient estimates along explicit paths, however, algorithms in the least-squares

family compute unwrapped solutions that minimize the total squared departure of the

estimated unwrapped gradients from their wrapped counterparts. Thus, given a wrapped

phase �eld 	, a least-squares algorithm produces an unwrapped estimate �̂ subject to the

following optimization objective:

minimize

8<
:
X
i;j

w
(x)
i;j

�
��

(x)
i;j �� 

(x)
i;j

�2
+
X
i;j

w
(y)
i;j

�
��

(y)
i;j �� 

(y)
i;j

�29=
; : (2.2)

Here, ��(x) and � (x) are the x components of the unwrapped and wrapped phase gra-

dients, respectively, and ��(y) and � (y) are their y direction counterparts. User-de�ned
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weights w can be assigned to each gradient, and the summations include all appropriate

rows i and columns j. When uniform weights are applied to the data (i.e., w = 1 for all

gradients), the problem is said to be unweighted.

Drawing on work done by Fried [1977], Hudgin [1977], and Hunt [1979], Ghiglia and

Romero [1994] recognized that the least-squares estimate �̂ for a wrapped phase �eld 	 can

be found by solving a version of Poisson's equation:

r2�̂ = r̂2	: (2.3)

The r̂2 operator on the right-hand side represents the di�erentiation of the wrapped gradi-

ents � , which are by de�nition between �� and � rad. That is, for the wrapped data, a

wrapped version of the Laplacian operator is used. On the other hand, for the unwrapped

phase estimate �̂ de�ned on a discrete rectangular grid, the (ordinary) Laplacian operation

denoted by r2 is equivalent to convolution with the kernel

0 -1 0

-1 4 -1

0 -1 0

.

Since the wrapped phase 	 is known (observed), the right-hand side of Eq. (2.3) can be

calculated directly. Then, with Fourier or cosine transforms, Eq. (2.3) can be solved for the

unwrapped estimate �̂. That is, using the convolution theorem [Bracewell, 1986], the kernel

above can be deconvolved from r̂2	 to obtain �̂ through division in the spatial-frequency

domain. With the use of fast transform routines, the unweighted least-squares technique

can thus achieve great computational eÆciency in implementation [Ghiglia and Romero,

1994].

If nonuniform weights are applied, however, the least-squares problem can no longer

be represented by the simple form of Poisson's equation above. For this case, Ghiglia and

Romero [1994] proposed a preconditioned conjugate gradient (PCG) technique that com-

putes weighted least-squares solutions through iterative use of the unweighted least-squares

solver algorithm. The PCG approach is therefore much less eÆcient than the unweighted

approach. It can achieve greater accuracy,1 though, because weights based on a priori in-

formation can be used to allow greater disparities between the unwrapped and wrapped

1We use the term \accuracy" here somewhat subjectively. The issue of how best to quantify the accuracy
of an unwrapped solution is discussed in Chapters 3 and 4.
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gradients at locations where the data are believed to be less reliable. Advantageous weight-

ing schemes may be based on such quantities as interferogram coherence or magnitude, and

much attention has been given to this topic [Pritt, 1996; Ghiglia and Pritt, 1998; Zebker

and Lu, 1998; Chen and Zebker, 2000].

Subsequent to the work of Ghiglia and Romero [1994], many alternate methods have

been proposed for solving the weighted and unweighted least-squares phase unwrapping

problems. These proposals include algorithms based on multigrid techniques [Pritt, 1996],

multiresolution techniques [Davidson and Bamler, 1999], Green's functions [Fornaro et al.,

1996; Lyuboshenko and Mâ�tre, 1999], Fourier-domain vector projections [Costantini et al.,

1999], and region growing [Fornaro and Sansosti, 1999]. In essence, though, these algorithms

all use the same least-squares formulation given in Eq. (2.2) for posing the phase unwrapping

problem.

In the least-squares problem formulation, no gradients are explicitly disregarded as cuts

are in the residue-cut algorithm, so a least-squares unwrapped estimate is usually very

smooth spatially, and it is generally not congruent to the wrapped input. That is, the

unwrapped phase values produced by most least-squares algorithms are unrestricted in the

values they may take; they need not be at integer-cycle o�sets from the wrapped phase

values. Congruence may be enforced in a processing step performed after optimization

[Ghiglia and Pritt, 1998], but only at the expense of least-squares optimality.

In either case, when congruence is not explicitly enforced before optimization, the least-

squares formulation involves the use of a linear estimator with variables (i.e., the wrapped

phase gradients) de�ned on a wrapping, circular space. Bamler et al. [1998] showed that

such least-squares approaches consequently produce biased results, underestimating the

true unwrapped phase gradients. Empirical observations have con�rmed this behavior [Ze-

bker and Lu, 1998; Ghiglia and Pritt, 1998; Chen and Zebker, 2000]. Thus, despite their

reasonable eÆciency and mathematical elegance, most least-squares algorithms often give

disappointing results in practice. They do, however, always generate complete solutions.

2.4 Minimum L
p-norm Framework

The residue-cut and least-squares approaches di�er greatly in character with respect to both

problem formulation and empirical results. Ghiglia and Romero [1996], however, introduced

a unifying framework that neatly captures many of the theoretical relationships between
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the two. Under this framework, phase unwrapping is treated as an optimization problem;

an objective function maps possible unwrapped solutions to scalar values, and the goal is

to �nd the solution that minimizes the value of the objective function. Ghiglia and Romero

[1996] suggested for the phase unwrapping problem an Lp-norm objective function of the

form

minimize

8<
:
X
i;j

w
(x)
i;j

�����(x)i;j �� 
(x)
i;j

���p +X
i;j

w
(y)
i;j

�����(y)i;j �� 
(y)
i;j

���p
9=
; : (2.4)

This function is least when the unwrapped and wrapped gradients �� and � agree as

much as possible, though as described above, they usually cannot be equal everywhere if

the unwrapped gradient �eld is to be self consistent. The parameter p thus determines how

di�erences between �� and � are penalized, and user-de�ned weights w can be assigned

to individual row or column gradients. The summations include all appropriate rows i and

columns j.

When p = 2, Eq. (2.4) reduces to Eq. (2.2). That is, the least-squares problem described

in the previous section is simply a special case of the more general minimum Lp-norm

problem, or for brevity of notation, the Lp problem. On the other hand, in the limit as

p approaches zero (henceforth p = 0 or L0), the objective becomes minimization of the

total weighted number of unwrapped gradients that di�er from their wrapped counterparts.

Thus, the residue-cut algorithm's objective reduces to minimizing the unweighted L0 norm,

and the algorithm is categorized as an L0 algorithm. This is so even though the residue-cut

algorithm does not guarantee the exact L0 optimality of its solutions.

In proposing the Lp framework, Ghiglia and Romero [1996] also developed an algorithm

for use with arbitrary Lp norms. However, this algorithm, based on the calculus of vari-

ations, �nds only local rather than global minima for p < 1. The algorithm also requires

iterative use of a weighted least-squares solver, and hence doubly iterative use of an un-

weighted least-squares solver, so it is very intensive computationally. Furthermore, because

the algorithm does not assume congruence in its problem formulation, it is prone to the

slope-underestimation e�ects described in Section 2.3.

More important than any actual solver implementation, though, is the Lp framework's

ability to link theoretically the objectives of the residue-cut, least-squares, and other algo-

rithms. By expressly casting the phase unwrapping problem as an optimization problem,

a fundamental question is brought to light: What is the optimization objective whose use
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leads to the most accurate unwrapped solutions? We address this question in Chapters 3

and 4.

2.5 Network Flow Formulation

The Lp framework is very useful for describing and analyzing optimization objectives, but

the framework itself does not prescribe speci�c methods by which these objectives are to be

minimized. For that purpose, network theory2 provides considerable insight into both the

minimization problem and algorithms for its solution. Network theory is studied in a wide

variety of �elds because of its generality and applicability to di�erent types of problems.

With its application to the phase unwrapping problem, much is gained from the work done

on other topics in which the same ideas apply.

Throughout the history of SAR interferometry, many network ideas have been used

in the context of phase unwrapping, either implicitly or explicitly [Goldstein et al., 1988;

Ching et al., 1992; Buckland et al., 1995; Flynn, 1997]. Costantini [1998], however, was

the �rst to propose an explicit network model for the phase unwrapping problem itself. In

his network model, the wrapped gradient loop integral around each 2 � 2 square of pixels

(see Section 2.2) is represented by a node. Nodes corresponding to positive and negative

residues are assigned single units of surplus and demand of some imagined commodity.

Flow3 of this commodity is allowed on arcs which connect neighboring nodes. The resulting

grid-like network (see Fig. 2.6) therefore contains one arc for each phase gradient. As was

pointed out in Section 2.1, it is these phase gradients that must be estimated to obtain

an unwrapped solution. Therefore, the network model's arcs, and the quantities of 
ow on

them, play a critical role in relating wrapped and unwrapped phase �elds.

The network problem entails the arrangement of 
ow on some subset of the arcs, from

surplus nodes, through intermediate nodes, to demand nodes. Flow must be conserved at

all nodes: The total 
ow out of any node must equal the total 
ow in, plus or minus the

node's surplus or demand. When this constraint is met, the solution is said to be feasible.

Physically, the amount of 
ow on an arc represents the di�erence ���� between the

2We adopt the notation of networks containing nodes and arcs rather than that of graphs containing
vertices and edges. We use the former to describe both, neglecting their subtle di�erences for simplicity
sake.

3Note that the term \
ow" can be used to describe either a 
ow on an arc or the arrangement of 
ow
throughout a network.
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Figure 2.6 An example network equivalent of the phase unwrapping problem. The numbers
represent a 2-D array of phase samples (normalized to one cycle). Each 2�2 clockwise loop integral
of wrapped phase gradients is a node in the network, and positive and negative residues result in
supply and demand nodes. Neighboring nodes are connected by arcs, or possible 
ow paths.

unwrapped and wrapped gradients associated with that arc, where the direction of the 
ow

determines the sign of the di�erence. The importance of the network model lies in the fact

that any feasible 
ow arrangement corresponds uniquely to a valid, residue-free unwrapped

solution. That is, if 
ow is conserved at a node in the network model, the loop integral of

the corresponding unwrapped gradients is zero. Thus, a wrapped phase �eld de�nes the

locations of surplus and demand nodes in a network, and feasible-
ow solutions for this

network problem determine self-consistent sets of unwrapped gradient estimates that can

be integrated along arbitrary paths to produce unwrapped solutions.

Lp objectives can still be used to determine which feasible 
ows|that is, which un-

wrapped phase �elds|are most favorable. Costantini [1998] pointed out that because

arc 
ows correspond to the quantity �� � � , the network problem is linear in the 
ow

variables when the L1 metric is used [see Eq. (2.4)]. Therefore, fast, existing minimum-cost-


ow (MCF) solver routines can be used to �nd L1-optimal unwrapped phase �elds. These

solvers, designed for generic network applications, associate optionally weighted arc 
ows

with scalar costs and compute solutions that minimize the total cost. By taking advantage

of the special network structure of the problem, these routines attain much greater eÆciency

than can be had from general-purpose linear optimization algorithms (see the text by Ahuja

et al., [1993]). Such speed is especially important for phase unwrapping applications, which

typically contain millions of variables.
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It should be noted that Flynn [1997] used MCF ideas to propose an L1 algorithm that

predates Costantini's. Flynn did not explicitly adopt a network model, however, and he

did not explore the relationships between network theory and phase unwrapping. We hence

treat Flynn's algorithm as a speci�c implementation of the general MCF approach whose

theoretical signi�cance was �rst explored by Costantini [1998].

The applicability of the network model can also be extended beyond the L1 MCF ob-

jective. Since the network model is independent of the criteria chosen for optimization,

algorithms other than those using the L1 norm can be viewed from a network perspective

as well. For example, cuts in the residue-cut algorithm represent locations of possible phase

discontinuities, so cuts are related to arcs that have nonzero 
ow in the network model.

For least-squares algorithms, in which unwrapped and wrapped phase gradients are not

necessarily congruent, 
ows on the equivalent network might be noninteger. In either case,

the network model remains completely general.

Note that an even more general form of the network model includes upper and lower

bounds on the arc 
ows. We assume here, however, that the arcs are unconstrained in the

amounts of 
ow they may carry, so long as 
ow is conserved. We also assume bidirectional

arcs, meaning that 
ow may go in either direction on any arc; the sign of the 
ow denotes

its direction. In some contexts, bidirectional arcs are equivalently represented by pairs of

oppositely directed unidirectional arcs for notational reasons [Ahuja et al., 1993].

2.6 Other Approaches

The concepts described above overview the most popular of existing phase unwrapping

approaches. Other more novel approaches are possible, too, though. For example, Collaro

et al. [1998] proposed a genetic algorithm that implements a survival-of-the-�ttest approach

for choosing wrapped-gradient integration paths. Xu and Cumming [1999] proposed a

region-growing approach that examines not only horizontal and vertical phase di�erences,

but diagonal ones as well. Algorithms such as these remain unproven, but their diversity

illustrates the open-ended nature of the phase unwrapping problem.



Chapter 3

Optimization Objectives and

Complexity

As described in the previous chapter, phase unwrapping is often cast as a constrained

optimization problem in which the objective is to minimize the value of some function

that maps possible unwrapped solutions to scalar costs. This approach follows naturally

from our want of the best possible|optimal in some sense|unwrapped solutions to the

problems with which we are faced. Consequently, in this and the following chapters, we use

an optimization framework for our development of a new phase unwrapping algorithm.

In constructing an optimization algorithm for our purpose, we face two main tasks: (1)

setting up the problem, and (2) solving the problem. That is, we must �rst choose criteria

for evaluating possible phase-unwrapped solutions and embody these criteria in an objective

function that leads to accurate solutions when optimized. We must then develop means by

which optimal or approximately optimal solutions in terms of this objective function may be

practically and eÆciently computed. In this chapter, we examine the relationships between

these two tasks, laying the theoretical groundwork upon which we will build in Chapters 4

and 5.

The empirical performance records of existing Lp-norm algorithms elucidate many facets

of the phase unwrapping problem, so we open this chapter with a discussion of the di�erent

Lp objectives, analyzing both their accuracy and ease of solution. Because we wish to go

beyond the restrictive limits of the Lp-norm framework, however, we next generalize the

problem by formulating objective functions composed of independent, arbitrarily shaped

cost functions which a�ord us great 
exibility in setting up an optimization problem. Solving

22
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the arbitrary-cost-function problem is very diÆcult, though. We show in Appendix A

that this problem is NP-hard, indicating that for all practical purposes, the problem is

impossible to solve in an exact sense. We thus conclude this chapter by justifying the use

of approximations in the development of real-world algorithms.

3.1 Minimum L
p-norm Approaches

Algorithms described by the minimum Lp-norm framework [Ghiglia and Romero, 1996]

constitute only a subset of general optimization approaches, but their well-established per-

formance records [Ghiglia and Pritt, 1998] provide instructive case studies of di�erent op-

timization strategies. As described in Chapter 2 and repeated here for convenience, the Lp

optimization objective can be written

minimize

8<
:
X
i;j

w
(x)
i;j

�����(x)i;j �� 
(x)
i;j

���p +X
i;j

w
(y)
i;j

�����(y)i;j �� 
(y)
i;j

���p
9=
; (3.1)

where ��(x) and � (x) are the x components of the unwrapped and wrapped phase gra-

dients, respectively, and ��(y) and � (y) are their y direction counterparts. Wrapped

gradients always assume values between �� and � rad. User-de�ned weights w are as-

signed to all neighboring-pixel phase di�erences (gradients), and the summations include

all appropriate rows i and columns j.

It is important to note that we treat Lp norms and other objective functions as generic

optimization criteria, independent of the methods used to minimize them and distinct from

any speci�c algorithm implementations. Di�erent algorithms may use the same objective

function for guiding the unwrapping process, but if they use di�erent solver routines, they

may arrive at strikingly di�erent results.

With this in mind, we treat congruence as an additional constraint on the optimization

problem. When this constraint is enforced, corresponding unwrapped and wrapped phase

values may di�er only by integer numbers of cycles. Congruence therefore has the e�ect of

making the solution space for unwrapped gradients discrete rather than continuous. Nev-

ertheless, any objective function can still be used to compare di�erent allowable solutions.

Moreover, for the L0 objective with integer weights, there always exists an optimal solution

that is congruent (see Appendix A). The same is true for the L1 objective [Ahuja et al.,

1993]. With the L2 objective, though, a noncongruent optimum is generally better (in the
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L2 sense) than one computed under the assumption of congruence.1 Note, however, that

the former solution loses L2 optimality|even over the set of strictly congruent solutions|if

it is forced into congruence after optimization as described by Ghiglia and Pritt [1998].

3.1.1 L
p Objectives

It has been repeatedly suggested that the goal of phase unwrapping should be to minimize

the total weighted length of discontinuities in the unwrapped phase, as in the L0 metric

[Goldstein et al., 1988; Buckland et al., 1995; Ghiglia and Romero, 1996; Ghiglia and Pritt,

1998]. This idea has some intuitive appeal, and in topographic applications of SAR inter-

ferometry, for example, it corresponds to minimizing the length of physical discontinuities

in a real surface. Empirically, L0 and L1 algorithms have also tended to be more accurate

than L2 algorithms [Ghiglia and Pritt, 1998; Zebker and Lu, 1998; Chen and Zebker, 2000].

If it is in fact more desirable to minimize the L0 objective than other Lp criteria, the ac-

curacy of L1 algorithms might be explained by the observation that L0- and L1-optimal

solutions are often very similar, and are identical when the gradients of the optimal un-

wrapped phase �elds di�er from their wrapped counterparts by exactly one cycle or not

at all [i.e., (�� � � ) 2 f�1; 0; 1g cycles]. This may be the case in noisy, low-relief ar-

eas of an elevation-mapping interferogram, where residues exist mainly in positive-negative

pairs. However, if the true topographic phase signature in the interferogram contains large

discontinuities, as from layover for example, corresponding unwrapped and wrapped phase

gradients may di�er by many cycles. In such cases, the L1 objective assigns high costs to

these multiple-cycle discontinuities and might instead favor an incorrect set of single-cycle

discontinuities. A simpli�ed example of such a situation is depicted in Fig. 3.1; the L0-

optimal 
ow correctly re
ects the multiple-cycle discontinuities introduced by layover, but

the L1-optimal 
ow results in a global error.

Still, L1 solutions are appealing in that they can be calculated exactly and quite eÆ-

ciently (see Chapter 2), and our ability to �nd good L1 solutions may compensate, to some

degree, for de�ciencies in the objective itself. On the other hand, �nding or computing

exact L0 solutions is very diÆcult. The residue-cut algorithm approximates L0 behavior

reasonably well in areas of good coherence, but very poorly in other areas [Goldstein et al.,

1988]. The Ghiglia and Romero [1996] minimum Lp-norm (LPN) algorithm converges on

1This can be shown by simply evaluating the L2 norms of solutions from the respective algorithms for
the same input data.
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Figure 3.1 Topographic phase residue arrangement and L0- and L1-optimal 
ows resulting from
the presence of layover. Radar illumination is from the left, and hence range increases towards the
right. The brightness of the left panel represents the true unwrapped phase of a scene containing
two features in layover. Discontinuities along the left edges of these features result in the residue
arrangement shown. The arrows represent 
ow in the directions indicated, with magnitudes denoted
by the numbers. The L0-optimal 
ow (middle) correctly matches the true 
ow arrangement (left),
while the L1-optimal 
ow (right) is incorrect.
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only local rather than global minima when p = 0. Buckland et al. [1995] proposed a

minimum-cost matching algorithm and claimed that it �nds \the global minimum of total

cut length," but they assume that cuts are allowed only between positive-negative residue

pairs (matchings), whereas a global L0 minimum generally contains extended discontinu-

ities (trees) with many residues on them. Carballo [2000] also asserted the solvability of the

L0 problem, describing linearization methods that can be used to solve nonlinear problems

under certain conditions. Those conditions, however, reduce to the well-known requirement

of convexity [Ahuja et al., 1993; Nash and Sofer, 1996], while the L0 objective function is

far from convex in optimization space.

No known algorithm can eÆciently compute an exact, globally minimal L0 solution, and

we describe below and prove in Appendix A that in all likelihood, none will ever be able

to do so in the general case. Nevertheless, an objective function's computational diÆculty

does not necessarily detract from its appeal; L0 algorithms relying on approximations and

heuristics are therefore still very useful in practice even though they cannot compute exact

L0-optimal solutions.

3.1.2 Example Lp Results

We now examine a topographic test interferogram in order to illustrate the characteristics of

the Lp algorithms described above and in Chapter 2. The interferogram, shown in Fig. 3.2(a)

with magnitude in gray-scale brightness and phase in color, depicts a desert region north of

Death Valley, California. The interferogram is formed from SAR images acquired 105 days

apart by the European Space Agency ERS-1 satellite. This 1250� 830 pixel interferogram,

comprising �ve looks in azimuth and a single look in range, is shown with range increasing

towards the right. The projected pixel spacing on the ground is approximately 20 m in

both dimensions. Figure 3.2(b) shows the estimated interferogram coherence, calculated

from twenty looks in azimuth and four looks in range. Here, the coherence is shown in color

while the interferogram magnitude is again shown in gray-scale brightness. For topographic

reference, we use the 30 m posting U.S. Geological Survey (USGS) digital elevation model

(DEM) shown in Fig. 3.2(c), where the elevation is represented in color and a shaded-relief

image generated from this DEM is shown in gray-scale brightness. The DEM's rms accuracy

of 7.5 m is suÆcient for identifying unwrapping errors since the interferogram ambiguity

height is approximately 80 m.

