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a b s t r a c t

We consider the properties of the Fst measure of genetic divergence between an admixed population
and its parental source populations. Among all possible populations admixed among an arbitrary set of
parental populations, we show that the value of Fst between an admixed population and a specific source
population is maximized when the admixed population is simply the most distant of the other source
populations. For the case with only two parental populations, as a function of the admixture fraction,
we further demonstrate that this Fst value is monotonic and convex, so that Fst is informative about the
admixture fraction.We illustrate our results using example humanpopulation-genetic data, showing how
they provide a framework in which to interpret the features of Fst in admixed populations.
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1. Introduction

The well-known ‘‘fixation index’’ Fst quantifies the extent to
which a polymorphic population is subdivided into subpopula-
tions (Wright, 1951; Excoffier, 2001; Rousset, 2001; Balding, 2003;
Holsinger and Weir, 2009). In a definition due to Nei (1973, 1987),
Fst is defined in terms of the expected heterozygosity of the overall
population and the mean expected heterozygosity across the sub-
populations.

Definition. The expected heterozygosity in a population for a given
locus with I distinct alleles is defined as H = 1 −

∑I
i=1 p

2
i , where

pi is the frequency of allele i.

Definition. At a given locus, the fixation index, Fst , is defined as
Fst = (Ht − Hs)/Ht , where Ht is the expected heterozygosity of
the overall population, andHs is themean expected heterozygosity
across subpopulations.

Assuming that the subpopulations have equal contribution to the
total population, Ht is computed by pooling the various subpopu-
lations in equal proportion, and Hs is calculated by weighting the
various subpopulations equally. Recall that Fst always lies between
0 and 1, and that Fst is 0 if and only if Ht = Hs, meaning that
the pooled population is unstructured. Fst increases as the genetic
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differentiation between the various subpopulations increases, and
the theoretical maximum of 1 is reached if and only if each sub-
population is entirely monomorphic (and homozygous).

We consider the fixation index in the context of admixture,
where one population arises from the amalgamation of multiple
populations, typically after a long period of relative isolation for
the founding groups. Admixture scenarios have been abundant
over the course of human history, and for admixture events that
have occurred recently, the admixture process has left a detectable
signature in the genomes of admixed individuals. For example,
the contributions of European, Native American, and African
populations to the genetic history of African American (Parra
et al., 1998, 2001; Salas et al., 2005; Tang et al., 2006b; Tishkoff
et al., 2009; Zakharia et al., 2009; Bryc et al., 2010a) and Hispanic
and Mestizo (Bonilla et al., 2004; Seldin et al., 2007; Tang et al.,
2007; Wang et al., 2008; Risch et al., 2009; Silva-Zolezzi et al.,
2009; Bryc et al., 2010b) populations have been the focus of much
investigation. Genetic studies of admixture have further been of
interest not only for what they reveal about population history,
but also because admixed populations can be used in locating
disease-associated genomic regions through methods that search
in admixed individuals for regions of the genome with excess
ancestry from the ancestral population in which a disease is more
prevalent (reviewed by McKeigue, 2005; Reich and Patterson,
2005; Smith and O’Brien, 2005; Seldin, 2007; Buerkle and Lexer,
2008; Zhu et al., 2008; Winkler et al., 2010).

In an admixture setting, we provide a theoretical framework
for explaining the properties of Fst between admixed populations
and their parental populations. We examine the values of Fst
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between pairs of populations, in which one member of the pair
is an admixed population and the other is one of its parental
source populations. After introducing notation and an example
dataset in Section 2, in Section 3, we prove our main theorem,
which concerns the value of Fst between a population formed by
admixture of K founding populations and a specific one of the K
founding populations. We show that for any K ≥ 2, considering all
admixture combinations for a given set of founding populations,
this Fst expression is maximized when the admixed population
is in fact one of the other founding populations. In Section 4, we
then consider the special case of K = 2 founding populations,
proving in Section 4.1 that Fst is monotonic and convex in the
admixture coefficient. Section 4.2 uses microsatellite genotype
data on Mestizo populations to demonstrate that Fst values
predicted using our theoretical results closely match observed Fst
values. Section 4.3 then suggests an estimator of admixture on the
basis of Fst . Finally, in Section 5, we summarize the main results
and discuss their broader implications.

