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a b s t r a c t

Existing inference methods for estimating the strength of balancing selection in multi-locus genotypes
rely on the assumption that there are no epistatic interactions between loci. Complex systems in which
balancing selection is prevalent, such as sets of human immune system genes, are known to contain
components that interact epistatically. Therefore, current methods may not produce reliable inference
on the strength of selection at these loci. In this paper, we address this problem by presenting statistical
methods that can account for epistatic interactions in making inference about balancing selection. A
theoretical result due to Fearnhead (2006) is used to build amulti-locusWright-Fishermodel of balancing
selection, allowing for epistatic interactions among loci. Antagonistic and synergistic types of interactions
are examined. The joint posterior distribution of the selection and mutation parameters is sampled by
Markov chain Monte Carlo methods, and the plausibility of models is assessed via Bayes factors. As
a component of the inference process, an algorithm to generate multi-locus allele frequencies under
balancing selection models with epistasis is also presented. Recent evidence on interactions among a set
of human immune system genes is introduced as a motivating biological system for the epistatic model,
and data on these genes are used to demonstrate the methods.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The outcome of the long-term evolution ofWright-Fisher popu-
lations with selection can be described by stationary distributions
of the allele frequencies. Mathematical and statistical properties of
these stationary distributions have been particularly well-studied
in the single-locus case (see for example Ewens (2004) and refer-
ences therein).

For multi-locusmodels, however, the analysis of stationary dis-
tributions has proven to bemore difficult. Some of the assumptions
leading to stationarity in the single-locus case cannot be directly
extended to multi-locus models, except under the restrictive as-
sumption ofmutual independence of allele frequency distributions
at different loci. When independence holds and the contribution of
a locus to the overall fitness of a set of loci does not depend on the
genotypes at other loci, the joint likelihood of the model parame-
ters across loci can be expressed as the product of its marginals.
In this case, the analysis effectively reduces to the single-locus
case (Buzbas et al., 2009).

When the contribution of a genotype at a locus to the overall
fitness of a set of loci depends on genotypes at nearby loci, how-
ever, independence is violated. In applying selection models to
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data on allele frequencies, if locus interactions are substantial, it
is important to take them into account for the purpose of estimat-
ing selection accurately. Fearnhead (2006) generalized the single-
locus stationary distribution of the Wright-Fisher model with
selection, which was originally postulated by Wright (1949) and
later studied in the context of heterozygote advantage by Watter-
son (1977). The generalization of the stationary distribution is to a
multi-locus system with a general selection model, where loci are
genetically unlinked but may interact epistatically. This approach
allows one to build models under complex scenarios of selection
without invoking the assumption of independence, yet it main-
tains the ability to work with a stationary distribution. The result
of Fearnhead (2006) also provides a basis for development of new
methods for making inference on the strength of selection in such
models.

In this paper, we make use of Fearnhead’s general result on
selection to build a class of multi-locus allele-based balancing
selection models. Our main focus is on developing methods for
estimating the strength of within-locus balancing selection, where
allelic combinations at all loci determine the selective advantage
of a multi-locus genotype through epistatic interactions. We begin
by reviewing important features of the single-locus case. We then
present our multi-locus balancing selection model, with a special
emphasis on incorporating two types of epistasis into the model.
A technical difficulty associated with our multi-locus model is
the evaluation of the joint likelihood of the allele frequencies.
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This difficulty arises from complicated normalizing constants. We
develop numerical and Monte Carlo methods to approximate
these constants, giving us the ability to evaluate the likelihoods.
In conjunction with an approximate rejection algorithm, our
methods make it possible to simulate population frequencies
under the model. Inference about the posterior distribution of
the selection parameter is carried out via MCMC, and we assess
support for different types of epistatic models using Bayes factors.
Model behavior under different types of epistasis with varying
strengths of selection and numbers of loci in the multi-locus
group is studied by simulations. We also present the motivating
biological problem for developing the methods presented in this
paper: the estimation of the strength of balancing selection in
a group of loci from the human immune system. In particular,
we consider allele-level interactions between human leukocyte
antigen (HLA) and killer-cell immunoglobulin-like receptor (KIR)
gene families. We analyze a real data set to investigate whether
observed allele frequencies provide evidence that HLA-A and HLA-
B, essential loci in an adaptive immune response (adaptive in the
immunological sense, not in the sense of natural selection), interact
epistatically with KIR, a part of the innate immune system. We
conclude with a short discussion on the limitations of the model.

2. Theory and setup

2.1. Single-locus case

Before proceeding with the details of the multi-locus model,
we first describe symmetric balancing selection in the context of
a Wright-Fisher population at a single-locus, and we emphasize
some complications in extending models of balancing selection to
multi-locus genotypes.

We use an abstract (and somewhat unorthodox) way of
describing balancing selection as a characteristic allele frequency
pattern arising through any mechanism in which variability
is favored (see Schmidt et al. (2000) and references therein).
Examples of mechanisms that produce balancing selection include
negative frequency dependence, overdominance, and types of
environmental heterogeneity that lead to frequency dependence
in a model with multiple niches (Levene, 1953). For each of these
mechanisms, balancing selection results when on average, diploid
genotypes possessing a variability-promoting property have a
fitness advantage. In negative frequency dependence, we expect
genotypes at low frequencies to have higher fitness relative to
others in a population. Overdominance occurswhen heterozygotes
have higher fitness than homozygotes. For a single population,
if a heterogeneous environment affects the fitness regime, so
that certain genotypes are favored in some sub-environments
whereas other genotypes are favored elsewhere, a balancing
selection pattern can be produced in the overall environment
as a result of competing selection pressures at sub-environment
boundaries. Common to all of these mechanisms is promotion of
genetic diversity, resulting in a balancing selection pattern in allele
frequency data.

In a Wright-Fisher population possessing this variability-
promoting property, an equilibrium allele frequency distribution
is eventually reached. In theory, if there are k distinct allelic types
in the population, it is possible to assign a selection coefficient
to each of the resulting k(k + 1)/2 distinct diploid single-locus
genotypes. However, the resulting equilibrium distribution will
be overparameterized in such a model, since there are only k
allele frequencies. To prevent overparameterization, we consider
a symmetric balancing selection model of two allelic classes, as
given in Eq. (1) below. For example, considering a heterozygote
advantage scenario, Eq. (1) is obtained as follows (Wright,
1949; Watterson, 1977; Donnelly et al., 2001). Consider a
population of N diploid individuals (2N total alleles) and k
distinct allelic types, reproducing in non-overlapping generations.
In each generation, 2N pairs are sampled independently from
the population of existing genes. The probability of sampling a
particular heterozygous diploid genotype is proportional to 1 +

s (s > 0), and the probability of sampling a homozygous diploid
genotype is proportional to 1. One allele is randomly sampled
from the chosen pair, subjected to mutation (to one of the types,
including mutation to the same type, all with equal probability)
with total probability u, and the resulting allele is added to the
next generation. Thus, a total of 2N alleles are added to the next
generation.

If we denote the allele frequencies by [x1, . . . , xk] and set σ =

2Ns and θ = 4Nu, then the stationary distribution of the allele
frequencies is given by

f ([x1, . . . , xk]|θ, σ ) =

e−σ
∑k

i=1 x2i
k∏

i=1
x


θ
k −1


i

c(θ, σ )
, (1)

where
∑k

i=1 xi = 1, xi > 0, and c(θ, σ ) is a normalizing constant
(Wright, 1949; Watterson, 1977). The parameters θ and σ
represent the population-scaled mutation rate and the intensity
(or strength) of selection, respectively. Note that in the inference
methods developed later in this paper, estimates of σ can assume
negative values, but that under heterozygote advantage, the
parametric value of σ is positive.