The variety of topographic features in this interferogram allows us to analyze several



CHAPTER 3. OPTIMIZATION OBJECTIVES AND COMPLEXITY 27

0 2π
Phase (rad)

880 2030
Elevation (m)

(c)(b)(a)

0 1
Correlation

Figure 3.2 Death Valley topographic test data: (a) interferogram with wrapped phase in color and
magnitude in gray-scale brightness; (b) measured coherence in color with interferogram magnitude
in gray-scale brightness; (c) reference DEM with elevation in color and shaded relief in gray-scale
brightness.
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Algorithm Execution Time (s) Memory Usage (MB)

Least-squares 220 50

MCF 350 400

LPN 1960 70

Residue-cut 12 10

Table 3.1 Algorithm execution times and memory requirements for Death Valley test data on a
Hewlett-Packard C-180 workstation.

problems often encountered in phase unwrapping. Running in azimuth in the middle of the

image are long discontinuities resulting from layover, while the top of the image contains

areas of rough topography. The bottom is relatively smooth, although it is not without

areas of low correlation.

Algorithm performance results are shown in Fig. 3.3 for the (a) L2 least-squares, (b)

L1 MCF, (c) L0 LPN, and (d) L0 residue-cut algorithms. The least-squares algorithm is

implemented using a preconditioned conjugate-gradient (PCG) technique with congruence

applied after optimization [Ghiglia and Romero, 1994; Ghiglia and Pritt, 1998]. The other

algorithms are implemented as described in Chapter 2. Weightings for the results in (a){(c)

are based on the thresholded interferogram coherence magnitude, while the results in (d)

are unweighted since the residue-cut algorithm does not accept weights. For all panels, the

color represents relative unwrapped phase error, calculated by subtracting the DEM-derived

unambiguous phase from the algorithm solutions. The gray-scale brightness again shows

the interferogram magnitude. For the residue-cut result, areas in black indicate that no

solution was produced. Algorithm execution times are summarized in Table 3.1.

Since these algorithms all produce congruent solutions, phase errors due to incorrect

unwrapping can be easily identi�ed as areas di�ering from their surroundings by integer

numbers of cycles. Other errors of less than one cycle may be due to atmospheric e�ects

[Zebker et al., 1997], inaccuracies in the DEM, noise in the interferogram, or artifacts from

the transformation and registration of the DEM to radar coordinates. In any case, it is easy

to distinguish the patch-like, integer-cycle unwrapping errors from other errors. Of course,

there is always an unknown constant o�set in interferogram phase, so we can determine error

only in a relative sense. Color di�erences between patches thus indicate relative errors, and

the quality of an unwrapped solution can be evaluated by its degree of color homogeneity.



CHAPTER 3. OPTIMIZATION OBJECTIVES AND COMPLEXITY 29

(a) (b)

(d)

-20 20
Relative Error (rad)

(c)

Figure 3.3 Relative unwrapped-phase errors for the Death Valley test data from di�erent Lp

algorithms: (a) least-squares (L2); (b) MCF (L1); (c) LPN (L0); (d) residue-cut (L0). The inter-
ferogram magnitude is shown in gray-scale brightness. Black areas in (d) indicate that no solution
was produced.
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As is evident by the massive color segmentation in (a), the least-squares algorithm is

highly inaccurate when congruence is applied only after optimization. The poor performance

of this algorithm is an example of the idea that unless an algorithm's optimization criteria

are reasonable, its solutions will be unreliable, regardless of how elegantly or eÆciently these

solutions are computed.

The MCF and LPN algorithms perform better, but they both still segment the scene

into large pieces with relative elevation errors on the order of the 80 m ambiguity height.

The residue-cut algorithm is very accurate where it unwraps in the areas of gentle terrain,

but it fails to produce a solution for nearly half the interferogram. Notably, the LPN

and residue-cut algorithms generate very di�erent solutions from the same (L0) objective

function. Furthermore, despite our expectation that the L0 norm should lead to more

accurate results than the L1 norm, the L1 MCF solution is qualitatively comparable to if

not better than the L0 LPN and residue-cut solutions. In fact, the solution that is best

in the coherence-weighted L0 sense is produced by the MCF algorithm, even though this

algorithm optimizes an L1 objective. The quality of an algorithm's unwrapped solution is

thus determined not only by its objective function, but also to a great extent by its method

of solution.

All of the solutions shown in Fig. 3.3 are characterized by signi�cant error. While this

lack of accuracy clearly motivates the approach put forth in subsequent chapters, the results

also have another, more subtle implication: In order to achieve the best possible algorithm

performance, attention must be paid to both setting up and solving the phase unwrapping

optimization problem.

3.2 Setting up the Problem: Generalized Cost Functions

Minimum Lp-norm methods are popular and have led to reasonable success in many phase

unwrapping applications, but they are by no means the only optimization approaches avail-

able. In this section, we generalize the optimization framework so that we may more 
exibly

set up a phase unwrapping optimization problem. In the most general case, an optimization

objective may involve minimizing any function of the set of all phase values:

minimizefG�;	(�;	)g : (3.2)
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Here, G(�) is the objective function to be minimized, and � and 	 are the sets of all

unwrapped and wrapped phase values � and  , respectively (the capital letters denote

arrays or vectors). Because unwrapped and wrapped phase �elds are completely speci�ed

by their unwrapped and wrapped gradients, except for an additive constant not of interest

here, the general optimization objective can be expressed equivalently as

minimizefG��;�	(��;�	)g (3.3)

where �� and �	 are the sets of all unwrapped and wrapped phase gradients �� and � ,

in both the row-wise and column-wise directions.

In the interests of computational eÆciency, however, the objective function is commonly

assumed to be separable so that the objective can be written

minimize

8<
:

MX
i=1

N�1X
j=1

g
(x)
i;j

�
��

(x)
i;j ;� 

(x)
i;j

�
+

M�1X
i=1

NX
j=1

g
(y)
i;j

�
��

(y)
i;j ;� 

(y)
i;j

�9=
; (3.4)

where ��(x) and � (x) are the x-direction unwrapped and wrapped phase gradients, respec-

tively, and ��(y) and � (y) are their y-direction counterparts for a 2-DM�N array. In the

range-azimuth coordinate system of a side-looking imaging radar, we de�ne ��(r) = ��(x),

� (r) = � (x), ��(a) = ��(y), and ��(a) = ��(y). The functions g(�) are called cost

functions, and they are each unrestricted in form. Transforming the 2-D arrays of Eq. (3.4)

into 1-D vectors, we can collapse the above expression into a simpler but equivalent form:

minimize

(X
k

gk (��k;� k)

)
: (3.5)

With these cost functions de�ning the optimization objective, our task in setting up the

problem is to formulate appropriate expressions for gk(��k;� k), for all k.

Under the minimum Lp-norm framework described by Eq. 3.1, the cost functions are

de�ned by

gk(��k;� k) = wk j��k �� kjp : (3.6)

Example plots of these functions are shown in Fig. 3.4. Although Lp cost functions have

performed reasonably well empirically as described above, their simple geometric shapes
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Figure 3.4 Cost functions for the Lp family of objective functions. The abscissa is the normalized

ow, or the di�erence in cycles between the unwrapped and wrapped gradients. Normalized costs
are plotted for the unweighted case.

have little physical meaning. Indeed, there is no theoretical reason that exactly optimal Lp

solutions should be correct with respect to the true unwrapped phase: Lp objectives are

just abstract mathematical quantities which often lead to workable solutions.

Solutions from Lp objectives are also highly dependent on the weights used to indi-

vidually scale the cost functions within a scene. The subject of advantageous weights has

been widely examined (see, for example, Zebker and Lu [1998], Ghiglia and Pritt [1998],

and Chen and Zebker [2000]), but because all cost functions for a given Lp objective nec-

essarily have the same principal shape throughout an interferogram, most investigations

have treated cost function shape and scaling as two distinct issues. The generalized cost

functions of Eq. (3.5), on the other hand, may di�er in both shape and scaling. Because

the cost function for each neighboring-pixel phase di�erence in the interferogram has its

own individual form|arbitrary and independent of all others|generalized cost functions

provide us with great freedom in the formation of optimization objectives.

The generalized framework does not prescribe speci�c objectives, though. We address

that challenge in Chapter 4. We point out for now, however, that on a theoretical level,

assumptions are unavoidable in setting up the optimization problem. This is because, as

stated in Chapter 2, an unwrapped phase �eld necessarily contains information unavailable

in the wrapped data alone. As a result, no single objective can lead to perfectly correct
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solutions in all circumstances.

3.3 Solving the Problem: NP-hardness

Solving the phase unwrapping optimization problem is no less important than setting it

up, as demonstrated by the results of Fig. 3.3. Solving the problem, however, often in-

volves a new level of intractability|the diÆculty of optimizing the L0 objective is a case

in point. Algorithms have been developed for exactly minimizing the L1 and L2 norms

[Flynn, 1997; Costantini, 1998; Ghiglia and Romero, 1994], but these objectives are only

special, highly simpli�ed cases of the generalized problem expressed by Eq. (3.5). Without

such simpli�cations, the problem is NP-hard, or in other words, is one of the most diÆcult

problems known to complexity theory; it is believed that such problems cannot be solved

exactly by eÆcient algorithms (the exact meaning of NP -hardness is described below). In

this section, we describe our method for proving the NP-hardness of the phase unwrapping

optimization problem. The proof itself is given in Appendix A. We brie
y review the idea

of NP-hardness here, but the reader is directed to references such as the text by Garey and

Johnson [1979] for more detail on this subject.

Complexity theory holds that in all likelihood, exact solutions to NP-hard problems

cannot be computed in polynomial time. A polynomial-time algorithm is one whose worst-

case number of operations or worst-case running time is bounded by some polynomial in

the size of the problem instance. Suppose, for example, that the maximum number of

operations performed by some phase unwrapping algorithm is n2, where n is the number

of pixels in the input interferogram. Because n2 is a polynomial in the problem size, the

algorithm is said to run in polynomial time. On the other hand, if the number of operations

performed by the algorithm can be limited only by a term such as 2n or n!, the algorithm's

computational complexity cannot be bounded by any polynomial in n as n gets large.

Clearly, an algorithm whose execution time increases exponentially or factorially with the

number of input variables quickly becomes impracticable. Of course, an algorithm's average-

case complexity may be much less than its worst-case complexity, but as explained below, we

nevertheless have little hope of eÆciently computing exact solutions to NP-hard problems.

NP-hard problems derive their diÆculty from a more restrictive set of problems known as

class NP-complete. NP-complete problems are posed as questions with yes-or-no answers,

and among other interesting characteristics, any NP -complete problem can be transformed
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into any other NP-complete problem in polynomial time. Therefore, if some polynomial-

time algorithm could solve any one NP-complete problem, it could also be used to solve

all others in polynomial time as well. Such an algorithm has never been found to exist,

however, and the prevailing assumption in the �eld is that no such algorithm can exist.

Problems in class NP-hard are those that, if solvable exactly, could also yield solutions to

NP-complete problems through polynomial-time transformations.2

Thus, to show that the general phase unwrapping optimization problem of Eq. (3.5) is

NP-hard, we show that some NP -complete problem can be polynomially transformed into it.

More speci�cally, we show that if a hypothetical black box could solve the L0 optimization

problem, it could also be used to solve any instance of an NP-complete problem called the

Rectilinear Steiner Tree (RST) problem [Garey and Johnson, 1977]. We address the details

and subtleties of this transformation in Appendix A, proving the NP-hardness of the L0

problem. Since any algorithm that solves the general phase unwrapping problem also solves

the L0 problem, the general problem is NP-hard as well. Therefore, without simplifying

assumptions such as those that restrict cost function shapes to those of the L1 or L2 norms,

phase unwrapping is at least as diÆcult as any NP-complete problem and is among the

most diÆcult known to complexity theory.

3.4 Implications of Intractability

Despite the intractability of the problem, there remains a very real need for phase un-

wrapping. The diÆculty of the problem therefore suggests not that we should abandon our

e�orts, but merely that we should direct them towards the design of practical, approximate3

algorithms rather than necessarily exact or mathematically elegant ones.

The lack of complete information in a wrapped phase array and the NP-hardness of

the general optimization problem imply intractability on multiple levels, however. We must

therefore balance our approximations between setting up and solving the problem if we are

to pursue simultaneously the dual goals of formulating an accurate objective function and

developing a practical optimization routine for it. That is, the problem should neither be

set up with an objective function that is easily solvable but prone to give inaccurate results,

2The letters \NP" arise because problems in a class called `class NP ' are accepted by a hypothetical
nondeterministic Turing machine in polynomial time. See the text by Garey and Johnson [1979].

3While the term \approximate" implies algorithm performance guarantees and/or complexity bounds in
some contexts, its meaning in this dissertation is colloquial and simply denotes inexactness.
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nor should it be set up with an objective function that is theoretically ideal but impossible

to optimize robustly.

The need for balance between theoretical rigor and computational manageability does

not imply that the two always trade o�, however. In the following two chapters, we propose

methods for enhancing both. Chapter 4 describes generalized, statistical cost functions

wherein phase unwrapping is viewed through the lens of maximum a posteriori probability

(MAP) estimation. Chapter 5 describes network-
ow techniques for computing approximate

solutions to the nonlinear optimization problem implied by Chapter 4. The simpli�cations

and approximations in either chapter may make aspects of the algorithm nonideal individ-

ually, but our intent is to design a working algorithm that provides the best possible results

overall.



Chapter 4

Statistical Cost Functions

We have thus far shown that phase unwrapping can be cast as a nonlinear optimization

problem; we must now decide what to optimize. Our optimization criteria, expressed math-

ematically as objective functions, will be used to guide the solver routines of Chapter 5.

Thus, our task for this chapter is to derive objective functions that lead to accurate solutions

when minimized.

Aiming to strengthen the physical foundations of these optimization objectives, we pose

phase unwrapping as a maximum a posteriori probability (MAP) estimation problem which

we set up using generalized, nonlinear cost functions. Because the problem statistics vary for

di�erent phase unwrapping applications, however, the MAP framework implies the need for

application-speci�c optimization objectives. Such objectives should yield greater accuracy

than can be obtained from more generic approaches. Here, we examine topographic and

deformation-mapping applications of SAR interferometry, deriving MAP cost functions for

each.

Of course, the accuracy of the MAP approach depends greatly on our ability to model the

elaborate probability relationships of the problem. Such relationships are very diÆcult to

formulate exactly, however, and realistic solver routines cannot guarantee exact solutions to

the subsequent NP-hard minimization problem in any event. Consequently, our approach

here is pragmatically geared towards the design of a more modest algorithm that|even

if inexact|provides signi�cantly better results in an applied, practical sense than other

existing algorithms. Following this philosophy, we approximate the problem statistics with

simple models whose re�nement we leave for later work. We present here the general

methodology and practical application of our approach, focusing on physical insight rather

36
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than mathematical detail.

4.1 MAP Cost Functions

The generalized cost functions of Eq. (3.5) allow the phase unwrapping problem to be set

up with great 
exibility, and we now use this 
exibility to design an optimization objective

based on MAP estimation. That is, given a 2-D wrapped phase �eld 	, we develop an

objective function such that its minimization results in an estimate �̂ of the true unwrapped

phase �eld �, where �̂ approximately maximizes the conditional probability density function

(PDF) f(�j	).
In our notation, the capital letters denote arrays, while lowercase letters denote indi-

vidual entries in those arrays. That is, �� is the set of all unwrapped gradients �� in

an interferogram, where �� is any particular row-wise or column-wise gradient (uppercase

and lowercase letters are not random variables and their speci�c instances). We use the

function f(�) to signify both probability mass and density functions; unless otherwise noted

by a subscript, f(�) describes the random variable or variables in its argument. Thus, for

example, f(�j	) is equivalent to f�j	(�j	).
We begin our formulation of the MAP objective by changing its variables, without loss

of generality, as in Eq. (3.3). Instead of dealing with the phase values themselves, our goal

now is to estimate the set of all unwrapped gradients �� given the set of all wrapped

gradients �	. We next assume that the PDF f(��j�	) is separable, implying that the

individual unwrapped phase gradients �� are statistically independent given their wrapped

counterparts � and given the knowledge that the resulting unwrapped phase �eld � is a

residue-free (irrotational) surface. This latter condition is enforced by our solver routine

(see Chapter 5), which ignores invalid, nonfeasible solutions. Of course, our assumption

of independence is not strictly correct, but its viability is born out by empirically veri�ed

results (see Chapter 7), and it is in any case required for computational tractability. Thus,

f(��j�	) =
Y
k

f(��kj� k): (4.1)

The product with index k in this expression is taken over all rows and columns for the

sets of both row-wise and column-wise (range and azimuth) gradients. Using logarithms,

we transform the maximization of this product into the minimization of a sum, and the
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Figure 4.1 Example unwrapped gradient PDF f(��), marked at the discrete values of �� that
are allowed under the assumption of congruence. Congruence limits �� to values at integer-cycle
o�sets from � (indicated by dots). The relative probabilities of these values of �� are determined
by the nonconditional PDF f(��). Other values of �� have zero probability given � . Note that
the shape of the PDF shown here is for illustration only and does not necessarily depict our model
for the statistics of real data.

objective becomes

minimize

(
�
X
k

log (f(��kj� k))
)
: (4.2)

Treating Eq. (4.2) as a special form of Eq. (3.5), we thus de�ne our MAP cost functions as

the negative logarithms of the unwrapped-gradient PDFs:

gk(��k;� k) = � log (f(��kj� k)) : (4.3)

These cost functions may be further simpli�ed through our assumption of congruence,

which limits an unwrapped gradient to the discrete set of values at integer-cycle o�sets from

the wrapped gradient (see Fig. 4.1). Speci�c instances of a particular unwrapped gradient

then have probabilities that may be expressed in terms of the gradient's nonconditional

PDF as
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f(��j� ) =

8>>>><
>>>>:

f��(��)
1X

m=�1

f��(� +m2�)

if �� = � + n2�;

0 otherwise

(4.4)

where n andm are integers. Note that f(��j� ) represents a probability mass, not density,
function. The denominator of the fraction does not depend on �� and thus has no e�ect

on the minimization problem of Eq. (4.2). Consequently, we need model only the individual

unwrapped-gradient distributions f(��) and evaluate them at integer-cycle o�sets from the

wrapped phase. Our MAP cost functions then become

gk(��k;� k) = � log (f(��k)) for ��k � � k + n2�: (4.5)

Subject to our assumptions, the minimization of these cost functions maximizes the condi-

tional probability of the unwrapped solution given the wrapped data.

As with any MAP estimate, however, the unwrapped solution bene�ts from the inclusion

of additional information. Intensity and coherence information are present in all SAR

interferograms, so we explicitly rewrite f(��) as a conditional PDF, recasting Eq. (4.5) as

gk(��k;� k) = � log (f(��kjI; �)) for ��k � � k + nk2� (4.6)

where I is the average of the intensities of the SAR images forming the interferogram,

and � is the magnitude of the interferogram complex correlation coeÆcient [Zebker and

Villasenor, 1992]. The interferogram phase statistics may be represented very compactly

in this form by the term f(��jI; �), but this conditional PDF actually embodies untold

complexity. The shape of the PDF also varies throughout the interferogram, so di�erent

unwrapped gradients have di�erent cost functions based on the local values of I and �.

Moreover, di�erent applications have di�erent statistics, so we must treat each application

separately. In the following sections, we model the phase noise statistics common to di�erent

applications then derive speci�c cost functions for topographic and deformation-mapping

applications of SAR interferometry.
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4.2 Phase-Noise Statistics

For geophysical applications, unwrapped phase values � represent measurements of some

physical quantity in the presence of noise. We now model the statistics of the noise, which

we treat as an additive quantity corrupting the true unwrapped phase signal. Thus, for

each pixel,

� = �signal + �noise (4.7)

and, for each unwrapped gradient,

�� = ��signal +��noise: (4.8)

Note that �noise represents phase noise, not the phase of the complex noise.

Given the coherence magnitude, the phase noise is unrelated to the intensity and in-

dependent of the measured signal. That is, any dependence of ��noise on I or ��signal

is subsumed by knowledge of �. Thus, the conditional unwrapped-gradient PDF is the

convolution of the probability densities corresponding to Eq. (4.8):

f(��jI; �) = f(��signaljI; �) � f(��noisej�): (4.9)

Lee et al. [1994] derived analytical expressions for wrapped, multilook interferometric

phase-noise PDFs f( noisej�), and in areas of high correlation, these PDFs can be approxi-

mated by zero-mean normal distributions with variance �2 noise . Since the correlation varies

slowly across most parts of the interferogram, neighboring phase-noise terms can usually

be treated as identically distributed as well as independent. In areas of high correlation,

their di�erence ��noise, the second term on the right-hand side of Eq. (4.8), can then be

modeled by a zero-mean Gaussian random variable whose variance �2��noise is twice that of

the individual wrapped phase-noise variances:

�2��noise = 2�2 noise : (4.10)

We thus calculate �2��noise from a model for the single-pixel phase-noise standard deviation

� noise . Our model, shown in Fig. 4.2 as a function of � for di�erent numbers of independent

looks Ni, is based on similar plots given by Li and Goldstein [1990], Rodriguez and Martin
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Figure 4.2 Model interferometric phase-noise standard deviation � noise
as a function of interfer-

ogram coherence � for di�erent numbers of independent looks Ni.