2. Notation and data

We use a simplified form of the Fst value between two popula-
tions that have the same contribution to the total population and
that when pooled together produce a polymorphic population. De-
note by p1i the frequency of allele i in population 1 and by p2i the
frequency of allele i in population 2. We then have

Ht = 1 −

I−
i=1

[
1
2
(p1i + p2i)

]2
= 1 −

1
4

I−
i=1

(p1i + p2i)2

Hs =
1
2


1 −

I−
i=1

p21i


+


1 −

I−
i=1

p22i



= 1 −
1
2

I−
i=1

(p21i + p22i)

Ht − Hs =
1
4

I−
i=1

[2p21i + 2p22i − (p1i + p2i)2]

=
1
4

I−
i=1

(p1i − p2i)2

Fst =
Ht − Hs

Ht
=

1
4

I∑
i=1

(p1i − p2i)2

1 −
1
4

I∑
i=1

(p1i + p2i)2

=

I∑
i=1

(p1i − p2i)2

4 −

I∑
i=1

(p1i + p2i)2
. (1)

Table 1 summarizes the notation for the scenario in which K ≥

2 founding populations give rise to an admixed population. Denote
by ri the frequency of allele i in the admixed population. Let γk
represent the admixture fraction corresponding to population k, so
that fraction γk of the ancestry of the admixed population derives
from source population k. The admixed population then has

ri =

K−
k=1

γkpki,

where γk ≥ 0 for 1 ≤ k ≤ K and
∑K

k=1 γk = 1. We
assume throughout the paper that there exists at least one pair of
founding populations, k and ℓ, for which pk ≠ pℓ. This assumption
corresponds to an assumption that the founding populations do
not all have identical allele frequencies.
Table 1
Notation.

Type of quantity Symbol Description

Indices i = 1, . . . , I Index over alleles
k = 1, . . . , K Index over populations

Allele frequencies pki Frequency of allele i in population k
pk Vector of allele frequencies for

population k
ri Frequency of allele i in the admixed

population
Admixture fractions γk Admixture fraction for population k

γ Vector of admixture fractions

The example scenarios that we consider use a subset of the data
from Wang et al. (2008), consisting of genotypes of 249 Mestizos,
160 Europeans, 463 Native Americans, and 123 Africans at 678
autosomal microsatellite loci. The Mestizo samples provide an
example of admixture primarily between European and Native
American founding populations, and to a lesser extent, African
populations. In our analyses, we focus on the European and
Native American contributions, treating the full Mestizo sample
as an admixed population and the European and Native American
samples as its founding populations. In each of the population
samples, except where otherwise specified (in particular, in
Section 4.2), we treat the sample allele frequencies from Wang
et al. (2008) as the parametric allele frequencies.

3. General case: K founding populations

Our goal in this section is to examine Fst to a specific founding
population over the space of admixture vectors possible for a
population admixed among a given collection of K founding
populations. We begin by providing an expression for Fst between
the admixed population and a specific founding population.
Without loss of generality, we investigate Fst between population
1 and the admixed population. Using Eq. (1) and viewing Fst as a
function of two allele frequency vectors, we have

Fst(p1, r) =

I∑
i=1


p1i −

K∑
k=1

γkpki

2

4 −

I∑
i=1


p1i +

K∑
k=1

γkpki

2 . (2)

In Theorem 2, we obtain a result concerning the maximum
over admixed populations of Fst between the admixed population
and an arbitrarily chosen founding population. We first prove a
preliminary result involving Fst between one population and a
population formed by admixture of two other populations.

Lemma 1 (Three-Population Lemma). Denote by p1, p2, p3 the vec-
tors corresponding to the allele frequencies of three populations. Con-
sider a population formed by admixture between populations 2 and 3,
where γ ∈ [0, 1] represents the admixture fraction for population 2.
Then

max
γ∈[0,1]

Fst [p1, γ p2 + (1 − γ )p3] = max{Fst(p1, p2), Fst(p1, p3)}.

Proof. We start by applying Eq. (1) to calculate Fst between popu-
lation 1 and the population formed by admixture of populations 2
and 3.We also introduce some additional variables, δ13i = p1i−p3i,
δ23i = p2i − p3i, and τ13i = p1i + p3i, for 1 ≤ i ≤ I , to simplify the
notation. Then

Fst [p1, γ p2 + (1 − γ )p3] =

I∑
i=1

[p1i − γ p2i − (1 − γ )p3i]2

4 −

I∑
i=1

[p1i + γ p2i + (1 − γ )p3i]2
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=

I∑
i=1

(δ13i − γ δ23i)
2

4 −

I∑
i=1

(τ13i + γ δ23i)2

. (3)

We denote the function Fst [p1, γ p2 + (1 − γ )p3] by G(γ ), to
emphasize the fact that we aim to maximize this quantity with re-
spect to γ . To calculate the derivative of G(γ ), we first do some
preliminary calculations:

d
dγ

I−
i=1

(δ13i − γ δ23i)
2

= −2
I−

i=1

δ23i(δ13i − γ δ23i)

d
dγ


4 −

I−
i=1

(τ13i + γ δ23i)
2


= −2

I−
i=1

δ23i(τ13i + γ δ23i).

