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Abstract The homozygosity and the frequency of the most frequent allele at a poly-
morphic genetic locus have a close mathematical relationship, so that each quantity
places a tight constraint on the other. We use the theory of majorization to provide a
simplified derivation of the bounds on homozygosity J in terms of the frequency M
of the most frequent allele. The method not only enables simpler derivations of known
bounds on J in terms of M , it also produces analogous bounds on entropy statistics
for genetic diversity and on homozygosity-like statistics that range in their emphasis
on the most frequent allele in relation to other alleles. We illustrate the constraints on
the statistics using data from human populations. The approach suggests the poten-
tial of the majorization method as a tool for deriving inequalities that characterize
mathematical relationships between statistics in population genetics.

Keywords Genetic diversity · Homozygosity · Majorization · Shannon and Rényi
entropies
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1 Introduction

Population-genetic summary statistics—functions computed from data on genetic
variation—provide a central tool in population-genetic data analysis. Summary mea-
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sures of allele frequencies, including measures of genetic similarity and diversity, are
often computed from data, leading to much subsequent interpretation and additional
computation.

Recent studies have demonstrated that pairs of population-genetic summary statis-
tics often have a closemathematical relationship, so that values of one quantity strongly
constrain the values of a second quantity (Hedrick 1999, 2005; Long and Kittles 2003;
Rosenberg and Jakobsson 2008; Maruki et al. 2012; Jakobsson et al. 2013; Edge and
Rosenberg 2014). For example, for a polymorphic locus, Rosenberg and Jakobsson
(2008) showed that two measures of the homogeneity of the allele frequencies in
a population—homozygosity and the frequency of the most frequent allele—tightly
constrain each other over the unit interval, so that each can be predicted by the other
to within 1/4, and so that the mean range over the unit interval for one of the statistics
given the other is 2

3 − π2

18 ≈ 0.1184. Reddy and Rosenberg (2012) then tightened
the bounds placed by homozygosity on the frequency of the most frequent allele and
vice versa, in the case of a fixed value for the number of distinct alleles. These the-
oretical results provide guidance for interpreting computations of homozygosity and
the frequency of the most frequent allele, including in homozygosity-based tests for
evidence of natural selection (Rosenberg and Jakobsson 2008; Garud and Rosenberg
2015).

To further advance the study of mathematical properties of population-genetic
statistics describing similarity and diversity of alleles in a population, we investi-
gate the application of the theory of majorization—a mathematical and statistical
approach concerned with evenness of arrayed structures (Marshall et al. 2010)—to
these statistics.Majorization provides general principles concerningmaxima andmin-
ima, enabling bounds to be obtained for broad classes of functions. In addition, as a
theory about mathematical functions in general, it readily suggests new functions to
be used as summary statistics, functions whose mathematical bounds are achieved at
the same allele frequency distributions that generate bounds for existing statistics. We
exploit this aspect of majorization to investigate the relationship of the frequency of
the most frequent allele to various homozygosity-related statistics as well as to the
Shannon–Weaver entropy statistic for genetic diversity.

First, we formally introduce the population-genetic statistics of interest. Next, we
describe the majorization framework and establish its relationship with convex func-
tions, the key connection that enables the derivation of our mathematical bounds.
We then obtain bounds given a fixed size for the frequency of the most frequent
allele on homozygosity statistics and the Shannon–Weaver index. We provide simpler
derivations of results reported by Rosenberg and Jakobsson (2008) and Reddy and
Rosenberg (2012); these derivations naturally lead us to consider a larger family of
homozygosity-related statistics that we call α-homozygosities, whose extreme values
occur at the same allele frequency vectors as for standard homozygosity. Similarly,
the Shannon–Weaver bounds can be extended to provide bounds on the more general
Rényi entropies. We compare the constraints placed by the frequency of the most fre-
quent allele on α-homozygosity for various choices of α, by applying the bounds to
data on 783multiallelic microsatellite loci in a sample of 1048 individuals drawn from
worldwide human populations. The comparison helps extend the understanding of the
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empirical relationships among statistics describing genetic similarity and diversity in
populations.

2 Preliminaries

2.1 Statistics based on allele frequencies

Consider a population and a polymorphic genetic locus with I distinct alleles. We
represent the allele frequencies of the locus by the frequency vector p = (p1, . . . , pI ).
The components of p are arranged in descending order such that pi � p j if i < j .
We sometimes denote p1, the largest allele frequency, by M . For all i , pi ∈ [0, 1], and
the entries in p sum to 1. Note that p1 > 0.

Homozygosity for a locus is the sum of the squares of allele frequencies at the
locus,

J = J (p) =
I∑

i=1

p2i .

For diploid loci at Hardy–Weinberg proportions, J measures the total frequency of
homozygotes in a population. For loci of any ploidy, it provides a measure of the
homogeneity of an allele frequency distribution, approaching 0 for a distribution con-
sisting of many rare alleles and equaling 1 if a distribution has only a single allelic
type.

We also consider a generalization that we term α-homozygosity, which we define
by

Jα = Jα(p) =
I∑

i=1

pα
i ,

where α > 1. The standard homozygosity J is the α-homozygosity for the case of
α = 2.

Next, we examine the Shannon–Weaver entropy index of diversity, also known as
the Shannon–Wiener or Shannon index. This quantity is defined by

H = H(p) = −
I∑

i=1

pi log pi ,

taking 0 log 0 = 0. Unlike homozygosity, this index increases with diversity in the
allele frequency distribution, rather than with homogeneity.

Note that the Shannon–Weaver index is a limiting case of the Rényi entropies, a
family of diversity measures indexed by a variable α. For a specified value of α ∈
(0, 1) ∪ (1,∞), the Rényi entropy of order α, or α-entropy for short, is defined by

Hα(p) = 1

1 − α
log

(
I∑

i=1

pα
i

)
. (2.1)
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Hα and Jα are related by Hα = 1
1−α

log(Jα). For α = 1, by l’Hôpital’s rule,
limα→1 Hα(p) = H(p) for any allele frequency vector p. We can then identify
limα→1 Hα with the Shannon–Weaver index H , treating the Shannon–Weaver index
as the α = 1 case of the Rényi entropy.

2.2 Majorization

The theory of majorization (Marshall et al. 2010) is concerned with the notion of
evenness in comparisons between pairs of vectors. Given a vector v = (v1, . . . , vI )

with I components, let v[i] denote its i th largest component, which is not necessarily
the same as its i th component, vi . For example, if v = (1, 5, 3, 4), then v[1] = 5 but
v1 = 1, and v[2] = 4 but v2 = 5. For a pair of vectors v,w whose elements have
the same sum, we compare their evenness by saying that v majorizes w if w is “more
evenly distributed,” or “less concentrated,” than v. The following definition formalizes
this concept.

Definition 2.2 (Majorization) Let v,w ∈ R
I . Then v majorizes w if both of the

following conditions hold.

(1)
∑I

i=1 vi = ∑I
i=1 wi .

(2) For each k from 1 to I ,
∑k

i=1 v[i] �
∑k

i=1 w[i].

If v majorizes w, then we write v � w.

The first condition states that the vectors have the same sum of components. The
second condition states that for each k, the sum of the k largest components of v
is greater than or equal to the corresponding sum of the k largest components of
w. It can be verified from the definition that (0.75, 0.25) majorizes (0.5, 0.5) and
(0.8, 0.1, 0.05, 0.05)majorizes (0.4, 0.3, 0.15, 0.15), but neither (0.5, 0.25, 0.25) nor
(0.4, 0.4, 0.2) majorizes the other. Note that if v � w and w � v, then w must be
a permutation of v. This result follows from the fact that if v � w and w � v, then∑k

i=1 v[i] = ∑k
i=1 w[i] for each k from 1 to I .