[1992], and Lee et al. [1994]. The number of independent looks Ni is generally not equal

to the actual number of complex looks Nc since the size of a resolution element is usually

larger than the size of a pixel. If the correlation changes rapidly from one pixel to the next,

Eq. (4.10) can be modi�ed so that �2��noise is calculated from the two di�erent values of

�2 noise involved in the gradient.

For phase gradients located where the correlation is low, our normal approximation

for ��noise is less valid. For example, if the data are completely decorrelated, the PDF

f(��noisej� = 0) is triangular, resulting from the convolution of two uniform (��; �) distri-
butions. Rather than take on the computation burden of iterative hypergeometric-function

evaluations as required by the exact PDF expression, however, we maintain the normal

approximation in our algorithm even for low-coherence areas.

Several curves representing our model phase noise PDFs f(��noisej�) for di�erent values
of � are plotted in Fig. 4.3. The Gaussian functions shown reasonably approximate the true

PDFs even though the latter should be nonzero only for j��noisej < 2�.

In calculating �2��noise from the observed coherence, we must also be aware of the bias
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Figure 4.3 Model interferometric phase-noise PDFs f(��noisej�) for di�erent values of � and
twenty independent looks.

introduced by the common coherence estimator

�̂ =

������������

NcX
k=1

s1ks
�
2kvuut NcX

k=1

js1kj2
NcX
k=1

js2kj2

������������
: (4.11)

Here, �̂ is the biased estimate of the true coherence magnitude �, s1 and s2 are the sig-

nals forming the interferogram, \�" denotes complex conjugation as before, and Nc is the

number of complex pixels (looks) used for the estimate. Touzi et al. [1999] found an ex-

act expression|involving another hypergeometric function|for the expected value of �̂ in

terms of � and Ni. We use a piecewise-linear model based on these results to estimate �

from �̂.

Independently, Carballo and Fieguth [2000] proposed phase-noise weights for an L1 min-

imization problem using an approach similar, but not identical, to the one described here.

Lyuboshenko and Mâ�tre [1999] used phase-noise statistics in an attempt to correct for

the biases inherent in least-squares unwrapped phase estimates. Neither approach gave

much consideration to the statistics of the signal part of Eq. (4.9), though. They instead

assumed that unwrapped and wrapped gradients virtually never di�er by more than one
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cycle. Because of physical discontinuities in the measured signal, however, multiple-cycle

phase gradients are in fact quite common and very important in many phase unwrapping

applications. We model their statistics below.

4.3 Topography Measurements

If we are to model the statistics of our interferometric data, we must consider, in addition

to noise, the signal components of our unwrapped gradients. These are represented by the

�rst term on the right-hand side of Eq. (4.9). However, because the signal statistics are

determined by the physical nature of the interferometric measurements, we must model

these statistics separately for di�erent phase unwrapping applications. We do so in this

section for topographic SAR interferometry, de�ning �topo = �signal and ��topo = ��signal.

If the topography-independent (
at-earth) phase signature is removed from the interfer-

ometric data, the true unwrapped topographic phase at a particular pixel is approximately

related to the relative local surface elevation z by

�topo =
�4�B?

�r sin �
z (4.12)

where B? is the component of the interferometer baseline perpendicular to the radar signal,

� is the signal wavelength, r is the range, and � is the look angle with respect to nadir (see

Fig. 1.2) [Zebker and Goldstein, 1986]. An unwrapped topographic gradient ��topo thus

depends nearly linearly on the physical surface slope �z, although care must be taken to

properly interpret measurements in the SAR range-azimuth coordinate system.

Separating the intensity and correlation dependencies of the unwrapped topographic

gradient, we apply Bayes' rule to rewrite the gradient's conditional PDF as

f(��topojI; �) = f(��topojI)f(�j��topo; I)
f(�jI) : (4.13)

The denominator on the right-hand side does not depend on ��topo, so we need model

only the numerator for our optimization problem. We assume that the correlation � is

independent of the intensity I given the actual topography ��topo, so

f(��topojI; �) / f(��topojI)f(�j��topo): (4.14)
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We now treat the two terms on the right-hand side of this expression in turn.

4.3.1 Topography and Intensity

The �rst PDF on the right-hand side of Eq. (4.14) describes the relationship between to-

pography and intensity; to quantify this relationship, we model the dependence of the radar

image brightness on the local surface slope. The close correspondence between the two is

evident upon inspection of any SAR image, and e�orts have been devoted to both the re-

covery of topographic information from SAR intensity alone [Guindon, 1990] as well as the

correction of radiometric measurements for topography-induced intensity e�ects [Goering

et al., 1995].

The coherent nature of SAR images|the very quality that permits interferometry|

also causes speckle in the intensity, however. Because speckle complicates the inference of

topographic information from image brightness, we use an adaptive speckle-removal �lter

based on ideas from Lopes et al. [1993]. Our �lter computes the mean intensity E[I] of

a variably oriented rectangular window, selecting the window orientation that maximizes

contrast with the local background. While the subjects of speckle statistics and speckle

removal have been examined extensively (see the text by Oliver and Quegan [1998]), we

assume perfect speckle removal to avoid unduly complicating our model PDFs. We then

normalize E[I], dividing by a coarse moving-window average.

We relate the normalized, speckle-removed image intensity to the surface topography

using

E[I] = C�0A (4.15)

where �0 is the local normalized radar cross section of the illuminated surface, A is the

area of the surface contributing to the measurement, and C is a scaling factor which may

be ignored if the intensity data are normalized. Topography enters this equation as both

�0 and A are functions of the local signal incidence angle �i. We obtain expressions for

these quantities by using a facet model to represent the ground surface demarcated by a

single range-azimuth pixel (see Fig. 4.4). In the model's right-handed (x; y; z) coordinate

system, earth curvature is neglected, and x and z are aligned with increasing ground range

and elevation. The ground-range and azimuth pixel spacings are denoted by �x and �y,

respectively, and their corresponding components of local elevation change are denoted by
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Figure 4.4 Facet model used to relate topography to the brightness of a single SAR range-azimuth
pixel. Note that �x depends on both �r and �z(r).

�z(r) and �z(a). Note that through Eq. (4.12), �z(r) and �z(a) are nearly proportional to

the topographic parts of the unwrapped phase gradients. Note also that while the slant-

range bin spacing �r is constant, the ground-range spacing depends on the local slope

through

�x =
�r

sin �
+
�z(r)

tan �
: (4.16)

Assuming that the SAR viewing direction is exactly normal to the sensor velocity vector

(i.e., the squint angle is zero), we thus obtain the following two equations:

cos �i =

�
�z(r)=�x

�
sin � + cos �q�

�z(r)=�x
�2
+
�
�z(a)=�y

�2
+ 1

(4.17)

A =
q
(�y�z(r))2 + (�x�z(a))2 + (�x�y)2: (4.18)

Similar expressions have also been derived elsewhere [Ulander, 1996].

Guided by Eq. (4.15), we next examine the normalized cross section �0, for which a

variety of models exist (see the texts by Elachi [1987] and Ulaby et al. [1981]). We adopt
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Figure 4.5 Dependence of model normalized cross section �0 on local signal incidence angle �i
for kds = 0:02 and n = 8.

the model used by Goering et al. [1995] because of its ease of evaluation given Eq. (4.17):

�0 =

8<
: kds cos

2 �i + cosn 2�i cos �i if cos 2�i > 0;

kds cos
2 �i otherwise

: (4.19)

Here, kds is a model parameter that determines the ratio of the two terms on the top

line of the right side of Eq. (4.19); these terms can be thought of as di�use and specular

components of backscatter from the surface. The parameter n determines the sharpness of

the specular peak with incidence angle. We have dropped a constant scaling factor from the

model since we deal only with normalized intensity data as described above. An example

curve of �0 from the model is plotted in Fig. 4.5.

Incorporating the scattering model of Eq. (4.19) and the viewing geometry relations

of Eqs. (4.17) and (4.18) into Eq. (4.15), we arrive at a model for the SAR intensity as a

function of topography. For the scattering model parameters, we use values of kds = 0:02 and

n = 8, �nding them to give good agreement between the real and simulated SAR intensity

images shown in Fig. 4.6. The simulated image is generated from a digital elevation model

(DEM), projected into radar coordinates, with only range components of slope used in our

brightness model as explained below. Chapter 3 contains more detail about both the SAR

data and the DEM. As evidenced by the agreement between the two images, the observed
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(a) (b)

Figure 4.6 Comparison of (a) actual, normalized SAR image intensity with (b) simulated intensity
from a DEM and scattering model. The similarity of the two images suggests that observed intensity
information can be used to guide the topographic phase unwrapping process.

intensity is a valuable source of information about the surface topography and is fairly well

reproduced with our model. The scattering model parameters may require adjustment for

other terrain types, though.

In Fig. 4.7, we plot the expected image intensity as a function of the range slope �z(r) for

the case of zero slope in azimuth (�z(a) = 0). The curve is normalized so that a horizontal

surface (�z(r) = 0) has unit expected intensity. The curve is symmetric about its zero for

which the local signal incidence angle is 90Æ. This zero occurs when �z(r) = �z
(r)
0 (see

Fig. 4.8), where

�z
(r)
0 = ��r cos �: (4.20)

Negative values of �z(r) greater than �z
(r)
0 correspond to surfaces sloping away from the

radar, while positive values of �z(r) correspond to surfaces sloping towards the radar. The

intensity increases without bound as �z(r) becomes large and the local incidence angle

approaches zero (�z(r) ! 1, �z(r)=�x ! tan �, cos �i ! 1) because a single range bin

then encloses in�nite area (i.e., the facet model becomes invalid). A surface for which

�z(r) < �z
(r)
0 may be in either layover or shadow. Surfaces in shadow usually have negligible
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Figure 4.7 Model intensity as a function of slant-range elevation change for zero azimuth slope.
The solid line represents the expected intensity E[I ] from Eq. (4.15); the dashed line is a piecewise
linear approximation to the solid line.
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Figure 4.8 Normal incidence on the ground surface. We de�ne �z
(r)
0 to be the elevation change

from one range bin to the next when the local incidence angle is 90Æ.
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brightness, so, for the purpose of deducing topography from intensity, we assume that the

surface is in layover when �z(r) < �z
(r)
0 . Thus, for example, if �z(r) = ��r= cos �, the

surface is vertical, like the face of a cli�. Such a surface is physically sloped towards the

radar, but the true elevation decreases as the slant range increases (see Fig. 4.9). As �z(r)

becomes in�nitely negative, �i again approaches zero and E[I] again becomes in�nite.

Because variations in image intensity are much more dependent upon slopes in range

than in azimuth, as described by Guindon [1990], we deal with range and azimuth gradients

separately, beginning with the former. Qualitatively speaking, foreshortening e�ects from

the SAR imaging geometry tend to make the range components of signi�cant slopes much

greater than the azimuth components. When the azimuth components are more signi�cant

than the range components, the total slope is often relatively low and presents little diÆculty

in phase unwrapping. Hence, at each pixel of the input image, with �z(a) = 0, we can invert

the relation illustrated in Fig. 4.7 to �nd an expected slant-range slope from our computed

value of E[I]. To facilitate this inversion, we further simplify our brightness model by using

a piecewise-linear approximation to E[I] (dashed line in Fig. 4.7).

If there is no layover, then �z(r) > �z
(r)
0 and the observed intensity E[I] corresponds

uniquely to some expected local range slope �z
(r)
I . This slope, the elevation change in

range from one pixel to the next, can be related to the unwrapped gradient �� through

Eq. (4.12). We therefore expect a peak in the PDF f(��
(r)
topojI) at ��I , the unwrapped

gradient corresponding to the layover-absent expected slope �z
(r)
I .

The PDF must also account for the possibility of layover, though, especially because

layover often causes signi�cant phase unwrapping errors. Where there is layover, however,

the observed pixel intensity is not directly related to the desired slope. This is because

multiple parts of the imaged surface fall into the same range bin, as illustrated in Fig. 4.10.

A large phase discontinuity arises from the elevation jump between range bins r0 and r1,

but the brightness of range bin r1 does not indicate the magnitude of this discontinuity.

Furthermore, range bin r2 appears bright because it contains part of the front face of the

mountain, yet its unwrapped phase is usually assumed to represent the elevation of the

mountain's back face.

In order to model the e�ects of topography on intensity where there is layover, we note

that the elevation change from range bin r0 to r1 in Fig. 4.10 is related to the full height

of the illustrated mountain. We note also that the height of the mountain is equal to the

integral of the slope along one of its faces. Therefore, because slope is related to brightness
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Figure 4.9 Regimes of the slant-range slope �z(r): (a) the ground surface slopes towards the

radar when �z(r) > 0; (b) the surface slopes away from the radar when �z
(r)
0 < �z(r) < 0; (c)

the surface can be in layover when �z(r) < �z
(r)
0 ; (d) the surface can also be in shadow when

�z(r) < �z
(r)
0 . The part of the ground surface marked by the heavy line segment is mapped into

the indicated range bin. The brightness model of Fig. 4.7 describes the contribution of this part of
the surface to the range bin's expected intensity. In (c), other parts of the surface also map into the
same range bin because of layover. In (d), the relevant part of the surface is in shadow and is hence
not illuminated. Note that �z(r) is identical for (c) and (d); we assume case (c) for this value of
�z(r).
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Figure 4.10 Pro�le of a mountain in layover. The range bins r0{r9 represent contours of constant
range from the radar. The elevation z and mean intensity E[I ] are plotted as they map into slant
range for this pro�le. Because of layover, multiple parts of a surface may map into the same range
bin; the closed dots and open circles represent intersections of the ground surface with the range
contours. Unwrapped phase values are usually assumed to represent elevations at the closed dots,
but echoes from the locations of the open circles complicate the topography-intensity relationship
where layover exists.
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through Eq. (4.15), we can estimate the severity a layover discontinuity by examining the

intensities of all range bins containing part of the face in layover (e.g., range bins r1 and r2 in

Fig. 4.10). We therefore compute �zlay, de�ned as the expected maximum elevation change

of an unwrapped gradient straddling a layover discontinuity, for each pixel as follows. First,

we compare the local intensity to a predetermined threshold value. If the intensity is below

this threshold, layover is deemed unlikely. Otherwise, we convert the intensity to a layover-

face range slope using the relation of Fig. 4.7 over the layover regime (�z(r) < �z
(r)
0 ). We

then integrate the similarly calculated, intensity-derived range slopes for the next several

pixels in increasing range to obtain �zlay. The true elevation change may be less than �zlay,

though, since some of the bright pixels contributing to the integrated value may actually

correspond to slopes that are not in layover (�z(r) > �z
(r)
0 ). Layover thus forces us to

incorporate more features into our model for the unwrapped gradient PDF f(��
(r)
topojI). In

addition to the peak at ��I , we expect the PDF to have a wide, platform-like section with

an upper cuto� at ��lay, the unwrapped gradient corresponding to �zlay. This section

re
ects the probability that the local phase gradient ��
(r)
topo indeed straddles a layover

discontinuity.

Layover causes further complications, however. A pixel whose unwrapped phase cor-

responds to a mild, negatively sloped back face, such as range bin r2 in Fig. 4.10, may

appear bright because it contains part of the face in layover. The true unwrapped gradient

would then be unrelated to the computed values for �z
(r)
I and �zlay. Since a gradient

straddling a layover discontinuity cannot be easily distinguished from the gradients in the

bright area beyond the layover discontinuity, we must account for the probability of the

latter in f(��
(r)
topojI). We therefore include in the PDF a peak at a slightly negative value

near zero, denoted ��back (the exact location of this peak is not important for now). The

resulting model is shown qualitatively in Fig. 4.11(a). It is asymmetric because as range

increases, an upwards step in elevation due to layover is usually much more likely than a

downwards one.

We have thus far considered PDFs only for unwrapped gradients in range, yet gradients

in azimuth are equally important for phase unwrapping though they may have little e�ect

on intensity and correlation. The azimuth PDFs f(��
(a)
topojI) are shaped somewhat like

the range PDFs f(��
(r)
topojI) since the physical mechanisms behind the two are similar. As

illustrated in Fig. 4.11(b), however, the azimuth PDFs are two-sided and symmetric due

to the azimuthal symmetry of the SAR viewing geometry. Where layover is not expected,
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the azimuth gradient PDF, like the range gradient PDF, consists only of a single peak. We

assume that this peak is located at zero rather than at ��I , though, since the value of ��I

is determined mainly by the range component of the local slope (see above). Where layover

is possible, the azimuth PDF contains both shelf-like regions and peaks at ���back. These
features, similar to those of the range PDF, arise because layover-induced discontinuities

often contain azimuth as well as range components. The layover shelf cuto� ��lay thus has

the same value for azimuth as it does for range.

While such a PDF does suggest that some azimuth gradients may indeed be very large,

it does not necessarily invalidate our assumption above of small azimuth gradients. This

assumption holds as long as local range gradients are more signi�cant than their azimuth

counterparts. Moreover, as explained above, gradients that straddle layover discontinuities

do not a�ect the intensity in proportion to their magnitude.

4.3.2 Correlation and Topography

Having a qualitative model for f(��topojI), we now return to Eq. (4.14) and consider

f(�j��topo), the conditional PDF of the local coherence given the unwrapped gradient.

While we have already described the relationship between the coherence and the phase noise

(see Fig. 4.2), � is also related to the topographic part of the unwrapped gradient through

spatial or baseline decorrelation. Zebker and Villasenor [1992] obtained an expression for

this decorrelation factor, denoted �s:

�s = max

�
0; 1� 2 jB?jRr

�rj tan �ij
�
: (4.21)

Here, r is the slant range, Rr is the slant-range resolution, and we again assume that range

slopes are much more signi�cant than azimuth slopes. We also assume that the data have

not been spectrally �ltered in range [Gatelli et al., 1994]. Thus, as the range slope increases

and the local incidence angle decreases, the correlation decreases as well.

In the presence of layover, however, several di�erent parts of the surface map into the

same pixel, and the multiplicity of local incidence angles makes Eq. (4.21) inapplicable.

Correlation measures for areas in layover are generally very low, though, because of actual

decorrelation as well as the random complex superposition of the di�erent signals contribut-

ing to the interferometric phase. We assume that the observed correlation will be zero in

these areas. Similar assumptions are made implicitly in phase unwrapping schemes that
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Figure 4.12 Comparison of (a) an interferogram correlation image with (b) a DEM-derived
range-slope image.

use correlation information alone for weighting Lp cost functions [Pritt, 1996; Ghiglia and

Pritt, 1998].

Figure 4.12 depicts the biased correlation image and a DEM-derived topographic slope

map for the Death Valley data shown in Chapter 3. The slope map, in radar coordinates,

shows only the components of slope in the range direction. Clearly, areas of layover and steep

positive slopes are characterized by signi�cant decorrelation, illustrating the relationship

between � and �z(r). Decorrelation in other parts of the interferogram are likely due to

topography-independent temporal e�ects and thermal noise [Zebker and Villasenor, 1992].

Combining sources of decorrelation other than spatial e�ects into a single variable �other,

� = �s�other: (4.22)

By de�nition, �, �s, and �other are all between zero and one, so �s is an upper bound on
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the expected statistical correlation �. Thus, for a �xed, observed value of �, the function

f(�j��(r)topo) in terms of ��
(r)
topo has an upper cuto� at ��

(r)
topo = ���, the unwrapped

gradient corresponding to a local range slope for which � = �s. In other words, the observed

correlation places an upper limit on the expected range slope; as the correlation becomes

larger, the maximum expected slope becomes smaller. Quantitative values for ��� may

be computed by numerically inverting Eq. (4.21), with the range slope determined from �i

through Eq. (4.17).

The correlation-induced lower limit of the local range slope is �z
(r)
0 if � > 0. Slopes

any more negative would be in shadow and would therefore imply noise-only data with zero

correlation. We de�ne ��
(r)
0 to be the unwrapped range gradient corresponding to a slope

of �z
(r)
0 .

Without more speci�c knowledge of other decorrelation sources, we assume that for a

�xed, nonzero value of �,

f(�j��(r)topo) =

8<
: C(r) if ��

(r)
0 < ��

(r)
topo � ���

0 otherwise
(4.23)

for some constant C(r). At locations in the interferogram where � = 0, we assume that

f(�j��(r)topo) is constant for all possible ��
(r)
topo.