Putting these results together, we obtain the equation given in
Box I. The denominator in Box I is always positive, so we focus on
the numerator to see where it is greater or less than 0. We denote
half the numerator by E(γ ), and note that E(γ ) is a polynomial in
γ , of degree atmost 2.We denote the coefficients of γ 2, γ , and 1 in
E(γ ), by a, b, and c , respectively, and calculate them individually:

a = −2


I−

i=1

δ2
23i


I−

i=1

p1iδ23i



b = 4


I−

i=1

δ2
23i


1 −

I−
i=1

p1ip3i



c = −4


I−

i=1

δ13iδ23i


+


I−

i=1

δ13iδ23i


I−

i=1

τ 2
13i



+


I−

i=1

τ13iδ23i


I−

i=1

δ2
13i


. (4)

We next show that E(γ ) is increasing or decreasing on [0, 1]. If
a = 0, then E(γ ) is linear, and the claim is trivial (a and b cannot
both be zero, because a = b = 0 implies that populations 2 and
3 have identical allele frequencies). Suppose a ≠ 0. We show that
the position of the vertex of the parabola E(γ ) = aγ 2

+ bγ + c ,
or −b/(2a), is not in (0, 1). We first note that 1 =

∑I
i=1 p1i ≥∑I

i=1 p1ip3i, so that b ≥ 0. Consequently, if −b/(2a) > 0, then
a < 0 and

∑I
i=1 p1ip2i >

∑I
i=1 p1ip3i. If 0 < −b/(2a) < 1, then we

also have 1−
∑I

i=1 p1ip3i <
∑I

i=1 p1ip2i−
∑I

i=1 p1ip3i, whichmeans
that 1 <

∑I
i=1 p1ip2i. This inequality clearly does not hold, because

1 =
∑I

i=1 p1i ≥
∑I

i=1 p1ip2i. As a result, −b/(2a) ∉ (0, 1), so that
the extrema of E(γ ) on [0, 1] must occur at γ = 0 and γ = 1. It
follows that E(γ ) is either increasing or decreasing for γ ∈ (0, 1).

To demonstrate that E(γ ) is increasing, we show that E(1) >
E(0):

E(1) − E(0) = −2


I−

i=1

δ2
23i


I−

i=1

p1iδ23i



+ 4


I−

i=1

δ2
23i


1 −

I−
i=1

p1ip3i



= 2


I−

i=1

δ2
23i


2 −

I−
i=1

p1ip2i −
I−

i=1

p1ip3i


.

We note that
∑I

i=1 δ2
23i > 0 by the assumption that popula-

tions 2 and 3 do not have identical allele frequencies, and 2 =∑I
i=1 p2i +

∑I
i=1 p3i >

∑I
i=1 p1ip2i +

∑I
i=1 p1ip3i. This inequality is
Fig. 1. Fst between a population and a hypothetical second population that is
admixed between two other populations. log10[G(γ )], seen as a function of γ , is
plotted against γ , where G(γ ) is Fst [p1, γ p2 + (1 − γ )p3] (Eq. (3)). Populations 1,
2, and 3 represent populations of Mestizo, European, and Native American descent,
respectively, and p1 , p2 , and p3 are based on allele frequencies estimated fromWang
et al. (2008). Twenty randomly selected loci are considered, with each curve
representing a different locus. The dots indicate the maxima for individual curves.
In accordance with Lemma 1, for γ ∈ [0, 1], the maximal value of log10[G(γ )], and
therefore of G(γ ), is always at γ = 0 or γ = 1.

strict by this same assumption, as population 1 cannot have iden-
tical allele frequencies to both populations 2 and 3. Consequently,
E(1) > E(0), and E(γ ) is increasing on γ ∈ [0, 1]. Note that if pop-
ulations 2 and 3 were switched, so that we instead considered the
value of Fst [p1, (1−γ )p2+γ p3] rather than Fst [p1, γ p2+(1−γ )p3],
then E(1) − E(0) would not change, and we would reach the same
conclusion that E(1) > E(0) and E(γ ) is increasing on the interval.