In the (I −1)-dimensional simplex�I−1 = {(pi )
I
i=1 : pi � 0,

∑I
i=1 pi = 1} con-

sisting of nonnegative vectors that sum to 1, (1, 0, . . . , 0) � (1/2, 1/2, 0, . . . , 0) �
· · · � (1/I, . . . , 1/I ). Moreover, for any p ∈ �I−1, (1, 0, . . . , 0) � p �
(1/I, . . . , 1/I ).

2.3 Functions preserving majorization

Because majorization ranks vectors by evenness, it is natural to identify mathemati-
cal functions that preserve the ranking order. Such functions are termed isotone with
respect to majorization: if v majorizes w, then an isotone function F outputs a value
F(v) at least as large as F(w). A function is termed antitone with respect to majoriza-
tion, if whenever vector v � w, the function outputs a smaller or equal value. An
isotone function is largest at maximal vectors with respect to the majorization order
and smallest at minimal vectors, whereas the reverse is true for an antitone function.
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An isotone function with respect to majorization provides a sensible index of
concentration of vectors, whereas an antitone function provides a sensible index of
diversity. As we shall see below, homozygosity is isotone, whereas the Shannon–
Weaver index is antitone.

The functions that are isotone, or preserve themajorization order, are closely related
to convex functions. Suppose S is a set of I -dimensional vectors, possibly R

I . A
function F : S → R that preserves majorization on S is termed Schur-convex; the
Schur-convex functions are by definition the isotone functions. Mathematically, F is
Schur-convex if v � w on S implies F(v) � F(w). Furthermore, F is strictly Schur-
convex if F(v) > F(w) whenever v � w but v is not a permutation of w. A function
F is Schur-concave if −F is Schur-convex; Schur-concave functions are the antitone
functions.

A useful method for identifying Schur-convex functions is the Schur–Ostrowski
criterion (Marshall et al. 2010 pg. 84).

Theorem 2.3 (Schur–Ostrowski criterion) If F is symmetric in the components of its
argument and all its first partial derivatives exist, then F is Schur-convex if and only
if for every v ∈ S,

(vi − v j )

(
∂ F

∂vi
− ∂ F

∂v j

)
� 0

for each pair of components of v, vi and v j . Moreover, F is strictly Schur-convex if
equality requires vi = v j . The inequality is reversed for Schur-concave F.

We will have occasion to use a particular case of the Schur–Ostrowski criterion.
The first derivative of a differentiable convex function f : R → R of one variable
is by definition increasing. Therefore, for any pair of points vi , v j at which f is
differentiable, f ′(vi ) − f ′(v j ) and vi − v j have the same sign, implying that (vi −
v j )[ f ′(vi ) − f ′(v j )] � 0. Hence, a function F that is decomposable into individual,
identical convex functions in each of its arguments satisfies the Schur–Ostrowski
criterion. An analogous statement holds for Schur-concave functions in relation to
concave functions. We state this claim formally.

Corollary 2.4 If v = (v1, . . . , vI ) and F(v) = f (v1) + · · · + f (vI ) where f is
(strictly) convex, then F is (strictly) Schur-convex. Similarly, if f is (strictly) concave,
then F is (strictly) Schur-concave.

This corollary, in which the part about strict convexity appears on p. 92 of Marshall
et al. (2010), is conveniently stated in the following form (Karamata 1932; see also
pp. 156–157 of Marshall et al. 2010).

Theorem 2.5 (Karamata’s inequality) Let S ⊆ R be an interval and let f : S → R

be convex, and let v1, . . . , vI , w1, . . . , wI ∈ S. If v � w, then

f (v1) + · · · + f (vI ) � f (w1) + · · · + f (wI ).

If f is concave, then the inequality is reversed. If f is strictly convex or strictly concave,
then equality holds if and only if the list of values w1, . . . , wI gives a permutation of
v1, . . . , vI .
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With these tools, we are now ready to study the constraints placed on J and H by
M . In the next section, we apply Karamata’s inequality to establish bounds on these
statistics as functions of the fixed largest allele frequency. In establishing Theorems 3.2
and 3.9, the main results from which we obtain the bounds on the statistics, the proofs
follow a similar general structure. In each proof, we characterize the vectors that lie at
extremes with respect to the majorization order among the vectors in a space. We then
show that for functions on that space satisfying convexity conditions, extreme values
occur at vectors that are extreme with respect to the majorization order.

3 Results

We consider bounds on population-genetic statistics in terms of the frequency M of the
most frequent allele in two settings. First,we consider anunspecifiednumber of distinct
alleles (Sect. 3.1). This section includes the bounds ofRosenberg and Jakobsson (2008)
and our new bounds on α-homozygosity. Second, we consider a specified number of
distinct alleles (Sect. 3.2). This section includes the bounds of Reddy and Rosenberg
(2012) and newbounds onα-homozygosity, the Shannon–Weaver index, and theRényi
entropy.

To obtain the bounds, we rely on the observation that f (x) = xα is strictly convex
for α > 1 and x � 0, so that Jα is strictly Schur-convex by Corollary 2.4. The
convexity of f (x) = xα follows from the second derivative test for convexity, by
which f is convex if f ′′(x) � 0, as f ′′(x) = α(α − 1)xα−2 > 0 for x > 0. Further,
because f (x) � 0 for x � 0 with equality if and only if x = 0, f is strictly convex.
We apply this observation in order to derive bounds on homozygosity obtained by
Rosenberg and Jakobsson (2008), as well as to obtain bounds on α-homozygosity.
We also rely on the fact that the Shannon–Weaver index is strictly Schur-concave as
a consequence of Corollary 2.4 together with the fact that f (x) = −x log x is strictly
concave for x � 0.

We now derive bounds on homozygosity, α-homozygosity, the Shannon–Weaver
index, and theRényi entropy that quantify the constraints placed by M .Wewill see that
the majorization approach not only reproduces the results of Rosenberg and Jakobsson
(2008) and Reddy and Rosenberg (2012), it also produces bounds for the more general
α-homozygosity.

3.1 Unspecified number of distinct alleles

The following result was obtained by Rosenberg and Jakobsson (2008). This result
indicates that for a fixed value of the frequency of the most frequent allele, homozy-
gosity is maximized by setting as many allele frequencies as possible equal to the
largest frequency, with at most one nonzero allele frequency remaining.

Theorem 3.1 (Theorem 2, Rosenberg and Jakobsson 2008) Consider a sequence of
the allele frequencies at a locus, (pi )

∞
i=1, with pi ∈ [0, 1), ∑∞

i=1 pi = 1, J =∑∞
i=1 p2i , M = p1, and i < j implies pi � p j . Then
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(i) J > M2, and
(ii) J � 1 − M(
M−1� − 1)(2 − 
M−1�M),

with equality if and only if pi = M for 1 � i � K − 1, pK = 1 − (K − 1)M, and
pi = 0 for i > K , where K = 
J−1� = 
M−1�.

This result was the main mathematical result of Rosenberg and Jakobsson (2008);
to obtain it in a manner that provides a broader mathematical perspective, we prove
a general theorem, Theorem 3.2, which applies to a general class of functions that
includes homozygosity. By checking that the theorem applies to J , Theorem 3.1 will
follow as a corollary.

Let � = ⋃∞
I=1 �I−1 be the set of all nonnegative vectors of finite length summing

to 1. For a real number x , we use {x} = x − �x to denote its fractional part.
Theorem 3.2 Let F : � → R be given by F(p) = ∑∞

i=1 f (pi ), where f : [0,∞) →
[0,∞), f (0) = 0, and f is continuous and convex. Assume that F(p) is bounded for
all p ∈ �. Suppose the number of nonzero entries in p is at most I , p1 = M ∈ (0, 1),
and pi � p j whenever i < j . Define K = 
M−1�. Then for all I � K ,

(i) F � f (M), and
(ii) F � �M−1 f (M) + f ({M−1}M).