Under the assumption that azimuth gradients are much smaller than range gradients,

the upper cuto� ���, as calculated for the local range gradient, also serves as an upper

cuto� for the azimuth expression f(�j��(a)topo) as a function of ��
(a)
topo. Because of azimuthal

symmetry, ���� is this function's lower cuto�. Thus, for a �xed, nonzero value of �,

f(�j��(a)topo) =

8<
: C(a) if ���� � ��topo � ���

0 otherwise
(4.24)

where C(a) is another constant. Both f(�j��(r)topo) and f(�j��(a)topo) are plotted in Fig. 4.13.

4.3.3 Topographic PDFs and Cost Functions

Guided by Eq. (4.14), we may now combine the two PDFs f(��topojI) and f(�j��topo) re-
lating the local unwrapped gradient to the observed intensity and correlation. The resulting
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Figure 4.13 Model conditional PDFs f(�j��topo) for �xed, nonzero � as functions of (a) the

unwrapped topographic range gradients ��
(r)
topo and (b) azimuth gradients ��

(a)
topo. Note that the

curves shown, because they are functions of ��topo rather than �, are not PDFs themselves.
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PDF f(��topojI; �) describes the topographic signal component of a particular unwrapped
gradient. Together with the shape of the corresponding noise PDF f(��noisej�), the shape
of f(��topojI; �) determines the shape of the full PDF f(��jI; �). From models for these

PDFs, we can proceed to form our MAP cost functions through Eq. (4.6).

Equation (4.14) states that the combined, conditional topographic PDF f(��topojI; �)
is proportional to the product of f(��topojI) and f(�j��topo). As shown in Fig. 4.13,

f(�j��topo) is, for the most part, either zero or a constant, so our model for f(��topojI; �)
has a shape similar to that of f(��topojI). However, the shelf cuto� ��max of f(��topojI; �)
is determined by the lesser of the intensity-derived cuto� ��lay and the correlation-derived

cuto� ���:

��max = min f��lay;���g : (4.25)

Figures 4.14 and. 4.15 illustrate f(��topojI; �) for range gradients and azimuth gradients.

With the topographic PDF modeled, we now form our full conditional PDFs and MAP

cost functions through Eqs. (4.9) and (4.6). We begin by noting that the sharp peaks

of f(��topojI; �) illustrated in Figs. 4.14(b) and 4.15(b) are likely much narrower and

much closer together than the width of the Gaussian noise PDF with which they are con-

volved. Consequently, the full PDF f(��jI; �) is characterized mainly by the width of

the noise PDF and the critical unwrapped-gradient values ��back, ��I and ��max. We

hence simplify our model by assuming that after convolution with the noise PDF, the nar-

row peaks at 0, ��back, and ��I can be modeled by a single, wide hump, as shown in

Figs. 4.14(c) and 4.15(c). That is, the convolution removes much of the apparent structure

from f(��topojI; �), resulting in the simpler PDF f(��jI; �) which has fewer parameters.

This simpli�cation is important in implementation because an independent set of param-

eters, computed from the local observables, must be maintained in computer memory for

each phase di�erence in the interferogram.

Through Eq. (4.6), the negative logarithm of f(��jI; �) is the continuous-valued cost

function g(��), which we can evaluate at integer-cycle o�sets from � to obtain discrete

gradient costs (i.e., 
ow costs) for our topographic phase unwrapping problem. We now

model these cost functions, considering range gradients ��(r) �rst.

When ��max is small compared to the phase-noise variance, layover is unlikely. Our

model PDF f(��(r)jI; �) is then Gaussian with mean ��I , the phase value suggested by
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Figure 4.14 Model PDFs for unwrapped range gradients in topographic applications. The

PDFs f(��
(r)
topojI) and f(�j��

(r)
topo) are shown overlaid in (a); their product leads to the combined

topographic-term PDF f(��
(r)
topojI; �) in (b). The �nal PDF f(��(r)jI; �) in (c), which contains

both signal and noise terms, results from the convolution of the topographic-term PDF with a Gaus-
sian noise PDF. The labeled model parameters depend on the local observables and vary throughout
the interferogram.
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topo) are shown overlaid in (a); their product leads to the combined

topographic-term PDF f(��
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topojI; �) in (b). The �nal PDF f(��

(a)jI; �) in (c), which contains both
signal and noise terms, results from the convolution of the topographic-term PDF with a Gaussian
noise PDF. The labeled model parameters depend on the local observables and vary throughout the
interferogram.
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the single-pixel intensity. The cost function g(r)(��) is therefore a parabola centered on

��I . The width of this parabola is the PDF standard deviation ���. Since variances add,

�2�� = �2��noise + �2meas: (4.26)

The �rst term on the right-hand side represents the phase-noise variance calculated from the

measured correlation (Fig. 4.2). We implement the second term as a constant representing

uncertainty in our estimates of E[I] and �.

In parts of the interferogram where the upper cuto� ��max is large compared to the

phase-noise variance, the cost function must include a shelf-like region that accounts for

the probability of layover. This region extends out to ��max for positive gradient values,

and its cost is based on the conditional probability of layover. In our implementation, we

assume a constant, empirically derived layover cost g
(r)
lay. Because backface slopes are also

likely near layover, the central parabola of our layover cost function is centered on �� = 0

instead of �� = ��I , and �
2
�� includes an extra term �2lay :

�2�� = �2��noise + �2meas + �2lay: (4.27)

The new term represents our uncertainty in the location of the true peak because of layover.

Beyond ��max, the cost function increases quadratically at a rate related to ���.

Thus, the cost function for a particular range gradient is illustrated in Fig. 4.16 and

described by parameters computed from the local observables as summarized in Table 4.1.

We quantify these cost functions with the following parameterized model. Let

��
(r)
crit =

q
g
(r)
lay�

2
�� (4.28)

with �2�� calculated from Eq. (4.27). If ��max � ��
(r)
crit,

g(r)(��) =

8>>>><
>>>>:

��2

�2��

if �� � ��
(r)
crit;

g
(r)
lay if ��

(r)
crit < �� � ��max;

(�����max)2

Ctail�
2
��

+ g
(r)
lay if �� > ��max

(4.29)

where Ctail is an empirically derived constant. Conversely, if ��max < ��
(r)
crit, we de�ne
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Figure 4.16 Example cost functions for topographic range gradients. In parts of the interferogram
where ��max is large, layover is expected and the cost functions have shelf-like regions (solid line).
Where ��max is small, the cost functions consist only of parabolas (dashed line).

Parameter Predominant Physical Source

��� �

��max integrated E[I ], �

��I single-pixel E[I ]

glay conditional layover probability

Table 4.1 Predominant physical sources of the topographic cost-function parameters shown in
Figs. 4.16 and 4.17.
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Figure 4.17 Example cost functions for topographic azimuth gradients. In parts of the interfero-
gram where ��max is large, layover is expected and the cost functions have shelf-like regions (solid
line). Where ��max is small, the cost functions consist only of parabolas (dashed line). Unlike the
range cost functions of Fig. 4.16, the azimuth cost functions are symmetric about ��(a) = 0.

�2�� according to Eq. (4.26) and assume

g(r)(��) =
(�����I)

2

�2��
: (4.30)

Our azimuth cost functions may be derived in an analogous manner and are also de-

scribed by the parameters listed in Table 4.1. Because both range and azimuth cost func-

tions are determined by the same physical mechanisms, their shapes are very similar. The

parameter ��� is the same for both because the same noise processes a�ect both. The pa-

rameter ��max is also the same since the parameters ��lay and ��� are common to both,

as described above. The layover-discontinuity shelf cost g
(a)
lay for azimuth may be greater

than g
(r)
lay, though, as discontinuities are more likely across range gradients.

The most important di�erence between range and azimuth cost functions, however, is

the two-sided nature of the azimuth cost functions (see Fig. 4.17). This symmetry follows

from the symmetry of the azimuth PDFs illustrated in Fig. 4.15. We thus quantify the

azimuth cost functions by letting

��
(a)
crit =

q
g
(a)
lay�

2
�� (4.31)
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with �2�� calculated from Eq. (4.27). If ��max � ��
(a)
crit,

g(a)(��) =

8>>>><
>>>>:

��2

�2��

if j��j � ��
(a)
crit;

g
(a)
lay if ��

(a)
crit < j��j � ��max;

(j��j���max)2

Ctail�
2
��

+ g
(a)
lay if j��j > ��max:

(4.32)

If ��max < ��
(a)
crit, layover-induced discontinuities are unlikely and

g(a)(��) =
��2

�2��
(4.33)

where �2�� is calculated from Eq. (4.26).

These MAP cost functions provide a physical framework for the topographic phase

unwrapping optimization problem, but the framework is built upon application-speci�c

assumptions. Consequently, in aiming to increase unwrapping accuracy for one particular

type of interferometric measurement, we sacri�ce general applicability to others. We must

therefore develop additional cost functions matched to the other speci�c applications in

which we are interested.

4.4 Deformation Measurements

SAR interferometry for deformation studies is closely related to the topographic application

described in the previous section, but the two entail di�erent phase statistics and therefore

require di�erent sets of cost functions. In deformation-mapping applications, the unwrapped

interferometric phase measures earth surface displacement that may be due to phenomena

such as earthquakes, volcanism, or glacial 
ow. Deformation interferograms often contain

fewer abrupt changes in unwrapped phase than topographic interferograms, but very large

discontinuities are still possible because of surface fracture and shear. Moreover, while

low fringe rates may sometimes make deformation interferograms relatively easy to unwrap

away from these discontinuities, the areas near discontinuities are often of most interest.

Our derivation of deformation cost functions again begins from Eq. (4.9); we must now

model f(��signaljI; �) with the interferometric signal representing a measurement of surface
displacement. That is, we de�ne �defo = �signal and ��defo = ��signal. The deformation
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phase signature is given by

�defo =
�4�
�

dr (4.34)

where dr is the surface displacement parallel to the radar line of sight|other components of

displacement are not measurable with this technique|and � is again the SAR wavelength

[Gabriel et al., 1989].

Unwrapped deformation gradients ��defo do not depend on intensity in any obvious

way. Although there is sometimes correspondence between topographic features and areas

of large deformation changes, this is not always the case. Moreover, while deformation-

induced decorrelation may lessen an interferogram's magnitude, it has no e�ect on the

intensities of the individual SAR images. Consequently, without further insight into the

expected deformation pattern, we assume that the deformation signal is independent of the

intensity:

f(��defojI; �) = f(��defoj�): (4.35)

On the other hand, the relationship between deformation and correlation is much closer,

as demonstrated by the interferogram and correlation map of Fig. 4.18 (see Chapter 7 for

more details about this interferogram). The interferogram phase measures surface displace-

ment along an earthquake fault, near which large phase gradients arise. Because the surface

moves in opposite directions on either side of the fault, the fault itself coincides with a severe

phase discontinuity. Thus, as suggested by the plain visibility of the fault in the correlation

image, correlation can play an important role in unwrapping deformation interferograms.

Large displacement changes imply distortions of the surface, so they are likely accompa-

nied by signi�cant decorrelation through such mechanisms as temporal scattering changes

[Zebker and Villasenor, 1992] and local misregistration [Just and Bamler, 1994]. We there-

fore account for the probability of a discontinuity where the correlation is low by using the

following simple model. In parts of the interferogram where the correlation falls below a

preselected threshold, the local PDFs f(��defoj�) contain shelf-like regions, similar to those
of our topographic azimuth PDFs (see Fig. 4.15). Where the correlation is high, the PDFs

consist only of single narrow peaks.

Combining the phase-noise PDFs and the unwrapped-gradient PDFs as in Eq. (4.9),

the deformation cost functions are thus shaped as illustrated in Fig. 4.19, where now both
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Figure 4.18 Comparison of (a) a deformation interferogram with (b) its correlation image. Areas
close to the fault trace are associated with low correlation. Both panels show the interferogram
magnitude in gray-scale brightness.

range and azimuth cost functions have identical shapes.

These parameterized deformation cost functions are quanti�ed analogously to our to-

pographic azimuth cost functions of Eqs. (4.32) and (4.33), although di�erent physical

quantities are used for the deformation model parameters. Speci�cally, if the local correla-

tion exceeds some threshold �min, the cost function g(�) at that location consists only of a

parabola|the negative logarithm of the Gaussian noise PDF|centered at zero:

g(��) =
��2

�2��
: (4.36)

Parameter Predominant Physical Source

��� �

��max assumed maximum discontinuity

gd conditional discontinuity probability

Table 4.2 Predominant physical sources of the deformation cost-function parameters shown in
Fig. 4.19.
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Figure 4.19 Example cost functions for deformation phase gradients. Where � < �min, the cost
functions have shelf-like regions (solid line). Otherwise, the cost functions consist only of parabolas
(dashed line).

Where the correlation falls below �min, the cost function also includes shelf-like regions

representing the probability of a discontinuity in the unwrapped phase. The heights of these

shelves, denoted gd, are related to the local conditional probability of a phase discontinuity.

The maximum probable magnitude of this discontinuity determines ��max, the upper shelf

cuto�. Thus, for � < �min,

g(��) =

8>>>><
>>>>:

��2

�2��

if j��j � ��crit;

gd if ��crit < j��j � ��max;

(j��j���max)2

Ctail�
2
��

+ gd if j��j > ��max

(4.37)

where

��crit =
q
gd�

2
�� (4.38)

and Ctail is again a constant. In all cases, �2�� is calculated from Eq. (4.26). Without

more speci�c information, we use empirically or experimentally derived constants for �min,

gd, and ��max. For the results in Chapter 7, these parameters were initially estimated

through visual inspection of the interferogram, then re�ned with further applications of the

algorithm.
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4.5 Statistical Cost Functions and L
p Objectives

In parts of the interferogram where discontinuities are not expected, our MAP cost func-

tions consist simply of parabolas whose widths are determined by the local correlation (see

Figs. 4.16, 4.17, and 4.19). The cost functions are thus sometimes similar in shape to

weighted least-squares (L2) cost functions. On the other hand, where discontinuities are

possible (i.e., where ��max > ��crit for topography and � < �min for deformation), our

cost functions are somewhat similar to L0 cost functions. Our MAP approach therefore

receives some validation from both the successes of existing least-squares algorithms on

noisy interferograms that lack discontinuities as well as the successes of L0 algorithms on

high-coherence interferograms that contain signi�cant physical discontinuities.

Note, however, that while Lp cost functions are always minimal when �� = � , our cost

functions impose no such restriction and need not be centered on the wrapped gradients.

Recall also that we apply the constraint of congruence during rather than after optimization.

Thus, having modeled the statistics of a particular unwrapped gradient, we might expect

the likelihood of an extra cycle of phase to be much higher in one direction than the other.

Consider the case of a wrapped topographic gradient � = 0:4 cycles. If our observations

suggest that the mean topographic slope is near zero (��topo � 0), the true unwrapped

gradient �� is much more likely to have been wrapped from �0:6 than from 1:4 cycles.

Moreover, although above we use cost functions centered at either �� = ��I or �� = 0,

more elaborate models for the cost-function minima are possible; they might, for example,

be determined by averaging wrapped gradients over local neighborhoods.

Our generalized cost functions thus treat unwrapped phase gradients as random draws

from predetermined probability distributions. As the observed data vary from pixel to pixel

throughout the interferogram, the shapes of these distributions vary as well. Hence, our

cost functions, unlike Lp cost functions, are not just scaled, they have entirely di�erent

forms throughout the interferogram.

In this light, Lp cost functions can be viewed as coarse approximations to more-speci�c

MAP objectives. The former might consequently bene�t from weighting schemes based

on the statistical models described in this chapter. As explained in Chapter 3, particular

solver requirements might motivate the use of such statistically weighted Lp cost functions

in certain applications. If our nonlinear MAP cost functions are to be minimized directly,
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however, more powerful solver techniques are needed. We describe solver techniques based

on network-
ow ideas in the next chapter.



Chapter 5

Network-Flow Optimization

Techniques

As discussed in Chapter 3, a phase unwrapping optimization algorithm entails not only set-

ting up the problem, but solving it as well. While the statistical cost functions of Chapter 4

provide a means of evaluating and comparing di�erent unwrapped solutions|setting up the

problem|they do not suggest procedures for computing high-quality solutions|solving the

problem. We describe solver techniques based on network optimization in this chapter. We

brie
y review relevant ideas from network theory as necessary, but the reader is directed to

texts such as the one by Ahuja et al. [1993] for more detail on this subject.

Network concepts are used in a wide variety of �elds because of their generality and

applicability to di�erent types of problems. As the phase unwrapping problem is elegantly

described by a network model (see Chapter 2), we draw upon the rich and well-developed

ideas of network theory here to derive a new nonlinear solver algorithm. In order to in-

troduce this algorithm more easily, however, we �rst describe two new minimum L0-norm

solvers which shed light upon the underlying network structure of the phase unwrapping

problem. Next, using these L0 methods as stepping stones, we propose a simple but slow al-

gorithm for the generalized optimization problem of Eq. (3.4), wherein cost functions may

have arbitrary shapes. Then, combining our preliminary algorithms with several speed-

enhancing techniques, we derive �nally an eÆcient algorithm whose use allows us to solve,

approximately, the MAP estimation problem posed in the previous chapter.

70
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Figure 5.1 Representations of trees: (a) a tree in a grid network; (b) its schematic layout. Nodes
and arcs in heavy black in (a) are on the tree, while other nodes and arcs are not. Node 0 is assumed
to be the tree root in (b), although other tree representations are possible as well. Node 0 is the
parent of nodes 1 and 7, node 1 is the parent of nodes 2 and 6, and so on.

5.1 The Minimum Spanning Tree Algorithm

Among existing phase unwrapping techniques, the residue-cut algorithm (see Chapter 2) is

quite popular because of its speed and relative accuracy. It is severely limited, however, by

its frequent inability to generate complete solutions. In this section, we use the principles of

network theory to develop an improved version of the residue-cut algorithm that guarantees

complete coverage and also allows user-de�ned weights for greater accuracy.

Goldstein et al. [1988] did not describe the original residue-cut algorithm explicitly in

the language of networks, but one concept central to the algorithm's function is that of

the tree. Trees, which are also fundamental to the other algorithms in this chapter, are

connected sets of nodes and arcs which do not contain cycles, or closed loops of arcs. Thus,

with the exception of a root node from which the tree can be thought to hang, all nodes

on the tree have a parent or predecessor node that can be reached through a unique arc

on the tree (see Fig. 5.1). The root node is therefore eventually reached if all of a node's

predecessors are followed back up the tree. Furthermore, tree traversal yields a unique

path between any two nodes on the tree, although a tree need not contain all nodes in the

network. We de�ne a tree branch or a subtree as any connected subset of the tree.
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The original residue-cut algorithm begins with the identi�cation of some nonzero residue,

or charge, in the wrapped data. A cut is then drawn from this charge, through intermediate

nodes, to the next nearest charge (regardless of sign), forming a tree. If the tree is not

neutral, that is, if the tree contains unequal numbers of positive and negative residues, a

cut is drawn to the next nearest charge, expanding the tree. The process continues until

the tree becomes neutral, at which point some other unbalanced charge becomes the root

of a new tree. When all charges are on neutral trees, the phase is integrated in a 
ood-�ll

fashion along some path such that no cuts (tree branches) are integrated over, and hence,

no unbalanced charges are encircled. This approach is generally accurate in areas of high

interferogram coherence, but it has problems in areas of poor coherence where densely placed

cuts close on themselves, preventing integration into whole regions of the interferogram.

Since cuts serve as possible locations of discontinuities, or phase gradients greater than

one-half cycle, the total cut length is an upper bound on the total discontinuity length (i.e.,

the L0 norm). Minimizing the total tree length is thus a reasonable objective, but �nding

the exact minimum involves solving an NP-hard problem called the minimum rectilinear

Steiner tree (RST) problem (see Appendix A). Increasing the tree length does not neces-

sarily increase the total discontinuity length, however, as not all tree branches represent

discontinuities.

We therefore make the following modi�cation to the residue-cut algorithm. When a tree

becomes neutral, we start the next tree at the next nearest charge to the existing tree, and

we actually draw a cut to the new tree. In other words, we build a single tree that contains

all the charges. If this tree were of exactly minimal length, it would be a minimum Steiner

tree. The tree-building process described does not generally result in a minimum Steiner

tree, but it does result in what is called a minimum spanning tree (MST), which reasonably

approximates a minimum Steiner tree. On an unweighted rectilinear network, for instance,

Hwang [1976] showed that an MST can be no longer than 1.5 times the length of an exactly

optimal Steiner tree.

An MST can be de�ned as a tree, of the shortest possible total length, that contains all

nodes of some set S, given the important restriction that only nodes in S may be parents

of multiple nodes. That is, tree branches of an MST are allowed to split only at nodes in S,

whereas in a minimum Steiner tree, branches may split anywhere (see Fig. 5.2). With S as

the set of all charges, the tree-growth process described above is known as Prim's algorithm

[Prim, 1957]. Stated more succinctly, one can build an exact MST by initially designating
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(a) (b)

Figure 5.2 Comparison of (a) a minimum spanning tree and (b) a minimum Steiner tree. Only
nodes in the set S are shown. The branches of the former tree may split only at these nodes, whereas
the branches of the latter tree may split at any node in the network (not shown explicitly).

an arbitrary node in S as the tree root, then adding the shortest path from any node in S

on the tree to any node in S not on the tree, and continuing this way until all nodes in S

are on the tree (see Fig. 5.3). Note that in this case, our MST is meant to span only nodes

of nonzero phase residue (the nodes in S), not all nodes of the network. That is, the tree

spans all nodes of an implied network consisting of the set of all charges and the shortest

paths between these charges. MSTs have been used previously for phase unwrapping in

a di�erent way to connect reliable areas of a phase �eld derived from magnetic resonance

imaging [Ching et al., 1992].