Three possibilities exist for the location of 0: E(1) > E(0) ≥

0, E(1) > 0 > E(0), or 0 ≥ E(1) > E(0). Because E(γ ) only dif-
fers from d

dγ G(γ ) by a positive factor, these three possibilities cor-
respond to three possibilities for the shape of G(γ ) on γ ∈ [0, 1]:
G(γ ) is increasing,G(γ ) is decreasing up to a point, then increasing,
or G(γ ) is decreasing. In each of these three cases, it follows that

max
γ∈[0,1]

Fst [p1, γ p2 + (1 − γ )p3] = max
γ∈[0,1]

G(γ )

= max{G(0),G(1)} = max{Fst(p1, p2), Fst(p1, p3)}. � (5)

The result of this lemma is illustrated on a data example in Fig. 1,
in which log10[G(γ )] is plotted against γ . In this case, population
1 represents a Mestizo admixed population, and populations
2 and 3 represent European and Native American populations,
respectively. For each of twenty loci considered, as in the lemma,
themaximumof the function is located either at γ = 0 or at γ = 1.

We now use the three-population lemma to prove that for any
K , Fst between a population formed by admixture of K founding
populations and a specific one of those founding populations is
maximizedwhen the admixed population is in fact one of the other
K − 1 founding populations.

Theorem 2. Denote by p1, . . . , pK the vectors corresponding to the
allele frequencies of K populations. Consider a population formed by
admixture between the K populations, where γk ∈ [0, 1] represents
the admixture fraction for population k, for 1 ≤ k ≤ K , such that∑K

k=1 γk = 1. Then

max
γ

Fst [p1, γ1p1 + · · · + γKpK ]

= max{Fst(p1, p2), . . . , Fst(p1, pK )}. (6)

Proof. We prove this result by induction on K .
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d
dγ

G(γ ) =

−2
[

I∑
i=1

δ23i(δ13i − γ δ23i)

] [
4 −

I∑
i=1

(τ13i + γ δ23i)
2
]

+ 2
[

I∑
i=1

(δ13i − γ δ23i)
2
] [

I∑
i=1

δ23i(τ13i + γ δ23i)

]
[
4 −

I∑
i=1

(τ13i + γ δ23i)2
]2 .

Box I.
Step 1. K = 2. Taking p1 and p2 in place of p2 and p3, respectively,
Lemma 1 already demonstrates the result in the case that K = 2:

max
γ∈[0,1]

Fst [p1, γ p1 + (1 − γ )p2]

= max{Fst(p1, p1), Fst(p1, p2)} = Fst(p1, p2),

where, for simplicity, we replace γ1 by γ and γ2 by 1 − γ .
Step 2. K → K + 1. We now show that if the result in Eq. (6) holds
for K populations, then it also holds for K + 1 populations (with
γK+1 > 0):

Fst [p1, γ1p1 + · · · + γK−1pK−1 + γKpK + γK+1pK+1]

= Fst

[
p1, γ1p1 + · · · + γK−1pK−1 + (γK + γK+1)

×


γK

γK + γK+1
pK +

γK+1

γK + γK+1
pK+1

]
≤ max


Fst(p1, p2), . . . , Fst(p1, pK−1),

Fst


p1,

γK

γK + γK+1
pK +

γK+1

γK + γK+1
pK+1


,

where the last step follows by the inductive hypothesis, Eq. (6), for
the case with K populations. The expression [γK/(γK +γK+1)]pK +

[γK+1/(γK + γK+1)]pK+1 has the form γ pK + (1 − γ )pK+1, with
γK/(γK + γK+1) taking on the role of γ . Consequently, using
Lemma 1,

Fst

[
p1,

γK

γK + γK+1
pK +

γK+1

γK + γK+1
pK+1

]
≤ max{Fst(p1, pK ), Fst(p1, pK+1)},

so that

Fst [p1, γ1p1 + · · · + γK−1pK−1 + γKpK + γK+1pK+1]

≤ max{Fst(p1, p2), . . . , Fst(p1, pK−1), Fst(p1, pK ), Fst(p1, pK+1)}.

Thus, the induction is complete, andwe have shown that the result
in Eq. (6) holds for arbitrary K . �

The theorem is sensible, in that considering all possible popula-
tions admixed among a given collection of source populations, the
most ‘‘distant’’ populations from source population 1 are combina-
tions that do not include ancestry from population 1. The theorem
demonstrates that the most distant admixed population according
to Fst is precisely one of the remaining source populations; it is not
a nontrivial mixture of those source populations, either with each
other or with population 1.

