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The properties of random gene tree topologies have recently been studied under a coalescent model that
treats a species tree as a fixed parameter. Here we develop the analogous theory for random ranked gene
tree topologies, in which both the topology and the sequence of coalescences for a random gene tree are
considered. We derive the probability distribution of ranked gene tree topologies conditional on a fixed
species tree. We then show that similar to the unranked case, ranked gene trees that do not match either
the ranking or the topology of the species tree can have greater probability than the matching ranked
gene tree.
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1. Introduction

Recent studies have investigated the probability distribution of
random gene tree topologies under a particular stochastic evolu-
tionary model, the ‘multispecies coalescent’ [1–11]. Treating a spe-
cies tree as a parameter consisting of a fixed labeled topology and
fixed branch lengths, Degnan and Salter [3] obtained a probability
distribution under the model for the labeled topology of a random
gene tree evolving on the species tree.

This probability distribution has generated a wide variety of
applications. First, it provides a mathematical basis for studying
the properties of gene trees in a standard evolutionary model, en-
abling predictions about gene tree patterns that the evolutionary
process is expected to produce [3,9,12]. Second, it underlies
model-based analyses of the consistency properties of species tree
inference algorithms, and more generally, of the ways in which
different inference approaches behave as increasingly many loci
are sampled [1,13–18]. Third, calculations of the probability distri-
bution itself have been incorporated as a component of species tree
inference algorithms, namely in likelihood computations applied
to gene trees in observed data [19–23]. Finally, the approach used
in deriving the distribution has initiated the study of coalescent
histories, combinatorial objects that each describe a possible list
of branches of the species tree in which the coalescences in a given
gene tree can take place [24–26].
ll rights reserved.
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The gene tree topologies examined in the probability distribu-
tion of Degnan and Salter [3] are unranked, in that they consider
only the topological relationship among gene lineages, and not
the sequence in which the lineages coalesce. The additional infor-
mation contained in the coalescence sequence or labeled history of
a gene tree, however, can potentially lead to a novel method of
summarizing gene tree distributions using ranked rather than un-
ranked trees, thereby facilitating new approaches both in problems
of evolutionary modeling and in species tree inference problems.

Our interest in ranked gene tree topologies arises partly from the
proof of the existence of anomalous gene trees in the unranked case.
Degnan and Rosenberg [1] showed that under the multispecies coa-
lescent, a species tree can produce anomalous gene trees – unranked
gene tree topologies that do not match the species tree topology, and
whose probabilities exceed that of the gene tree topology that does
match the species tree. The proof relies on the occurrence of variabil-
ity in the probabilities of different unranked gene tree topologies
under the multispecies coalescent. When species tree branch
lengths are short, unranked gene tree topologies that can be
produced by many possible sequences of coalescences – that is,
unranked gene tree topologies with many possible rankings – have
greater probabilities than those that have fewer rankings. It might
therefore be expected that by considering ranked gene tree topolo-
gies, each of which can be produced by exactly one possible
sequence of coalescences, anomalous ranked gene trees – ranked gene
tree topologies that disagree with the ranked species tree topology
and whose probabilities exceed the probability of the ranked gene
tree topology that matches the ranked species tree topology – could
be shown not to exist.
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Here, in a similar manner to previous work on the stochastic
theory of unranked gene tree topologies conditional on a species
tree, we pursue the theory of ranked gene tree topologies condi-
tional on a species tree. In Section 2 we introduce notation, and
in Section 3, analogously to the enumeration of coalescent histories
required for computing the probability of a gene tree topology gi-
ven a species tree in the unranked case, we discuss the number of
scenarios that must be enumerated in computing the probability of
a ranked gene tree topology given a species tree. We then derive a
general expression for the probability of a specific ranked gene tree
topology given a species tree (Section 4). Using this expression, in
Section 5, we calculate probabilities of ranked gene tree topologies
for various small species trees, with three, four, and five taxa. By a
close examination of these probabilities in the five-taxon case, we
establish that there do in fact exist five-taxon species trees that
possess anomalous ranked gene trees (ARGTs), in which gene tree la-
beled histories that disagree with the species tree labeled history
are more likely to be produced than the matching labeled history.
We end the paper with a discussion in Section 6.
2. Definitions

A species tree T is a binary rooted tree topology together with its
edge lengths. In general we consider labeled species trees, in which
each leaf is associated with a distinct label. We view the lengths of
edges as being proportional to time, as described below.

A species tree T induces a ranked tree W as follows. Order the
interior vertices of T by their distance from the root (we assume
all distances are distinct). Assign the root rank 1, and assign the
ith vertex in the sequence of interior vertices rank i. The ranked
tree W associated with species tree T is obtained by assigning
ranks to all interior vertices of T and disregarding the edge lengths.
This ranked tree then induces the labeled topology w by disregard-
ing the ranks. Note that if two interior vertices in the species tree
have the same distance from the root, W is not well-defined,
although w remains well-defined; we ignore such cases, treating
W as unambiguous. This choice to disregard ties is motivated by
the fact that under typical stochastic models for species trees,
the probability that two speciation events occur simultaneously
is zero.

We indicate ranked tree topologies by adding clade ranks to the
notation for unranked tree topologies. For each clade, we place the
rank of the clade as a subscript after the closing parenthesis
associated with that clade. For example, the three possible
rankings for the tree (((AB)C)(DE)) can be written (((AB)3C)2(DE)4),
(((AB)4C)3(DE)2), and (((AB)4C)2(DE)3), and the species trees in
Fig. 1(a), (c), and (d) possess these rankings, respectively. A rank
of 4 for a clade on a five-taxon tree, for instance, indicates that
the most recent common ancestor (MRCA) for the clade is more
recent than the MRCA for any other clade in the tree. We omit
the rank 1 in our notation for tree rankings, as the rank 1 applies
to the MRCA for the entire tree in any ranking.

For a species tree with n leaves, denote the time of the interior
vertex of rank i by si. Define s :¼ (s1,s2, . . . ,sn�1), where time is zero
for the leaves of the tree and it increases going back into the past.
For i 2 {2, . . . ,n � 1}, denote the time interval between the vertices
of rank i � 1 and i by si (Fig. 1). Interval s1 extends infinitely far
back into the past. We denote the length of interval si by ti,
i = 1,2, . . . ,n � 1. The length t1 is infinite. We focus on the case in
which effective population sizes are identical for all populations
within each interval si. Each interval length ti is measured in
coalescent units, where for a population with N effective gene
copies (corresponding to N/2 individuals for a diploid species),
the length of the interval in units of generations is Nti. Because
the effective population size is incorporated into the time ti, we
do not necessarily assume that population sizes are equal in differ-
ent intervals. In Section 4.3, we discuss a relaxation of the assump-
tion of equal population sizes across populations within an
interval.

Ranked gene tree topologies are defined analogously to ranked
species tree topologies. For a given species tree topology, a match-
ing gene tree is a gene tree that has the same topology as the spe-
cies tree. A matching ranked gene tree is a ranked gene tree that
has both the same topology and the same ranking as the species
tree; we also say that such a ranked gene tree ‘is matching.’ A
gene tree might have a matching unranked topology but a non-
matching ranked topology (e.g., Fig. 1(b)). A ranked gene tree
topology G is anomalous for a ranked species tree T ¼ ðW; sÞ if
P½GjT � > P½WjT � with W – G, where P½�� represents probability un-
der the multispecies coalescent model (as discussed below). A
ranked species tree topology W produces anomalies if there exists
a vector of speciation times s such that the species tree T ¼ ðW; sÞ
has at least one anomalous ranked gene tree (ARGT). ARGTs rep-
resent the analogous concept in the ranked case to anomalous
gene trees (AGTs) in the unranked case, where an AGT for species
tree T is an unranked gene tree topology G that has greater prob-
ability than the matching gene tree topology w – that is, an AGT
has P½GjT � > P½wjT �, as computed using the formula for probabil-
ities of unranked gene tree topologies conditional on species trees
[3, Eq. 12].