The reader may suspect that our inclusion of additional tree branches would tend to

make even more cuts close on themselves than in the original residue-cut algorithm, leaving

even more holes in the unwrapped solution. However, a true tree, by de�nition, cannot

contain cycles and should never close on itself. Indeed, an examination of the source code of

the original residue-cut implementation reveals that cuts are allowed to close on themselves

only because of their internal computer representation: Cuts are associated with particular

phase values, as in Fig. 5.4. A cut, however, physically represents a phase di�erence between

two adjacent phase values that may be greater than one-half cycle. Since phase values

are associated with both row and column di�erences (i.e., the components of the vector

gradient), cut locations cannot be stored faithfully in association with scalar phase values

alone. Thus, in our algorithm, we associate cuts with phase di�erences as in the network
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Figure 5.3 A minimum spanning tree and the locations of 
ow. A minimum spanning tree
connects all residues (a). The tree branches are possible locations of discontinuities, which occur
where 
ow on the tree is nonzero (b). Numbers in (b) represent 
ow magnitudes.

model, and our tree never closes on itself.

Because of further idiosyncratic behavior in the original residue-cut implementation,

two charges both a distance d away from a tree might both be added through d distance

cuts, even if the addition of one allows the addition of the other through a shorter cut.

Some of the algorithm's cuts are thus longer than necessary, making closed cuts more likely.

We avoid this behavior by following Prim's algorithm more closely. Thus, incorporating

network ideas into our revised algorithm, we can overcome the most signi�cant drawback

of the residue-cut algorithm, the closing of cuts.

Further improvement to the algorithm is found in another network idea that allows the

speci�cation of weights on the input data. Instead of searching for the closest charge to a

tree by examining boxes of increasing size, we can use Dijkstra's shortest-path algorithm

[Dijkstra, 1959; Ahuja et al., 1993]. This well-known algorithm is used to �nd the short-

est paths from a given source node to all other nodes in some network whose arcs have

nonnegative integer lengths or weights. By using Dijkstra's algorithm to �nd the nearest

charge to the tree in each step of Prim's algorithm, we can de�ne weights on individual

phase gradients, thus guiding the placement of tree branches. Such weights might provide

for greater 
exibility than allowed by the neutral-charge residues, or neutrons, which are

used for similar purposes in some variants of the residue-cut algorithm [Madsen, personal

communication, 2001].
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Figure 5.4 Cut representations. Residues and cuts are associated with phase values (gray boxes) in
the original implementation of the residue-cut algorithm. This allows the cuts to close on themselves
so that pixel X cannot be unwrapped. When discontinuities are associated with phase di�erences

(heavy lines), as in the network model, no pixels are isolated. Note that the tree de�ned by the cuts
indicated is a spanning tree, but not a minimum spanning tree.

Signi�cantly, the collection of shortest paths found by Dijkstra's algorithm constitutes

another tree which spans all nodes in the network and has the source as its root. The

shortest path from any node to the root is simply the path between those two nodes along

this tree. Note that the shortest-path tree produced by Dijkstra's algorithm spans all nodes

of the network, whereas the discontinuity-cut tree for which the MST algorithm is named

need span only nodes of nonzero residues. Nevertheless, the close relationship between the

two indicates the ubiquity of spanning-tree ideas in network theory. As we will revisit the

shortest-path tree in the following sections, we simply point out its existence for now; all

subsequent references to trees in this section refer to the discontinuity-cut tree.

Bringing together the above ideas, our MST algorithm is summarized as follows. We

begin by selecting one arbitrary charge as the root of our tree. Using the shortest-path

algorithm, we �nd the nearest charge to the tree in the positively weighted network, and we

add this new charge to the tree by zeroing the weights of arcs on the path to it. Since all

nodes on the tree now have a distance of zero between them, we can locate the next nontree

charge nearest to any node on the tree. We successively add nearest nontree charges to the

tree until the tree spans all charges, resulting in an approximate minimum Steiner tree on

the weighted network. Note that we do not follow Prim's algorithm exactly in that we allow

new tree branches to connect not only to charges, but to any nodes in the existing tree.
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algorithm MST

begin

choose one charge as the root of the tree T
while T does not contain all charges do

begin

�nd the shortest path � from any node on T to a charge not on T
incorporate � into T , and set the arc distances in � to zero

end

integrate the phase

end

Figure 5.5 MST algorithm pseudocode.

This relaxation produces a solution whose length is closer to that of the optimal Steiner

tree. Pseudocode is given in Fig. 5.5.

In implementation, eÆciency can be greatly increased by using special data structures

[Dial, 1969; Ahuja et al., 1993] and by recomputing at each stage only the quantities a�ected

by the inclusion of a new tree branch. The edges of the interferogram can be handled, as

Costantini [1998] proposed, by connecting all boundary nodes to a single `ground' node

that is assigned whatever charge necessary to make the network neutral. This is equivalent

to the Goldstein et al. [1988] technique of using a `superconducting' boundary.

To �nd the unwrapped phase associated with the tree formed, we can use the 
ood-

�ll integration method of the residue-cut algorithm since our tree does not close on itself.

Alternately, we can integrate the phase using our knowledge of the network 
ow as is done

in the MCF algorithm (see Chapter 2). Flow, in our case, is restricted to arcs on the tree,

so a unique 
ow is de�ned by the structure of the tree and the arrangement of charges

on it. We can easily determine this 
ow by recursively descending the tree from the root

and integrating charge from the tree leaves back up (as in a depth-�rst search). Doing so

veri�es that many tree branches do not carry 
ow and that by combining all of the trees

of the residue-cut algorithm into one large tree, we do not necessarily add to the overall L0

discontinuity length.

Since the MST algorithm is derived from the residue-cut algorithm, we would expect it

to be just as accurate in the unweighted case, with the extra advantage that a complete

solution is always produced. Moreover, if the user speci�es weights based on ancillary

information, the algorithm can favor cuts in locations where discontinuities are more likely,
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resulting in even greater solution accuracy. Surprisingly, there is no trade-o� in run time for

this increase in capability. In fact, our MST implementation runs even more quickly than

our residue-cut implementation, probably because the latter is burdened by some redundant

searching.

5.2 Dynamic-Cost Cycle Canceling

The MST algorithm is fast because it approximates a global L0 objective by evaluating

only local quantities at every step. Such a strategy may be unreliable where residues

become dense in the input interferogram, however. These situations call for a more complex,

iterative algorithm. We develop such an algorithm in this section by extending the network

ideas of the linear MCF problem to the concave L0 case. The technique we use is called

cycle canceling, and it is similar to the one used by Flynn [1997] in his L1 minimum-

weighted-discontinuity algorithm. Here, we adapt the cycle-canceling technique so that it

makes explicit improvements in the L0 sense to any unwrapped initialization. The result is

an approximate L0 solution.

Linear cycle canceling is discussed at length in the text by Ahuja et al. [1993], so here

we describe the general technique only brie
y. We focus instead on the ways in which

nonlinearities a�ect the cycle-canceling approach in the context of phase unwrapping. We

�rst point out, though, that our convention for representing arcs is di�erent than the one

used by Ahuja et al. [1993]. Because phase gradients may be either positive or negative,

arcs in our network model are bidirectional, or able to carry 
ow in either direction. We

therefore assume that the sign of a 
ow value represents its direction. In references that

primarily address linear problems, however, bidirectional arcs are typically represented by

pairs of oppositely directed unidirectional arcs. This convention allows a network with L1

cost functions, which are only piecewise linear, to be represented entirely by arcs with strict

linear costs over their ranges of allowable 
ow. Thus, at the expense of an increased number

of arcs and 
ow constraints, most L1 algorithms make use of the special characteristics

of linear cost functions. The consequent inapplicability of these algorithms to nonlinear

problems is the motivation for this chapter.

The speci�cs of the phase unwrapping problem also allow one further simpli�cation to

the general network model. Since there are no hard upper or lower bounds on the values of

the phase gradients, we assume that all arcs are uncapacitated, and are hence unconstrained
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Figure 5.6 A cycle-canceling improvement. A nonoptimal 
ow in the L0 sense (a) may be
improved upon by augmenting 
ow on a closed, directed cycle (dashed line) that has a net negative
residual cost. The result (b) is a feasible solution with a smaller total cost. The numbers indicate

ow magnitudes. The cycle shown has a negative cost with respect to the L0 metric for jÆj = 2, but
not for jÆj 6= 2.

in the amounts of 
ow they carry. This di�erence is minor, as an uncapacitated network

can always be viewed as one in which the arc capacities are in�nite.

As might be imagined, the key concept of cycle canceling is that of the cycle. Observe

that if we have a solution for which 
ow is conserved, 
ow conservation is preserved with

the addition of 
ow on a closed, directed cycle (i.e., a loop). That is, since the net 
ow out

of each node remains unchanged, the superposition of a directed 
ow cycle onto an existing

feasible 
ow results in a new feasible 
ow. The idea of cycle canceling is to augment 
ow

on directed cycles that result in new solutions with smaller total costs. An example of such

a cycle is shown in Fig. 5.6.

In order to determine how a cycle a�ects the total solution cost, we examine the residual

network, a collection of nodes and arcs that maintains the state of an iterative algorithm.1 In

our case, the residual network has the same arrangement of nodes and arcs as the original

network. The cost of a residual arc, however, re
ects the incremental cost of sending

additional 
ow on the original arc given its existing 
ow in the current iteration.

As an example, suppose the original network contains an arc (p; q) going from node p to

node q. With L0 cost functions, the cost of arc (p; q) will be zero if its 
ow � is zero, and

some constant cost C otherwise. As shown in Fig. 5.7, the residual network will contain an

1The term \residual" here arises from notational overlap and is unrelated to phase residues.
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Figure 5.7 Original and residual arcs for the L0 network problem. The nonlinearity of the L0

objective makes arc costs in the residual network dependent upon the 
ow in the current solution
as well as the 
ow increment.

arc (p0; q0) which re
ects the incremental cost of sending some nonzero amount of 
ow Æ on

arc (p; q), given its existing 
ow �. If arc (p; q) carries no 
ow (i.e., � = 0), the cost of the

residual arc (p0; q0) is simply C. That is, adding 
ow to an arc that does not already have


ow incurs an additional cost equal to the cost of the arc. If � 6= 0 and Æ = ��, however,
the residual cost is �C; the 
ow increment Æ, when augmented on arc (p; q), would cancel

the existing 
ow on the arc since � + Æ = 0. The cost of the arc would thus go from C

to zero for an incremental or residual cost of �C. Alternately, if � 6= 0 and Æ 6= ��, the
residual cost is zero; the augmentation of Æ units of 
ow on (p; q) would simply make � go

from one nonzero value another, so the arc cost would remain unchanged.

Since the costs of 
ows on distinct arcs are evaluated independently then summed to

obtain the total solution cost, as in Eq. (3.4), the total incremental cost of sending 
ow

on a cycle is simply the sum of the residual costs of arcs on the cycle. Hence, directed

cycles that decrease the total solution cost are those with net negative costs in the residual

network. Cycle canceling thus involves searching for cycles with negative residual costs and

augmenting 
ow on them to improve the current2 solution (see Fig. 5.6).

We can �nd these negative cycles by using a variant of Dijkstra's algorithm. Minor

modi�cations are required to account for negative arc lengths, but the modi�ed algorithm

2Throughout this dissertation, we use the word \current" in reference to the present state of iteration,
not to the movement of charge as in an electrical current.
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still attempts to �nd paths with lengths closest to �1 from some source or root to all

other nodes in the network [Ahuja et al., 1993]. Recall that in the absence of negative

cycles this collection of shortest paths forms a tree spanning all nodes in the network

(see Section 5.1). This tree is generated in a typical shortest-path algorithm as follows.

Each node in the network is assigned a distance label which represents the node's current

distance from the source along some intermediate version of the tree. A node that is not

on the tree has an in�nitely large distance label. As the algorithm runs, the distance labels

are used to suggest ways in which the tree structure can be modi�ed such that nodes can

be reached through shorter paths. In turn, modi�cations to the tree structure result in new

distance labels, which allow further tree modi�cations, and so on, until the tree becomes

an optimal shortest-path tree. Thus, with iterative updates to the node distance labels, the

tree structure is reworked until it spans all nodes and no node can be reached through a

path shorter than its current distance label.

If a negative cycle exists in the network, however, a node's path length can be made

arbitrarily negative by repeatedly looping around the cycle. Consequently, by taking an arc's

length to be its residual cost, we can use a shortest-path algorithm to identify negative-

residual-cost cycles. The cycle-canceling strategy thus involves the following steps: (1)

initialize the network with any feasible 
ow; (2) use the shortest-path algorithm to �nd

some negative cycle; (3) augment 
ow on this cycle; (4) update the residual costs to re
ect

the change in 
ow; (5) continue from step (2), canceling negative cycles until no more can

be found. As all network quantities are restricted to be integers, each canceled negative

cycle decreases the L0 objective value by an integer amount, so this value is monotonically

nonincreasing and we need not worry about instabilities or convergence failures. When the

nonconvex cost functions of the L0 norm are used, however, the absence of negative cycles

does not guarantee exact optimality. This is expected given the problem's NP-hardness.

In further contrast to the linear case, arcs with nonlinear cost functions have residual

costs that depends on both the 
ow increment Æ and the current 
ow. For example, the

cycle in Fig. 5.6(a) has a negative L0 cost for jÆj = 2, but not for jÆj 6= 2, where the local sign

of Æ depends on the relative orientations of the arc and cycle directions. For the generalized

case, we therefore search for directed negative cycles with respect to speci�c 
ow increments

jÆj, and once a cycle is identi�ed and canceled, we recalculate the arc residual costs to re
ect
the new 
ow. Because of the need for these continual cost updates, we call this section's

technique dynamic-cost cycle canceling (DCC).
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algorithm DCC

begin

�nd an initial feasible 
ow

jÆj := 1
while negative cycles exist in the network do

begin

while negative cycles exist for the current 
ow increment jÆj do
begin

identify a negative-residual-cost cycle � using a shortest-path algorithm

augment jÆj units of 
ow on �
recalculate residual costs of arcs on �

end

jÆj := jÆj+ 1 (modulo the maximum network 
ow)

end

integrate the phase

end

Figure 5.8 DCC algorithm pseudocode.

In our DCC algorithm, we thus calculate residual arc costs corresponding to speci�c 
ow

increments �Æ, and we search for negative cycles in terms of these costs. When we �nd a

negative cycle, we augment exactly jÆj units of 
ow around it, then recalculate any residual

costs altered by the new 
ow. When no more negative cycles can be found, we reset the


ow increment jÆj to equal jÆj + 1, recalculate costs in the residual network, and continue,

iterating on jÆj. Since augmenting jÆ1j units of 
ow on a negative cycle may create other

cycles that have negative costs for jÆ2j 6= jÆ1j, we continue looping over jÆj until no more

negative cycles can be found for any value of jÆj. Pseudocode is given in Fig. 5.8.

One more subtlety must be addressed before the DCC approach can be implemented

for nonconvex cost functions. Since a residual cost depends on the direction of the 
ow

increment, a trivial negative cycle appears in the residual network whenever an arc (p; q)

has a nonzero 
ow �. That is, we can send an additional Æ = � units of 
ow on the arc for

a residual cost cpq = 0, and then send Æ = �� units of 
ow back in the opposite direction

for a residual cost cqp = �C. Physically, this cycle does nothing to the solution since we

simply send 
ow on an arc and immediately cancel it; the cycle's incremental cost is not

actually negative since 
ow in one direction changes the residual cost of 
ow in the other.

Such cycles seem to arise, however, because our cycle-�nding routine, having been adapted

from the shortest-path algorithm, is designed for direction-independent arc distances and
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therefore cannot handle residual costs that do depend on direction. We address this issue

further in Sect. 5.4. For now, though, concentrating on the insights of the DCC technique,

we sidestep the problem by simply modifying the cycle-�nding routine so that it does not

backtrack as described. We thereby avoid the problem of trivial negative cycles, although

other, nontrivial negative cycles may be overlooked as well.

Any phase unwrapping algorithm can be used to initialize the DCC algorithm, as the

cycle-canceling process can proceed from any feasible 
ow. Empirically, good results are

obtained both qualitatively and in the L0 sense when approximate L0 initializations from the

MST algorithm are used. On the other hand, in our experiments with L1 initializations,

the �nal solutions obtained are almost the same as their initializations. Presumably, L1

solutions are often very near local L0 minima, so L0 cycle canceling has little e�ect on these

initializations.

5.3 Cycle Canceling with Arbitrarily Shaped Cost Functions

Though the above explanation of the DCC algorithm is given in the context of L0 cost

functions, the algorithm itself does not require any speci�c assumptions about cost-function

shapes. Thus, the cycle-canceling strategy can be used to make iterative improvements with

respect to arbitrary cost functions if those cost functions are used in the algorithm's residual

cost calculations. That is, for an arc (p; q) with an arbitrarily shaped cost function gpq(�),
the residual cost cpq is simply the incremental cost

cpq = gpq(�+ jÆj)� gpq(�) (5.1)

where � is the existing 
ow on the arc and jÆj is the 
ow increment. Similarly, for incremental


ow on the arc in the opposite direction,

cqp = gpq(�� jÆj) � gpq(�): (5.2)

Note that � is de�ned to be positive if 
ow goes from p to q and that gpq(�) = gqp(��).
Since the cost functions are evaluated independently and then summed, the functions

gpq(�) may take independent, arbitrary shapes. A shortest-path algorithm can still be used

to �nd negative cycles in the residual network, so with this minor modi�cation, the DCC
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algorithm can be used to solve, approximately, separable instances of the general phase-

unwrapping optimization problem. While this algorithm is fairly easy to explain and imple-

ment, however, it is relatively ineÆcient. Moreover, its shortest-path cycle-�nding routine

does not account for the dependence of nonlinear residual arc costs on the direction of the


ow increment Æ.

5.4 The Pivot-and-Grow Algorithm

Simple cycle canceling is seldom used in practice for linear applications because better, more

eÆcient algorithms have been developed. We now borrow from some of these approaches

and apply them to the case of nonlinear, arbitrarily shaped cost functions. Speci�cally,

we combine our generalized DCC algorithm with ideas from the network-simplex algorithm

[Kennington and Helgason, 1980], Pallottino's double-queue shortest-path algorithm [Pal-

lottino, 1984], and Dial's implementation of Dijkstra's algorithm [Dial, 1969; Ahuja et al.,

1993].

While these algorithms are meant for di�erent purposes, they all share the common idea

of the spanning tree: Upon termination, each algorithm represents its solution by a tree that

connects all of the nodes in the network. We explained above that shortest-path solutions

can be represented as spanning trees, and since shortest-path algorithms can be used to

�nd negative cycles, it should not be surprising that spanning trees are closely related to

our DCC algorithm and to linear MCF algorithms.

Consider some intermediate iteration of a typical shortest-path algorithm. Nodes are

arranged on some tree whose root is the source, and each of these nodes is labeled by its

current distance from the root along the tree (see Section 5.2). The same kinds of ideas

are used in the network-simplex algorithm to �nd and cancel negative cycles in linear MCF

applications [Kennington and Helgason, 1980]. At each iteration, the algorithm maintains

a spanning tree in which every node is labeled by a quantity called its potential. Analogous

to the shortest-path distance label, the potential of a node p represents the incremental cost

of sending Æ units of 
ow from the root to p along the tree. Equivalently, the potential can

represent the cost of sending the same 
ow in the opposite direction since residual arc costs

are independent of Æ when the cost functions are linear. A node p therefore has a potential �p

that equals the sum of the residual costs of all tree arcs between the p and the root. Just as

distance labels suggest ways in which the tree structure can be improved in a shortest-path
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algorithm, node potentials in the network-simplex algorithm are examined and updated to

guide the improvement of the residual-cost tree. In other words, as the residual-cost tree

is brought towards optimality in terms of its node potentials, negative residual-cost cycles

can be identi�ed just as they are identi�ed by the shortest-path algorithm described above.

The node potentials of a spanning tree are thus used by the network-simplex algorithm to

�nd and eliminate negative cycles.

Since a network-simplex tree spans all nodes, a cycle is formed with the addition of

any nontree arc to the tree; the removal of some other arc from the cycle results in a new

spanning tree (see Fig. 5.9). This action, moving from one spanning tree to another, is

called a pivot by analogy to the simplex method for linear programming (see the text by

Nash and Sofer [1996]). Because a pivot results in modi�cations to the tree structure, the

node potentials consequently change as well. A network-simplex solver thus selects pivots

that reduce node potentials, identifying and eliminating negative cycles in the process. In

this manner, the solver steps from spanning tree to spanning tree, improving the solution as

it goes. When the tree becomes optimal in terms of its node potentials, no negative cycles

can exist and the optimal 
ow has been found. Finite termination is ensured by the fact

that on every iteration, an integer improvement is made to either the node potentials or

the total solution cost [Ahuja et al., 1993; Kennington and Helgason, 1980].