The model in Eq. (1) captures selective differences between a
favored combination of alleles and a disfavored one at a single locus
(e.g., heterozygotes vs. homozygotes). The selective difference is
parameterized by assigning a positive selection parameter, σ , to
a variability-promoting genotype and zero to other genotypes.
Estimating σ then provides information about the intensity of
selection between these two genotypic classes.

In the description of the single-locus model leading to Eq. (1),
no particular mechanism leading to a balancing selection pattern
was specified. In somemechanisms leading to a balancing selection
pattern, however, the assignment of a selection coefficient to a
genotype is intrinsically a function of the pair of alleles at the locus.
These cases, such as heterozygote advantage, require additional
assumptions in a multi-locus setting. By definition, heterozygote
advantage is a within-locus concept. If it is the mechanism leading
to balancing selection, then the contribution of each locus to the
overall selective advantage of the multi-locus genotype must be
explicitly specified. The approach we take for linking within-locus
selective advantages of heterozygotes to the selective advantage
of a multi-locus genotype is to use a function governing the
epistatic interactions among loci. Our methods do not depend on
the functional form chosen. For greater generality, throughout this
paper we focus on the scenario in which the selection coefficient is
a function of the pair of alleles at a locus rather than a function in
which the two alleles at a locus contribute separately.

2.2. The distribution of allele frequencies

We start by presenting the stationary distribution of the allele
frequencies for a multi-locus genotype under selection. For m
diploid loci, denote the frequencies of the ki distinct alleles at the
ith locus by xi = [x1i, x2i, . . . , xki i] and the set of frequencies from
allm loci by the array x = [x1, . . . , xm]. For simplicity, we assume
that the selection coefficients are equal at all loci (but see Buzbas
et al. (2009) for a non-epistatic model in which this assumption
is relaxed). Analogously to the single-locus case, let σ = 2Ns and
θi = 4Nui. That is, we allow mutation parameters to vary across
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Fig. 1. A transmission in a 3-locus Wright-Fisher model with symmetric balancing selection and epistasis between loci from generation t to t + 1. Each population has two
distinct alleles. The population of alleles at a locus is denoted by colored balls within a square. In Steps 1A, 1B, and 1C, single-locus genotypes are sampled, with heterozygotes
having a selection coefficient of s over homozygotes. In step 2, the 3-locus genotype is assigned a fitness by epistatic function g(σ , L), where L is the number of homozygotes
(2 in the case shown, from loci B and C). In step 3, an allele is randomly sampled with equal probability within each locus, independent of other loci (gamete formation).
In step 4, the chosen allele is subjected to mutation at each locus, with locus-specific mutation rate ui/ki . In this example, there are two mutational events (at locus B from
black to yellow and at locus C from green to gray). The fitness of the 3-locus genotype in step 2 would be that of a genotype with one heterozygote (cyan-orange) and two
homozygotes (black–black and green–green) if the loci were independent. If there is epistasis, depending on the form of function g , the fitness will be lower or higher.
loci, but we use a common selection parameter for every locus. As
a special case of the result of Fearnhead (2006), we can obtain

f (x|θ, σ ) =

eσ̄ (x)
m∏
i=1

Gi

c(θ, σ )
. (2)

Here, c(θ, σ ) is a normalizing constant, and for notational

convenience we let Gi =
∏ki

j=1 x
(
θi
ki

−1)

ji and θ = [θ1, . . . , θm].

The mean selection intensity, denoted by σ̄ (x), will be described
shortly.

We examine the distribution in Eq. (2) in three parts. The first
part, given by

∏m
i=1 Gi, poses no real difficulty in numerically

computing f (x|θ, σ ), because it is the product of single-locus
components (Fearnhead, 2006). The second part is the constant,
c(θ, σ ),which is defined as a (k1 ×· · ·× km)-dimensional integral
and requires substantial computation to obtain. We deal with
this computation in a separate subsection below. The third part,
eσ̄ (x), is a function of the mean selection intensity, σ̄ (x), over all
possible genotypes. This quantity, which we describe below in
Eq. (3), is important in defining the type of epistasis. Using amulti-
locus Wright-Fisher model, we can obtain all three parts of Eq. (2),
allowing us to evaluate the stationary distribution.

Below we build a multi-locus Wright-Fisher population with
balancing selection. The transmission from one generation to
the next is described in terms of a population of multi-locus
haplotypes, analogously to a transmission of genes in a single-locus
Wright-Fisher population. However, this use of a population of
haplotypes is purely for convenience. It can be shown that exactly
the same model is obtained by keeping track of allele populations
separately for each locus and simultaneously drawing pairs of
alleles at all loci to build amulti-locus genotype, instead of drawing
a pair of haplotypes.

The transmission from one generation to the next is as follows.
To form anm-locus haplotype, at each locus, we sample two genes
at randomwith replacement, such that the probability of sampling
a particular multi-locus genotype is a function of three factors:
1. The within-locus selective advantage of heterozygotes over
homozygotes, represented by the parameter σ .

2. The total number of homozygotes in the genotype, L =
∑m

i=1
Hi, where for the ith locus we define Hi = 1 if a genotype is
homozygous and Hi = 0 otherwise.

3. A decreasing function in L, denoted by g(σ , L), linking factors 1
and 2 by specifying the type of epistasis. This function satisfies
boundary conditions g(σ ,m) = −σm and g(σ , 0) = 0.

After sampling a diploid multi-locus genotype, we choose ran-
domly (with equal probability) one of the alleles at each locus to
build a newm-locus haplotype, subject each allele to mutation, in-
dependently with a locus-specific probability, so that the probabil-
ity of mutating to a specific type (including mutation to the same
type) is ui/ki. The resulting haplotype is then added to the next
generation (see Fig. 1).

The assumptions on the probability of sampling a multi-locus
genotype can be described as follows. The first assumption states
that regardless of the specific homozygous allelic type and the
locus atwhich it is found, a homozygote has the samedisadvantage
with respect to a heterozygote. In other words, the within-
locus symmetric heterozygote advantage that we considered in
the single-locus case is preserved in this model. The second
assumption extends the heterozygote advantage to a multi-locus
genotype by specifying that the loci contribute to the overall fitness
only through the total number of homozygous loci, L. Statistically
this means that the loci are exchangeable. The third assumption
guarantees that the function, g, describing the effect on fitness of
homozygotes is decreasing in the number of homozygotes. Further,
through the function g, it specifies the relationship between the
type of epistasis and the rate of decrease in fitness. The boundary
conditions imposed on g in the third assumption codify two
desirable properties of g: two multi-locus genotypes containing
no homozygotes are forced to be equivalent in terms of fitness,
and genotypes with all loci homozygous are also equivalent,
irrespective of whether the model incorporates epistasis. Finally,
we define the mean selection intensity over all possible distinct
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genotypes as

σ̄ (x) =

m−
ℓ=0

g(σ , ℓ)P[L = ℓ|x] = E[g(σ , L)|x], (3)

where P[L = ℓ|x] is the probability of having exactly ℓ homo-
zygous loci in the genotype (0 ≤ ℓ ≤ m). The effect of the epistasis
function g on fitness and its relationship to the type of epistasis are
described below.