Given a gene tree that evolves on a species tree T with n leaves,
we define a ranked history of the gene tree as x = (x1,x2, . . . ,xn�1),
where for i = 1,2, . . . ,n � 1, xi = j if the ith coalescence occurs in
species tree interval sj. Here, the coalescence events are ordered
forward in time, so that event i is the ith most ancient coalescence
event. We focus on gene trees in which each taxon in the species
tree is represented by only one gene lineage. For examples of
ranked histories, see Fig. 1.

Let Xn be the set of ranked histories of gene trees on n leaves.
This set depends only on n, and it contains the same elements
for all species tree topologies. The vector x 2 Nn�1 is a ranked his-
tory of some gene tree topology on a given species tree T if and
only if for all i 2 {2, . . . ,n � 1}, xi�1 6 xi, and for all i 2 {1, . . . ,n � 1},
xi 6 i. The condition xi�1 6 xi codifies the criterion that events with
higher numbers occur more recently than events with lower num-
bers. The condition xi 6 i specifies that the number of gene tree lin-
eages surviving until the end of time interval si (the older
boundary of the interval) is at least i, as i species exist at the end
of this interval.

We define the probability under the multispecies coalescent
that a ranked gene tree topology G evolves with ranked history x
on species tree T to be P½G; xjT �. Suppose that backward in time,
the events in (0,si) are compatible with ranked gene tree G and
ranked history x. Then we let Pi½G; xjT � denote the probability that
events in [si,si�1) are also compatible with G and x.

A partial coalescent Hi
n is the sequence of coalescences of n lin-

eages to i lineages in a single population, retaining the order of
coalescences, but disregarding edge lengths. For fixed n and i, each
partial coalescent Hi

n is equally likely, and the number of partial
coalescents is [27,28]

hi
n :¼ n!ðn� 1Þ!

2n�ii!ði� 1Þ!
: ð1Þ
3. Counting the number of ranked histories

In this section, we count the number of ranked histories associ-
ated with a given ranked gene tree topology and a species tree
topology. This computation can be viewed as analogous to the enu-
meration of the number of coalescent histories in the unranked
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Fig. 1. Gene trees in a species tree, with coalescence times. In each part of the figure, both the species tree and gene tree have unranked topology (((AB)C)(DE)); however, the
ranked gene tree topology matches the ranked species tree topology only in (a). The species trees in (b)–(d) each have distinct ranked topologies. We denote these species
trees by T RLL, T LLR, and T LRL, respectively (based on the sequence backward in time of ‘left’ and ‘right’ species tree coalescences, denoted L and R respectively). In all parts of
the figure, the ranked gene tree topology is GRLL, except in (b), where the ranked gene tree topology is GLRL. The ranked history in (d) is maximal in the sense that each gene tree
coalescence event occurs in the most recent time interval permitted by the combination of the ranked species tree topology and the ranked gene tree topology. For each i,
si > 0 denotes the time of the ith species divergence (using 0 for the present and letting si > si+1). The si represent intervals between speciation events, with s1 = [s1,1). For each
i and j, ui,j represents the jth coalescences in time interval si (forward in time). The quantities si, si, and ui,j are measured in coalescence time units.
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case [24–26]. Just as coalescent histories are used in evaluating the
probability of an unranked gene tree topology given a species tree,
ranked histories are used in evaluating the corresponding probabil-
ity of a ranked gene tree topology.

Let G be a ranked gene tree topology on a species tree T with
n + 1 leaves, and let Y be the set of ranked histories for G. Then
Y # Xn+1, with equality if and only if G is the matching ranked gene
tree topology. In particular, for any T with n + 1 leaves, if G is a
non-matching ranked gene tree topology, then ranked history
(1,2, . . . ,n), in which all coalescences occur in the most recent
ancestral population allowed by T , is in Xn+1 but not in Y.

To determine the set Y associated with G and the ranked species
tree topology W of species tree T , consider the ranked history in
which each coalescence happens in the time interval sj – where j
is the maximal possible value for the event, that is, the index for
the most recent interval in which the event can occur. Call this
ranked history the maximal ranked history y⁄. Provided that y 2 Nn

satisfies yi�1 6 yi for all i 2 {2, . . . ,n} and yi 6 i for all i 2 {1, . . . ,n},
each y with yi 6 y�i for all i 2 {1, . . . ,n} is also a possible ranked his-
tory. Similar to the enumeration of coalescent histories for an un-
ranked gene tree topology and an unranked species tree topology,
the number of ranked histories for a ranked gene tree topology
and a ranked species tree topology can be obtained recursively.
Proposition 1. For a ranked gene tree topology G and a ranked
species tree topology W on n + 1 leaves, the cardinality of the set of
ranked histories, Y, depends only on the maximal ranked history y⁄

and on n, and it satisfies

jYj ¼
Xy�n
k¼1

gðn; kÞ;

where

gð1;1Þ ¼ 1; gðn; kÞ ¼
Xminðk;y�n�1Þ

j¼1

gðn� 1; jÞ:
Proof. Let g(n,k) be the number of non-decreasing sequences
y = (y1, . . . ,yn) with yi 6 y�i for all i, and yn = k. Then
jYj ¼

Py�n
k¼1gðn; kÞ. It remains to establish the recursion for g(n,k).

First, because y�1 ¼ 1, we have g(1,1) = 1. Second, a sequence of
length n with last element k is obtained by appending to a
sequence of length n � 1 that ends with j 2 f1; . . . ;min k; y�n�1

� �
g

an nth element equal to k. h
Corollary 2. The number of ranked histories on n + 1 leaves is the nth
Catalan number,
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jXnþ1j ¼
1

nþ 1
2n
n

� �
:

Proof. The result is obtained by applying Proposition 1 to the max-
imal ranked history, y⁄ = (1,2, . . . ,n). Proposition 1 then simplifies
to

jXnþ1j ¼
Xn

k¼1

gðn; kÞ;

where

gð1;1Þ ¼ 1; gðn; kÞ ¼
Xminðk;n�1Þ

j¼1

gðn� 1; jÞ:

The recursion for g(n,k) equals the recursion for the Ballot numbers
(e.g. [29]). Thus, jXn+1j, as the sum of the (n,k)-Ballot numbers over
k = 1, . . . ,n, is the nth Catalan number. h

Corollary 2 can also be derived by the well-known result that
the nth Catalan number is the number of monotonic paths along
the edges of an n � n square grid, where monotonic paths start at
the lower left corner, end at the upper right corner, have length
2n, and do not pass above the diagonal [30]. If we view each step
along the horizontal dimension of the grid as an increase in the
number of species tree time intervals traversed, and each step
along the vertical dimension as a decrease in the number of avail-
able gene tree lineages, then the problem of counting monotonic
paths is equivalent to the problem in Corollary 2 of counting se-
quences of length n for which xi�1 6 xi for all i 2 {2, . . . ,n} and xi 6 i
for all i 2 {1, . . . ,n} [31].