We adapt the idea of pivots for use with arbitrarily shaped cost functions in our hybrid

algorithm. That is, we calculate residual costs in terms of the current arc 
ows and a

speci�c 
ow increment jÆj, as in the generalized DCC algorithm. Because each arc (p; q) in

the nonlinear case has two di�erent residual costs, cpq and cqp, one for either direction of

the 
ow increment, we assign each node p two potentials rather than just one: an outwards

potential �
(out)
p that represents the cost of sending jÆj units of 
ow along the tree from the

root to p, and an inwards potential �
(in)
p that represents the cost of sending the same 
ow

in the opposite direction. Note that if node u is an ancestor of node p, the cost of sending

jÆj units of 
ow from u to p is �
(out)
p � �

(out)
u , and the cost of sending jÆj units of 
ow from

p to u is �
(in)
p � �

(in)
u . We additionally associate each nontree arc with an apex node, the

node closest to the root on the cycle formed by adding the arc to the current spanning tree.

If arc (p; q) is not on the tree, its apex is thus the �rst common ancestor of nodes p and q.

Let u be the apex of the cycle formed by adding nontree arc (p; q) to the current spanning
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Figure 5.9 An example pivot. Arc (p; q), shown in heavy black, is added to the tree and some
other arc is removed from the resulting cycle (a). The pivot results in a new tree structure (b).

tree. The inclusion of the arc results in a negative cycle (see Fig. 5.10) if

�
�(out)p � �(out)u

�
+
�
�(in)q � �(in)u

�
+ cpq < 0 (5.3)

where the residual cost cpq is given by Eq. (5.1). The augmentation of 
ow on this cycle

and the subsequent removal of one arc from the cycle results in a new spanning tree with a

smaller total cost.

Alternately, the addition of arc (p; q) improves (reduces) the outwards potential of node

q, as in a shortest-path algorithm, if

�(out)p + cpq < �(out)q : (5.4)

Flow is not necessarily augmented on the resulting cycle, but such pivots (ones that only

improve node potentials) are necessary steps in the process of locating negative cycles. In

fact, such pivots often constitute most of the algorithm's work, for it is the improvement

of node potentials, like the reduction of distance labels in a shortest-path algorithm, that
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Figure 5.10 A cycle's residual cost in terms of node potentials. Inwards and outwards node
potentials can be used to compute the residual cost of the cycle formed by adding arc (p; q) to the
spanning tree. The cycle's apex is u.

guides the algorithm towards tree structures in which negative cycles are apparent. For the

nonlinear problem, however, pivots that improve outwards potentials might make inwards

potentials worse. Our algorithm thus makes no attempt to improve inwards potentials

directly; it relies solely on improvements of outwards potentials for �nding negative cycles.

After each pivot, augmenting or not, the potentials and tree structure must be updated.

Kennington and Helgason [1980] describe a number of methods and related data structures

for performing these tasks eÆciently in the network-simplex algorithm. For the most part,

these routines can be used in the nonlinear case as well. However, it is important to

note that node potentials will need more frequent update in the nonlinear case because of

their dependence on the current 
ow and the 
ow increment as well as the tree structure.

Moreover, our apex pointers, which have no linear-case counterparts, must also be updated

once the tree structure is modi�ed. Nevertheless, by maintaining a few extra data arrays

and iterating on the 
ow increment jÆj, we can adapt the network-simplex algorithm to

solve nonlinear problems, albeit only approximately.

Empirically, we have found that further speed improvements result from the adoption

of a tree-growth strategy similar to the one suggested by Pallottino [1984] for the shortest-

path problem. Observe that the network-simplex algorithm maintains a complete spanning

tree at every iteration. On the other hand, Pallottino's shortest-path algorithm grows a

spanning tree as it progresses, fanning out from the root. Speci�cally, Pallottino's algorithm

deals with a tree T that spans some, but not necessarily all, nodes in the network. At each

iteration, the algorithm adds a new node to T , then optimizes T in terms of the nodes
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it does span. This approach is advantageous computationally because much of the e�ort

put into tree optimization is done while the tree is still small, so fewer total operations are

required. Applying this idea to our algorithm, we start with an arbitrary root node and

grow a spanning tree T , maintaining its optimality over each major algorithm iteration.

Each of these major iterations is divided into two stages. In the �rst stage, a predetermined

number of new nodes is added to the tree in the order prescribed by the shortest-path

algorithm [Dijkstra, 1959; Ahuja et al., 1993]. These nodes, prior to their inclusion in the

tree, are stored in bucket data structures similar to those suggested by Dial [1969]. In the

second stage of a major algorithm iteration, T is reoptimized in terms of all the nodes it

now spans, using pivots as in the network-simplex algorithm. After the �nal iteration, T

spans all nodes in the network, and the network 
ows represent an approximately optimal

solution with respect to the generalized cost functions de�ned for the problem. Pseudocode

is given in Fig. 5.11.

Since this algorithm solves the general optimization problem, it can also be used with

Lp cost functions. If the cost functions are convex, the algorithm's solutions will be exactly

optimal over the sets of all congruent solutions. For example, when p = 2, the algorithm

provides a solution optimal over all congruent least-squares solutions. However, a transform-

based least-squares algorithm might produce a noncongruent solution better in the L2 sense.

If a post-optimization congruence operation [Ghiglia and Pritt, 1998] is applied to the

latter solution, though, the solution loses optimality even over the set of strictly congruent

solutions (see Chapter 3). For L1 cost functions with integer weights, an optimal integer


ow always exists [Ahuja et al., 1993], so congruent L1 solutions generated by our algorithm

are exactly optimal.

Together with the statistical cost functions of Chapter 4, we call our implementation of

this solver algorithm SNAPHU, an acronym for statistical-cost, network-
ow algorithm for

phase unwrapping.
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algorithm Pivot and Grow

begin

�nd an initial feasible 
ow

jÆj := 1
while negative cycles exist in the network do

begin

choose some node to be the root of a tree T
while not all nodes in the network are on T do

begin

for 1 � i � n
begin

add to T the nearest adjacent node to it
set the inwards and outwards potentials of the new node

end

while T has nonoptimal node potentials for the nodes it spans do

begin

�nd an arc (p; q) whose addition to T results in an improvement

add (p; q) to T
if a negative cycle is formed

augment jÆj units of 
ow on the cycle

endif

drop some arc on the cycle from the tree

update the tree structure
update the inwards and outwards potentials of nodes a�ected by the pivot

update the apex pointers a�ected by the change to the tree's structure

end

end

jÆj := jÆj+ 1 (modulo the maximum network 
ow)

end

integrate the phase

end

Figure 5.11 Pivot-and-grow algorithm pseudocode.



Chapter 6

Tiling Strategies for Large Data

Sets

The phase unwrapping algorithm developed in the previous two chapters addresses many

of the diÆculties inherent in unwrapping interferometric SAR data. New diÆculties arise,

however, when the dimensions of the input data are so large that the algorithm requires more

computer memory than one has available. Relatedly, higher computational throughput may

be required for applications involving voluminous quantities of data. In this chapter, we

examine the practical and theoretical challenges unique to large data sets.

We use the term \large" to describe interferograms approaching or exceeding the limits

of typical computer resources available for unwrapping them. An obvious strategy for cir-

cumventing these resource limitations is to adopt an approach in which a large interferogram

is treated as a mosaic of smaller interferograms called tiles. The tiles can be unwrapped in

sequence to reduce the required memory, or they can be unwrapped in parallel to reduce

the required execution time [Costantini, 1998; Carballo, 2000]. Unfortunately, as explained

below, boundary e�ects often make smaller interferograms more diÆcult than larger ones

to unwrap correctly. Moreover, combining individually unwrapped tiles is not a straight-

forward task. Consequently, a mosaic of tile solutions may be more error prone than a

solution obtained by unwrapping the entire interferogram as a single piece. To avoid such

errors as much as possible, we propose here a tiling scheme based on the statistical-cost,

network-
ow framework described in the previous chapters.

89
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Figure 6.1 Representation of an unwrapping artifact due to tiling. The heavy black line represents
a phase discontinuity following the decorrelated front face of a mountain in layover. Range is assumed
to increase towards the right. If the interferogram is split into left and right halves as shown, the
shaded area is isolated from the rest of the left half by the decorrelated region.

6.1 Basic Tiling Strategies

For interferograms with long discontinuities, unwrapping accuracy often degrades with the

degree of interferogram subdivision. Consider a topographic interferogram such as the one

illustrated schematically in Fig. 6.1, where range is assumed to increase towards the right.

The heavy black line represents a phase discontinuity associated with the decorrelated front

face of a mountain in layover. If the interferogram is unwrapped as a single piece, all parts

of the interferogram can be connected by reliable integration paths despite the presence of

the discontinuity (see Chapter 2). On the other hand, if the scene is partitioned into two

smaller tiles as shown, the discontinuity isolates the shaded area from the rest of the left tile,

and an unwrapping error likely results. Such tiling artifacts are even more likely to occur

in interferograms containing longer or more sinuous discontinuities. Thus, the adoption of

a tiling strategy requires great care. In this section, we examine a relatively simple tiling

strategy, and in so doing, we review the basic issues raised by interferogram subdivision.

Breaking up an interferogram into separate tiles is easy; putting those tiles back together

is the diÆcult step. Carballo [2000], however, noted that the problem of mosaicing individ-

ually unwrapped tiles is similar to the original (single-piece) phase unwrapping problem in
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that integer-cycle o�sets must be added to each tile in order to align the phase values of ad-

jacent tiles. That is, adjacent tiles must be brought to within one-half cycle of one another

throughout most of the array of tiles. Tiles in the tile-reassembly problem are hence analo-

gous to pixels in the original phase unwrapping problem. For brevity of notation, we refer

here to the pixel-level unwrapping problem and the subsequent tile-reassembly problem as

the primary and secondary problems, respectively.

For the secondary problem, the degree of alignment between adjacent tiles can be quan-

ti�ed in various ways. We use the following procedure. For each pair of pixels straddling

the tile boundary, we compute the unwrapped phase di�erence and round the result to the

nearest integer cycle. We then �nd the most common value of the rounded pixel di�erences

and call this value the `tile di�erence' between the two tiles. In virtually all real-world

situations, the true tile di�erence between any two correctly unwrapped tiles of reasonable

coherence is zero. This is because most pixel di�erences along the boundary are less than

one-half cycle by assumption (see Chapter 2), even if some are not.

Thus, if all individual tiles are unwrapped correctly, there must exist an arrangement

of tile o�sets such that all tile di�erences are zero. These o�sets can be found by aligning

adjacent tiles following some path from tile to tile, just as pixel-to-pixel phase integration

results in a self-consistent primary solution for an interferogram in which there are no

residues.

If many of the pixels along a tile boundary are unwrapped in error, however, the a�ected

tile di�erence may no longer be zero in the desired secondary solution. This case is illus-

trated in Fig. 6.2. Tile reassembly thus becomes a problem similar to phase unwrapping in

the presence of residues: Tiles must be arranged so that tile di�erences are zero most of the

time|but tile di�erences a�ected by primary unwrapping errors may need to be nonzero

for self consistency in the secondary solution.

Realizing this, Carballo [2000] showed that the secondary problem of arranging phase

o�sets between tiles can be described by a network model nearly identical to the network

model used in the previous chapters for the primary problem. The secondary network for

the tile set of Fig. 6.2 is shown in Fig. 6.3. Nodes exist at the tile corners, and, with

arcs connecting neighboring nodes, there is a tile di�erence for each arc in the network.

Therefore, as in the primary network, 
ow on a secondary arc represents the additional

number of cycles that should be included in the corresponding tile di�erence. Residues

arise in Fig. 6.3 because of the unwrapping error in the primary solution for tile B. That
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Figure 6.2 E�ects of an unwrapping error on tile di�erences. The shaded area in tile B represents
an unwrapping error which is o�set from the rest of the tile by an incorrect integer number of cycles.
The tile di�erence (i.e., phase di�erence) between tiles B and E must be nonzero to account for this
error if the tile di�erences between the rest of the tiles are assumed to be zero.

is, the sums of tile di�erences around the closed loops fA,B,E,D,Ag and fB,C,F,E,Bg are

nonzero. Equivalently, there is nonzero net secondary 
ow out of the nodes indicated

when the tile solutions are arranged with arbitrary o�sets and the secondary arc 
ows are

calculated from the resulting unwrapped tile di�erences.

If a superconducting boundary (see Chapter 2) is desired for the secondary network,

secondary arcs along the edges of the scene can be assigned zero cost. In this case, all

secondary nodes on the scene edge behave e�ectively as a single ground node which can

be assigned whatever charge necessary to make the network neutral. Cost functions for

secondary arcs not on the scene edge are discussed in Section 6.3 below.

With the network de�ned in this way, network-
ow solvers (see Chapters 2 and 5)

can be used to arrange the tile o�sets in some optimal way. This simple tiling strategy

may be acceptable for interferograms whose tiles are easy to unwrap individually, but for

interferograms characterized by long phase discontinuities, tiling artifacts may become much

more problematic. This is because relative unwrapping errors that exist in the primary

solutions of individual tiles will also exist as errors in any �nal tile-reassembled solution;

no arrangement of tile o�sets can correct for unwrapping errors internal to individual tiles.

The likelihood of tiling artifacts can be lessened by specifying larger tiles, but doing so also
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Figure 6.3 Secondary network for the tile set of Fig. 6.2. Nodes exist at tile corners, and arcs
between nodes correspond to tile di�erences. Residues exist because the unwrapping error in tile B
a�ects the tile di�erence between tiles B and E.

mitigates the computational gains motivating the technique in the �rst place. The same

applies to the use of widely overlapping tiles.

6.2 Reliable Regions and Tile Subdivision

To avoid the artifacts associated with the simple tiling approach described in the previous

section, Carballo [2000] insightfully proposed the following technique. Individual tiles are

partitioned into independent, arbitrarily shaped regions that are believed to be free of

relative internal unwrapping errors. The secondary network problem is then carried out

between these reliable regions rather than between whole tiles. Thus, with the o�sets of

individual regions independently adjustable, major unwrapping errors within primary tile

solutions can be corrected as the secondary problem is solved.

For de�ning reliable regions, Carballo [2000] used a scheme in which multiple primary

unwrapped solutions from di�erent interferogram partitionings are compared to one another

and to a coherence map. The use of redundant primary solutions imposes a signi�cant ad-

ditional computational burden, however. In this section, we propose an alternative method

for de�ning reliable regions. Our method is very eÆcient and is justi�ed theoretically by the

statistical-cost framework described in Chapter 4. We discuss techniques for the problem
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of assembling these reliable regions in the next section.

The reliability of a region can be quanti�ed by the probability that the primary un-

wrapped gradients within the region are estimated correctly. Fittingly, our statistical cost

functions are, by design, measures of these very probabilities. For example, if a primary

arc has high incremental (residual) costs given the current primary unwrapped solution,

there is a low probability that 
ow should be added to or removed from the arc, so there

is a low probability that the corresponding phase gradient is estimated in error. Thus, to

form reliable regions, we employ a statistical-cost region-growing approach. Region-growing

techniques have been used in several contexts for phase unwrapping previously [Goldstein

et al., 1988; Xu and Cumming, 1999; Fornaro and Sansosti, 1999; Carballo, 2000].

Our approach is described as follows. For each primary phase di�erence in a tile, we

compute a scalar cost by taking the lesser of the incremental statistical costs for positive

and negative unit 
ow increments given the unwrapped tile solution. We next smooth these

scalar costs using convolutional methods. Then, we select a seed pixel as the beginning of

a region, and we successively add adjacent nonregion pixels to the region if they can be

reached without crossing phase di�erences whose scalar costs fall below a certain threshold.

When no more pixels can be added to the region, a new seed is chosen from the set of

nonregion pixels, and another region is grown. This process continues until all pixels in the

tile are contained in a region.

To implement this region-growing procedure in an eÆcient and theoretically rigorous

way, we apply the network ideas described in Chapter 5. We can even reuse much of our

source code since the region-growing network model is topologically identical to that of

the primary phase unwrapping problem (see Fig. 2.6). The region-growing network is set

up di�erently, however; its nodes correspond to pixels rather than residues. Arcs between

neighboring nodes still correspond to phase di�erences, but they now have a di�erent physi-

cal interpretation: Arcs connect rather than divide neighboring pixels. We thus favor the use

of high-cost arcs in our region-growing algorithm, whereas we favor the use of low-cost arcs

in our primary phase unwrapping algorithms. Figure 6.4 shows an example region-growing

network.

With this network, we can adapt the tree-growth routine of the MST algorithm (see

Chapter 5) for region growing. We �rst assign each arc a shortest-path distance measure

equal to the negative of the arc's scalar phase-di�erence cost. We next make the region

seed the root of the MST algorithm's shortest-path tree, and we take nodes on the tree to
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Figure 6.4 Example region-growing network model for a primary unwrapped-phase solution to
the wrapped array of Fig. 2.6. The numbers represent values of unwrapped-phase pixels. They are
shown here for illustrative purposes only and are not used in the network model. Arcs correspond
to paths between pixels across primary unwrapped phase di�erences.

be part of the current region. As nodes are added to the tree, we reset the costs of arcs

between tree nodes to zero so that the tree (i.e., the region) behaves like a single equivalent

node. Continuing, we add nodes until no more nodes meet the minimum phase-di�erence

cost requirement.

We next enforce a lower limit on the size of each region so as to keep the number of

di�erent regions, and hence the size of the secondary problem, manageable. That is, we

identify regions containing fewer than a preset number of pixels and merge these regions

with their closest neighbors. Thus, where reliable regions might otherwise be very small

(e.g., decorrelated areas), regions are clumped together through arcs with the shortest

possible distances. Phase unwrapping errors might accumulate within merged regions, but

such areas often provide little useful information in any event. Our intention is to prevent

such errors from spreading into more reliable areas.

6.3 Secondary Network Construction

Once reliable regions have been de�ned within the individually unwrapped tiles, our task

is to solve the secondary problem of arranging the phase o�sets between di�erent regions.

Since regions are arbitrarily shaped, however, the implied secondary network no longer has

the same regular, grid-like topological structure as the primary network. Nevertheless, a
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network model can still be used for the secondary problem.

Carballo [2000] suggested that the secondary network be constructed from a Delaunay

triangulation of control points representing the di�erent regions. This scheme has several

disadvantages, though. Because secondary nodes correspond to triangles, these nodes are

all of degree three or less. This forces the secondary network to contain extraneous nodes

and arcs which degrade computational eÆciency and obscure the relationship between the

secondary network and the region-assembly problem. The computation of the Delaunay

triangulation itself also introduces additional complexity [Guibas and Stol�, 1985; Fortune,

1987]. Moreover, region o�sets are de�ned in reference only to control points consisting of

single pixels|one for each region. Consequently, the scheme may not be robust to small,

localized errors within regions.

We propose a secondary network model that avoids such shortcomings. With this model,

the secondary network problem is exactly equivalent to the region-o�set problem at hand:

Any possible solution to the region-o�set problem corresponds uniquely to a feasible 
ow

solution on the secondary network. This secondary network is formed from the region data

directly, so triangulation is unnecessary. Furthermore, region o�sets are computed with

respect to all pixels on the region boundaries, not just single-pixel control points.

Recall that in the primary network model, arcs correspond to phase di�erences between

pixels. We thus assume analogously that secondary arcs correspond to phase di�erences

between regions, and we include one secondary arc in the network for each boundary between

two regions. We then place secondary nodes at tile corners and at other locations where

more than two regions touch. Nodes thus occur where 
ow paths split, as illustrated in

Fig. 6.5. Since the phase o�set between any two neighboring regions is described by a

unique secondary arc, any possible arrangement of o�sets can be represented by a feasible


ow.

We construct the secondary network from the region data using an algorithm similar to

a tree search. That is, beginning from a primary node known to correspond to a secondary

node (e.g., a node at a tile corner), we trace out secondary arcs by following sequences of

primary arcs that have di�erent regions on either side of them or that lie on the edges of the

interferogram. A secondary arc terminates when it enters a primary node that touches more

than two regions. At these locations, we create secondary nodes if such nodes do not yet

exist. We then continue, tracing unvisited secondary arcs that depart from these secondary

nodes, until all secondary arcs have been followed. The structure and connectivity of the
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Figure 6.5 Example region-based secondary network: (a) region-set; (b) corresponding secondary
network. Shaded areas in (a) represent reliable regions, indicated with arbitrary gray levels, for the
set of six square tiles shown. Circles and lines in (b) represent secondary nodes and arcs. Arrowheads
on the arcs are omitted for clarity, but all arcs are assumed to be bidirectional, as elsewhere in this
dissertation. Arcs correspond to boundaries between regions, and nodes occur where arcs split. The
region in the center of the lower-right tile is not represented in the network since this region cannot
be reached from any tile edge.
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secondary network are thus parsed from the region map.