Equality of F with the upper bound in (ii) occurs if pi = M for 1 � i � K −1, pK =
1 − (K − 1)M, and pi = 0 for i > K . If f is strictly convex, then this is the only
configuration at which equality holds. If f is strictly convex, then the inequality in (i)
is strict.

Theorem 3.2 indicates that any bounded function F that can be expressed as a sum
of convex functions f of each argument and that satisfies other mild conditions is
bounded below by f (M), where M is the largest component of the vector p at which
F is being evaluated, and it cannot exceed the value given by evaluating F at the

vector
∼
p = (M, . . . , M, {M−1}M, 0, . . .) ∈ �, where

∼
p includes �M−1 components

of size M .
To see howTheorem3.1 follows from themore general Theorem3.2, set f (x) = x2.

We know that f is continuous and strictly convex, with nonnegative range. It satisfies
f (0) = 0, and moreover F is bounded, as 0 � F(p) = ∑∞

i=1 p2i �
∑∞

i=1 pi = 1.
The expressions in Theorem 3.1i, ii follow after inserting f (x) = x2 into Theorem 3.2.
Indeed,

�M−1 f (M) + f ({M−1}M) = �M−1M2 + [(M−1 − �M−1)M]2
= 1 − M(
M−1� − 1)(2 − 
M−1�M).

To prove Theorem 3.2, we require a lemma concerning convex functions. This
straightforward lemma states that for a convex function f , if certain conditions are
satisfied, then the sum

∑∞
i=1 f (xi ) does not exceed f

(∑∞
i=1 xi

)
.

Lemma 3.3 Let f : [0,∞) → [0,∞) be a continuous function with f (0) = 0.
Consider (xi )

∞
i=1, with each xi ∈ [0,∞) and with

∑∞
i=1 xi = s < ∞ and∑∞

i=1 f (xi ) < ∞. If f is convex, then
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f

( ∞∑

i=1

xi

)
�

∞∑

i=1

f (xi ).

Proof The proof relies on Karamata’s inequality applied to sequences of increasing
length. First, observe that for any positive integer n, (x1 + · · · + xn, 0, . . . , 0) �
(x1, x2, . . . , xn). Hence, by Karamata’s inequality applied to the convex function f
(Theorem 2.5),

f

(
n∑

i=1

xi

)
= f

(
n∑

i=1

xi

)
+ (n − 1) f (0) �

n∑

i=1

f (xi ).

Consider the limit as n → ∞. As a bounded increasing sequence,
∑n

i=1 xi con-
verges to its limit, limn→∞

∑n
i=1 xi = s. Because f is continuous, f (s) =

limn→∞ f (
∑n

i=1 xi ). Moreover, limn→∞
∑n

i=1 f (xi ) = ∑∞
i=1 f (xi ), because the

sequence of partial sums
∑n

i=1 f (xi ) is a monotone increasing sequence that is
bounded. Compiling these results, we have

f (s) = lim
n→∞ f

(
n∑

i=1

xi

)
� lim

n→∞

n∑

i=1

f (xi ) =
∞∑

i=1

f (xi ). �

Proof of Theorem 3.2 (ii) Choose M with 0 < M < 1. We must show that

for any p ∈ � with p1 = max(pi )
∞
i=1 = M , F(p) � F(

∼
p), where

∼
p =

(M, . . . , M, {M−1}M, 0, . . .). Let p = (pi )
∞
i=1 be any vector in � with p1 = M .

Function f is assumed to be nonnegative, continuous, and convex with f (0) = 0.
Because p is in �,

∑∞
i=1 pi = 1. Because

∑∞
i=1 f (pi ) = F(p) and F(p) is bounded,

f satisfies the conditions of Lemma 3.3. Hence, for each n,

f

( ∞∑

i=n

pi

)
�

∞∑

i=n

f (pi ).

Let N be the minimal value of n such that
∑∞

i=n pi � M . Let
∑∞

i=N pi = s. Then

(
N−1∑

i=1

f (pi )

)
+ f (s) =

(
N−1∑

i=1

f (pi )

)
+ f

( ∞∑

i=N

pi

)

�
N−1∑

i=1

f (pi ) +
∞∑

i=N

f (pi ). (3.4)

We now claim that the left-hand side of Eq. 3.4 is bounded above by �M−1 f (M) +
f ({M−1}M), which is what we wish to show.
Let t = (M, . . . , M, {M−1}M), where the first �M−1 terms all equal M ; t is

equal to
∼
p, except that

∼
p appends infinitely many zeroes. Let u = (p1, . . . , pN−1, s).
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Because t and u possibly have distinct (finite) lengths, define m = max(�M−1 +
1, N ). Append zeroes to t or u, so that t and u have the same length, m. We prove
that after this procedure is performed, t � u. This result would immediately imply the
claim, because we could then apply Karamata’s inequality (Theorem 2.5) to convex
f and vectors t and u to obtain (ii). Indeed, because t � u and f is convex, denoting
F(x1, . . . , xm) = ∑m

i=1 f (xi ), we would have

�M−1 f (M) + f ({M−1}M) =
⎛

⎝
�M−1∑

i=1

f (M)

⎞

⎠ + f (1 − �M−1M)

= F(t)

� F(u)

=
(

N−1∑

i=1

f (pi )

)
+ f (s).

Here, we use the fact that f (0) = 0, so that the additional zeroes do not affect F(t)
or F(u).

We now verify that t � u. Observe that t and u have the same sum. Moreover,
because pi � M for each i � N −1, it follows that the sumof the j largest components
of u, where j � �M−1, is bounded above by j M . For any j > �M−1, the sum of
the j largest components of t is 1, which is always an upper bound for the sum of the
corresponding components of u. Thus, t � u as claimed, and (ii) holds.

For the equality condition, note that equality in (ii) requires F(u) = F(t). For
strictly convex f , F(u) = F(t) requires that u be a permutation of t, as otherwise,
we would have F(t) > F(u) by the strict Schur-convexity of F that follows from
Corollary 2.4. Because the components of u and t are arranged in decreasing order,

equality in (ii) requires that u = t. Hence, vectors
∼
p are the only vectors in � that

achieve equality in (ii).
(i) Observe that for any p ∈ � with p1 = M , we have, by the nonnegativity of f

on [0,∞),

F(p) =
∞∑

i=1

f (pi ) � f (p1) = f (M).

In the case that f is strictly convex and p1 < 1, F(p) = ∑∞
i=1 f (pi ) � f (p1) +

f (p2). For p1 < 1 and p ∈ �, p2 > 0. Because f is strictly convex, f (0) = 0, and
p2 > 0, f (p2) > 0. Hence F(p) > f (p1), and the inequality in (i) is strict. ��

Note that for convenience, in the statement of Theorem3.2, both �M−1 and 
M−1�
appear. In verifying (ii), we have simultaneously considered two cases for which the
proof proceeds in the same way: if M is the reciprocal of an integer, then �M−1 =

M−1�, and otherwise, �M−1 = 
M−1� − 1. In the case that M is the reciprocal
of an integer, t has a zero in position �M−1 + 1 and {M−1} = 0. The proof is not
affected by these values of 0.