2.3. Epistasis

Supposewe set g(σ , L) = −σ L, a linear decrease in fitnesswith
an increasing number of homozygous genotypes. Using Eq. (3) and
assumption 2, we obtain

σ̄ (x) = −σ

m−
ℓ=0

ℓP[L = ℓ|x] = E[−σ L|x] (4)

= −σE
[ m−

i=1

Hi|x
]

= −σ

m−
i=1

E[Hi|x] (5)

= −σ

m−
i=1

ki−
j=1

x2ji. (6)

Substituting the last quantity for σ̄ (x) into Eq. (2), the joint
stationary probability density of the allele frequencies at the set of
m loci can be expressed as a product of the single-locus marginal
densities,

f (x|θ, σ ) =

m∏
i=1

e−σ
∑ki

j=1 x2ji
ki∏
j=1

x


θi
ki

−1


ji

c(θi, σ )
. (7)

Hence, a linear decrease in fitness with an increasing number of
homozygotes in the genotype implies that allele frequencies are
mutually independent among loci. Thus, in the linear case, epistatic
interactions are absent. Further, the absolute value of the slope of
the line, σ , gives the within-locus intensity of selection.

Based on these observations, we now define our epistatic mod-
els. We deal with three qualitatively distinct models: antagonistic
epistasis, independence, and synergistic epistasis. Epistasis is an-
tagonistic when each additional homozygote in the genotype de-
creases fitness less than would be expected in the linear case. In
contrast, it is synergisticwhen the fitness decrease is greater than in
the linear case.We refer to various quantities under the threemod-
els using the subscripts ‘‘ant’’, ‘‘ind’’, and ‘‘syn’’ respectively. When
it is not necessary to distinguish between the two types of epistasis,
the subscript ‘‘epi’’ is used to denote a generic epistatic model. Us-
ing this new notation, for example, our conclusion that a linear de-
crease implies independence allows us to write gind(σ , L) = −σ L
(Fig. 2).

The equivalence between linear decrease and independence
implies that g must be non-linear under epistasis. For illustrative
purposes, we consider a quadratic form for g . However, our
inference methods are general and other forms can be easily
accommodated. For antagonistic epistasis, we define

gant(σ , L) = −
σ

m
L2, (8)

whereas for synergistic epistasis, we assume symmetry of
gant(σ , L) with respect to a midpoint at gind(σ , L) to get

gsyn(σ , L) = +
σ

m
L2 − 2σ L. (9)
Fig. 2. Epistasis as a function of the number of homozygotes, ℓ, in a multi-locus
genotype (m = 5, σ = 10). The plot shows linear and quadratic forms of
the function g(σ , ℓ), describing epistasis corresponding to antagonistic interaction
(cyan), independence (black) and synergistic interaction (red).

Models of heterozygote advantage will produce excess het-
erozygosity in the population with respect to what is expected
under neutrality. The different epistatic models will produce
different amounts of excess heterozygosity, generating different
patterns in allele frequencies. On average, for a fixed σ , the syn-
ergistic model produces more excess heterozygosity in compar-
ison to the linear model, which in turn produces more excess
heterozygosity with respect to the antagonistic model. The intu-
ition is that multi-locus genotypes carryingmore homozygous loci
are penalized more severely under the synergistic model in com-
parison to the antagonisticmodel, thereby inflating the probability
that a genotype will be heterozygous.

3. Inference methods

In this section, we present Bayesianmethods tomake inference
from a model obeying Eq. (2) under a generic epistatic form (using
notation ‘‘epi’’). In practice, there is an additional source of vari-
ability in the observed allele frequencies due to sampling from the
model, and therefore, the form of the sampling likelihood differs
from the likelihood based on Eq. (2). For the single-locus case, this
sampling likelihood can be written as a function of the ratio of
two integration constants (see Donnelly et al. (2001)). For infer-
ential purposes, however, there are at least two practical reasons
for not considering the actual sampling likelihood. First, we have
previously established that the variability due to sampling is neg-
ligible compared to the variability introduced by the evolutionary
process, unless the sample size is small (Buzbas and Joyce, 2009).
Second, because it involves a ratio of two approximated multi-
dimensional integration constants, the sampling likelihood is sub-
ject to numerical instabilities, the effects of which are difficult to
assess. For these reasons, we assume that the observed allele fre-
quencies are good approximations to the population frequencies
and proceed with the model likelihood based on Eq. (2).

In the next two subsections, we build the machinery necessary
to evaluate the joint likelihood of allele frequencies under epistasis.
First, we describe how to approximate the normalizing constant of
the multi-locus model (Eq. (2)). We briefly review the numerical
integrationmethod that solves the problem in the single-locus case
and that enables us to generate allele frequencies under the single-
locus balancing selection model (Genz and Joyce, 2003). We then
state the problem in the multi-locus case and describe how single-
locus methods can be combined with Monte Carlo integration
to obtain an approximation for the constant. This approximation
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by naive Monte Carlo integration turns out to be inaccurate. We
explain the reasons for this inaccuracy and then present amodified
Monte Carlo approach that produces accurate results. We describe
a rejection method (see Ripley (1987)) to generate approximate
multi-locus allele frequencies under epistasis. This method allows
us to use simulations to study the behavior of the model. Methods
for estimating the strength of selection and for performing model
selection under epistasis appear in the last two subsections.

3.1. Approximating the normalizing constant

A technical problem in evaluating the likelihood function in
Eq. (2) is calculating the normalizing constant. For the multi-locus
model, under independence we have

f (x|θ, σind) =

m∏
i=1

f (xi|θi, σind) =

eσ̄ind(x)
m∏
i=1

Gi

m∏
i=1

c(θi, σind)

, (10)

where c(θi, σind) is the normalizing constant for the ith locus. The
numerical methods of Genz and Joyce (2003) make it possible to
calculate the multi-locus constant

∏m
i=1 c(θi, σind) by breaking the

constant for the ith locus,

c(θi, σind) =

∫ 1

0

∫ 1−xkii

0
· · ·

∫ 1−(x2i+···+xkii)

0

e−σ
∑ki

j=1 x2jiGi dx1i . . . dxkii, (11)

into a series of iteratively defined one-dimensional integrals.
However, in the epistatic case, these numerical methods are not
directly applicable to constants in Eq. (2),

cepi(θ, σepi) =

∫
· · ·

∫
eσ̄epi(x)

m∏
i=1

Gi dx1 . . . dxm, (12)

due to considerably more complicated integrands. Here, the
integration is over the allele frequency space of all m loci, and for
each locus, the limits of integration are as in Eq. (11).

Below we will show that Eq. (12) can be treated in an
importance sampling framework and can be written as a weighted
function of the constant under independence,

∏m
i=1 c(θi, σind).

First, we note that by the definition given in Eq. (3) for the
independence model,

σ̄ind(x) =

m−
ℓ=0

gind(σind, ℓ)P[L = ℓ|x],

where gind(σind, L) = −σindL is linear in the number of homo-
zygotes in the multi-locus genotype, L. Here, σind is an arbitrary
value of the selection parameter. (Our insistence on keeping dis-
tinct subscripts for the selection parameters in the independence
and epistatic models will become clear below.) Multiplying and di-
viding the right-hand side of Eq. (12) by eσ̄ind(x)∏m

i=1 c(θi, σind) and
rearranging, we get

cepi(θ, σepi) =

∫
· · ·

∫ 
eσ̄epi(x)−σ̄ind(x)

m∏
i=1

c(θi, σind)



×

eσ̄ind(x)
m∏
i=1

Gi

m∏
i=1

c(θi, σind)

dx1 . . . dxm

=

m∏
i=1

c(θi, σind)E[eσ̄epi(x)−σ̄ind(x)
], (13)
where E(·) is the expectation with respect to the joint stationary
probability density of the allele frequencies under independence
(i.e., Eq. (10)). An obvious Monte Carlo estimator for the
expectation part in Eq. (13) is

1
n

n−
j=1

eσ̄epi(x)−σ̄ind(x), (14)

where n is the number of Monte Carlo samples. The approximation
is valid for large n, with allele frequencies generated from the
density in Eq. (10). Therefore, using Eq. (14) and numerical
methods devised for the single-locus case, we can approximate
cepi(θ, σepi), at least in theory.