An interesting corollary of Theorem 2 is that given a set of K
founding populations, considering all admixed populations that
can be constructed from those founding populations, the value of
Fst between an admixed population and the founding population
from which it is maximally distant, or maxk∈{1,...,K} Fst(pk, r), is
bounded above by the maximal Fst among pairs of founding
populations, or maxk,ℓ∈{1,...,K} Fst(pk, pℓ). This result is obtained by
simply noting that given k, as a result of the theorem, Fst(pk, r) is
bounded above by maxℓ∈{1,...,K} Fst(pk, pℓ), and by then taking the
maximum over k. Thus, according to the Fst measure, an admixed
population can be no more distant from any of its founding
populations than the two most distant among the founding
populations are from each other.

Three examples illustrating the theorem with K = 3 are pre-
sented in Fig. 2. Sample allele frequencies for three genetic loci in
three populations – European, Native American, and African – are
used as p1, p2, and p3, respectively. The triangular region shown in
the figure for a given locus represents the space of possible admix-
ture vectors (γ1, γ2, γ3). For each locus, the maximal value of Fst
between the admixed population and population 1 occurs either
at the corner represented by γ2 = 1 or at the corner represented
by γ3 = 1, as established in the theorem.

4. Special case: two founding populations

We now consider the special case in which only two founding
populations give rise to an admixed population. We can simplify
the notation of the previous section, so that γ = γ1, 1 − γ = γ2,
τi = p1i+p2i, and δi = p1i−p2i. Using Eq. (1), the Fst value between
population 1 and the admixed population can be written as

Fst [p1, γ p1 + (1 − γ )p2] =

I∑
i=1

[p1i − γ p1i − (1 − γ )p2i]2

4 −

I∑
i=1

[p1i + γ p1i + (1 − γ )p2i]2

=

(1 − γ )2
I∑

i=1
δ2
i

4 −

I∑
i=1

(τi + γ δi)2

. (7)

Thus, in this case, Fst is a function only of the admixture fraction, γ ,
and the sums and differences of the allele frequencies of the two
founding populations. The K = 2 case has fewer parameters than
the general case of arbitrary K , and it is therefore possible to more
precisely examine the properties of Fst as a function of the single
admixture coefficient γ .

We first note that it was shown in the proof of Theorem 2 that
themaximal Fst between population 1 and the admixed population
is obtainedwhen the admixed population is in fact population 2, so
that γ = 0:

max
γ∈[0,1]

Fst [p1, γ p1 + (1 − γ )p2] = Fst(p1, p2).

4.1. Fst is monotonic and convex in the admixture coefficient

For the case with two founding populations, it is of interest to
determine whether Fst behaves in a predictable way as a function
of γ . We now show that Fst between a founding population and the
admixed population is monotonic in the admixture coefficient.

Theorem 3. As a function of γ , Fst [p1, γ p1+(1−γ )p2] is decreasing
for γ ∈ [0, 1].

Proof. Letα = 1−γ .We can use portions of the proof of Lemma1,
with p1 in the role of p3. Following the proof of Lemma 1, for
Fst [p1, αp2 + (1− α)p1], E(α) = aα2

+ bα + c. Plugging in α = 0,
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(a) D2S1399. (b) GATA101G01.

(c) GATA146D07.

Fig. 2. Fst between a population and hypothetical admixtures of that population with two other populations. Fst [p1, γ1p1 + γ2p2 + γ3p3], seen as a function of γ , is plotted
for all possible values of γ (Eq. (2)). Populations 1–3 represent populations of European, Native American, and African descent, respectively, and p1 , p2 , and p3 are based on
allele frequencies estimated fromWang et al. (2008). Three loci are considered. In each triangle, the admixture fractions γ1 , γ2 , and γ3 vary along the three axes, and darker
colors correspond to higher values of Fst . In accordance with Theorem 2, considering all possible γ , the maximal value of Fst is always at γ2 = 1 or γ3 = 1. (a) Locus D2S1399.
(b) Locus GATA101G01. (c) Locus GATA146D07.
E(α) = c. Noting in Eq. (4) that δ13i = 0 when p3 = p1, we
get E(0) = 0. We then have E(1) > E(0) ≥ 0, so that G(α)
is increasing on α ∈ [0, 1]. As a result, G(1 − α) = G(γ ) =

Fst [p1, γ p1 + (1 − γ )p2] is decreasing in γ on γ ∈ [0, 1]. �

The theorem supports the intuitive perspective that increasing
the admixture fraction from source population 2 increases
the genetic divergence of an admixed population from source
population 1. We can in fact prove a stronger result. Not only is
Fst [p1, γ p1 + (1 − γ )p2] monotonic in γ , we can also show that it
is convex as a function of the admixture fraction.