Having proven Theorem 3.2 and having shown that it implies Theorem 3.1, we now
proceed to show that it implies a similar result for the more general α-homozygosity.
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Recall that α-homozygosity Jα(p) is defined by raising each component of an
allele frequency vector p to the αth power and taking the sum across components.
Because f (x) = xα is convex, Jα is Schur-convex. Further, Jα(p) = ∑∞

i=1 f (pi )

is continuous and nonnegative on � and satisfies f (0) = 0. We also see that
Jα(p) �

∑∞
i=1 pi = 1 on � and is hence bounded, as pα

i � pi for 0 � pi � 1
and α > 1, so that

∑∞
i=1 pα

i �
∑∞

i=1 pi = 1. Consequently, Theorem 3.2 provides
bounds on the values of Jα for a fixed value p1 = M of the largest allele frequency.

Corollary 3.5 (Bounds for α-homozygosity) Suppose p ∈ �, p1 = M is fixed with
M ∈ (0, 1], and pi � p j whenever i < j . Then

Mα � Jα(p) � �M−1Mα +
(
{M−1}M

)α

.

Equality with the upper bound occurs if and only if p = (M, . . . , M, 1 −
�M−1M, 0, . . .). Equality with the lower bound is achieved if and only if M = 1.

Proof Both bounds and the equality condition for the upper bound follow directly
from Theorem 3.2 applied to the function Jα . Equality in the lower bound is attained
only if f (pi ) = 0 for all i � 2, so that pi = 0 for all i � 2 and M = 1. ��

By setting α = 2 in Corollary 3.5, we recover Theorem 3.1. Thus, the majorization
approach not only proves the result of Rosenberg and Jakobsson (2008), it finds that
an analogous result holds for α-homozygosity for any α > 1.

Figure 1 illustrates the effect of α on the constraints placed by M on α-
homozygosity. Increasing α decreases both the lower bound on Jα (Fig. 1a) and
the upper bound (Fig. 1b), shrinking the range of values that Jα can possess (Fig. 2).

This observation canbequantifiedbynoting that the area of the regionof permissible
values between the lower and upper bounds decreases with increasing α. Considering
M ∈ (0, 1] and denoting by Lα and Uα the areas of the regions bounded below by
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Fig. 1 Analytical lower and upper bounds on α-homozygosity Jα as functions of the frequency M of the
most frequent allele. a Lower bound and b upper bound. The bounds are taken from Corollary 3.5
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Fig. 2 Analytical lower and upper bounds on α-homozygosity Jα , for different choices of α and the
maximal number of distinct alleles I . a α = 1.01, b α = 1.5, c α = 2, d α = 3, e α = 5 and f α = 10. The
solid lines are the lower and upper bounds obtained from Corollary 3.5. The dotted lines are refinements
to the lower bound for different fixed values of I , obtained using Corollary 3.13 (from top to bottom,
I = 3, 4, 5, 6, 7, 8). The upper bound is the same irrespective of the number of distinct alleles, except that
it is defined only for M � 1/I . For large α, the lower and upper bounds are largely indistinguishable

the x-axis and above by the lower and upper bounds, respectively, the area between
the bounds is Sα = Uα − Lα . This quantity represents the magnitude of the constraint
placed by M on Jα , measuring both the fraction of the unit square permissible for
(M, Jα), and because the interval of permissible values for M has size 1, the mean
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Fig. 3 Sα , the area of the region
of permissible values for
α-homozygosity, as α increases
from 1.01 to 10. Sα is calculated
using Eq. 3.6. Sα quickly
converges to zero; for example,
at α = 10, Sα = 8.96 × 10−5
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across values of M of the interval between the lower and upper bounds. Uα and Lα

are computed in the “Appendix”. The area Sα satisfies

Sα = 1

α + 1

∞∑

t=1

1

t (t + 1)α
. (3.6)

If α = 2, Sα = (1/3)(1 − ∑∞
t=2 1/t2) = 2

3 − π2

18 ≈ 0.1184, as computed by
Rosenberg and Jakobsson (2008) for the case of the standard 2-homozygosity. If
α = 3, Sα = (1/4)(2 − π2

6 − ∑∞
t=1 1/t3 + 1) = 3

4 − π2

24 − ζ(3)
4 ≈ 0.03825, where

ζ(3) ≈ 1.2021 is Apéry’s constant.
Because α > 1, the sum

∑∞
t=1 t−(α+1) is a convergent power series, converging to

ζ(α + 1), where ζ(z) denotes the Riemann zeta function. Because 1/[t (t + 1)α] <

1/tα+1, we conclude that Sα → 0 as α → ∞. Moreover, Sα is monotonically decreas-
ing with increasing α. These features can be observed in Fig. 3.

We can also see that as α grows large,

Jα(p)

Mα
=

∞∑

i=1

( pi

M

)α

=
∑

{i :pi =M}
1 +

∑

{i :pi <M}

( pi

M

)α

≈ |{i : pi = M]}|. (3.7)

Hence, for large α, the ratio of α-homozygosity to the αth power of the frequency of
the most frequent allele is approximately the number of alleles that attain the maximal
frequency. This result has the consequence that for large powers of α, the quotient of
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Jα and Mα is an approximate indicator of the number of allelic types that achieve the
highest frequency.

3.2 Specified number of distinct alleles

So far, we have treated the number of distinct allelic types as unrestricted and possi-
bly infinite. If a finite maximal number of distinct alleles can be specified, however,
then the lower bound on homozygosity for a fixed size of the frequency of the most
frequent allele can be tightened (Reddy and Rosenberg 2012). We now demonstrate
that majorization can recover the lower bound on homozygosity given M under the
additional constraint of a fixed maximal number of distinct alleles. As was true for
an unspecified number of distinct alleles, the approach gives rise to a more general
result that enables bound computations for a broader class of similarity and diversity
measures.

We extend Theorem 3.2 to produce a result about general convex functions, The-
orem 3.9, for the case of a fixed maximal number of distinct alleles. This theorem
produces an α-homozygosity generalization of the result of Reddy and Rosenberg
(2012) on the lower bound on homozygosity at fixed M . It furthermore produces
bounds on the Shannon–Weaver index and Rényi entropy for a fixed M and a fixed
maximal number of distinct alleles.

The following result was obtained by Reddy and Rosenberg (2012).

Theorem 3.8 (Theorem 2, Reddy and Rosenberg (2012)) Consider a sequence of the
allele frequencies at a locus, (p1, . . . , pI ), with I � 2 fixed, such that pi ∈ [0, 1),∑I

i=1 pi = 1, J = ∑I
i=1 p2i , M = p1, and i < j implies pi � p j . Then given

M ∈ [1/I, 1),

I M2 − 2M + 1

I − 1
� J � 1 − M(
M−1� − 1)(2 − 
M−1�M).

Equality in the upper bound occurs under the same conditions as in Theorem 3.1.
Equality in the lower bound occurs if and only if pi = (1− M)/(I −1) for 2 � i � I .

To obtain Theorem 3.8, we prove a more general theorem, Theorem 3.9, which can
be viewed as an extension of Theorem 3.2.

Theorem 3.9 Let I � 2 be a fixed natural number. Let F : �I−1 → R be given
by F(p) = ∑I

i=1 f (pi ), where f : [0,∞) → R takes on non-negative values on
[0, 1], f (0) = 0, and f is continuous and convex. Suppose p1 = M is fixed with
1/I � M � 1, and that pi � p j whenever i < j . Then

f (M) + (I − 1) f

(
1 − M

I − 1

)
� F(p) � �M−1 f (M) + f ({M−1}M). (3.10)

Equality in the upper bound occurs under the same conditions as in Theorem 3.2.
Equality in the lower bound occurs if pi = (1 − M)/(I − 1) for 2 � i � I , and if f
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is strictly convex, then it is achieved only at this configuration. Moreover, if all other
conditions on f hold but f is concave, then the inequalities in Eq. 3.10 are reversed.