Unfortunately, a standard implementation of Eq. (14) with
an arbitrary value of σind does not produce accurate estimates.
An intuitive explanation is that when the allele frequency
distribution under epistasis is substantially different from the
distribution under independence, the difference between the
term

∏m
i=1 c(θi, σind) on the right-hand side of Eq. (13) and

cepi(θ, σepi), the desired quantity on the left-hand side, is quite
large. Consequently, in order to have a good approximation of
cepi(θ, σepi), the expectation (the second term on the right in
Eq. (13)) must be accurate in adjusting

∏m
i=1 c(θi, σind). However,

this expectation, estimated by Eq. (14), is itself inaccurate unless
the number of samples generated is astronomical, precisely due
to the difference between the epistatic and independence models.
That is, when the epistatic model does not resemble the model
under independence, we need to generate a large number of allele
frequency sets for the estimate in Eq. (14) to closely approximate
the true expectation. Hence, a naive Monte Carlo estimator does
not produce reliable estimates of cepi(θ, σepi). Our innovation to
solve this problem is to implement an algorithm in which the
value of σind used to generate the allele frequencies under the
independence model is chosen carefully to minimize the effect of
the expectation E[eσ̄epi(x)−σ̄ind(x)

] in calculating cepi(θ, σepi). Briefly,
σind is chosen such that E[eσ̄epi(x)−σ̄ind(x)

] ≈ 1, and hence, by
Eq. (13), cepi(θ, σepi) ≈

∏m
i=1 c(θi, σind). This approach allows us

to produce accurate Monte Carlo estimates by keeping the Monte
Carlo variance small. Details are given in Appendix A.

In summary, based on techniques more fully described in
Appendix A, we first find a suitable value for σind. To compute
the constant of the ith single-locus density, c(θi, σind), we then
use the numerical integration methods of Genz and Joyce (2003),
using a common selection parameter σind, locus-specific mutation
parameters θi, and numbers of alleles ki.Using an inverse sampling
method as described in Genz and Joyce (2003) and the single-
locus constants under independence, we generate n sets of
allele frequencies from each single-locus density, producing n
sets of frequencies under the multi-locus independence model.
Conditional on these sets of frequencies, we then compute an
adjusted Monte Carlo estimate to obtain the multi-locus constant
under epistasis by implementing Eq. (14).

3.2. Generating approximate samples under epistasis

A general requirement for examining the behavior of epistatic
models is the ability to simulate allele frequencies under these
models. To generate multi-locus allele frequencies from an
epistatic model, we implement a modified rejection algorithm
(details given in Appendix B) that utilizes the stochastic methods
of the previous section. The efficiency of a rejection algorithm
depends on choosing a proposal distribution and finding an upper
bound on the ratio of target distribution to proposal distribution.
First, we discuss the proposal distribution for our case.

In the rejection algorithm, random variates generated from a
proposal distribution are accepted according to a probabilistic rule
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that guarantees that accepted values come from the distribution
of interest. The proposal distribution has to be chosen carefully
because if it mimics the target distribution of interest poorly,
the number of values that must be proposed before accepting a
sample is large, and the algorithm is computationally inefficient.
In our case, we aim to generate allele frequencies x from the
distribution of a multi-locus epistatic model, a distribution that
has the general form in Eq. (2). A natural candidate family for
a proposal distribution is the family of joint distributions of
allele frequencies under independence given in Eq. (10). However,
if we set σind = σepi, the distribution under independence
is very inefficient. We circumvent this problem by following
the optimization given in Appendix A to determine an optimal
distribution. That is, given σepi,we use the joint distribution under
independence that has the optimalσind as a proposal distribution to
generate allele frequencies from an epistatic model with selection
parameter σepi. A multi-locus allele frequency array x is proposed
from the distribution in Eq. (10) with an optimal σind, such that
E[eσ̄epi(x)−σ̄ind(x)

] ≈ 1. This choice contributes to the efficiency of
the algorithm.

Now we turn to the upper bound on the ratio of the target and
proposal distributions. This bound, which is required for rejection
algorithms, is based on maximizing the ratio

f (x|θ, σepi)

f (x|θ, σind)
. (15)

Unfortunately, the theoretical supremum on this ratio turns
out to be large, making the rejection method impractical (see
Appendix B). As an alternative, we substitute the theoretical bound
by a (much lower) empirical maximum, Bn, from n = 106 data
sets simulated under independence. This approach has similarities
to the empirical supremum rejection sampling method of Caffo et al.
(2002). Appendix B gives an algorithm to generate an approximate
sample from an epistatic interaction model with parameters θ =

[θ1, . . . , θm], σepi, and k = [k1, . . . , km].

3.3. Parameter estimation

By Bayes’ theorem, we write the joint posterior distribution of
the parameter vector (θ, σ ) as

π(θ, σ |x) =
f (x|θ, σ )π(θ, σ )

f (x)
, (16)

where f (x|θ, σ ) is the likelihood in Eq. (2) and π(θ, σ ) is the
joint prior distribution of the parameters. We assume the prior
independence of the parameters, π(θ, σ ) = π(θ)π(σ ), and
use a diffuse uniform prior on the selection parameter, σ ∼

Unif(−σmax, σmax), where σmax is a fixed value chosen sufficiently
large that it covers plausible values of the selection parameter.
For all the analyses in this paper, we have chosen σmax = 300.
Informed prior distributions for each θi are obtained using only
the neutral variation at each locus (i.e., synonymous mutations)
and the stationary distribution of the allele frequencies under
neutrality. Details on this approach to the mutation parameters,
as well as the advantages of using an informative prior on
the mutation parameter in Wright-Fisher models with balancing
selection, appear in Buzbas et al. (2009).

We sample the joint posterior distribution, π(θ, σ |x), us-
ing Markov chain Monte Carlo (MCMC) with a componentwise
Metropolis–Hastings approach for updating the parameters (Ap-
pendix C). The computational bottleneck of this algorithm is in
evaluating the normalizing constant cepi(θ, σepi) for given values
of θ and σepi. In particular, an estimate of cepi(θ, σepi) is required at
each iteration, resulting in an evaluation of E[eσ̄epi(x)−σ̄ind(x)

].
3.4. Support for epistatic models

We assess the support for a particular type of epistatic inter-
action model using Bayes factors. The case of antagonistic versus
synergistic epistasis is formulated below, with a straightforward
extension to any two epistatic models, including those having the
same type of epistasis but different forms for the epistasis func-
tion g. Antagonistic and synergistic models will differ in the form
of the function g, which is a part of the joint probability den-
sity, f , through σ̄epi(x). Setting the hypotheses, Hant:gant(·, ℓ) and
Hsyn:gsyn(·, ℓ), for antagonistic and synergisticmodels respectively,
the relevant Bayes factor, Bant/syn, is given by

Bant/syn =
P(x|gant(·, ℓ))
P(x|gsyn(·, ℓ))

=


· · ·

f (x|θ, gant(σ , ℓ)) dθdσ

· · ·

f (x|θ, gsyn(σ , ℓ)) dθdσ

. (17)

Calculating Bant/syn requires integrating out the nuisance param-
eters (θ, σ ). We approximate the integrals given in Eq. (17) using
the harmonicmean estimator (Newton andRaftery, 1994; Kass and
Raftery, 1996). Thus, for example,

P̂(x|gant(σ , ℓ)) ∝


1
n

n−
i=1

f (x|θ(i)
ant, σ

(i)
ant)

−1

−1

(18)

where (θ
(i)
ant, σ

(i)
ant), i = 1, . . . , n, are posterior samples obtained

under the hypothesis gant(·, ℓ) by MCMC (i.e., by the algorithm
given in Appendix C). The desired Bayes factor, then, is estimated
by

B̂ant/syn =

n∑
i=1

f (x|θ(i)
syn, gsyn(σ

(i)
syn, ℓ))

−1

n∑
i=1

f (x|θ(i)
ant, gant(σ

(i)
ant, ℓ))

−1
, (19)

where the values in the numerator are sampled under the
synergisticmodel and those in the denominator are sampled under
the antagonistic model.