Theorem 4. As a function of γ , Fst [p1, γ p1 + (1 − γ )p2] is convex
for γ ∈ [0, 1].

Proof. It suffices to demonstrate that the second derivative of
Fst [p1, γ p1 + (1 − γ )p2] as a function of γ is nonnegative. We
insert p1 and p2 in place of p2 and p3, respectively, in the proof

of Lemma 1. Thus, we aim to show that d2G(γ )

dγ 2 > 0. We first
obtain the equation in Box II. To verify that the second derivative
of G(γ ) is nonnegative, we need only show that 1

2
∑I

i=1 δ2i

d2G(γ )

dγ 2 is

nonnegative. Consider the following expressions:

E1(γ ) = 4 +

I−
i=1

δ2
i −

I−
i=1

τ 2
i − 2γ

I−
i=1

τiδi − 2γ
I−

i=1

δ2
i

E2(γ ) = 4 −

I−
i=1

(τi + γ δi)
2

E3(γ ) = 4 −

I−
i=1

τ 2
i −

I−
i=1

τiδi − γ

I−
i=1

τiδi − γ

I−
i=1

δ2
i

E4(γ ) =

I−
i=1

δi(τi + γ δi).

We note some relationships between these expressions:

E1(γ ) = E2(γ ) + (1 − γ )2
I−

i=1

δ2
i (8)

E3(γ ) = E2(γ ) − (1 − γ )E4(γ ). (9)

Using Eq. (9),

1

2
I∑

i=1
δ2
i

d
dγ

G(γ ) =
−(1 − γ )E3(γ )

E2
2 (γ )

. (10)

Differentiating the individual expressions and then combining
them,

d
dγ

[−E3(γ )] =
d
dγ


−


4 −

I−
i=1

(τi + γ δi)
2



+ (1 − γ )

I−
i=1

δi(τi + γ δi)



=

I−
i=1

τiδi +

I−
i=1

δ2
i

d
dγ

[−(1 − γ )E3(γ )] =

I−
i=1

τiδi +

I−
i=1

δ2
i
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d
dγ

G(γ ) =

−2
[

I∑
i=1

δi(δi − γ δi)

] [
4 −

I∑
i=1

(τi + γ δi)
2
]

+

[
I∑

i=1
(δi − γ δi)

2
] [

2
I∑

i=1
δi(τi + γ δi)

]
[
4 −

I∑
i=1

(τi + γ δi)2
]2

= 2(1 − γ )


I−

i=1

δ2
i


−

[
4 −

I∑
i=1

(τi + γ δi)
2
]

+ (1 − γ )
I∑

i=1
δi(τi + γ δi)[

4 −

I∑
i=1

(τi + γ δi)2
]2

 .

Box II.
− γ

I−
i=1

τiδi − γ

I−
i=1

δ2
i + 4 −

I−
i=1

τ 2
i −

I−
i=1

τiδi

− γ

I−
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τiδi − γ
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δ2
i

= 4 +
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δ2
i −
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i − 2γ

I−
i=1

τiδi − 2γ
I−
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δ2
i

= E1(γ )

d
dγ

[E2
2 (γ )] =

d
dγ


4 −

I−
i=1

(τi + γ δi)
2

2

= −4


4 −

I−
i=1

(τi + γ δi)
2


I−

i=1

δi(τi + γ δi)


= −4E2(γ )E4(γ ).

We now differentiate Eq. (10) and use the expressions above,
obtaining:

1

2
I∑

i=1
δ2
i

d2G(γ )

dγ 2
≥ 0

⇔
d
dγ

[
−(1 − γ )E3(γ )

E2
2 (γ )

]
≥ 0

⇔E1(γ )E2
2 (γ ) − 4(1 − γ )E3(γ )E2(γ )E4(γ ) ≥ 0

⇔E1(γ )E2(γ ) − 4(1 − γ )E3(γ )E4(γ ) ≥ 0.