4. Probability of a ranked gene tree on a given species tree

We now derive the probability under the multispecies coales-
cent model of a ranked gene tree topology on a species tree. This
probability, which is analogous to the formula for the probability
of an unranked gene tree topology given a species tree [3], can
be computed as the sum of the probabilities of the ranked histories
for the ranked gene tree topology.

4.1. Special case: at most one gene tree coalescence per species tree
time interval

The probability of a ranked history for a given species tree and
ranked gene tree topology depends on the interval lengths ti mea-
sured in coalescent units. The ranked history specifies the time
intervals in which the various coalescences take place, and there-
fore, for each time interval, it encodes the number of coalescences
occurring in the interval. Because the waiting time to a coalescence
for a sample of i lineages from a single population is exponentially

distributed with rate i
2

� �
, the probability that i lineages fail to

coalesce in a time interval of length ti is e
�

i
2

� �
ti

. More generally,
let gi,j(t) be the probability that i lineages coalesce to j 6 i lineages
during time t (going backward in time) in a single population,
where t is measured in coalescent time units. The probabilities
gi,j(t) appear in [32]:

gi;jðtÞ ¼
Xi

k¼j

e�kðk�1Þt=2 ð2k� 1Þð�1Þk�jjðk�1Þi½k�
j!ðk� jÞ!iðkÞ

: ð2Þ

The notation a(k) refers to the rising factorial a(k) = a(a +
1) . . . (a + k � 1) for k P 1, with a(0) = 1, and a[k] refers to the declin-
ing factorial a[k] = a(a � 1) . . . (a � k + 1) for k P 1, with a[0] = 1. We
will use the explicit results for small i,

g1;1ðtÞ ¼ 1 g2;1ðtÞ ¼ 1� e�t g3;1ðtÞ ¼ 1� 3
2 e�t þ 1

2 e�3t

g2;2ðtÞ ¼ e�t g3;2ðtÞ ¼ 3
2 e�t � 3

2 e�3t

g3;3ðtÞ ¼ e�3t :

ð3Þ

Also, for any i > 0; gi;iðtÞ ¼ e
�

i
2

� �
t

, where 1
2

� �
¼ 0.

The gi;jðtÞ functions can be used in computing the probability of
the events in a particular time interval if coalescences occur in at
most one branch in the interval. In many cases, such interval prob-
abilities are sufficient to determine the full probability of a ranked
history. The probability of the ranked gene tree topology G given
the species tree T can then be determined by summing over
ranked histories, for each ranked history multiplying probabilities
across intervals in T :

P½GjT � ¼
X
x2Y

P½G; xjT � ¼
X
x2Y

Yn�1

i¼1

Pi½G; xjT �: ð4Þ
4.2. General case: arbitrarily many gene tree coalescences per species
tree time interval

When coalescences occur in multiple populations during the
same time interval, the probability of the events in the interval
generally cannot be written directly as a product of gi,j(t) functions.
However, this probability can instead be obtained by integrating
over the joint density of coalescence times. We now determine
Pi½G; xjT �, the probability that the coalescences in time interval si

are compatible with the ranked gene tree topology G and ranked
history x given that the events in sj for all j > i are also compatible
with G and x. We first describe the joint density of coalescence
times in the interval using an approach similar to that of Rannala
and Yang [33]. The probability of the events in the interval is then
obtained by integrating over this joint density.

Recall that si is the time interval with endpoints si�1 and si

(Fig. 1). During the interval si, i branches are present in the species
tree. Let mi be the number of coalescences in interval si. Note that
mi depends on the ranked history x. Assume that coalescence event
j in interval si occurs at time ui,j on branch bi,j, 1 6 j 6mi. The
events are ordered such that ui,j > ui,j+1 (events with smaller j hap-
pen farther back in time). Define ui,0 :¼ si�1 > ui,1 and
ui;miþ1 :¼ si < ui;mi

. These constraints can be written as

si�1 ¼ ui;0 > ui;1 ¼ si; if mi ¼ 0
si�1 ¼ ui;0 > ui;1 > � � � > ui;mi

> ui;miþ1 ¼ si; if mi > 0:
ð5Þ

We denote the number of gene lineages on branch z just after the
jth coalescence (going forward in time) in si by ki,j,z. This quantity
is the number of lineages available to coalesce in interval si in pop-
ulation z (z = 1,2, . . . , i) at the jth coalescence in the population. For
j = 0, we interpret ki,j,z as the number of lineages on branch z at the
boundary of intervals si and si�1 (the number of lineages exiting
branch z in interval si).

We write the joint density for an interval si with mi P 0 coales-
cence events by subdividing the interval into mi + 1 subintervals
and multiplying the densities contributed by the subintervals. If
mi = 0, then no coalescences occur in the interval, and
ti = ui,0 � ui,1 = si�1 � si. Branch z then contributes a term

gki;0;z ;ki;0;z
ðui;0 � ui;1Þ ¼ e

�
ki;0;z

2

� �
ðui;0�ui;1Þ

;
ð6Þ

the probability from Eq. (2) that no coalescences occur on branch z,
where ki,0,z is the number of lineages in interval si on branch z. If
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coalescence events do occur in interval si, then exactly one coales-
cence occurs on one branch of a subinterval, and no coalescences
occur in all other branches of the subinterval. Thus, the density
for the subinterval includes the density for an exponential distribu-
tion whose rate depends on the number of lineages in the branch
with the coalescence event. This exponential density is multiplied
by probabilities that other branches do not have coalescences in
that subinterval. If branch z in population i has no coalescences in
the jth subinterval, then it contributes a term

gki;j;z ;ki;j;z
ðui;j � ui;jþ1Þ ¼ e

�
ki;j;z

2

� �
ðui;j�ui;jþ1Þ ð7Þ

to the density in the jth subinterval. If the number of lineages in a
branch bi,j at the jth coalescence event is ki;j;bi;j

, then the waiting time

for this event is exponentially distributed with rate ki;j;bi;j

2

� �
. The

event therefore contributes a term

ki;j;bi;j

2

� �
e
�

ki;j;bi;j

2

� �
ðui;j�ui;jþ1Þ

;
ð8Þ

which must be multiplied by the probability 1 ki;j;bi;j

2

� ��
that two

particular lineages are chosen to coalesce, as determined by the
ranked gene tree topology. Finally, the full joint density of the
coalescence times and coalescence sequence in interval si is

fiðui;1; . . . ;ui;mi
Þ¼
Ymi

j¼0

e
�

ki;j;bi;j

2

� �
ðui;j�ui;jþ1Þ Yi

z¼1;z–bi;j

gki;j;z ;ki;j;z
ðui;j�ui;jþ1Þ

2
64

3
75

¼
Ymi

j¼0

e
�

ki;j;bi;j

2

� �
ðui;j�ui;jþ1Þ Yi

z¼1;z–bi;j

e
�

ki;j;z

2

� �
ðui;j�ui;jþ1Þ

2
64

3
75

¼
Ymi

j¼0

Yi

z¼1

e
�

ki;j;z

2

� �
ðui;j�ui;jþ1Þ

;

ð9Þ

where 1
2

� �
¼ 0. Because the outer product starts at j = 0, this den-

sity accounts for the probability that no coalescences occur on any
branch more anciently than the most ancient coalescence in si,
including on the branch with the most ancient event, bi,1.

The probability of the events in interval si is obtained by
integrating over the density fi.