Proof LetD = {(pi )
I
i=1 ∈ �I−1 : p1 = M, pi � p j whenever i < j} denote the set

of non-increasing vectors in �I−1 with first component fixed at M .
Consider vectors t and u, where

t = (M, . . . , M, 1 − �M−1M, 0, . . . , 0) (3.11)

has �M−1 terms M and I − �M−1 − 1 zeros, and

u =
(

M,
1 − M

I − 1
, . . . ,

1 − M

I − 1

)
(3.12)

has I − 1 terms (1 − M)/(I − 1). Observe that t and u both lie in D. We must show
that for any vector x ∈ D, F(x) never exceeds F(t) and never takes a value smaller
than F(u).

Because f is convex, byCorollary 2.4, F is Schur-convex.ByKaramata’s inequality
(Theorem 2.5), if we can show that t majorizes every other vector x in D and u is
majorized by every other vector x in D, then the inequalities in Eq. 3.10 follow as a
consequence.

We first prove that t � x for any x ∈ D. Observe that for any x ∈ D,
x1, x2, . . . , xI � M , and moreover,

∑I
i=1 xi = 1. Hence, for each i from 1 � i �

�M−1, the sum of the first i terms of x satisfies x1 + · · · + xi � i M , where the
right-hand side of the inequality gives the sum of the i largest components of t. For
�M−1 + 1 � i � I , observe that x1 + · · · + xi � 1, the right-hand side of which
is again the sum of the i largest components of t. Because the partial sums of t are at
least as large as the partial sums of x for all i , t � x, as claimed.

Next, we prove that u ≺ x for any x ∈ D. Observe that for any x, because its
components are arranged in non-increasing order, for i � 2, the sum of the i largest
components is always at least M + (i −1)(1 − M)/(I − 1), which corresponds to the
sum of the i largest components of u. Indeed, if it were not so, then for some j , the
sum of the j largest components of xwould be less than M +( j −1)(1 − M)/(I − 1).
Because the sum of all I components of x is 1, the remaining I − j components would
then have sum larger than (I − j)(1 − M)/(I − 1). This would in turn have as a con-
sequence that at least one of the j largest components of x exceeds (1 − M)/(I − 1),
and one of the I − j smallest components exceeds (1 − M)/(I − 1), contradicting
the non-increasing order of the entries of x. We conclude u ≺ x, as claimed.

If f is concave, then F is Schur-concave (Corollary 2.4), so the arguments above
imply that the inequalities in Eq. 3.10 are reversed. For the equality conditions, note
that by the equality condition in Karamata’s inequality (Theorem 2.5), F(x) = F(t) or
F(x) = F(u) for strictly convex or strictly concave f requires that x be a permutation
of t or u. It then follows from the nonincreasing order of entries in x that x = t or
x = u. ��
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Proof of Theorem 3.8 We set f (x) = x2 in Theorem 3.9. Observe that for the lower
bound expression,

f (M) + (I − 1) f

(
1 − M

I − 1

)
= M2 + (I − 1)

(
1 − M

I − 1

)2

= I M2 − 2M + 1

I − 1
.

Because f (x) = x2 is strictly convex, the equality condition in Theorem 3.9 confirms
that equality with the lower bound is obtained if and only if p2 = · · · = pI =
(1 − M)/(I − 1).

The upper bound expressions for F are identical for both Theorems 3.2 and 3.9. The
upper bound in Theorem 3.8 and its equality condition both follow from the identity
of the upper bounds in Theorems 3.2 and 3.9. ��

Recalling that f (x) = xα is strictly convex for α > 1 and making the substitution
f (x) = xα , we obtain a more general result for α-homozygosities.

Corollary 3.13 (Refined bounds for α-homozygosity) Suppose p ∈ �I−1, where
I � 2 is fixed, p1 = M is fixed with M ∈ [1/I, 1], and pi � p j whenever i < j .
Then

Mα + (1 − M)α

(I − 1)α−1 � Jα(p) � �M−1Mα +
(
{M−1}M

)α

.

Equality in the upper bound occurs under the same conditions as in Corollary 3.5.
Equality in the lower bound occurs if and only if pi = (1 − M)/(I − 1) for 2 � i � I .

Figure 2 shows the lower and upper bounds on Jα for various values of α in both the
case of an unspecified number of distinct alleles and in cases with various fixed values
of I . For each α, fixing the maximal number of distinct alleles further constrains the
relationship between M and Jα compared to the unspecified case; examining the lower
bounds in Corollaries 3.13 and 3.5, we see that the lower bound on α-homozygosity is
enlarged by the second nonzero term (1 − M)α/(I − 1)α−1 in the case of a specified
number of distinct alleles.

We can quantify the additional constraint imposed by fixing the maximal number
of distinct alleles by noting that the area of the region of permissible values shrinks
from the original value of Sα = [1/(α + 1)]∑∞

t=1 1/[t (t + 1)α] (Eq. 3.6). First, the
constraint on I forces M � 1/I . We denote by L I

α and U I
α the areas of the regions

of the unit square bounded above by the lower and upper bounds, respectively, and
we compute these areas in the “Appendix”. Thus, denoting the area of the region of
permissible values by SI

α = U I
α − L I

α , we have

SI
α = 1

α + 1

[
I−1∑

t=1

1

t (t + 1)α
− I − 1

I α

]
. (3.14)

This quantity is less than Sα from Eq. 3.6, which both has more positive terms in its
summation and does not subtract from the sum the positive quantity [(1/(α + 1)](I −
1)/I α .
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Fig. 4 SI
α , the area of the region

of permissible values for
α-homozygosity, as α increases
from 1.01 to 10 and the maximal
number of distinct alleles I
increases from 3 to 15. SI

α is
calculated using Eq. 3.14. As I
increases, the curve approaches
the shape of the Sα graph in
Fig. 3
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This result illustrates that if the number of distinct alleles I is fixed, then the
constraint placed by M on Jα is tighter, and depends on both α and I . Note that
as I → ∞, SI

α → Sα , as can be seen in Fig. 4. If α = 2, then we obtain SI
α =

(I − 1)2/(3I 2) − (1/3)
∑I

t=2 1/t2. Dividing this quantity by 1 − 1/I , the length of
the interval [1/I, 1] of permissible values of M , we recover the result of Proposition
7iii of Reddy and Rosenberg (2012) that states that the mean value of the distance
between the upper bound and refined lower bound of homozygosity is 1/3−1/(3I )−
{I/[3(I − 1)]} ∑I

t=2 1/t2.
Now that we have obtained lower and upper bounds on α-homozygosity, we next

bound the Shannon–Weaver index H . In the case of infinitely many allelic types, the
Shannon–Weaver index can be made arbitrarily large even if the frequency M < 1 of
the most frequent allele is specified. Fix I and consider the vector vI ∈ �, defined by

vI =
(

M,
1 − M

I − 1
, . . . ,

1 − M

I − 1

)
, (3.15)

where I − 1 entries in the vector have value (1− M)/(I − 1). Observe that H(vI ) =
−M log M − (1 − M) log[(1 − M)/(I − 1)]. As I → ∞, H(vI ) → ∞.

If the number of allelic types is finite, however, then we can apply Theorem 3.9 to
obtain bounds on the statistic if the frequency M of themost frequent allele is specified.
We observed earlier that the Shannon–Weaver index is strictly Schur-concave, and is
thus antitone with respect to majorization. In other words, the more majorized a vector
is, the smaller the value of H it outputs. Using this fact, we have the following bounds
on the Shannon–Weaver index for a fixed frequency of the most frequent allele.