4. Simulations

We present results from simulations under fixed locus-specific
mutation parameters θi = 3 for each locus and ki = 5 alleles
at each locus (i = 1, 2, . . . ,m), using the data generation meth-
ods given in Section 3.2. Posterior samples are summarized for
each of three models (antagonistic, independent and synergistic)
for data generated underσ = {3, 12, 27, 50, 80} andm = 4. These
summaries utilize the 95% highest posterior density (HPD) region
by averaging the intervals obtained in 30 independent replicates,
holding σ constant (Table 1). We also calculated the coefficient of
variation of the selection parameter (i.e., the ratio of the sample
standard deviation to the sample mean) for each posterior sample
at m = {4, 6, 8, 12, 15, 20}, again using the mean coefficient of
variation over 30 independent simulation replicates (the case for
σ = 27 is shown in Fig. 3). In the rest of this subsection we offer
interpretations of the simulation results to develop intuition about
the behavior of the epistatic models.

A relatively large amount of uncertainty about the selection
parameter is common to all three models (HPD regions in Table 1).
This large variability is attributable to two sources: The first
is correlation between the estimated mean and variance of the
selection intensity, leading to less precision, in particular with
stronger selection (Table 1 across columns). The second is the
small number of loci in the multi-locus group (recall that the
results in Table 1 are for m = 4). Increasing the number of loci
has a sizeable effect on decreasing the variance in σ (Fig. 3).
Implications of this fact depend on the use of the method. If
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Table 1
95% highest posterior density intervals for σ using simulated data for a range of σ , with fixed
θi = 3, ki = 5 and m = 4. Each result is an average of 30 replicates.

Model σ

3 12 27 50 80

Antagonistic (−4.4, 23.2) (0.6, 35.5) (8.4, 80.1) (18.0, 109.2) (45.0, 172.7)
Independence (−4.8, 17.2) (1.3, 32.0) (9.8, 64.2) (20.2, 95.2) (49.9, 162.0)
Synergistic (−4.5, 13.4) (1.6, 31.0) (9.7, 53.6) (26.5, 100.9) (50.4, 161.6)
Fig. 3. Estimated coefficients of variation (the ratio of the standard deviation of the
selection parameter estimates to their mean) for three models: antagonistic (cyan),
independence (black) and synergistic (red). The parameters of the simulation are
σ = 27, θi = 3, and ki = 5 for m = {4, 6, 8, 12, 15, 20}.

the goal is to search for signals of balancing selection along the
genome, tight interval estimates for the selection parameter might
be obtained by incorporating many loci in the analysis. However,
when the investigation of balancing selection at a particular
biological system is of interest, the number of loci in the system
will be constrained a priori and will probably be small. In such
cases, there will be a limit on the precision attainable for σ . The
example we consider below in a real system with relatively few
loci also demonstrates this point.

The large variability in the posterior sample notwithstanding,
balancing selection is detectable under our model, even when the
selection strength is weak (e.g., σ = 12 with θ = 3). Although
when the effective population size, N, is unknown, the compound
parameter σ = 2Ns does not permit direct estimation of the se-
lection coefficient, s, the magnitude of plausible s can be obtained
if the simulation is taken to represent human populations. If we
assume N is on the order of 104, then the mean 95% HPD re-
gions for σ = 12 under the antagonistic and synergistic models
in Table 1 correspond to intervals (0.3 × 10−4, 17.7 × 10−4) and
(0.8 × 10−4, 15.5 × 10−4) for s, respectively.

For a given data set generated under balancing selection, the
estimates of the strength of selection under the three different
models are expected to be ordered: σ̂ant > σ̂ind > σ̂syn. In
other words, a balancing selection model in which the effect of
the first few homozygotes on the fitness is small (e.g., antagonistic)
is expected to produce stronger estimates of selection than
its alternative (e.g., synergistic), to be able to explain a given
amount of variability. The intuition behind this result lies in
recognizing that among the three models considered, in terms
of their functional forms, the antagonistic model is the ‘‘closest’’
model to neutrality. This implies that to explain a given amount
of variability in the data, its selection parameter, σant, must be
the largest. Imagine for example a model of balancing selection
with an epistasis function g(σ , ℓ) ≈ 0 for all ℓ, so that the model
is very similar to the neutral model. To be able to explain high
variability in a given data set under balancing selection, such a
model would require a very large σ because only if the selection
is very strong will data with high variability have an appreciable
likelihood under the model.

5. Application to data

As an application of the epistatic model, in this sectionwe focus
on balancing selection in interacting gene complexes of the human
immune system. Several independent lines of evidence have
suggested that gene families of the immune system experience
balancing selection (Hughes and Yeager, 1998; Carrington et al.,
1999; Meyer and Thomson, 2001; Norman et al., 2004; Hughes
et al., 2005). More recently, the existence of epistatic interactions
between immunological gene families has been established
(Hansasuta et al., 2004; Single et al., 2007; Thananchai et al.,
2007; Vilches and Parham, 2002). The following (necessarily
simplistic) description captures the biological essentials relevant
to our model. We point out that our goal is not to make
any mechanistic claim about the biology of the system, but
rather to demonstrate the utility of our methods in investigating
population-level polymorphism data in immune system loci.

Launching a full-scale immune response, say against a
pathogenic agent, requires activating both parts of the immune
system: the innate component, which invokes a generic first re-
sponse, and the adaptive component,which can respond to specific
pathogens. Mechanisms exist by which these two parts of the im-
mune system interact. For example, theymay cooperate to perform
a specific task, guaranteeing awell-coordinated immune response.
Interaction exerted at the protein level relies on reciprocal recogni-
tion of specific molecular agents of both systems, facilitated by the
‘‘uniqueness’’ of these agents. From a population genetics perspec-
tive, single-locus estimates of the intensity of selection are some-
what unsatisfactory in such a system, because of the interactions
between the parts. Our epistatic model is designed to address this
problem of single-locus estimates in this system.

As an example, we consider two well-known interacting gene
groups: killer-cell immunoglobulin like receptors (KIR) and human
leukocyte antigen (HLA) loci. KIR are specialized receptors on
natural killer (NK) cells, whose job is to destroy pathogen-infected
cells. KIR are encoded by 17 genes, found on chromosome 19 of
the human genome (see Vilches and Parham (2002) for a review).
A cell on which KIR act is a target cell, which may or may not be
infected. In the presence of a target cell, KIR bind ligands presented
on the target cell, and the message provided by these ligands is
conveyed to NK cells. If an activating ligand is bound, NK cells
kill the target cell, whereas if an inhibiting ligand is bound, the
target cell is spared. KIR genes constitute the first gene family of
the interacting system in which we are interested.

The second family is HLA Class I genes. Found on chromosome
6, this family contains three major genes of the adaptive immune
system (see Parham and Ohta (1996) for a review). HLA Class I
molecules are expressed on the surfaces of all normal (uninfected)
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Table 2
HLA and KIR data for a Portuguese population (based on frequencies downloaded
from www.allelefrequencies.net (Middleton et al., 2003)). The numbers of alleles
for the HLA loci are based on supertypes, as defined by Sette and Sidney (1999). For
KIR, common haplotypes A and Bx are used (see e.g., Yoo et al. (2007)). Hetobs is the
observed heterozygosity and Hetmax is the theoretical maximum heterozygosity at
a locus with k distinct alleles.