Pi½G; xjT � ¼
Z ui;0

si

Z ui;1

si

� � �
Z ui;mi�1

si

fiðui;1; . . . ; ui;mi
Þdui;mi

� � �dui;2 dui;1;

ð10Þ

where Eq. (5) determines the limits of integration. For the interval
above the root, s1 = [s1,1), all lineages coalesce eventually, in ran-
dom order. Hence, for this interval, the integral in Eq. (10) need
not be explicitly evaluated. If the number of lineages above the root
is m1, then by Eq. (1), P1½G; xjT � ¼ 1=h1

m1
.

Writing the mi, ki,j,z and ui,j terms as functions of the ranked his-
tory x, the total probability of a ranked gene tree topology G with
ranked history set Y on a species tree T is

P½GjT � ¼
X
x2Y

1

h1
m1
ðxÞ

Yn�1

i¼2

Z ui;0ðxÞ

si

� � �
Z ui;mi�1ðxÞ

si

YmiðxÞ

j¼0

Yi

z¼1

� exp � ki;j;zðxÞ
2

� �
ðui;jðxÞ � ui;jþ1ðxÞÞ

� �
dui;mi

ðxÞ � � �dui;1ðxÞ:

ð11Þ
4.3. Unequal effective population sizes in the species tree

Thus far, we have assumed that all branches within a time inter-
val use the same effective population size. To allow population
sizes to differ within intervals, the density in an interval in Eq.
(10) can be written by separating the species divergence times in
generations from the population sizes of branches within the inter-
val. In particular, measuring the ui,j in generations rather than coa-
lescent time units, and letting Ni,z be the effective size for branch z
in interval si, the density in Eq. (9) can be rewritten

Ymi

j¼0

Yi

z¼1

e
�

ki;j;z

2

� �
ui;j�ui;jþ1

Ni;z
: ð12Þ

Integration over the joint density follows Eq. (10), interpreting the
speciation times si in generations rather than in coalescent time
units. Eq. (12) reduces to Eq. (9) when Ni,z has the same value, Ni,
for each z = 1, . . . , i.

5. Ranked gene tree probabilities for small numbers of taxa

In this section, by direct computation and using results from
Section 4, we calculate probabilities of ranked gene tree topologies
for species trees with three, four and five taxa. We then demon-
strate the existence of anomalous ranked gene trees (ARGTs) in
the five-taxon case.

5.1. Three taxa

The three-taxon case is the smallest case for which comparisons
of gene trees and species trees are non-trivial. Each of the three
possible topologies has only one ranking, and the ranked and un-
ranked cases are therefore equivalent. Given a species tree with
topology ((AB)C) and internal branch t > 0 coalescent time units,
gene tree topology ((AB)C) has probability 1 � (2/3)e�t, and gene
tree topologies ((AC)B) and ((BC)A) each have probability (1/3)e�t

[4,7,10]. Because 1 � (2/3)e�t > (1/3)e�t, the most probable gene
tree topology is always the topology that matches the species tree
topology, and neither anomalous gene trees nor anomalous ranked
gene trees exist.

5.2. Four taxa

Although probabilities of ranked four-taxon gene tree topolo-
gies can be obtained with the general method of Section 4.2, they
can also be computed without explicit integration. If all coales-
cences in a time interval sk occur on a single branch of the species
tree (among the k branches extant during the interval), then values
of gi,j(tk) can be used for the probabilities of events on the various
branches, where i is the number of lineages ‘entering’ a branch b
and j is the number of lineages on branch b after all i � j coales-
cences have occurred. A branch with no coalescences in interval

sk contributes probability gi;iðtkÞ ¼ e
�

i
2

� �
tk

. For example, if the
species tree T has ranked topology ((AB)3(CD)2) and the ranked
gene tree topology is the asymmetric tree GA ¼ ðððCDÞ3BÞ2AÞ (see
Fig. 2 for notation), then the possible ranked histories are (1,1,1)
and (1,1,2), with probabilities

P½GA; ð1;1;1ÞjT � ¼ g2;2ðt3Þg2;2ðt2Þg2;2ðt2Þ
1

h1
4

¼ e�t3�2t2
1

18
;

P½GA; ð1;1;2ÞjT � ¼ g2;2ðt3Þg2;1ðt2Þg2;2ðt2Þ
1

h1
3

¼ e�t3�t2 ð1� e�t2 Þ1
3
:

The probability of the ranked gene tree topology is the sum of these
two probabilities (see also Table 1 in Appendix A). Because caterpil-



Fig. 2. Notation for four-taxon species tree topologies.
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lar tree topologies—which possess one interior vertex descended
from all other interior vertices—have only one ranking, the ranked
topology (((CD)3B)2A) can be written unambiguously as (((CD)B)A),
and the probability of a caterpillar ranked gene tree topology is the
same as the probability of the caterpillar unranked gene tree
topology.

For unranked gene tree topologies, the species tree topology
(((AB)C)D) has three AGTs [1]. To search for ARGTs in the ranked
case, for each ranked species tree, in Tables 1 and 2 in Appendix
A, we exhaustively list the probabilities of four-taxon ranked gene
tree topologies given ranked species tree topologies ((AB)3(CD)2)
and (((AB)3C)2)D), respectively. In both the symmetric (Table 1)
and asymmetric cases (Table 2), the matching ranked gene tree
topology is the most probable. Therefore, no ARGTs occur for
four-taxon species trees.

We now examine a four-taxon scenario that will be useful for
understanding the five-taxon case. Consider a species tree T with
ranked topology ((AB)3(CD)2) (Fig. 2(a)) when the ranked gene tree
is the matching symmetric gene tree GS. For the ranked history
(1,2,2), coalescences occur independently in the same interval,
s2, along two separate species tree branches. The probability of this
ranked history can be computed by integrating over the joint den-
sity of the coalescence times. Interval s2 has two coalescences and
two populations. Hence k2,j,z is defined for j = 0,1,2 and z = 1,2.
Then

k2;0;1 ¼ 1; k2;1;1 ¼ 1; k2;2;1 ¼ 2;
k2;0;2 ¼ 1; k2;1;2 ¼ 2; k2;2;2 ¼ 2;

where the branch ancestral to A and B is branch z = 1. Note that if

ki,j,z = 1, then ki;j;z

2

� �
¼ 0. Thus, only cases in which ki,j,z > 1 need

to be considered in writing the density from Eq. (9). Using
s1 = u2,0, s2 = u2,3, and t2 = s1 � s2, and following Eq. (10) to obtain
the probability for events in interval s2 yields

P½GS; ð1;2;2ÞjT �

¼ g2;2ðt3Þ
Z u2;0

s2

Z u2;1

s2

e
�

k2;1;2

2

� �
ðu2;1�u2;2Þ

� e
�

k2;2;1

2

� �
ðu2;2�u2;3Þ

e
�

k2;2;2

2

� �
ðu2;2�u2;3Þ

du2;2 du2;1

¼ g2;2ðt3Þ
Z s1

s2

Z u2;1

s2

e�ðu2;1�u2;2Þe�2ðu2;2�s2Þ du2;2 du2;1

¼ g2;2ðt3Þ
1
2
ð1� 2e�t2 þ e�2t2 Þ ¼ g2;2ðt3Þ

1
2
½g2;1ðt2Þ�2: ð13Þ

Eq. (13) can also be obtained by noting that because the two
populations in interval s2 have equally many lineages, under the
model, coalescences occur with equal rates. The two pairs coalesce
independently, each pair with probability g2,1(t2). The events occur
in one of two possible sequences (A and B coalesce either more re-
cently or less recently than do C and D). By symmetry, the probabil-
ity is 1/2 that the sequence of coalescences follows the ranking of
the gene tree.