Note that the secondary network does not contain nodes or arcs for regions that are

una�ected by the inclusion of adjacent tiles (e.g., the small, central region in the lower-

right tile of Fig. 6.5). The phase o�sets of such regions are set relative to their surroundings

in the primary problem; these o�sets should not change in the secondary problem.

The feasibility of a secondary 
ow solution depends in principle on the distribution of

surplus and demand on the secondary nodes. We need not explicitly compute residues for

the secondary problem, though. Instead, since the unwrapped primary solutions provide

estimates of the relative o�sets between regions within the same tile, we simply initialize the

tile o�sets and �nd feasible 
ow values for the secondary arcs. That is, we choose an initial,

temporary set of tile o�sets by aligning neighboring tiles across the top row then down each

column, de�ning tile di�erences as above. Such an initialization is analogous to a trivial

path-integration unwrapping method for the primary problem. With the relative region

o�sets thus selected, we compute initial values for the secondary arc 
ows. That is, based

on the unwrapped primary pixel values and the relative region o�sets, we compute the 
ow

for each primary arc that is part of a secondary arc. We then initialize the secondary 
ows

to the most common values of the primary 
ows along the respective secondary arcs. If

desired, residues may be computed now by summing the net 
ow out of each secondary node.

Doing so is unnecessary, though; we can make iterative improvements to the secondary 
ow

initialization, as through cycle canceling, while maintaining the feasibility of the current

solution.

In order to make improvements, however, we must de�ne costs for the secondary arcs.

Here, we again depart from the scheme proposed by Carballo [2000]. We instead propose

an approach that is more physically meaningful and theoretically justi�able.

As in Section 6.1, we form an e�ective ground node on the scene boundary by assigning

incremental costs of zero to secondary arcs on the edges of the interferogram. For the

other secondary arcs, we derive costs based on our primary statistical cost functions. Since

secondary arcs are simply sequences of primary arcs, we de�ne the incremental cost of a

secondary arc to be the sum of the incremental costs of the primary arcs traced by the

secondary arc, given the current primary 
ows. In other words, adding Æ units of 
ow to a

secondary arc is equivalent to adding Æ units of 
ow (in the appropriate direction) to every

primary arc traced by the secondary arc; we therefore equate the incremental cost of the

former to that of the latter. Hence, just as in the primary problem, secondary incremental
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costs depend on the current secondary solution and the 
ow increment Æ. Nevertheless,

we can easily build a look-up table of secondary absolute costs from secondary incremental

costs computed for likely values of the 
ow increment Æ.

With secondary costs thus de�ned, we use the pivot-and-grow solver of Chapter 5 to

�nd a feasible secondary 
ow that approximately maximizes the a posteriori probability of

the region-o�set solution. Note that the pivot-and-grow solver accepts arbitrary network

topologies, so the secondary network's lack of grid-like regularity poses no extra diÆculty

in solving the secondary optimization problem. Once the secondary 
ow solution is found,

we adjust the primary 
ows to re
ect the new secondary 
ows and integrate the phase at

the pixel level to obtain the full unwrapped interferogram solution.

The result we obtain is an approximation to the solution that would have been obtained

had the interferogram been unwrapped as a single piece. That is, our tiling approach

produces a solution that approximately minimizes the MAP objective function de�ned for

the full-sized interferogram. To see this, imagine that the interferogram is unwrapped

as a single piece, starting from an initialization that consists of an arbitrary mosaic of

the primary tile solutions. Improvements to this full-sized initialization will be necessary

because of tiling artifacts, but many locally correct areas will not need adjustment; 
ow will

be placed only on a small subset of the arcs in the scene|it is these arcs whose connectivity

and costs are represented by our secondary network. The other, more reliable parts of the

scene need not be examined further. Hence, by using our statistical cost functions to identify

reliable regions that are unlikely to need improvement, we can ignore most of the variables

of the full-sized problem. We can represent the remaining variables through the secondary

network constructions described above. Thus, our tiling methodology is not just an ad hoc

collection of procedures, it is a cohesive extension of the MAP optimization framework.

6.4 Tile Size Considerations

The tiling scheme described in the previous sections provides a theoretically rigorous ap-

proach to interferogram subdivision. While this approach is meant to mimic the results

of unwrapping a large interferogram as a single piece, however, the single-piece approach

is probably still more accurate. Though expensive|perhaps prohibitive|computationally,

the single-piece method avoids uncertainties related to how reliable regions are de�ned.

That is, the region-growing method described here relies only on local arc costs, so some
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regions might enclose paths that require 
ow updates. Because such updates would not be

possible in the secondary problem, the tiling approach would contain errors that might be

avoided by an iterative algorithm whose scope is the full interferogram. Consequently, there

may remain a slight tradeo� between unwrapping accuracy and computational eÆciency or

capability.

As a result, tile size is an important consideration in the practical application of our

approach. Clearly, memory limitations impose strict upper bounds on tile sizes. Moreover,

since most phase unwrapping algorithms including SNAPHU have execution times that are

worse than linear in the size of their inputs, the aggregate execution time should decrease

with tile size as long as overhead associated with region reassembly remains small. For

interferograms that are easy to unwrap, there may be no noticeable penalty in accuracy

if the scene is divided into many small tiles. All other things being equal, however, we

might expect the likelihood of errors to increase as tile sizes decrease. When possible, it

would be prudent to keep the tiles larger than the expected characteristic length of phase

discontinuities in the input interferogram. Such lengths may be related, for example, to the

characteristic physical size of terrain features in a topographic interferogram. Moreover,

if phase discontinuities are known to favor a particular orientation (e.g., they tend to run

in azimuth more so than range), tile aspect ratios can be adjusted accordingly. Empirical

tests may be needed for determining ideal tile dimensions.

Questions of accuracy and eÆciency cannot be addressed in isolation, however; both

are a�ected by other factors. As discussed in Chapter 3, di�erent algorithms may be more

appropriate for di�erent situations. Fortunately, the secondary network model described in

this chapter is completely general, so our tiling approach can be used with other optimization

frameworks and solvers as well.

Finally, we note that in some cases, the need for tiling might be obviated with the

adoption of parallelization schemes based on shared memory rather than interferogram

subdivision. We leave this as a topic for future work.



Chapter 7

Results

In this chapter, we examine the performance of our phase unwrapping algorithm. In the

previous chapters our intent has been to maintain a balance between setting up and solv-

ing the phase unwrapping problem so that our algorithm can be as accurate as practical

given the needs of real-world applications. We have thus considered our MAP cost func-

tions and nonlinear network-
ow solvers|along with their underlying assumptions and

approximations|together, as equally important parts of a uni�ed phase unwrapping strat-

egy.

Because our goal remains the development of a useful working algorithm, we test the

algorithm on real rather than simulated interferometric SAR data. We examine a variety

of data examples in this chapter: a topographic interferogram containing areas of low

correlation, rough topography, and layover; a deformation interferogram measuring surface

displacement from a major earthquake; and a set of topographic interferograms that are part

of a large-scale mapping project. In comparisons with existing algorithms, our algorithm

yields superior solution accuracy and demonstrates competitive computational eÆciency.

The results therefore suggest signi�cant promise for our approach.

7.1 Topographic Data: Death Valley

In Chapter 3, we examined a topographic test interferogram of an area near Death Valley,

California, and we showed the results of applying several existing Lp algorithms to it. We

now examine the results obtained from SNAPHU and our MST algorithm.

The test data are reproduced here in Fig. 7.1 for completeness. Figure 7.1(a) depicts

101
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Figure 7.1 Death Valley topographic test data: (a) interferogram with wrapped phase in color and
magnitude in gray-scale brightness; (b) measured coherence in color with interferogram magnitude
in gray-scale brightness; (c) reference DEM with elevation in color and shaded relief in gray-scale
brightness.

the 1250 � 830 pixel interferogram with magnitude displayed in gray-scale brightness and

wrapped phase in color. The biased interferogram coherence estimate �̂, as calculated from

Eq. (4.11), is shown in Fig. 7.1(b). Figure 7.1(c) shows the USGS reference DEM. More

detail about both the interferogram and DEM are found in Chapter 3.

The topography in this interferogram presents several diÆculties for phase unwrapping.

Running in azimuth in the middle of the image are long phase discontinuities resulting from

layover, and at the top of the image there are areas of rough topography. The bottom is

relatively smooth, although it is not without areas of low correlation.

Figure 7.2 depicts the result of applying SNAPHU to this data set. As in Fig. 3.3, the

color represents relative unwrapped phase error, calculated by subtracting the DEM-derived

unambiguous phase from the algorithm solution. The gray-scale brightness again shows the

interferogram magnitude. Since the algorithm produces a congruent solution, unwrapping
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Figure 7.2 SNAPHU results with Death Valley test data. Relative phase error with respect to the
reference DEM is shown in color, and the interferogram magnitude is shown in gray-scale brightness.
There are very few signi�cant phase unwrapping errors, in contrast to the results of Fig. 3.3.
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errors are easily identi�able as patches di�ering from their surrounding areas by integer

numbers of cycles. Other di�erences of less than one cycle may be due to atmospheric

e�ects [Zebker et al., 1997], inaccuracies in the DEM, noise in the interferogram, or artifacts

from transforming and registering the DEM to radar coordinates. Interferometric height

measurements may also be slightly di�erent than those derived from other sources since

the observed radar echoes may have scattering centers that lie above or below the ground

surface. These e�ects are probably minor for the desert region shown here, but they may

be more signi�cant in areas that are covered by vegetation canopies or characterized by

signi�cant microwave ground penetration (e.g., icy surfaces).

As is evident from the general homogeneity of color in Fig. 7.2, our algorithm produces

an accurate unwrapped solution, with errors predominantly con�ned to areas of layover.

Overall, 94% of the pixels in the solution are within � rad of the reference phase, and the

rms error is 1.92 rad (0.31 cycles). Since few 2� jumps are apparent in the image, most of

these errors can be attributed not to the phase unwrapping process, but to the error sources

described above.

Figure 7.3 shows the relative phase error resulting from the use of our MST algorithm.

In our implementation of the algorithm, we calculate the scalar, integer weight for each

arc from its corresponding MAP cost function as follows. We assume that the arc does

not have any existing 
ow on it, and we compute the incremental costs of adding single

units of 
ow to the arc in either direction. We then set the MST arc weight to the lesser

of these two costs, or to unity if weight would otherwise be nonpositive. As illustrated by

Fig. 7.3, the MST algorithm performs fairly well with such weights. There is a signi�cant

unwrapping error at the top of the interferogram in the area of rough topography, but the

algorithm handles the layover discontinuities in the middle of the image quite well. Overall,

89% of the pixels in the solution are within � rad of the reference phase, and the rms error

is 2.67 rad (0.43 cycles).

The quality of the MST algorithm's solution is noteworthy because this algorithm is used

as the initialization routine in our implementation of SNAPHU. That is, SNAPHU uses the

MST algorithm to compute an initial feasible solution for the pivot-and-grow solver. The

latter solver then makes iterative improvements to this solution in terms of the full MAP

cost functions. A comparison of Figs. 7.2 and 7.3 thus demonstrates that the pivot-and-grow

solver corrects many of the errors in the MST initialization. On other test interferograms

(not shown), the pivot-and-grow solver corrects more signi�cant errors in the initialization
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Figure 7.3 MST results with Death Valley test data. Relative phase error with respect to the
reference DEM is shown in color, and the interferogram magnitude is shown in gray-scale brightness.
A signi�cant phase unwrapping error is visible in the area of rough topography at the top of the
image, but the rest of the interferogram is unwrapped fairly well.
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Algorithm Execution Time (s) Memory Usage (MB)

Residue-cut 12 10

MST 50 60

SNAPHU 210 90

Least-squares 220 50

MCF 350 400

LPN 1960 70

Table 7.1 Algorithm execution times and computer memory requirements for Death Valley test
data on a Hewlett-Packard C-180 workstation with a 180 MHz PA8000 processor.

as well, although its execution time increases as the quality of the initialization degrades.

For comparison with existing Lp algorithms, Fig. 7.4 shows SNAPHU and MST results

side by side with results from Chapter 3 of the least-squares, MCF, LPN, and residue-cut

algorithms. Details about the speci�c implementations of those algorithms are given in

Chapter 3. We must note, however, that the least-squares, MCF, and LPN algorithms are

used here with simple correlation weights, and the residue-cut algorithm does not accept

weights at all. It might therefore be argued that the comparison of Fig. 7.4 is not quite

fair since di�erent weighting schemes are used for the di�erent algorithms. Indeed, some

Lp algorithms do perform better with other weighting schemes. In particular, weighting

schemes based on our statistical models, as used with the MST algorithm above, lead to

more accurate solutions than those shown. The real issue, though, is that most current Lp

phase unwrapping algorithms are solver routines exclusively; they make no speci�cation of

how the problem is to be set up. The dependence of such algorithms' results on the choice

of weights simply underscores the importance of setting up the problem as well as solving

it. Moreover, since the correlation weights used in Fig. 7.4 are a re
ection of the current

state of the art [Ghiglia and Pritt, 1998], the comparison emphasizes the contributions of

this research.

SNAPHU clearly yields the most accurate solution for this data set. Moreover, the

data suggest that the MST algorithm may be useful by itself as a quick, fairly accurate

alternative for easy-to-unwrap interferograms.

Table 7.1 summarizes the approximate execution times and storage requirements of the

six algorithms compared in Fig. 7.4. Note that most of the MST algorithm's execution
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Figure 7.4 Relative unwrapped-phase errors for the Death Valley test data from di�erent algo-
rithms: (a) least-squares; (b) MCF; (c) LPN; (d) residue-cut; (e) MST; (f) SNAPHU. The interfer-
ogram magnitude is shown in gray-scale brightness. Black areas in (d) indicate that no solution was
produced.
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time is spent computing its statistical weights. With uniform weights, the MST algorithm

runs slightly faster than the residue-cut algorithm. That said, we must point out that

these measures of computational eÆciency are telling only for the speci�c algorithm imple-

mentations used here; other implementations may behave quite di�erently. Furthermore,

the least-squares and LPN algorithms are intensive in 
oating-point computations, while

SNAPHU and the MST, MCF, and residue-cut algorithms are generally more intensive in

integer operations. Their relative speeds consequently depend upon the platform on which

they are run.

7.2 Deformation Data: The Hector Mine Earthquake

While DEMs provide reliable ground truth for topography data, reference data are more

diÆcult to come by for deformation data. However, the subtleties and nuances of real

data are also more diÆcult to simulate faithfully in the latter case, so we again use a real

interferogram for testing SNAPHU. We evaluate the unwrapped solution subjectively by

examining its geophysical plausibility.

The 2380�2548 pixel interferogram shown in Fig. 7.5(a) depicts the deformation signa-

ture resulting from the M7.1 Hector Mine, California earthquake of October 16, 1999. The

data were acquired by ERS-2 during orbits 23027 and 23528. Topographic phase variations

arising from this pair's�23 m perpendicular baseline have been removed as much as possible

with the use of ERS-1/ERS-2 tandem data from orbits 24664 and 4991. As elsewhere in this

chapter, the interferogram magnitude is indicated by gray-scale brightness and the phase by

color. Through Eq. (4.34), each color cycle represents 2.8 cm of relative line-of-sight surface

displacement. Note that the interferogram fringe rates are in the same direction on either

side of the earthquake fault, so across the fault the phase changes by tens of cycles over

a narrow spatial strip. The peak deformation is greater than 20 cycles, or 56 cm. While

some areas along the fault generally appear darker in the interferogram magnitude, such

magnitude variations can be attributed to correlation e�ects. The individual SAR intensity

images (not shown) do not suggest any easily discernible relationship between deformation

and brightness. Because areas along the fault are completely decorrelated, however, the

fault is plainly visible in the coherence image of Fig. 7.5(b). This coherence estimate is

formed from twenty looks in azimuth and four looks in range, while ten looks in azimuth

and two looks in range are incorporated into the interferogram. Range is shown increasing
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towards the left.

The unwrapped solution from SNAPHU is shown in Fig. 7.5(c). The boxed part of this

image is shown enlarged in Fig. 7.5(d) without the interferogram magnitude and re-wrapped

modulo 40 rad (6.37 cycles) for display purposes. Away from the fault where fringe rates

are low, the interferogram is easy to unwrap and virtually any algorithm would be expected

to perform well. Nearer the fault, the fringe rates increase and coherence decreases, but

the solution still does not present any apparent errors. The relatively smooth unwrapped

solution is consistent with the intuition that shear or fracture in the surface should be limited

to few places, mostly along the fault. At those locations, the algorithm allows large phase

gradients and discontinuities, so it also captures the high-spatial-frequency information

of the interferogram. SNAPHU thus avoids the distortions characteristic of algorithms

prone to excessive smoothing or slope underestimation [Bamler et al., 1998; Zebker and Lu,

1998]. Where coherence is lost completely in the interferogram, the algorithm produces a

(reasonable) guess at the unwrapped phase �eld based on the surrounding valid areas. The

overall accuracy of these deformation measurements thus seems to be limited more by the

quality of the interferogram than by the accuracy of the unwrapping algorithm.

The interferogram was unwrapped using one of the two 550 MHz Intel Pentium III

processors of a Dell Precision 610 workstation. The execution time and memory requirement

were approximately 1500 s and 490 MB.

7.3 A Large-Scale Data Example: The Alaska DEM Project

We now examine SNAPHU's performance on three large topographic interferograms from

the Alaska SAR Facility's Alaska DEM project. This project entails the use of ERS-1/ERS-

2 tandem data for mapping the state's topography, and because Alaska covers a large

geographical area with a great deal of rugged terrain, the project poses a diÆcult challenge

for phase unwrapping. The data thus provide a thorough test of our algorithm's feasibility

for such applications.

For each of these three interferograms, we compare our algorithm's unwrapped results

to an unambiguous simulated unwrapped phase �eld generated from a reference DEM (also

obtained from the Alaska SAR Facility). Because the 60 m posting of this DEM is relatively

coarse, systematic disparities between the interferometric data and the reference data are
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Figure 7.5 Deformation test data and SNAPHU results: (a) interferogram with wrapped phase
in color and magnitude in gray-scale brightness; (b) biased coherence magnitude in color with
magnitude in gray-scale brightness; (c) unwrapped solution from our algorithm, with unwrapped
phase in color and magnitude in gray-scale brightness; (d) unwrapped phase of the area indicated
in (c), shown wrapped modulo 40 rad (6.37 cycles) for display.
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more signi�cant than in the Death Valley example above. Nevertheless, the DEM is ade-

quate for the identi�cation of most signi�cant phase unwrapping errors which again appear

as integer-cycle jumps.

Because many of the images shown in this section are quite large, we have greatly reduced

their resolutions for reproduction purposes. Note, however, that all processing was done on

the large, high-resolution data �les. All interferograms consist of �ve looks in azimuth and

one look in range, and all coherence maps are computed from twenty looks in azimuth and

four looks in range. Additionally, all images are shown in radar coordinates (slant range

and azimuth). The images are consequently rotated and slightly distorted with respect to

their true geographical orientations.

Our �rst test interferogram, shown in Fig. 7.6, depicts an area surrounding the city of

Fairbanks. This 7304 � 4800 pixel interferogram is formed from data taken during ERS-

1/ERS-2 orbits 23942 and 4269, an ascending pair with a perpendicular baseline of approx-

imately 139 m. Range is shown increasing towards the right. As shown in Fig. 7.7, the

interferogram coherence is reasonably high in 
atter areas, but decreases substantially in

areas of rough topography.

For unwrapping, the interferogram was divided into 70 separate tiles, comprising a 10�7
array, with neighboring tiles overlapping by 20 pixels in either dimension. After SNAPHU

was applied to each tile, reliable regions were identi�ed and assembled as described in

Chapter 6. Results are shown in Fig. 7.8. Color in this image represents relative unwrapped

phase error with respect to the reference DEM. A number of slowly varying di�erences

between the unwrapped solution and the DEM-derived reference phase are evident in the

error image, but the lack of integer-cycle jumps suggests that these di�erences are due to the

sources described in Section 7.1 rather than to phase unwrapping errors. Unwrapping errors

are found only in areas of layover and extreme foreshortening, and there are no apparent

tiling artifacts. Our approach thus performs quite well overall on this test case.

Our second test interferogram is shown in Fig. 7.9, and its coherence map is shown in

Fig. 7.10. Range is shown increasing towards the left. These images consist of data acquired

during ERS-1/ERS-2 orbits 24222 and 4549, a descending pair with a perpendicular baseline

of approximately 98 m. The interferogram again depicts the Fairbanks area, but because

it is formed from a descending rather than an ascending image pair, the viewing direction

is di�erent than that of the previous interferogram. The scene thus appears at a di�erent

orientation in radar coordinates, making the data of Figs. 7.6 and 7.9 complementary.
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Figure 7.6 Alaska test interferogram from ERS pair 23942-4269. The interferogram phase is
shown in color and the magnitude is shown in gray-scale brightness. Range increases towards the
right.
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Figure 7.7 Coherence map for the 23942-4269 interferogram. The estimated coherence is shown
in color and the interferogram magnitude is shown in gray-scale brightness.
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Figure 7.8 Relative unwrapped phase error for the 23942-4269 interferogram. Some minor un-
wrapping errors can be found in areas of layover and extreme foreshortening near the upper right
part of the image, though most visible color variations are likely not due to phase unwrapping. The
interferogram magnitude is shown in gray-scale brightness.
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That is, at geographic locations where layover or extreme foreshortening make the data

in one interferogram unusable, good data are often available in the other interferogram.