Locus Alleles Frequencies Hetobs Hetmax

HLA-A 4 [0.171, 0.319, 0.315, 0.193] 0.731 0.75
HLA-B 5 [0.316, 0.150, 0.414, 0.041, 0.077] 0.698 0.80
KIR 2 [0.534, 0.466] 0.502 0.50

cells, but their expression is downregulated in cells infected with
pathogens.

For an effective immune response, interactions between KIR
and HLA Class I genes are essential, due to the fact that the ligands
to which KIR bind are HLA Class I molecules (Gillespie et al., 2007;
Lòpez-Vàzquez et al., 2005; Martin et al., 2002). Recent evidence
suggests that molecular products coded by specific HLA Class I
alleles can cooperate only with certain products coded by specific
KIR alleles (Hansasuta et al., 2004; Single et al., 2007; Thananchai
et al., 2007; Vilches and Parham, 2002). Although the nature of
these interactions ultimately can be investigated with advances in
molecular techniques, the specifics, particularly the consequences
of these interactions for population-level polymorphism, currently
remain unknown. Considering that heterozygotes of both gene
families confer an advantage in performing a function within the
balancing selection framework, herewe assume that the number of
heterozygous genotypes at a multi-locus HLA-KIR genotype gives
a reasonable signal for between-locus interactions. We implement
our model for the KIR-HLA system to investigate the plausibility of
antagonistic and synergistic balancing selection models, based on
evidence provided by population-level polymorphism data.

We consider allele frequencies at two major HLA Class I loci: A
and B.We group the alleles into supertypes, classes of alleles whose
protein products are known to share structural and functional
similarities, such as epitope binding pockets. There are four well-
identified HLA-A supertypes: A1, A2, A3 and A24, and five HLA-B
supertypes: B7, B27, B44, B58 and B62 (Sette and Sidney, 1999).
At each locus, the genotype of a diploid individual is represented
by two supertypes corresponding to two alleles at that locus.
In contrast to the variability in HLA, the variability in the KIR
system is less well-understood and more challenging to classify.
For example, certain KIR loci have perfect positive or negative
linkage, and haplotypes can vary in gene content. Partly for these
reasons, a common practice in KIR genetics is to classify the
multi-locus genotype by considering each haplotype as an allelic
variant in the same way that one treats alleles at a single locus.
In particular, we consider two well-identified haplotypic forms,
known as A and Bx.

Our example uses previously reported HLA and KIR data on a
Portuguese population (Middleton et al., 2003) (Table 2). The data
consist of allelic types and their frequencies for HLA and KIR loci
at a population level. We have chosen the Portuguese data set for
its suitability to be classified into the HLA and KIR allelic groups
described above. We have excluded several rare HLA alleles that
do not fall into the supertype groups and have renormalized the
frequencies. Our simulations suggest that missing rare alleles have
little effect on estimating the strength of balancing selection under
the Wright-Fisher model (data not shown).

Considering a symmetric balancing selection model with
three loci, two representing HLA and one representing KIR,
where the observed allele frequencies are assumed to be good
approximations to the population allele frequencies, the strengths
of balancing selection under three models, estimated as 95% HPD
intervals, are HPDant = (29, 143), HPDind = (24, 115), and
HPDsyn = (20, 98) (Fig. 4). Using Bayes factors, the antagonistic
Fig. 4. Kernel density estimates (using a Gaussian kernel) of posterior samples
of σ under antagonistic (cyan), independence (black) and synergistic (red) models
for the HLA/KIR data. The 95% HPD intervals (obtained from the original sample
without density estimation) are {29, 143} for antagonistic epistasis, {24, 115} for
independence, and {20, 98} for synergistic epistasis (100,000MCMC iterationswith
thinning at every 100th step).

interaction model is about 7 times more likely than the synergistic
alternative (Bant/syn = 7.13). Thus, taken as a group, these loci have
a polymorphic structure supporting a model in which the locus-
wise fitness differences between heterozygotes and homozygotes
is large and the detrimental effect of the first few homozygotes on
the fitness of the whole group is small. In other words, a certain
number of homozygous loci, even if homozygotes are inferior
with respect to heterozygotes, can be tolerated because they only
slightly decrease the fitness of the whole multi-locus genotype.
In contrast, if the synergistic model had been favored, the effects
would be reversed. That is, the first homozygous loci in the multi-
locus genotype would not be tolerated well, since they would
severely decrease the fitness of the whole multi-locus genotype,
even if these homozygotes were not very inferior with respect to
the heterozygotes.

6. Discussion

Wright-Fisher populations and distributions of allele frequen-
cies arising from them have been central in developing theory
andmethodology in population genetics. In this tradition, we have
taken advantage of a recent diffusion result (Fearnhead, 2006) to
extend previous methodology on estimating the strength of bal-
ancing selection to incorporate epistatic interactions among a set
of loci. Our methods are useful in estimating the strength of selec-
tion under two qualitatively different types of epistasis. We have
also presented a method that uses Bayes factors to evaluate the
strength of evidence in favor of a candidate model of balancing se-
lection. Our approach is most useful when the number of loci is
large, but it has the ability to detect weak balancing selection even
with relatively few loci.

The methodological innovation in this paper lies in its
combination of the numerical integration techniques with Monte
Carlo approaches first to compute the normalizing constants of
a relatively intractable likelihood function, and then to simulate
observations to make inference under a complex scenario of
balancing selection. We expect that other approaches might be
applicable for estimating the likelihoods without computing the

http://www.allelefrequencies.net
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normalizing constants (e.g., Beaumont (2003) and Andrieu and
Roberts (2009)) or for generating observations frommodels similar
to ours (e.g., Fearnhead (2001)); however,wehave not investigated
the suitability of these alternative methods.

We note that decisions we have made for retaining the
ability to perform inference practically have generated a series
of limitations. We have assumed a highly symmetrical balancing
selectionmodel, at two different levels. The first level of symmetry
occurs within a locus and refers to the assumption that regardless
of the particular alleles it contains, a heterozygous genotype at
a locus has a higher fitness in comparison to a homozygous
genotype. Further, all heterozygous and homozygous genotypes
are assigned the same fitness within their class. This within-locus
symmetry assumption keeps the number of parameters in the
model low. A second symmetry assumption forces the selection
strengths at different loci to be the same. This assumption is
needed for the inference method to have power to differentiate
between different types of epistasis. An alternative balancing
selection model, which allows for the strength of selection to vary
across loci, and which was used for estimating the mean strength
of selection in a group of loci in the absence of epistasis, can be
found in Buzbas et al. (2009).

We conclude by discussing another importantmodel limitation.
Both our independence and epistatic models assume that the
product of the frequencies of included alleles is a good proxy
for the frequency of a haplotype. In a Wright-Fisher population,
this amounts to assuming a sampling scheme with unlinked loci.
However, when the loci of interest lie on the same chromosome, a
degree of genetic linkage is expected. Genetic linkage may induce
a correlation structure on the allele frequencies, which in turnmay
affect the frequency of heterozygotes, and hence, the estimates of
the strength of selection.