5.3. Five taxa

For species trees with five or more taxa, separate populations
can have different non-zero numbers of coalescences in the same
time interval. The coalescences in these different populations can
occur at different rates, and the symmetry argument in Section
5.2 no longer holds. In this case, the probability of a ranked history
can be obtained by the method in Section 4.2. This section illus-
trates the computation of probabilities of example ranked histories
for the case that the species tree is T RLL and the ranked gene tree
topology is either GRLL or GLRL (Fig. 1(a) and (b)). If for a ranked his-
tory, at most one population in an interval si has coalescences, then
the probability of the events in that interval can be determined
using the gi,j(t) functions. This approach is useful for computing
the probabilities of all ranked histories for species tree T RLL and
ranked gene tree topologies GRLL and GLRL, except for ranked histo-
ries (1,2,2,2) and (1,1,2,2). For these ranked histories, the probabil-
ity of the events in interval s2 is found by integration as in Eq. (9).

As we will see, ranked histories (1,2,2,2) and (1,1,2,2) illustrate
the fact that the probability of a ranked history can be greater for a
non-matching ranked gene tree topology than for a matching
ranked gene tree topology. Probabilities of all ranked histories for
the ranked gene tree topologies GRLL;GLRL;GLLR, and ((((AB)C)D)E) gi-
ven ranked species tree topology (((AB)3C)2(DE)4) appear in Tables
3 and 4 in Appendix A. These probabilities are used in Section 5.4
for identifying ARGTs. Computations for example ranked histories
are illustrated in Sections 5.3.1 and 5.3.2.

5.3.1. Species tree T RLL, ranked gene tree topology GRLL

For an n-taxon species tree, when the ranked gene tree is
matching, the maximal ranked history is (1,2, . . . ,n � 1). For five
taxa, with species tree T RLL and ranked gene tree topology GRLL,
in the maximal ranked history x = (1,2,3,4), the D and E lineages
coalesce in s4, the A and B lineages coalesce in s3, and the C lineage
coalesces in s2 with the ancestor of the A and B lineages. All other
ranked histories for this ranked gene tree topology and species tree
are obtained by decreasing one or more of the xi while ensuring
that they satisfy 1 6 xi 6 i and xi�1 6 xi. By Proposition 1, 14 such
ranked histories exist. We evaluate the probabilities of three of
these ranked histories; the full set of 14 probabilities appears in
Table 3 in Appendix A.

The probability of the ranked history (1,1,1,1) is the probability
that no coalescences occur more recently than the species tree
root. From Eq. (1), the particular sequence of coalescences above
the root has probability 1=h1

5 ¼ 1=180. Thus,

P½GRLL; ð1;1;1;1ÞjT RLL� ¼ g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þg3;3ðt2Þg2;2ðt2Þ
1

180
:

Any five-taxon combination of a ranked gene tree topology and
ranked species tree topology has ranked history (1,1,1,1), whether
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or not the topologies match. The probability of (1,1,1,1) depends on
the ranked species tree topology, but is the same for each ranked
gene tree topology given a particular ranked species tree topology.

The probability of ranked history (1,2,3,4) is the probability
that each pair of lineages coalesces in the first time interval in
which both lineages lie in the same ancestral population:

P½GRLL; ð1;2;3;4ÞjT RLL� ¼ g2;1ðt4Þg2;1ðt3Þg2;1ðt2Þ:

For ranked history (1,2,2,2) (Fig. 1(a)), two populations have
coalescences in time interval s2; however, the coalescence rates dif-
fer. Hence, for this interval, we use the approach in Section 4.2 and
integrate over the joint density of coalescence times. Because inter-
val s2 has two populations and three coalescences, the values of ki,j,z

used to obtain the density for events in interval s2 are

k2;0;1 ¼ 1; k2;1;1 ¼ 2; k2;2;1 ¼ 3; k2;3;1 ¼ 3;
k2;0;2 ¼ 1; k2;1;2 ¼ 1; k2;2;2 ¼ 1; k2;3;2 ¼ 2:

Recalling that u2,0 = s1, u2,4 = s2, and si�1 � si = ti, we use Eq. (10) for
interval s2 to obtain

P½GRLL; ð1;2;2;2ÞjT RLL�

¼ g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ
Z u2;0

s2

Z u2;1

s2

Z u2;2

s2

� e
�

k2;1;1

2

� �
ðu2;1�u2;2Þ

� e
�

k2;2;1

2

� �
ðu2;2�u2;3Þ

e
�

k2;3;1

2

� �
ðu2;3�s2Þ

2
664

� e
�

k2;3;2

2

� �
ðu2;3�s2Þ

3
775du2;3 du2;2 du2;1

¼ e�t4�2t3
1

12
� 1

6
e�t2 þ 1

6
e�3t2 � 1

12
e�4t2

� �
: ð14Þ
5.3.2. Species tree T RLL, ranked gene tree topology GLRL or GLLR

For species tree T RLL, the GLRL and GLLR ranked gene tree topolo-
gies have nine and seven ranked histories, respectively (Table 4,
Appendix A). The sets of ranked histories are subsets of the 14
ranked histories for the GRLL ranked gene tree topology (Table 3,
Appendix A). Probabilities of ranked histories that can arise on
both non-matching ranked gene tree topologies, such as
(1,2,2,2), are the same for GLRL and GLLR when the species tree is
T RLL, but they differ from the probability of the ranked history
(1,2,2,2) for the matching ranked gene tree topology. For GLRL

and GLLR, with ranked history (1,2,2,2), the most recent coales-
cence in interval s2 occurs in a population with three rather than
two lineages, that is, in a population with a faster coalescence rate.
In particular, the probability of ranked history (1,2,2,2) for the GLRL

and GLLR ranked gene tree topologies is

P½GLRL; ð1;2;2;2ÞjT RLL�

¼ g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ
Z u2;0

s2

Z u2;1

s2

Z u2;2

s2

� e�ðu2;1�u2;2Þe�ðu2;2�u2;3Þ � e�ðu2;2�u2;3Þe�3ðu2;3�s2Þe�ðu2;3�s2Þ
	 

� du2;3 du2;2 du2;1

¼ e�t4�2t3
1
8
� 1

3
e�t2 þ 1

4
e�2t2 � 1

24
e�4t2

� �
: ð15Þ

This quantity is never less than the probability of (1,2,2,2) for the
matching ranked gene tree topology, from Eq. (14):

P½GLRL; ð1;2;2;2ÞjT RLL� � P½GRLL; ð1;2;2;2ÞjT RLL�

¼ 1
24

e�t4�2t3 1� e�t2
� �4

: ð16Þ
For fixed t4 and t3, the difference in Eq. (16) approaches zero as
t2 ? 0 and is strictly positive for t2, t3, t4 > 0. Hence, for species tree
T RLL, ranked history (1, 2, 2, 2) is more probable for the GLRL and GLLR

ranked gene tree topologies than for the matching ranked gene tree
topology. Similarly,

P½GLRL; ð1;1;2;2ÞjT RLL� � P½GRLL; ð1;1;2;2ÞjT RLL�

¼ e�t4�2t3�t2 1� e�t2ð Þ3

18
;

P½GLRL; ð1;1;1;2ÞjT RLL� � P½GRLL; ð1;1;1;2ÞjT RLL�

¼ e�t4�2t3�2t2 ð1� e�t2 Þ2

36
: ð17Þ

These probability differences exceed 0 for t2, t3, t4 > 0. Thus, ranked
histories (1,1,1,2), (1,1,2,2), and (1,2,2,2) are each always more
probable for non-matching ranked gene tree topologies GLRL and
GLLR than for GRLL. For these ranked histories, the greater probability
for the non-matching ranked gene tree topologies occurs because

the faster coalescence rate of 3
2

� �
¼ 3 in the left-hand population

compared to 2
2

� �
¼ 1 in the right-hand population increases the

probability that the first coalescence involves left-descendants of
the root.