Corollary 3.16 (Bounds for Shannon–Weaver index) Suppose p ∈ �I−1, where I �
2 is fixed with M ∈ [1/I, 1], p1 = M is fixed, and pi � p j whenever i < j . Then

�M−1M log
1

M
+ (1 − M�M−1) log

(
1

1 − M�M−1
)

� H(p)
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� M log
1

M
+ (1 − M) log

(
I − 1

1 − M

)
.

Equality in the upper bound occurs if and only if pi = (1 − M)/(I − 1) for 2 � i � I .
Equality in the lower bound occurs if and only if pi = M for 1 � i � K − 1,
pK = 1 − (K − 1)M, and pi = 0 for i > K , where K = 
M−1�.

Here, we adopt the convention that 0 log∞ = −0 log 0 = 0, so that if M is the
reciprocal of a positive integer, the lower bound reduces to log(1/M).

Proof We apply Theorem 3.9 to the continuous and concave function f (x) =
−x log x = x log(1/x), which is both non-negative on [0, 1] and satisfies f (0) = 0.
Reversing the inequalities in Theorem 3.9 owing to the concavity of f , for the lower
bound, recalling that {M−1}M = 1 − M�M−1, we have

�M−1 f (M) + f ({M−1}M) = �M−1M log
1

M

+(1 − M�M−1) log
(

1

1 − M�M−1
)

.

For the upper bound,

f (M) + (I − 1) f

(
1 − M

I − 1

)
= M log

1

M
+ (1 − M) log

(
I − 1

1 − M

)
.

Because f is strictly concave, equality with the upper bound is obtained if and only
if p2 = · · · = pI = (1 − M)/(I − 1), and equality with the lower bound is obtained
if and only if pi = M for 1 � i � K − 1 and pK = 1 − (K − 1)M , as implied by
Theorem 3.9. ��

We can also obtain a more general result for the Rényi entropy Hα for α ∈ (0, 1)∪
(1,∞). Recall the set D and vectors t and u from the proof of Theorem 3.9, in which
it was demonstrated that t � x � u for any x ∈ D.

The Rényi entropies, though not generally concave for α > 1, are strictly Schur-
concave for all α > 0 as a consequence of possessing the weaker property of
quasiconcavity (Ho and Verdú 2015). Symmetric, quasiconcave functions are Schur-
concave (Marshall et al. 2010, p. 98), and the Schur–Ostrowski criterion (Theorem2.3)
verifies that the Schur-concavity is strict: (pi − p j )(∂ Hα/∂pi − ∂ Hα/∂p j ) =
[α/(1 − α)](pi − p j )(pα−1

i − pα−1
j )/(pα

1 + · · · + pα
I ) � 0 with equality if and

only if pi = p j .
It follows from the definition of Schur-concavity that the strictly Schur-concave

Hα satisfies Hα(t) � Hα(x) � Hα(u), with equality at the lower and upper bounds
if and only if x = t and x = u, respectively. The Rényi entropy Hα then has for its
lower and upper bounds the quantities Hα(t) and Hα(u), respectively:

Hα(t) = 1

1 − α
log[�M−1Mα + (1 − M�M−1)α]. (3.17)
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Hα(u) = 1

1 − α
log

[
Mα + (I − 1)

(
1 − M

I − 1

)α ]
. (3.18)

Considering the Shannon–Weaver index to be the α = 1 case of the Rényi entropy,
we can combine these quantities with Corollary 3.16 to state the following corollary.

Corollary 3.19 (Bounds for Rényi entropy) Suppose p ∈ �I−1, where I � 2 is fixed
with M ∈ [1/I, 1], p1 = M is fixed, and pi � p j whenever i < j . For α > 0,

Hα(t) � Hα(p) � Hα(u),

where t, u, Hα(t), and Hα(u) follow Eqs. 3.11, 3.12, 3.17, and 3.18, respectively, and
where H1(t), H1(p), and H1(u) are interpreted as limits as α → 1. Equality in the
upper bound occurs if and only if pi = (1 − M)/(I − 1) for 2 � i � I . Equality in
the lower bound occurs if and only if pi = M for 1 � i � K −1, pK = 1−(K −1)M,
and pi = 0 for i > K , where K = 
M−1�.

Figure 5 plots the bounds on H as a function of M for several choices of I , illus-
trating the constraints placed on H by both M and the number of distinct alleles I .
As discussed above, H is unbounded if the length of the allele frequency vector is
unspecified. By fixing the length of the frequency vector, we are able to obtain a finite
bound on H ; for small values of I , H is tightly constrained as a function of M .

Following the approach we adopted for α-homozygosity, we can quantify the con-
straint on H as a function of M by measuring the area of the region of permissible
values of H . Given I , the upper bound on H cannot exceed log I , irrespective of the
value of M (Legendre and Legendre 1998, pp. 239–245). We denote by L I

SW andU I
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Fig. 5 Analytical lower and upper bounds on the Shannon–Weaver index H as functions of the frequency
M of the most frequent allele, for different choices of the maximal number of distinct alleles I . According
to Corollary 3.16, the lower bound, shown by the solid black curve, does not depend on I , except that it
is defined only for M � 1/I . As I increases, the upper bound—depicted by the blue curves—increases
without bound. The increase is slower for large values of M

123



Bounding measures of genetic similarity and diversity… 729

the areas of the regions of the rectangle R = [1/I, 1] × [0, log I ] that are bounded
above by the lower and upper bounds of H given M , respectively. We compute these
quantities in the “Appendix”, and obtain that the area of the permissible region for H ,
denoted by SI

SW = U I
SW − L I

SW , satisfies

SI
SW = (I − 1) log I

2I
− 1

2

I−1∑

t=1

log(t + 1)

t (t + 1)
. (3.20)

The sum in Eq. 3.20 converges as I → ∞: because log t <
√

t for t � 1, log(t +
1)/[t (t + 1)] < 1/(t

√
t + 1) < t−3/2, so that the sum is bounded above by the

convergent sum
∑∞

t=1 t−3/2.
Dividing SI

SW by the total area of rectangle R, or (1 − 1/I ) log I , we see that as
I → ∞,

SI
SW(

1 − 1
I

)
log I

= 1

2
− I

2(I − 1) log I

I−1∑

t=1

log(t + 1)

t (t + 1)
−→ 1

2
. (3.21)

Hence, with a large number of allelic types, the permissible values of H span about
half the area of the rectangle R in which (M, H) must lie. Because a positive term
is subtracted from 1

2 in the ratio SI
SW /[(1 − 1

I

)
log I ], SI

SW is strictly smaller than
(1/2)(1 − 1/I ) log I .

Figure 6 plots SI
SW as a function of I . With the graph of (1/2)(1−1/I ) log I shown

for comparison, we observe that SI
SW is bounded above by (1/2)(1 − 1/I ) log I , and

hence also by (1/2) log I , in accord with our analytical observation.

Fig. 6 SI
SW , the area of the

region of permissible values of
the Shannon–Weaver index H
for I distinct alleles, alongside
the growth of 1

2 (1 − 1/I ) log I ,
for values of I ranging from 2 to
100. SI

SW is calculated from
Eq. 3.20. Note that it is always
true that
SI

SW < 1
2 (1 − 1/I ) log I
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4 Application to data

To illustrate the bounds on α-homozygosity and the Shannon–Weaver index, we plot
data on allele frequencies from a human population-genetic data set alongside the
bounds in Corollaries 3.5 and 3.16. We use 783 multiallelic microsatellite loci studied
in 1048 individuals drawn from populations worldwide (Rosenberg et al. 2005). For
each locus, we treat sample frequencies as parametric allele frequencies, andwe obtain
Jα , H , and M in the full collection of individuals. The missing data rate was 3.7%
(Rosenberg et al. 2005), and the minimum nonzero frequency was 1/2094, observed
at a locus with one missing individual.