Perfect linkage occurs when there is no recombination at all.
This case poses no real difficulty in the perspective of the model
in Eq. (2), since the data can be treated conceptually as generated
from a single locus. Classifying haplotypes differing from each
other at one or more loci as distinct allelic types, the resulting
model can be analyzed using Eq. (1). Inferences on the strength of
selection in this casemust be interpretedwith care, however, since
they will be based on the new definition of a haplotypic locus. The
case of partial linkage, on the other hand, is challenging to model.
Complications introduced by partial linkage can be addressed by
a model that would take into account recombination in addition
to selection and mutation. However, the stationary distribution
of allele frequencies has not been found in this case, even for a
two-locus two-allelemodel (Ethier and Nagylaki, 1989). Due to the
difficulties of generating data under a model with partial linkage,
the effects of assuming unlinked loci in estimating the strength of
selection under the Wright-Fisher model when the loci of interest
are actually linked remain unknown. A future direction is to design
a simulation study to explore these effects.
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Appendix A. The choice of σ under independence to improve
the accuracy of Monte Carlo estimation

The difficulty in computing cepi(θ, σepi) via Monte Carlo
integration as described in Section 3.1 has the flavor of a well-
known problem in stochastic sampling. This problem involves
the use of an inefficient instrumental distribution, in our case,
the joint distribution of allele frequencies under independence.
For example, a similar problem was observed by Donnelly et al.
(2001), when the distribution of allele frequencies under the
neutralmodelwas used as an instrumental distribution to compute
the normalizing constant under selection in the single-locus case.
Even 106 Monte Carlo samples generated under neutrality do not
produce accurate results for the constant under selection in that
case due to the dissimilarity between the neutral model and the
model under selection. In our particular multi-locus model, we
would like an estimate

1
n

n−
i=1

eσ̄epi(x)−σ̄ind(x) (A.1)

to be an accurate estimator of E[eσ̄epi(x)−σ̄ind(x)
]. However, because

of the large variability in the n replicates contributing to the sum
in expression (A.1), the estimates are not usually accurate for
values of n that are possible to implement. One way to avoid
this inaccuracy is to choose σind such that the values in different
replicates have low variability.

Here, we exploit a special structure in the expectation of
interest to accurately approximate cepi(θ, σepi) with a reasonable
number of simulated samples (n ≈ 103). The key to our method is
to recognize that in Eqs. (11)–(14), σepi is not necessarily related to
σind in any way and we are free to simulate under independence
with any value for σind that we deem useful. In fact, there is an
optimal σind that minimizes the effect of E[eσ̄epi(x)−σ̄ind(x)

] in the
computation of cepi(θ, σepi). The form of expression (A.1) suggests
that the accuracy of the approximation for a given number of
Monte Carlo samples depends on

σ̄epi(x) − σ̄ind(x) =

m−
ℓ=0


gepi(σepi, ℓ) − gind(σind, ℓ)


× P[L = ℓ|x], (A.2)

where the probability of having exactly ℓ homozygotes in the
multi-locus genotype, P[L = ℓ|x], is conditional on the allele
frequencies generated under independence (Eq. (10)). An ideal
σind to reduce the Monte Carlo variability has the property that
the sum on the right-hand side of Eq. (A.2) is close to zero,
implying E[eσ̄epi(x)−σ̄ind(x)

] ≈ 1. Such a choice works because it
keeps the Monte Carlo variance of the expectation small,
and consequently, the product of the corresponding individual
locus constants c(θi, σind) reproduces cepi(θ, σepi) faithfully. That
is, E[eσ̄epi(x)−σ̄ind(x)

] ≈ 1 implies cepi(θ, σepi) ≈
∏m

i=1 c(θi, σind)
(Eq. (13)).

The details on optimization of σind are as follows. Let x denote
the multi-locus allele frequencies simulated under independence
with parameters (θ, σind). The right-hand side of Eq. (A.2) involves
a combination of gind(σind, ℓ) and x through the conditional
probabilities P[L = ℓ|x]. Therefore, to choose an optimal σind, we
need an idea about the behavior of P[L = ℓ|x] for different σind
values. Fig. 5 shows estimates of E[P[L = ℓ|x]] obtained by

E[P[L = ℓ|x]] ≈
1
n

n−
i=1

P[L = ℓ|x(i)
] (A.3)

for a range of σ values, based on n = 103 allele frequency sets,
x, generated under independence and a set of m = 4 loci. If we
want to compute cepi(θ, σepi) for σepi < 0, then generated samples
contribute to the sum in Eq. (A.2) essentially through large ℓ, since
E[P[L = m|x]] > E[P[L = (m − 1)|x]] > · · · > E[P[L = 0|x]],
as can be seen by comparing the plots of estimated values from
Eq. (A.3) in the left part of Fig. 5. In contrast, for σepi > 0, the
samples contribute to the sum through small ℓ, since E[P[L =

0|x]] > E[P[L = 2|x]] > · · · > E[P[L = m|x]]. Given a
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Fig. 5. Estimated probability of having ℓ homozygotes in a multi-locus genotype,
Ê[P[L = ℓ|x]], for a range of σ values with m = 4 loci. The results are obtained by
simulations (106 replicates for eachσ ). For the homozygote advantage case (σ ≪ 0)
we have Ê[P[L = m|x]] > Ê[P[L = m − 1|x]] > · · · > Ê[P[L = 0|x]], whereas
for the strong heterozygote advantage case (σ ≫ 0) the inequalities are reversed.
We exploit the structure in Ê[P[L = ℓ|x]] to find the optimal σind to calculate the
normalizing constant of Eq. (13) (see Section 3.1 and Appendix A).

value of σepi, the optimal σind is chosen such that for values of ℓ
for which E[P[L = ℓ|x]] is large, |gepi(σepi, ℓ) − gind(σind, ℓ)| is
minimized. To achieve this, we first simulate 103 multi-locus allele
frequency sets for each σind value on a grid (σ ∈ [−300, 300] is
chosen with a step size of δ = 1 for the analyses in this paper). We
then compute Eq. (A.2) and choose as the optimal value the σind for
which |σ̄epi(x) − σ̄ind(x)| is closest to zero. The accuracy gained in
computing the normalizing constants by optimizing σind for each
given value of σepi rather than using the value of σepi is particularly
clear when σepi ≫ 0 (Fig. 6).

Appendix B. Simulating allele frequencies under the multi-
locus balancing selection model

In this sectionwepresent an algorithm to generate approximate
multi-locus allele frequency vectors from a set of m loci under
epistasis. The ability to generate these vectors gives us the means
to study the behavior of epistatic models. Quantities needed to
generate data are the parameter vector (σ , θ, k,m), the type of
epistasis (i.e., antagonistic, synergistic), and a form for the epistasis
function g. Our modified rejection algorithm is as follows.

Algorithm B.1. 1. Using Appendix A, choose σind such that
cepi(θ, σepi) ≈

∏m
i=1 cind(θi, σind).

2. For i = 1, . . . ,m, simulate a data set from f (xi|θi, σind) under
independence for each locus and form n multi-locus frequency
arrays x(j), j = 1, 2, . . . , n.

3. Accept x(j) as a draw from the desired epistatic model if

[eσ̄epi(x(j))−σ̄ind(x(j))
]B−1

n > U,

where Bn is an upper bound (explained below) and U ∼

Unif(0, 1).