5.4. Anomalous ranked gene trees with five taxa

The observation in Section 5.3.2 that for species tree T RLL, the
probability of ranked history (1,2,2,2) is larger for a non-match-
ing ranked gene tree topology than for the matching ranked
gene tree topology can be used to construct ARGTs. In particular,
branch lengths t2, t3, and t4 can be chosen such that most of the
probability of the ranked gene tree topology is concentrated on
this ranked history. By setting t2 large and t3 and t4 small, all
available lineages in s2 coalesce on this interval with high prob-
ability, and lineages in s3 and s4 coalesce with probability close
to 0. Because no lineages from species A, B, and C coalesce until
their most recent common ancestral population in interval s2,
each possible pair of coalescences – A with B, A with C, and B
with C – is equally likely. Moreover, because t3 and t4 are small,
it is unlikely that D and E coalesce more recently than the first
coalescence among A, B, and C in interval s2. For the matching
ranked gene tree topology, GRLL, following Eq. (14), the limiting
probability for ranked history (1,2,2,2) when t2 ?1 and
t3,t4 ? 0 is 1/12. However, from Eq. (15), the limiting value for
ranked history (1,2,2,2) when the ranked gene tree topology is
GLRL is 1/8.

Because gi,j(t) ? 0 as t ? 0 for j < i, and gi,i(t2) ? 0 as t2 ?1 for
any i P 2, all ranked histories other than (1,2,2,2) have probabili-
ties near 0 for large t2 and small t3 and t4. Thus, the probabilities
P½GRLLjT RLL� and P½GLRLjT RLL� can be made arbitrarily close to their
respective joint probabilities, P½GRLL; ð1;2;2;2ÞjT RLL� and
P½GLRL; ð1;2;2;2ÞjT RLL�. For small t3 and t4, as t2 grows large, the
probability eventually grows large for history (1,2,2,2). Because
this history is more probable for GLRL than for GRLL (Eq. (16)), the
matching ranked gene tree topology GRLL can be less probable than
GLRL (and similarly, GLLR) for a large range of values of t2 (Fig. 3).

The region of branch length space in which species tree T RLL has
an ARGT – the ranked anomaly zone – can be identified by finding
the set of values of t2, t3, and t4 for which the probability of some
non-matching ranked gene tree topology exceeds the probability
of the matching ranked gene tree topology. Fig. 3(a) and (b) depict
values of t2, t3, and t4 for which the two non-matching ranked gene
tree topologies with the same unranked topology, (((AB)C)(DE)),
are more probable than the matching ranked gene tree topology.



(a)

(c)

(b)

Fig. 3. Slices of the ranked anomaly zone for the species tree T RLL and various ranked gene tree topologies. For fixed values of t4, each shaded region represents the set of
points (t2, t3) for which the given ranked gene tree topology is more probable than the matching ranked gene tree topology, GRLL. The color scale applies to all three panels.
Each panel was generated by computing probabilities of the matching and alternate ranked gene tree topologies on a grid with t2 2 [0.0,5.0] with increments of 5.0/350 and
t3 2 [0.0,1.2] with increments of 1.2/350. For shaded points, ARGTs exist. In all cases, more darkly shaded regions are subsets of lighter regions. (a) Regions where the ranked
gene tree topology GLRL is an ARGT ðP½GLRLjT RLL� > P½GRLLjT RLL�Þ. (b) Regions where GLLR is an ARGT for T RLL. (c) Regions where (((AC)4B)2(DE)3) is an ARGT for T RLL.
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Fig. 3(c) depicts values for which a ranked gene tree topology with
a different unranked topology, (((AC)4B)2(DE)3), has higher proba-
bility than the matching ranked gene tree topology. From Table 4
in Appendix A, the probability of ranked gene tree topology
(((AC)4B)2(DE)3) is a sum of a subset of the terms in the expression
for P½GLRLjT RLL�:

P½ðððACÞ4BÞ2ðDEÞ3Þ� ¼ P½GLRL; ð1;1;1;1ÞjT RLL�
þ P½GLRL; ð1;1;1;2ÞjT RLL�
þ P½GLRL; ð1;1;2;2ÞjT RLL�
þ P½GLRL; ð1;2;2;2ÞjT RLL�:

By symmetry, we have

P½ðððBCÞ4AÞ2ðDEÞ3ÞjT RLL� ¼ P½ðððACÞ4BÞ2ðDEÞ3ÞjT RLL�:

Although it is possible for the matching ranked gene tree topology
to have a smaller probability than that of a non-matching ranked
gene tree topology with a different unranked topology, in this
example, the set of branch lengths with ARGTs that disagree not
only in ranked topology but also in unranked topology is consider-
ably smaller than the set of branch lengths for which ARGTs differ
only in ranked topology. For example, when t2 = 5.0 and t4 = 0.05,
the maximum value of t3 for which P½ðððACÞ4BÞ2ðDEÞ3ÞjT RLL� >
P½GRLLjT RLL� is only t3 � 0.054, whereas it is considerably greater in
Figs. 3a and b. Because the probability of the ranked gene tree topol-
ogy (((AC)4B)2(DE)3) is always strictly less than the probability of
GLRL, the most probable ranked gene tree topology still has the same
unranked topology as the species tree for this example.

The ARGT examples above all have the same unlabeled, un-
ranked topology as the species tree (a five-taxon tree with three
leaves on one side and two on the other). We note that it is also
possible for an ARGT to have an unlabeled topology that is different
from that of the species tree. For example, the ranked gene tree
topology ((((AC)B)D)E), whose probability P½ððððACÞBÞDÞEÞjT RLL�
can be obtained from Table 4 in Appendix A by summing joint
probabilities of the ranked gene tree topology with ranked histo-
ries (1,1,1,1), (1,1,1,2), and (1,1,2,2), can be an ARGT for the
ranked species tree topology T RLL. An example location in the
ranked anomaly zone, at which ((((AC)B)D)E) is an ARGT for T RLL,
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is the point at which the intervals between speciation events have
values (t2, t3, t4) = (0.1,0.001,0.0005).
6. Discussion

This paper has initiated the study of the relationship between
ranked gene trees and species trees, deriving a formula for the
probability of a ranked gene tree topology given a species tree,
and using that formula to investigate cases with three, four, and
five taxa, and to uncover the existence of anomalous ranked gene
trees. The results have various connections to previous work on
unranked trees, as we discuss below.

6.1. Probabilities of ranked and unranked gene tree topologies

The probability of an unranked gene tree topology is the sum of
the probabilities of the ranked gene tree topologies that share the
unranked topology. Because our method for calculating probabili-
ties of ranked gene tree topologies differs from the existing method
for obtaining probabilities of unranked gene tree topologies
(coalescent histories used for the unranked calculations [3,24–26]
and ranked histories used for ranked gene trees are not the same
objects), the relationship between probabilities for the ranked
and unranked cases enables a check on computations of either type
of probability. It is straightforward to verify, for example, that for
ranked species tree topologies ((AB)3(CD)2) and ((((AB)3C)2)D), the
probability in [9] of each unranked gene tree topology with two
ranked gene tree topologies – ((AB)(CD)), ((AC)(BD)), and ((AD)(BC))
– can be obtained by summing the probabilities of the two associ-
ated rankings in Tables 1 and 2, respectively.