Figure 7 plots α-homozygosity for each of several choices of α, considering all
783 loci. For smaller α, α-homozygosities tend to lie nearer to the upper bound in the
permissible range. In fact, for α = 1.01, α-homozygosity is close to the theoretical
maximum. Because low values of α give substantial weight to subsequent alleles after
the most frequent one, the fact that such alleles tend to have nontrivial frequencies
(at least 1/2094) causes α-homozygosity at low α to lie near the upper bound. As
α increases, the α-homozygosities shift away from the upper bound. For α = 5 and
α = 10, the tight constraints placed by M on Jα reduce the range of permissible
values, and data points are close to the lower bound of a tight range.

In Fig. 7D, the α-homozygosity values of three loci stand out for lying close to
their corresponding theoretical maxima. The allele frequencies associated with these
loci, arranged in decreasing order, appear in Table 1. In each case, α-homozygosity
lies close to the maximum because for a value of M > 1/2, the allele frequency vector
approximates the scenario with frequencies M and 1− M that produces the maximal
Jα .

More precisely, recalling that α-homozygosity is strictly Schur-convex for all α >

1, Corollary 3.5 indicates that α-homozygosity is maximized by setting as many allele
frequencies as possible equal to the largest frequency, with at most one nonzero allele
frequency remaining. Hence, for the values of M for the three loci in Table 1, the fre-
quency vectors that maximize α-homozygosity are (0.8146, 0.1854, 0, 0, 0, 0, 0, 0),
(0.7785, 0.2215, 0, 0, 0, 0, 0) and (0.5646, 0.4354, 0, 0, 0). These vectors are simi-
lar to the actual frequency vectors in the table: each locus has a second allele with
frequency close to 1 − M , so that the frequency vector approaches the configuration
(M, 1 − M, 0, . . . , 0) that achieves the maximal Jα for M � 1/2.

Interestingly, one of the three loci, TGA012P, had previously been chosen as a
particularly clear example of a loss of alleles that occurred during ancient bottlenecks
that accompanied human migrations outward from Africa (Figure 2 of Rosenberg and
Kang 2015). All six rare alleles at the locus occur in Africa, three of them exclusively
so; in Native Americans, distant from the initial source of human genetic diversity in
Africa, only the most frequent allele is present. The pattern accords with a scenario in
which human migrants out of Africa possessed only a subset of the available alleles,
only the most frequent of which was present in later migrants into the Americas.
Indeed, because rare alleles are often exclusive to Africa, an allele frequency vector
with many rare alleles and with second highest frequency near 1 − M is a potential
candidate for clearly illustrating the loss of alleles during human migrations.
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Fig. 7 α-homozygosities of 783 microsatellite loci. The permissible region for α-homozygosity is shown
as a function of the frequency M of the most frequent allele (Corollary 3.5). a α = 1.01, b α = 1.5, c
α = 2, d α = 3, e α = 5 and f α = 10

Table 1 Three loci whose α-homozygosity values lie close to the theoretical maxima associated with their
values for the frequency of the most frequent allele

Locus Allele frequency vector

TGA012P (0.8146, 0.1520, 0.0203, 0.0048, 0.0029, 0.0029, 0.0015, 0.0010)

TATC059 (0.7785, 0.1604, 0.0394, 0.0126, 0.0061, 0.0025, 0.0005)

D6S2522 (0.5646, 0.4313, 0.0015, 0.0015, 0.0010)

Allele frequencies are listed in descending order
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Fig. 8 Jα/Mα , the ratio of
α-homozygosity and the
frequency M of the most
frequent allele raised to the
power α, as a function of M , for
783 microsatellite loci. As M
increases, the values of the ratios
for the same locus and different
α are closer together
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Figure 8 examines the ratio Jα/Mα for the loci for each of several values of α.
For small M , the values of Jα/Mα for a locus vary considerably with α, whereas
for large M , they are similar across α values. Recalling that for large α, Jα/Mα

approximates the number of distinct alleles with frequency M , we can identify from
among the larger values of J 10/M10 the loci with multiple alleles of comparable
frequency to M . For example, the leftmost locus, with J 10/M10 ≈ 3, corresponds to
locus GGAT2C03, whose threemost frequent alleles have similar frequencies, 0.1136,
0.1091, and 0.1067. Locus GATA88F03P has 0.2404 and 0.2399 for its two highest
frequencies, with J 10/M10 ≈ 2.0108, and locus D10S1423 has p1 = 0.3069 and
p2 = 0.3064, with J 10/M10 ≈ 1.9968. For most loci, however, the nearest integer to
J 10/M10 is 1, indicating that one allele is substantially more frequent than the others.

In Fig. 9, we plot the Shannon–Weaver indices of the loci alongside the lower bound
and upper bounds for different choices of the number of distinct alleles I , in accord
with Corollary 3.16. The upper bound lines classify the Shannon–Weaver indices into
multiple regions, with a data point lying above an upper bound line only if the number
of nonzero allele frequencies at the locus exceeds the number of distinct alleles I
associated with the line. We find in Fig. 9 that the Shannon–Weaver indices for the
783 loci mostly lie well below the theoretical maxima. The highest Shannon–Weaver
index observed is H ≈ 2.6521, at the locus D22S683, for which M ≈ 0.1867 and
I = 32; this value is lower than the theoretical upper bound of 3.2743 computed at
these values of M and I from Corollary 3.16.

5 Discussion

Using majorization, we have obtained bounds on homozygosity, α-homozygosity, the
Shannon–Weaver index, and the Rényi entropy in relation to the frequency M of the
most frequent allele. For homozygosity, majorization recovers the bounds obtained
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Fig. 9 Shannon–Weaver indices of 783 microsatellite loci together with the lower bound of Corollary 3.16
and upper bounds corresponding to different choices of the number I of distinct alleles. As in Fig. 5,
from bottom to top the upper bound curves correspond to I = 3, 4, 5, 6, 10, 15, and 20. Each of the 783
microsatellite loci is placed into a bin associated with its number of distinct alleles I . The bins correspond
to I = 4 (1 locus), I = 5 (4 loci), I = 6 (10 loci), 10 � I � 7 (337 loci), 15 � I � 11 (311 loci),
20 � I � 16 (90 loci), and I � 21 (30 loci). The largest value of I across loci is 35

by Rosenberg and Jakobsson (2008) in the case of an unspecified number of distinct
alleles (Theorem 3.1) and byReddy andRosenberg (2012) for a fixedmaximal number
of distinct alleles I (Theorem 3.8). Moreover, in the fixed-I case, α-homozygosity
for arbitrary α > 1, the Shannon–Weaver index, and the Rényi entropy for α > 0
achieve their extrema at the same allele frequency vectors that produce the minimal
and maximal homozygosity (Corollaries 3.13, 3.16, 3.19).