The last step follows because E2(γ ) ≥ 0, as E2(γ ) corresponds
to four times the (nonnegative) heterozygosity of the pooled
population consisting of population 1 and the admixed population
with allele frequency vector γ p1 + (1 − γ )p2. By applying Eqs. (8)
and (9) and simplifying, we obtain:

E1(γ )E2(γ ) − 4(1 − γ )E3(γ )E4(γ )

= E2
2 (γ ) +


(1 − γ )2

I−
i=1

δ2
i


E2(γ )

− 4(1 − γ )E2(γ )E4(γ ) + 4(1 − γ )2E2
4 (γ )

= [E2(γ ) − 2(1 − γ )E4(γ )]2 + (1 − γ )2
I−

i=1

δ2
i E2(γ ) ≥ 0

because both terms are nonnegative. �

An illustration of Theorems 3 and 4 appears in Fig. 3. The
same twenty loci from Fig. 1 are used; populations 1 and 2 are
the European and Native American populations, respectively. For
each locus, the Fst value between population 1 and a population
formed by the admixture of populations 1 and 2 can be seen to be
decreasing and convex in γ ∈ [0, 1], where γ is the admixture
fraction for population 1.
Fig. 3. Fst between a population and a hypothetical admixture of that population
with a second population. Fst [p1, γ p1+(1−γ )p2], seen as a function of γ , is plotted
against γ (Eq. (7)). Populations 1 and 2 represent populations of European and
Native American descent, respectively, and p1 and p2 are based on allele frequencies
estimated from Wang et al. (2008). The same twenty randomly selected loci as in
Fig. 1 are considered, with each curve representing a different locus. In accordance
with Theorems 3 and 4, Fst is always decreasing and convex in γ .

4.2. Comparison of predicted Fst to observed Fst

When allele frequencies are available on both the admixed
population and the founding populations, we are able to calculate
the observed Fst value between a specific founding population and a
population formed by admixture ofmultiple founding populations.
For example, it is possible to calculate the observed Fst between
an African American population and a putative African founding
population, or between a Mestizo population and a putative
European founding population. In practice, the true founding
populations are not precisely known, no longer exist, or may not
have data available, so that in general, only an approximation is
possible.

In such cases, our results provide a way of predicting the
Fst value between a population formed by an admixture of
multiple founding populations and a specific founding population,
on the basis of measured allele frequencies and admixture
coefficients. The predicted Fst value can be calculated when the
allele frequencies and the admixture coefficients are available
or can be estimated for the founding populations. Estimation of
the admixture fractions at a given locus for the various founding
populations can be achieved via maximum likelihood (Millar,
1987) or other techniques.

For the Wang et al. (2008) data, we estimated the fraction
of European ancestry in the Mestizo population at each of the
678 loci, treating the European and Native American populations
as founding populations. This approach followed the procedure
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Fig. 4. Predicted and observed Fst . (a) The predicted and observed Fst values between an admixed Mestizo population and a European founding population are plotted
against the European admixture fraction γ in the Mestizo population, estimated by maximum likelihood. The prediction is based on Eq. (7), using the European and Native
American allele frequencies estimated fromWang et al. (2008) as p1 and p2 , respectively, together with the maximum likelihood estimate of γ . The observation is based on
Fst estimated from Eq. (1), inserting estimated allele frequencies fromWang et al. (2008) on European and Mestizo populations. (b) The observed Fst value is plotted against
the predicted Fst value. The identity line is shown in gray. In both panels, each point represents one of the 678 loci used. The correlation coefficient between the predicted
and observed Fst values is 0.978.
of Schroeder et al. (2009), with all of the various subgroups
in the Mestizo sample of Wang et al. (2008) pooled together
(indeed the admixture estimates are the same as those used in
the ‘‘Combined admixed sample’’ analysis in Table 1 of Schroeder
et al. (2009)). Following Schroeder et al. (2009), for any allele
present in at least one individual in the Mestizo population but
not present in both founding populations, and for each founding
population that did not possess the allele, a single copy of
the allele was artificially added to that ancestral population.
Sample allele frequencies that were then obtained for Europeans
and Native Americans were treated as true allele frequencies
for use in the maximum likelihood inference of the European
admixture proportion, assuming Hardy–Weinberg equilibrium in
the admixed population. Maximum likelihood estimates were
obtained numerically and were used to obtain the predicted Fst
according to Eq. (7).

The observed and predicted Fst values for individual loci are
compared in Fig. 4. In general, we find that the observation closely
matches the prediction. In most cases (549 of 678 loci), however,
the prediction provides an underestimate of the observed value.
This systematic underestimation might arise from the use of
estimated rather than true values to obtain the prediction; in
particular, the prediction relies on both the estimated allele
frequencies and the maximum likelihood estimate of γ obtained
from the same data used to estimate the allele frequencies.