More generally, our probabilities of ranked gene tree topologies
enable probability computations for any partially ranked gene tree
topology, in which the ranks of some but not all of the clades are
specified. Given a species tree, the probability of a partially ranked
gene tree topology can be calculated by summing the probabilities
of all completely ranked gene tree topologies that are compatible
with the partial ranking. For example, for the unranked gene tree
topology (((AB)C)(DE)), if (AB) has occurred more recently than
(DE), but the ranks of (DE) and ((AB)C) are unspecified, then we
have a partially ranked gene tree topology, (((AB)4C)(DE)), in which
Table 1
Probabilities of the 18 ranked gene tree topologies when the species tree has ranked topo

Ranked gene tree topology Probabilit

((AB)3(CD)2) g2;1ðt3Þ g2
	

((AB)2(CD)3) g2;2ðt3Þ g2
	

((AC)3(BD)2) g2;2ðt3Þg2;2

((AC)2(BD)3) g2;2ðt3Þg2;2

((AD)3(BC)2) g2;2ðt3Þg2;2

((AD)2(BC)3) g2;2ðt3Þg2;2

(((AB)3C)2D) g2;1ðt3Þg1;1

(((AB)3D)2C) g2;1ðt3Þg1;1

(((AC)3B)2D) g2;2ðt3Þg2;2

(((AC)3D)2B) g2;2ðt3Þg2;2

(((AD)3B)2C) g2;2ðt3Þg2;2

(((AD)3C)2B) g2;2ðt3Þg2;2

(((BC)3A)2D) g2;2ðt3Þg2;2

(((BC)3D)2A) g2;2ðt3Þg2;2

(((BD)3A)2C) g2;2ðt3Þg2;2

(((BD)3C)2A) g2;2ðt3Þg2;2

(((CD)3A)2B) g2;2ðt3Þ g2
	

(((CD)3B)2A) g2;2ðt3Þ g2
	

The gi,j(t) appear in Eq. (3). For each non-matching ranked gene tree topology, the terms in
gene tree topology. Therefore, the matching ranked gene tree topology has the highest
(AB) has rank 4. Because this partial ranking is compatible with
two complete rankings, (((AB)4C)2(DE)3) and (((AB)4C)3(DE)2),
its probability given the species tree is P½ðððABÞ4CÞðDEÞÞ� ¼
P½ðððABÞ4CÞ2ðDEÞ3Þ� þ P½ðððABÞ4CÞ3ðDEÞ2Þ�.
6.2. ARGTs and AGTs

The connection between ranked and unranked gene trees helps
to explain why ARGTs do not exist for four-taxon species tree
topologies that have AGTs. For four-taxon caterpillar species tree
topologies, as species tree branch lengths approach zero, the prob-
ability distribution of ranked gene tree topologies flattens. In the
limit, each ranked gene tree topology has probability 1/18 and no
ARGTs occur. When unranked topologies are considered, however,
three of the 15 unranked gene tree topologies – ((AB)(CD)),
((AC)(BD)), and ((AD)(BC)) – can each be realized by two different
ranked gene tree topologies; hence, their probabilities approach
2/18. Consequently, these topologies can be AGTs if the species tree
has one of the 12 remaining unranked topologies.

With five taxa, if interval lengths between speciation times
all approach zero, then the ranked gene tree distribution still
flattens, and probabilities of ranked gene tree topologies ap-
proach 1=h1

5 ¼ 1=180. Indeed, when all interval lengths between
speciation events are equal in coalescent units, the species tree
T RLL has no ARGTs. In this case, it is only by lengthening inter-
val s2 when s3 and s4 are short that ARGTs can be made to
occur.

This behavior has a parallel for five-taxon unranked gene trees.
For unranked species tree topology (((AB)C)(DE)), the species tree
must have one long and two short internal branches for AGTs to
occur [12]. Thus, although gene tree discordance is often treated
as a consequence of short species tree branch lengths, in many
cases, the existence of AGTs and ARGTs depends on a mixture of
long and short branches. The choice of which branches must be
long and which must be short to produce anomalies differs in
the ranked and unranked cases.

In the five-taxon anomaly zone for unranked species tree topol-
ogy (((AB)C)(DE)) [12], the branch from the root to the (DE) subtree
is long and the branch from the root to the ((AB)C) subtree is short.
In the ranked anomaly zone, however, both of these branches are
logy ((AB)3(CD)2).

y

;1ðt2Þ þ g2;2ðt2Þ 1
3



þ g2;2ðt3Þ g2;1ðt2Þg2;1ðt2Þ 1

2þ g2;1ðt2Þg2;2ðt2Þ 1
3þ g2;2ðt2Þg2;2ðt2Þ 1

18

	 

;1ðt2Þg2;1ðt2Þ 1

2þ g2;2ðt2Þg2;1ðt2Þ 1
3þ g2;2ðt2Þg2;2ðt2Þ 1

18



ðt2Þg2;2ðt2Þ 1

18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
3þ g2;2ðt3Þ g2;1ðt2Þg2;2ðt2Þ 1

3þ g2;2ðt2Þg2;2ðt2Þ 1
18

	 

ðt2Þg2;2ðt2Þ 1

3þ g2;2ðt3Þ g2;1ðt2Þg2;2ðt2Þ 1
3þ g2;2ðt2Þg2;2ðt2Þ 1

18

	 

ðt2Þg2;2ðt2Þ 1

18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

ðt2Þg2;2ðt2Þ 1
18

;2ðt2Þg2;1ðt2Þ 1
3þ g2;2ðt2Þg2;2ðt2Þ 1

18



;2ðt2Þg2;1ðt2Þ 1

3þ g2;2ðt2Þg2;2ðt2Þ 1
18




the probability of the topology are subsumed by the terms for the matching ranked
probability, and ranked species tree topology ((AB)3(CD)2) has no ARGTs.



Table 2
Probabilities of the 18 ranked gene tree topologies when the species tree has ranked topology (((AB)3C)2D).

Ranked gene tree topology Probability

((AB)3(CD)2) g2;1ðt3Þg2;2ðt2Þ 1
3þ g2;2ðt3Þ g3;2ðt2Þ 1

9þ g3;3ðt2Þ 1
18

	 

((AB)2(CD)3) g2;2ðt3Þg3;3ðt2Þ 1

18

((AC)3(BD)2) g2;2ðt3Þ g3;2ðt2Þ 1
9þ g3;3ðt2Þ 1

18

	 

((AC)2(BD)3) g2;2ðt3Þg3;3ðt2Þ 1

18

((AD)3(BC)2) g2;2ðt3Þg3;3ðt2Þ 1
18

((AD)2(BC)3) g2;2ðt3Þ g3;2ðt2Þ 1
9þ g3;3ðt2Þ 1

18

	 

(((AB)3C)2D) g2;1ðt3Þ g2;1ðt2Þ þ g2;2ðt2Þ 1

3

	 

þ g2;2ðt3Þ g3;1ðt2Þ 1

3þ g3;2ðt2Þ 1
9þ g3;3ðt2Þ 1

18

	 

(((AB)3D)2C) g2;1ðt3Þg2;2ðt2Þ 1

3þ g2;2ðt3Þ g3;2ðt2Þ 1
9þ g3;3ðt2Þ 1

18

	 

(((AC)3B)2D) g2;2ðt3Þ g3;1ðt2Þ 1

3þ g3;2ðt2Þ 1
9þ g3;3ðt2Þ 1

18

	 