The results not only simplify the derivation of bounds on homozygosity given M ,
they also illustrate that α-homozygosity for α > 1 behaves similarly to the stan-
dard 2-homozygosity in its dependence on M , with an increasing influence for M
as α increases. Owing in part to the diploidy of many species of interest, in which
individuals possess two alleles at a locus, 2-homozygosity—the α = 2 case of α-
homozygosity—has been a natural statistic for use in measuring genetic variation.
Homozygosity represents both the probability that two alleles drawn at random from
a population are identical and the probability that the two alleles of a diploid individual
have identical types. In α-ploids for α > 2, the analogous probability that all α allelic
copies in an individual at a locus are identical is α-homozygosity. As ploidy increases
past 2, the probability that all α alleles are identical is more strongly influenced by M
than it is for diploids. In the extreme case of large α, we found that the ratio Jα/Mα

approximates the number of distinct alleles whose frequencies are near M (Eq. 3.7).
The varying emphasis on M of ourα-homozygosity statistics is of interest in settings

in which 2-homozygosity is currently used. Rosenberg and Jakobsson (2008) com-
mented that tests that identify alleles that positive natural selection has driven rapidly
to a high frequency by searching for regions with high haplotype homozygosity use
homozygosity as a way of detecting scenarios with a high value of the frequency of the
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most frequent haplotype.Garud andRosenberg (2015) developedhomozygosity-based
tests that search for soft selective sweeps—in which positive selection has inflated the
frequencies of multiple haplotypes rather than a single haplotype—by focusing on
haplotypes other than the most frequent one. In both cases, α-homozygosity for dif-
ferent α could potentially be used: small α < 2 in the latter soft-sweep case placing
more emphasis on subsequent haplotypes, and large α > 2 in the former “hard-sweep”
case focusing on the highest-frequency haplotype.

Our results on the Shannon–Weaver index can enable further insight into the statistic
in population-genetic settings. Although this statistic has been used less often than
homozygosity, it is of interest both for its historical use (e.g. Lewontin 1972), for
possible comparisons across data types to areas where it appears more frequently, as
well as for use in such settings in their own right. In the ecological context, where
H measures the diversity of a distribution whose frequencies correspond to species
abundances rather than allele frequencies, if the number of species is fixed at I , then H
is bounded above by log I (Legendre and Legendre 1998, pp. 239–245). In Corollary
3.16, however, we have shown that if the largest frequency in the distribution is also
specified, then a further constraint is placed on the theoretical maximum of H . The
upper bound cannot exceed log I , but it is in fact less than log I except in the case
that M = 1/I and all I species have equal frequency. Furthermore, as the number
of “species” I increases without bound, only at most half the area of the rectangle
RI = [1/I, 1]×[0, log I ] enclosingpotential locations of the pair of quantities (M, H)

contains permissible pairs of values for M and H (Eq. 3.21). Thus, our analysis finds
that averaging over permissible values for M , H is substantially more constrained on
average than might be surmised from knowledge that its maximal value across all M
is log I .

We have found in our data analysis that values near the bounds are obtained by
empirical allele frequencies; the loci generate values of α-homozygosity and the
Shannon–Weaver index that cover much of the permissible range for these quantities,
especially for the more intermediate values of α. The bounds assist in the interpreta-
tion of the distributions across loci of (M, Jα) and (M, H), describing their placement
within the permissible range; the analysis shows that the bounds are useful for clarify-
ing constraints on data points. Outliers in the plots uncover loci of potential interest,
with the ratio Jα/Mα identifying loci with similar frequencies for the two or three
most frequent alleles, and the proximity to the upper bound of Jα uncovering an
illustration of a serial loss of alleles during human migrations.

Our contributions have utilized majorization and the Schur-convexity and Schur-
concavity of the functions used in calculating statistics in population genetics. Each
statistic we studied captures the intuitive property that for a fixed sum of frequen-
cies and a fixed maximal number of nonzero components, the least majorized vector,
containing only a single nonzero entry, has the lowest value of a diversity index and
the highest value of a similarity index, and the most majorized vector, containing a
maximal number of equal entries, has the lowest value of a similarity index and the
highest value of a diversity index. Indeed, a much stronger result holds, in that these
statistics or their additive inverses preserve the majorization order of input vectors,
and for fixed I , their extrema are achieved at the same frequency vectors.

123



Bounding measures of genetic similarity and diversity… 735

The connection of majorization to the measures suggests that one aspect of assess-
ing if a new proposed diversity or similarity measure is sensible is an evaluation
of whether it or its additive inverse preserves majorization. The homozygosity and
Shannon–Weaver statistics have this property, as do the α-homozygosities and Rényi
entropies. Among statistics that are isotone or antitone with respect to majorization,
it could then be evaluated if some are preferable for a particular purpose, as noted
above for the potential role of different α for detection of different forms of positive
selection. Note that the Rényi entropies for α ∈ (0, 1)∪(1,∞) do not have the simpler
form

∑I
i=1 f (pi ) possessed by α-homozygosity and the Shannon–Weaver index; our

analysis illustrates that the majorization method applies not only to statistics that take
on a form

∑I
i=1 f (pi ) that sums analogous quantities computed separately for distinct

alleles, but also for a broader class of multivariate Schur-concave functions.
This study both contributes new results and brings methods from another context

to the study of well-known population-genetic statistics. We have highlighted that the
strong dependence of homozygosity on M identified by Rosenberg and Jakobsson
(2008) and Reddy and Rosenberg (2012) can be either magnified by considering
α-homozygosity for α > 2 or lessened by using 1 < α < 2, and that the Shannon–
Weaver index is constrained in an interval of size well below log I if M is specified.
We have also observed examples of these theoretical results in computations with
data from human populations. We suggest that the fact that the majorization approach
obtains new results on statistics as fundamental as variant forms of homozygosity and
the Shannon–Weaver index hints that it might have considerable potential to contribute
to mathematical bounds on additional population-genetic statistics.
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Appendix

We report here the integrals that evaluate the sizes of the regions lying under upper
and lower bounds.

Unspecified number of distinct alleles

For the integrals of the upper and lower bounds on α-homozygosity, Uα and Lα ,
respectively, we have

Uα =
∫ 1

0
[�M−1Mα +

(
{M−1}M

)α] d M
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=
∞∑

t=1

∫ 1
t

1
t+1

[�M−1Mα +
(
{M−1}M

)α] d M

=
∞∑

t=1

∫ 1
t

1
t+1

[t Mα + (1 − t M)α] d M

= 1

α + 1

[
1 +

∞∑

t=1

1

t (t + 1)α

]
,

Lα =
∫ 1

0
Mα d M = 1

α + 1
.

Specified number of distinct alleles

For the integrals of the upper and lower bounds on α-homozygosity when the number
of distinct alleles is at most I , U I

α and L I
α , we have

U I
α =

∫ 1

1
I

[
�M−1Mα + ({M−1}M)α

]
d M

=
I−1∑

t=1

∫ 1
t

1
t+1

[t Mα + (1 − t M)α] d M

= 1

α + 1

[
1 − 1

I α
+

I−1∑

t=1

1

t (t + 1)α

]
,

L I
α =

∫ 1

1
I

[
Mα + (1 − M)α

(I − 1)α−1

]
d M

= 1

α + 1

(
1 + I − 2

I α

)
.

For the integrals of the upper and lower bounds on the Shannon–Weaver index
when the number of distinct alleles is at most I , U I

SW and L I
SW , we have

U I
SW =

∫ 1

1
I

[
M log

1

M
+ (1 − M) log

(
I − 1

1 − M

)]
d M

= 1

2
+ (I − 2) log I

2I
− 1

2I
,

L I
SW =

∫ 1

1
I

(
�M−1M log

1

M

)
d M +

∫ 1

1
I

(1 − M�M−1) log
(

1

1 − M�M−1
)

d M

=
I−1∑

t=1

∫ 1
t

1
t+1

−t M log M d M +
I−1∑

t=1

∫ 1
t

1
t+1

−(1 − Mt) log(1 − Mt) d M
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=
(

I−1∑

t=1

t

2

[
log t

t2
− log(t + 1)

(t + 1)2

]
+

I−1∑

t=1

t

4

[
1

t2
− 1

(t + 1)2

])

+ 1

4

I−1∑

t=1

1 + 2 log(t + 1)

t (t + 1)2

= 1

2

I−1∑

t=1

log(t + 1)

t (t + 1)
+ 1

2

(
1 − 1

I

)
− log I

2I
.
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