Since we are concerned mainly with phase unwrapping, however, we do not make a direct

comparison of the two images' unwrapped solutions here. Doing so would require that

the data be geocoded and might consequently make the algorithm results more diÆcult to

evaluate. We do compare the interferograms to the same reference DEM (projected into

the interferograms' respective coordinate systems), so we can still verify that the algorithm

produces consistent results.

The interferogram of Fig. 7.9 is the same size as that of Fig. 7.6 (7304� 4800 pixels), so

the same tiling parameters were used to unwrap it. Results are shown in Fig. 7.11. Again,

phase unwrapping errors are con�ned mainly to areas of layover, extreme foreshortening,

or low correlation, and no tiling artifacts are visible.

Although the two interferogram frames examined in this section so far have been fairly

large, we now examine a swath-mode interferogram that is larger still. The 23240 � 4800

interferogram of Fig. 7.12(a) is formed from data acquired during ERS-1/ERS-2 orbits

22210 and 2537. Range is shown increasing towards the right. With its swath covering an

area approximately 460 km long and 100 km wide, the interferogram contains a variety of

terrain types, from well-correlated 
atlands to rugged mountains in layover. Owing to its

large size and perpendicular baseline of approximately �136 m, however, fringes in some

areas are so �nely spaced that they are not visible at the resolutions used for reproduction.

The interferometric correlation is shown in Fig. 7.12(b).

The interferogram was unwrapped as a 32 � 7 array of overlapping tiles to obtain the

results shown in Fig. 7.12(c). Most of the interferogram is correctly unwrapped. There are

no large-scale errors, though some localized errors are apparent near the rugged terrain in the

middle of the image. A few tiling artifacts are also evident upon close inspection of this area;

they appear as straight, abrupt, integer-cycle jumps at tile boundaries. Overall, however,

our region-assembly approach performs well given the diÆculty of the interferogram. Of the

visible unwrapping errors, some are likely due to phase unwrapping, while others are likely

due to poor correlation and other sources as described above. Note that the area near the

upper left corner of Fig. 7.12(c) is masked out because reference data there were missing.

SNAPHU always produces a complete solution.

Figures 7.13{7.15 show enlarged the indicated parts of the interferogram, coherence

map, and error image of Fig. 7.12. This 7304 � 4800 part of the swath contains a section
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Figure 7.9 Alaska test interferogram from ERS pair 24222-4549. The interferogram phase is
shown in color and the magnitude is shown in gray-scale brightness. Range increases towards the
left.
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Figure 7.10 Coherence map for the 24222-4549 interferogram. The estimated coherence is shown
in color and the interferogram magnitude is shown in gray-scale brightness.



CHAPTER 7. RESULTS 118

-20 20
Relative Error (rad)

15 km

Figure 7.11 Relative unwrapped phase error for the 24222-4549 interferogram. Some minor
unwrapping errors can be found in areas of layover and extreme foreshortening near the upper right
part of the image, though most visible color variations are likely not due to phase unwrapping. The
interferogram magnitude is shown in gray-scale brightness.
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Figure 7.12 Test data and results for the 22210-2537 pair: (a) wrapped phase; (b) coherence
estimate; (c) relative unwrapped phase error. An area at the upper left of the error image is masked
out because reference data there were missing. All panels depict the interferogram magnitude in
gray-scale brightness. The boxed areas are shown enlarged in Figs. 7.13{7.15.
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Figure 7.13 Enlargement of the boxed part of the 22210-2537 interferogram shown in Fig. 7.12(a).
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Figure 7.14 Enlargement of the boxed part of the 22210-2537 coherence map shown in
Fig. 7.12(b).
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Figure 7.15 Enlargement of the boxed part of the 22210-2537 error image shown in Fig. 7.12(c).
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Orbit Pair Interferogram Size Elapsed Real Time Total CPU Time

23942-4269 7304 � 4800 0:16:07 0:52:10

24222-4549 7304 � 4800 0:16:13 0:50:24

22210-2537 23240 � 4800 2:13:33 8:22:14

Table 7.2 Execution times for the Alaska test data. The third and fourth columns list the real
(wall-clock) time and the aggregate processor time spent unwrapping the interferogram with parallel
use of four 500 MHz Intel Pentium III processors on a Dell PowerEdge 6300 server.

of the mountainous Alaska Range, so the topography in the region is characterized by low

correlation, layover, and extreme foreshortening. Moreover, many of the mountain peaks are

decorrelated on their back slopes as well as their front slopes, probably because of temporal

e�ects such as changes in snow cover. Together, these traits make phase unwrapping very

diÆcult, so the errors of Fig. 7.15 are not altogether unexpected. In fact, this area accounts

for almost all of the unwrapping errors visible in Fig. 7.12(c).

Such errors might indeed lead to severe height inaccuracies in an interferometrically

derived DEM, but the utility of our unwrapping algorithm should not be dismissed. The

absence of more extensive errors is telling, and it is not clear that any alternative algo-

rithms would perform better on such data. Furthermore, a number of additional processing

techniques might enhance the algorithm's performance, as described in the next section.

All interferograms in this section were unwrapped on a Dell PowerEdge 6300 server.

Table 7.2 lists each interferogram's required execution time with parallel use of the server's

four 500 MHz Intel Pentium III processors. In all cases, each tile required approximately

52 MB of memory.

The algorithm's relatively short execution times for the �rst two interferograms suggest

that it deals well with large data sets of moderate unwrapping diÆculty. The swath-mode

interferogram requires somewhat more time, even accounting for its larger size, but it is

also much harder to unwrap. The greatest potential gains in solution accuracy are thus

also associated with such data. Furthermore, a disproportionately large amount of this

interferogram's total processor time is spent on the tiles containing the rugged Alaska

Range. Given the relationship between phase unwrapping diÆculty and required execution

time, the accuracy-enhancement techniques described below might thus improve overall

eÆciency as well.
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7.4 Preprocessing Techniques for Topographic Data

We now describe a few preprocessing techniques that might enhance SNAPHU's phase-

unwrapping accuracy for topographic interferograms such as those of the previous section.

One such technique is phase �ltering. Goldstein and Werner [1998] proposed a nonlinear,

adaptive �lter for the express purpose of making phase unwrapping easier. Its e�ects on

SNAPHU's statistical models can be examined in future research.

DEM 
attening might also make topographic interferograms easier to unwrap. In this

approach, the simulated unwrapped phase �eld from an existing low-resolution DEM is

subtracted from the wrapped interferometric phase before unwrapping then reinserted af-

terwards. This procedure reduces fringe rates and residue densities in the wrapped phase,

simplifying the problem. Since the subtraction of a constant from a random variable sim-

ply translates the random variable's PDF, DEM 
attening has the e�ect of shifting the

statistical cost functions of Chapter 4 along the �� axis.

The cost functions might also be made to better re
ect the statistics of the data with

more accurate estimation of the interferometric baseline. Slight baseline errors can cause

phase tilts or height overestimation in the data, making fringe rates and residue densities

in some areas higher than expected. Thus, although it is sometimes easier to correct for

baseline errors after unwrapping, slightly better results might be obtained if baseline ad-

justments are made beforehand. These and other techniques might help SNAPHU avoid

errors like those found in Fig. 7.12(c).



Chapter 8

Conclusions

Despite considerable progress, 2-D phase unwrapping remains a formidable challenge. As

the problem is attacked in new and di�erent ways, however, important insights are gained

into both the nature of the problem and algorithms for its solution. Our work here is meant

to further this process of innovation and improvement.

8.1 Contributions

In this dissertation, we describe a new approach to 2-D phase unwrapping for SAR inter-

ferometry. This approach and the ideas behind it comprise the key contributions of our

research:

1. Proof of the intractability of the general phase unwrapping optimization problem.

The problem is shown to be NP-hard, suggesting that e�orts towards solving it are

best spent on approximate rather than exact algorithms.

2. Suggestion of a MAP framework that provides a physical basis for the phase unwrap-

ping optimization problem. Phase unwrapping is posed as a statistical estimation

problem in which the goal is to �nd the most probable unwrapped solution given the

observed data. The statistical framework generalizes many existing approaches since

Lp objectives can be treated as coarse approximations to MAP objectives.

3. Derivation of models for approximating the joint statistics of interferometric SAR

data, as required by the MAP framework, for the cases of both topography and de-

formation measurement. The models, quanti�ed through the use of nonlinear cost
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functions, re
ect the theoretical relationships between unwrapped phase �elds and

observable quantities such as wrapped phase, image intensity, and interferogram co-

herence.

4. Design and implementation of eÆcient, nonlinear network-
ow solvers for use with

the statistical cost functions described above. Although the MAP cost functions cast

phase unwrapping as an NP-hard optimization problem, the solver routines give good,

albeit only approximate, results.

5. Development of a tiling heuristic for eÆciently applying the above algorithm to large

data sets. The heuristic extends the MAP framework, allowing large interferograms

to be unwrapped in a theoretically justi�ed and accuracy-preserving manner.

6. Evaluation of the performance of the above approach, as compared to existing tech-

niques, on interferometric SAR data. The approach yields accurate results with re-

spect to topographic and deformation-mapping test data. It is also competitive with

existing algorithms in terms of computational eÆciency.

8.2 Perspective

Phase unwrapping is an attempt to solve a problem we know to be unsolvable in any rigorous

sense. Attempts at solving this problem are more than just academic exercises, however, as

the diÆculty of the problem does not diminish the need for reliable, real-world solutions.

With this in mind, we have proposed in this dissertation a phase unwrapping approach,

speci�c to SAR interferometry, that is based on MAP estimation and nonlinear network-
ow

techniques. Performance tests suggest great promise with this approach. Thus, while room

indeed remains in the algorithm for both theoretical re�nement and empirical improvement,

the algorithm's accuracy and reasonable eÆciency make it well worth considering for speci�c

unwrapping applications.

The MAP framework implies, however, that no single algorithm will be best for all ap-

plications without modi�cation. Since di�erent physical quantities are involved for di�erent

applications, each application should have its own statistical models. Thus, while we might

wish for the simplicity of a single, grand superalgorithm that is universally applicable, real-

istic algorithms must make speci�c assumptions about their inputs in order to achieve the

greatest possible accuracy.
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Assumptions involved in setting up the problem cannot be made independently of the

method of solution, though. An optimization objective that is unsolvable is no more useful

than one that gives unreliable results when solved. In the previous chapters, this duality

guided the balance between theoretical rigor and computational manageability. The balance

might need readjustment in other contexts, however. For example, statistically weighted

Lp cost functions can serve as easily solvable, coarse approximations to more speci�c MAP

criteria; their use may be appropriate in applications for which eÆciency or solver simplicity

are paramount. Conversely, the approximations used in our derivations may be re�ned in

other cases to enhance analytical precision at the possible expense of solver complexity.

Di�erent phase unwrapping algorithms|and perhaps even di�erent implementations

of the same algorithm|often have unique behavioral traits as well. Such characteristics,

though sometimes subtle, might make some approaches better suited than others to certain

classes of data. Thus, of the many approaches that are ultimately possible, it is still up to

the user to know how and when to use each.

8.3 Future Directions

Many avenues for future work are possible. In this dissertation, we have used a MAP

framework to propose both a new algorithm and a new paradigm for phase unwrapping.

Improvements are possible in either. We identify in this section a few areas towards which

the direction of future e�orts might prove particularly bene�cial.

An obvious starting point for further work lies in the re�nement of the assumptions

upon which the derivations of our statistical cost functions are based. Of course, increased

theoretical rigor might make the resulting optimization problem harder to solve, but as

we have noted above, improved unwrapping accuracy might justify additional complexity.

Experimentation is needed to resolve this question.

Entirely new cost functions will also be needed if SNAPHU is to be used in other

contexts. Speci�c statistical models will have to be derived and appropriate cost functions

formed for each of the applications in which our technique is used. This is true whether

the input data arise from other forms of SAR interferometry or from other measurement

methods altogether.

New or better solver algorithms can be anticipated as well. E�orts at improving the

network-
ow routines described here may be warranted if greater 
exibility in setting up
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the problem or greater eÆciency in solving it is desired. Nonlinear optimization routines

based on concepts other than network 
ow are also possible.

Finally, a logical step beyond simple phase unwrapping might be the generalization of

the MAP model itself. In this dissertation, we have used MAP ideas for the task of un-

wrapping a single interferogram; a much more powerful strategy might be to formulate a

MAP framework that relates some desired quantity to all available input data. Phase un-

wrapping might then comprise only a small part of a larger, big-picture estimation problem.

Such a problem might require the fusion of data from such disparate sources as multibase-

line and multitemporal SAR interferometry, hyperspectral imagery, stereo photogrammetry,

and global-positioning system ground measurements. Because the MAP framework would

ensure that such data sets are amalgamated in a theoretically sound and physically mean-

ingful way, the generalized MAP strategy might prove immensely bene�cial. The complexity

of such an approach might make its successful implementation very diÆcult, but the idea

should be considered as a long-term goal.



Appendix A

NP-hardness of the L0 Problem

In this appendix, we prove the NP -hardness of the L0 phase unwrapping problem. We �rst

show that any instance of an NP-complete called the rectilinear Steiner tree (RST) problem

can be solved by an algorithm solving the network-equivalent L0 problem. Then, we show

that any instance of this network problem can be solved by a general L0 phase unwrapping

algorithm. We begin by formally stating the RST problem [Garey and Johnson, 1977;

Garey and Johnson, 1979]: Let S � Z � Z be a set of points that have integer coordinates

on a Euclidean plane, and let K be a positive integer; de�ne an RST as a connected tree,

composed solely of horizontal and vertical line segments, that contains all points in S; does

there exist an RST whose total length is no larger than K? We show here that with the use

of a hypothetical L0 algorithm, we will always be able to �nd an RST of minimum length

for any S. Clearly, we can then answer the question posed by the RST problem for any S

and K.

The network equivalent of the L0 phase unwrapping problem is to �nd a feasible 
ow,

given some grid network (see Fig. 2.6), such that the total length of arcs carrying 
ow is

minimized. Suppose for now that all arcs have unit length. Since the nodes of the network

lie on a rectilinear grid, we can assume that they are located at integer points of a Cartesian

coordinate system. Let n be the number of points in S. We construct an instance of the

network problem such that there are n positive residues at nodes corresponding to the

points in S, as in Fig. A.1. Suppose the rightmost positive residue is at (x0; y0). We line

up n negative residues at (x0 + 1; y0), (x0 + 2; y0), : : : , (x0 + n; y0).

Now, we prove that the optimal RST length lRST for the points in S is equal to l0 � n

where l0 is the total length of the L0-optimal 
ow. We �rst show that the L0 solution will
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Figure A.1 An L0 network formulation of an RST problem instance. Positive residues are located
at the points in S, and negative residues are lined up to the right of the rightmost positive residue.
The L0-optimal solution must be a single minimum Steiner tree, whose length is n units longer than
the minimum length for the original RST problem.

be a single tree. Consider the set of all arcs ay going from (x0; y) to (x0 + 1; y). Suppose

there are m disconnected trees in the L0 solution. Each tree must be neutral, so it must

contain at least one distinct arc ay in order to establish a connection between positive and

negative residues. Let ymax be the y-coordinate of the uppermost of these arcs if any such

arcs have y > y0, or zero otherwise. De�ne ymin similarly for y < y0. De�ne R as the set of

all arcs which are part of the L0-optimal solution on or to the right of the line x = x0. A

lower bound on the total length lR of these arcs is expressed

lR � n+ (ymax � y0) + (y0 � ymin) + (m� 1): (A.1)

The term n on the right side of this equation stems from the fact that at least one horizontal

path must connect some positive residue to the rightmost negative residue. Flow must also

traverse the vertical distances from ymax and ymin to the negative residues at y0, explaining

the next two terms. The last term includes one unit of length for each of the m arcs ay

used, excluding the one included in the �rst term. Now, observe that we can draw a single

tree R0 having length lR0 and consisting of all arcs between (x0; y0) and (x0 + n; y0) and

all arcs between (x0; ymax) and (x0; ymin). R
0 contains all of the residues R contains, so if

we substitute R0 for R, we still have a feasible 
ow. Because we assume that the original
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solution is optimal, lR can be no greater than lR0 :

lR � lR0 = n+ (ymax � y0) + (y0 � ymin): (A.2)

Together, the two inequalities imply that m = 1, so the L0-optimal solution is a single tree.

This tree must consequently be a minimum-length RST with respect to the set of all points

at which there is either a positive or a negative residue. Furthermore, all positive residues

are on a connected subtree and all negative residues are on another connected subtree, both

of which are minimum Steiner trees for their respective residues [Hanan, 1966]. Clearly,

the length of arcs from (x0; y0) to (x0+n; y0) is n, so the remaining length l0�n of the L0

solution is the length of the minimum rectilinear Steiner tree for the points in S. Knowledge

of this length provides us with the answer to the given RST problem instance.

So far, we have shown that an L0 network algorithm can solve the RST problem, so

we must now show that any instance of the network problem has a phase unwrapping

equivalent. That is, we must be able to generate a wrapped phase �eld for any instance of

the network problem above. However, some arrangements of residues do not correspond to

realizable phase �elds (e.g., when many residues of the same sign are all located at adjacent

nodes). This calls for a slight modi�cation to our formulation of the network RST equivalent.

Suppose that the nodes of the network problem are now located at multiples of 1=n instead

of 1 in the Cartesian coordinate system, while residues still lie at their integer coordinates.

The rectilinear distance metric implies that the number of arcs in the L0-optimal network

solution simply increases by a factor of n [Hanan, 1966]. Therefore, we lose no generality

in our ability to solve the RST problem. Now, however, any two residues are separated by

at least n nodes, so we can easily (polynomially) generate a wrapped phase �eld for the

given arrangement of residues. We might do so, for example, by wrapping some nonoptimal

unwrapped surface into which we have introduced discontinuities of appropriate sign and

magnitude along arbitrary paths between positive and negative residues. The resulting

wrapped phase �eld has an L0-optimal unwrapped-phase solution that corresponds exactly

to the solution of the network problem. Therefore, an L0 phase unwrapping algorithm can

be used to solve any instance of the NP-complete RST problem.

This nearly completes the proof, but one more subtlety must be addressed. The number

of nodes in our constructed network problem is related to the spacings of the points in

the RST problem instance we are given. As this spacing grows, the number of nodes in
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the network problem may become very large even though the number points in the RST

problem may be relatively small. The number of nodes in the L0 problem thus cannot be

polynomially bounded by the number of points in the RST problem. However, the RST

problem was shown to be NP-complete through a transformation from another NP-complete

problem called the node-cover problem for planar graphs [Garey and Johnson, 1977]. We

will not discuss that problem here, but merely note that any instance of it may be posed

as an RST problem with a constant bound on point spacing. That is, the RST problem is

NP-complete in the strong sense [Garey and Johnson, 1979]. Consequently, any instance

of the node cover problem for planar graphs may be solved by an L0 phase unwrapping

algorithm through a polynomial-time transformation. Therefore, the L0 phase unwrapping

problem is NP-hard.

Above, we assume that all arcs are uniformly weighted, but we can easily generalize the

proof to the weighted case as well since an algorithm solving the weighted L0 problem can

always be assigned uniform weights to solve the unweighted problem.

We also assume above that in obtaining a solution, our hypothetical L0 algorithm adds

only integer numbers of cycles to the wrapped phase. Again, we can generalize the proof by

noting that an L0 optimum will never require the addition of noninteger numbers of cycles.

That is, an L0-optimal unwrapped phase �eld will always be congruent to its wrapped

input. To see this, recall that the network model remains completely general even when

noninteger 
ows are present. Now, suppose there is a noninteger 
ow on arc a in some

feasible L0 solution. Because 
ow is conserved and all residues are integers, there must be

at least one other arc with a noninteger 
ow connected to each endpoint of a. Extending this

analysis further, a must be part of a closed (but not necessarily directed) loop of noninteger


ows as shown in Fig. A.2. We can consequently reduce the total L0 length of the solution

by deleting one arc from the loop and reallocating the 
ows, which then become integers,

on the remaining arcs. The new solution still contains the same residues, so it must still

be feasible. Since any solution containing noninteger 
ows can be improved upon in the

L0 sense, an optimal L0 solution will never contain noninteger 
ows. Our hypothetical L0

algorithm can thus ignore all noncongruent unwrapped solutions.

It should be noted in passing that the Steiner tree problem with a Euclidean distance

metric is also NP-complete [Garey et al., 1977]. Furthermore, the general network-
ow

optimization problem with concave cost functions has been shown to be NP-hard [Guisewite

and Pardalos, 1990]. We have shown here that the L0 problem is NP-hard even given its
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Figure A.2 Part of an L0 solution, where the numbers indicate 
ow magnitudes. Noninteger

ows must be arranged in closed loops if the net 
ow out of a node is equal to the node's integer
charge (a). The loop can always be broken and the 
ows reallocated to form integer 
ows that
comprise a better feasible L0 solution (b).

special network structure and simple cost functions.
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