(((AC)3D)2B) g2;2ðt3Þ g3;2ðt2Þ 1

9þ g3;3ðt2Þ 1
18

	 

(((AD)3B)2C) g2;2ðt3Þg3;3ðt2Þ 1

18

(((AD)3C)2B) g2;2ðt3Þg3;3ðt2Þ 1
18

(((BC)3A)2D) g2;2ðt3Þ g3;1ðt2Þ 1
3þ g3;2ðt2Þ 1

9þ g3;3ðt2Þ 1
18

	 

(((BC)3D)2A) g2;2ðt3Þ g3;2ðt2Þ 1

9þ g3;3ðt2Þ 1
18

	 

(((BD)3A)2C) g2;2ðt3Þg3;3ðt2Þ 1

18

(((BD)3C)2A) g2;2ðt3Þg3;3ðt2Þ 1
18

(((CD)3A)2B) g2;2ðt3Þg3;3ðt2Þ 1
18

(((CD)3B)2A) g2;2ðt3Þg3;3ðt2Þ 1
18

The gi,j(t) appear in Eq. (3). For each non-matching ranked gene tree topology, the terms in the probability of the topology are subsumed by the terms for the matching ranked
gene tree topology. Therefore, the matching ranked gene tree topology has the highest probability, and ranked species tree topology (((AB)3C)2D) has no ARGTs.

Table 3
Probabilities of ranked histories for species tree T RLL and ranked gene tree topology
GRLL.

Ranked history Probability for ranked gene tree topology GRLL

(1,1,1,1) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þg3;3ðt2Þg2;2ðt2Þ 1
180

(1,1,1,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þg3;3ðt2Þg2;1ðt2Þ 1
18

(1,1,1,3) g2;2ðt4Þg2;2ðt3Þg2;1ðt3Þg3;3ðt2Þ 1
18

(1,1,1,4) g2;1ðt4Þg2;2ðt3Þg3;3ðt2Þ 1
18

(1,1,2,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ 1
6 e�t2 � 1

2 e�3t2 þ 1
3 e�4t2

� �
1
3

(1,1,2,3) g2;2ðt4Þg2;2ðt3Þg2;1ðt3Þ 1
3 g3;2ðt2Þ 1

3

(1,1,2,4) g2;1ðt4Þg2;2ðt3Þ 1
3 g3;2ðt2Þ 1

3

(1,1,3,3) g2;2ðt4Þ 1
2 g2;1ðt3Þg2;1ðt3Þg2;2ðt2Þ 1

3

(1,1,3,4) g2;1ðt4Þg2;1ðt3Þg2;2ðt2Þ 1
3

(1,2,2,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ 1
12� 1

6 e�t2 þ 1
6 e�3t2 � 1

12 e�4t2
� �

(1,2,2,3) g2;2ðt4Þg2;2ðt3Þg2;1ðt3Þ 1
3 g3;1ðt2Þ

(1,2,2,4) g2;1ðt4Þg2;2ðt3Þ 1
3 g3;1ðt2Þ

(1,2,3,3) g2;2ðt4Þ 1
2 g2;1ðt3Þg2;1ðt3Þg2;1ðt2Þ

(1,2,3,4) g2,1(t4)g2,1(t3)g2,1(t2)

The probability for ranked history (1,2,2,2) is obtained from Eq. (14), and the
probability for ranked history (1,1,2,2) is obtained in a similar manner.

Table 4
Probabilities of ranked histories for the species tree T RLL.

Ranked history Ranked gene tree topology

GLRL

(1,1,1,1) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þg3;3ðt2Þg2;2ðt2Þ 1
180

(1,1,1,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ 1
3 g3;2ðt2Þg2;2ðt2Þ 1

18

(1,1,1,3) g2;2ðt4Þg2;1ðt3Þg2;2ðt3Þg2;2ðt2Þg2;2ðt2Þ 1
18

(1,1,1,4) NA
(1,1,2,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ 1

3 e�t2 � 1
2 e�2t2 þ 1

6 e�4t2
�

(1,1,2,3) g2;2ðt4Þg2;1ðt3Þg2;2ðt3Þg2;1ðt2Þg2;2ðt2Þ 1
3

(1,1,2,4) NA
(1,1,3,3) g2;2ðt4Þ 1

2 g2;1ðt3Þg2;1ðt3Þg2;2ðt2Þ 1
3

(1,1,3,4) NA
(1,2,2,2) g2;2ðt4Þg2;2ðt3Þg2;2ðt3Þ 1

8� 1
3 e�t2 þ 1

4 e�2t2 � 1
24

�
(1,2,2,3) g2;2ðt4Þg2;1ðt3Þg2;2ðt3Þ 1

2 g2;1ðt2Þg2;1ðt2Þ
(1,2,2,4) NA
(1,2,3,3) g2;2ðt4Þ 1

2 g2;1ðt3Þg2;1ðt3Þg2;1ðt2Þ
(1,2,3,4) NA

‘Same’ indicates that the probability of the ranked history is the same for the given ranked
to the combination of ranked gene tree topology and species tree. The probability for rank
(1,1,2,2) is obtained in a similar manner.
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long. More precisely, for T RLL to produce AGTs, s2 and s3 must be
short while s4 is long, whereas for T RLL to have ARGTs, s3 and s4

must be short while s2 is long. It can be shown that for T RLL, the
ranked and unranked anomaly zones have no overlap.
6.3. Multiple lineages per species

Our work has assumed that one lineage is sampled per species.
Cases with more than one lineage per species can be considered,
however, by extending the species tree with artificial leaves that
have length zero. For example, consider species B, C, D, and E, with
two lineages sampled from B and one lineage sampled from the
other species, and with ranked species tree topology ((BC)2(DE)3).
The species tree in Fig. 1(d), which includes species A, could be
used to represent this case by letting s4 = 0, effectively combining
species A and B into a single sampled species. Thus, the four-taxon
case in which two lineages are sampled from B can lead to phe-
nomena similar to those observed in the five-taxon case in
Fig. 1(d). In particular, from Fig. 1(d), although D and E diverge
more recently than do B and C, the ancestral population of B and
GLLR (((AC)4B)2(DE)3)

Same Same

Same Same

Same NA

NA NA�
1
3

Same Same

Same NA

NA NA
NA NA

NA NA
e�4t2

�
Same Same

Same NA

NA NA
NA NA

NA NA

gene tree topology as for GLRL; ‘NA’ indicates that the ranked history does not apply
ed history (1,2,2,2) is obtained from Eq. (15), and the probability for ranked history
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C potentially has three lineages but the ancestral population of D
and E has at most two lineages. Given s2 sufficiently large and s3

and s4 sufficiently small, the probability is greater that the most re-
cent interspecific coalescence will occur between lineages from B
and C rather than between lineages from D and E.

6.4. Conclusions

A view that ranked trees can produce new tools for evolutionary
modeling and species tree inference underlies our work. Our dem-
onstration that ranked gene tree probabilities can be conveniently
computed under a standard model provides a basis for exploring
the utility of ranked gene trees in modeling and inference prob-
lems, and it possesses the same role in the ranked case as the cor-
responding derivation for unranked trees [3]. However, similarly to
the discovery of anomalous unranked gene trees [1], our proof of
the existence of ARGTs illustrates that ranked gene trees generate
a peculiar phenomenon that is intriguing both mathematically and
for what it implies about the evolutionary process. In our subse-
quent efforts, we will characterize the ARGT phenomenon more
fully.
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