4.3. An admixture estimator on the basis of Fst

As an alternative to use of an estimated admixture coefficient
to predict Fst , an observed Fst value between a population formed
by admixture of two founding populations and a specific founding
population can be used as a way of estimating the admixture
fraction. In the case of two founding populations, the quadratic
equation in Eq. (7) can be solved to provide an estimator in the
style of the method of moments. This approach is reasonable, as
the monotonicity result in Theorem 3 indicates that for fixed allele
frequencies, γ is identifiable from Fst . The resulting estimator is
non-parametric, in that it does not make assumptions on the form
of the probability distribution of the allele frequencies at a given
locus (see Box III). It can be shown that γ̂+ ≥ 1 for all possible
values of Fst and the δi and τi. Therefore, if γ̂− is between 0 and 1, it
Fig. 5. Admixture estimates obtained from observed Fst (Eq. (11)) versus estimates
obtained by maximum likelihood. The plot represents a scenario in which a
European and a Native American population are the founding populations and a
Mestizo population is the admixed population, and allele frequencies estimated
from Wang et al. (2008) on all three populations are used to estimate γ , the
European admixture fraction in the Mestizo population. The identity line is shown
in gray, and each point represents one of the 678 loci used. The correlation
coefficient between the two sets of estimates is 0.618.

is chosen as the estimate. In the case in which γ̂− < 0, 0 is chosen
as the estimate, and if γ̂− > 1, 1 is chosen as the estimate.

For the example data, Fig. 5 presents a plot of the estimate of
γ from the observed Fst versus the maximum likelihood estimate
of γ , with Europeans and Native Americans as populations 1 and
2, and with Mestizos as the admixed population. The correlation
between the estimates from these two methods is 0.618, and in
general, the moment estimator produces smaller estimates than
the maximum likelihood method, including several estimates of
zero in cases where maximum likelihood obtains a positive value.

5. Discussion

In this paper, we have considered the Fst measure in the
context of admixed populations. We have explored the Fst value
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Box III.
between a population formed by the admixture of K founding
populations and one of those founding populations. In the general
case of arbitrary K ≥ 2, we have demonstrated that this value
is maximized when the admixed population is in fact one of the
other founding populations. In the particular case of K = 2, this Fst
value is monotonic and convex in the admixture fraction. We have
also provided a formula for predicting Fst in an admixed population
on the basis of the estimated admixture coefficient and the allele
frequencies in the founding populations, producing very similar
values to those observed in an empirical example utilizing the data
of Wang et al. (2008).

Further, we discussed a non-parametric method of estimating
the admixture fraction from the observed Fst values, and we
compared it to the maximum likelihood method. In general, the
non-parametric estimator is useful primarily for the purpose of
illustrating the close relationship between Fst and the admixture
coefficient, and its statistical properties are likely to be poorer
than those of modern genome-based approaches to admixture
estimation (Falush et al., 2003; Hoggart et al., 2004; Tang et al.,
2006a; Sankararaman et al., 2008; Alexander et al., 2009; Price
et al., 2009; Engelhardt and Stephens, 2010). However, as a
straightforward formula that is calculated from quantities that
are easily obtained, it provides a convenient approach when a
computationally simple initial estimate is desirable.

Our results can provide a basis for interpreting Fst in admixed
populations. In particular, in the case in which K = 2, the
monotonicity and convexity of Fst in the admixture coefficient
imply that Fst is informative about the level of admixture, and
vice versa. This relationship can be a useful starting point for
measurement of admixture, and a comparison of observed and
predicted Fst values can be used as an initial check on the extent to
which estimates of the admixture fraction obtained by maximum
likelihood or other algorithms are sensible.

We note several limitations of our work. First, our admixture
model does not involve a mechanistic evolutionary process,
considering only the linear combination of allele frequencies that
occurs when an admixed population is produced instantaneously
from a set of source populations. Second, we examine admixture
only at the population level, disregarding variation that might
exist in admixture levels across individuals within a population.
Third, as in many methods for analysis of admixed populations,
we caution that our work presumes that the source populations
for a given admixed population have been correctly specified.
It is encouraging, however, that in spite of these concerns, the
predicted Fst values generally agree with the values observed in
our empirical example. As illustrated by the results presented here,
further analysis of the properties of Fst in an admixture setting
will continue to facilitate the understanding of population-genetic
issues in the context of admixture research.
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