A value of Bn is needed for the above algorithm to work. The
efficiency of a rejection algorithm depends on an upper bound on
Fig. 6. Normalizing constants on a log scale for antagonistic (cyan), independence
(black) and synergistic (red) models for a range of σ values, as obtained by an
adjustedMonte Carlo method using Eq. (14) and Appendix A. The effect of choosing
an appropriate σind to minimize the adjustment by the estimate of E[eσ̄epi(x)−σ̄ind(x)

]

in Eq. (13) can be seen by comparing the difference between the constant obtained
by choosing the optimal σind and choosing σepi = σind . For example, for the
constant desired with σsyn = 32, the corresponding optimal value for σind(x) is
51.3. If σind = 32 were used, the estimate of the expected value E[eσ̄epi(x)−σ̄ind(x)

]

in the approximation of c(θ, σ ) would have to adjust for a large discrepancy
(approximately ϵ1 on the log scale). Similarly, for the constant desired with σant =

80, the optimum is σind = 32, and if σind = 80 were used, the adjustment by the
expectation in the estimate would be approximately ϵ2 (log scale). Choosing the
optimal value of σind minimizes the effect of the adjustment.

the ratio of the target distribution to the proposal distribution.
The theoretical upper bound for the ratio of the target distribution
under epistasis f (x|θ, σepi), to the proposal distribution under
independence f (x|θ, σind), given in Eq. (15), is

sup
x


f (x|θ, σepi)

f (x|θ, σind)


= sup

x


eσ̄epi(x)f (x|θ)/cepi(θ, σepi)

eσ̄ind(x)f (x|θ)/cind(θ, σind)


. (B.4)

By Eq. (13), this quantity simplifies to

sup
x


eσ̄epi(x)f (x|θ)/[cind(θ, σind)E[eσ̄epi(x)−σ̄ind(x)

]]

eσ̄ind(x)f (x|θ)/cind(θ, σind)


= sup

x


eσ̄epi(x)−σ̄ind(x)

E[eσ̄epi(x)−σ̄ind(x)
]



=

sup
x

{eσ̄epi(x)−σ̄ind(x)
}

E[eσ̄epi(x)−σ̄ind(x)
]

.

As an example, consider the synergistic case, for which it can be
shown that the supremum is realized when P[L = m|x] = 1. Note
that under heterozygote advantage, L = m is actually an extremely
low probability event. Although an all-homozygous genotype (L =

m) is part of the legitimate genotype space, it is virtually impossible
under heterozygote advantage to have a population where all
genotypes are all-homozygous (i.e., E[P[L = m|x]] → 0 as σ →

∞, see Fig. 5). Using the theoretical upper bound obtained fromEq.
(B.4) (realized when P[L = m|x] = 1) in the rejection algorithm
results in rejections for most of the proposed values and hence,
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the algorithm is very inefficient. Therefore, we obtain an empirical
upper bound that can be used in place of the theoretical bound as
an approximation. This empirical bound canbe obtained as follows.

Algorithm B.2. 1. Using Appendix A, choose σind such that
cepi(θ, σepi) ≈

∏m
i=1 cind(θi, σind).

2. For i = 1, . . . ,m, simulate n = 106 data sets from f (xi|θi, σind)

under independence for each locus, and form n multi-locus
frequency arrays x(j), j = 1, 2, . . . , n.

3. Compute the empirical bound Bn =
maxx{e

σ̄epi(x
(j))−σ̄ind(x(j))

}

1
n
∑n

j=1 eσ̄epi(x
(j))−σ̄ind(x(j))

.

The calculated bound Bn can then be used with the rejection
Algorithm B.1 to generate an approximate multi-locus allele
frequency array, x.

Appendix C. MCMC to sample the joint posterior distribution of
the parameters (θ, σ)

To sample the joint posterior distribution of the parameters
(θ, σ ), we use a component-wise Metropolis–Hastings algorithm
with independent sampler (see Robert and Casella (2004) p. 276).
Component-wise refers to the fact that we propose and update
the elements of the parameter vector one at a time rather than
updating the whole vector in one proposal. This method is more
efficient than updating the whole vector because proposing a
whole vector of parameters results in very few accepted updates
when the parameter space is high-dimensional. The sampler is
independent in the sense that the proposal distribution evaluated
at the proposed value does not depend on the current value of the
parameters and vice versa.

As is common in Bayesian procedures, we use prior distri-
butions on θ and σ as proposal distributions for the respective
updating steps. The acceptance probability under a component-
wise Metropolis–Hastings algorithm with independent sampler is
given by the ratio of the likelihood functions evaluated at the pro-
posed value and the current value of the parameters. In our case,
a slight modification from a standard component-wise Metropo-
lis–Hastings algorithm with independent sampler is needed to ac-
curately evaluate the constant cepi(θ, σ ) (and consequently the
likelihood) for each proposed set of parameter values. This mod-
ification is the presence of the optimization step for σind for each
proposed set of parameter values from the prior. A sketch of the
algorithm is as follows: Start with some arbitrary values of the pa-
rameters. For each update, propose a value from the corresponding
prior distribution of one element of the parameter vector. Find the
optimal value of σind to evaluate the constant and hence the like-
lihood under the proposed value. Compute the ratio of posterior
density (proportional to the likelihood) evaluated under the pro-
posed value to the posterior density evaluated under the current
value of the parameter. If this ratio exceeds an independently gen-
erated uniform random variate, update the chain to the proposed
value; otherwise, update the chain to the current value of the pa-
rameters. Sample with thinning.

Algorithm C.1. We start with arbitrary current values of the
mutation and selection parameters, θ(0)

= [θ
(0)
1 , . . . , θ

(0)
m ] and σ (0)

respectively. We set the grid parameter to |σmax| = 300 with a
step size of δ = 1. One MCMC iteration is given by the following
algorithm.

1. Calculate the current normalizing constant (in Eq. (13)).
(a) Find the optimal σind to compute the normalizing constant:

σind = argminσ


n−

i=1

 m−
ℓ=1


gepi(σ (0), ℓ) − gind(σ , ℓ)


× P[L = ℓ|x(i)

]




,

where x(i) are samples of allele frequencies (i = 1, . . . , n)
simulated under independence with parameter vector
(θ(0), σ ).Here, we optimize on a grid for σ ∈ (−σmax, σmax)
with step size δ.

(b) Compute the constant:

cepi(θ(0), σ (0)) =

m∏
j=1

c(θ (0)
j , σind)

×


1
n

n−
i=1

e
∑m

ℓ=1[gepi(σ
(0),ℓ)−gind(σind,ℓ)]P[L=ℓ|x(i)

]


.

2. Sequentially, update the mutation parameters for each locus
θ1, θ2, . . . , θm, by applying the steps (a)–(f) below for each one.
(a) Generate θ

(∗)
j ∼ π(θj),whereπ(θj) is a prior distribution of

themutation parameter for the jth locus, obtained using the
neutral variation at that locus. (See Algorithm 1 of Buzbas
et al. (2009) for details. Essentially, one uses the neutral
version of theWright-Fisher model with σ = 0 and obtains
a posterior sample of the mutation parameter using the
synonymous allele frequencies at the jth locus. A fitted
gamma distribution is then used as π(θj).) Set θ(∗)

=

[θ
(0)
1 , . . . , θ

(∗)
j , . . . , θ

(0)
m ].

(b) Repeat step 1 to find a new optimal σind, but nowwith sam-
ples of allele frequencies simulated under independence
with (θ(∗), σ ). Compute cepi(θ(∗), σ (0)).

(c) Set θ(0)
= θ(∗) if

f (x|θ(∗), σ (0))/cepi(θ(∗), σ (0))

f (x|θ(0), σ (0))/cepi(θ(0), σ (0))
> U,

where U ∼ Unif(0, 1).
3. Update the selection parameter:

(a) Simulate σ (∗)
∼ Unif(−σmax, σmax).

(b) Repeat step 1 to find a new optimal σind, but nowwith sam-
ples of allele frequencies simulated under independence
with (θ(0), σ ). Compute cepi(θ(0), σ (∗)).

(c) Set σ (0)
= σ (∗) if

f (x|θ(0), σ (∗))/cepi(θ(0), σ (∗))

f (x|θ(0), σ (0))/cepi(θ(0), σ (0))
> U,

where U ∼ Unif(0, 1).
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