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Abstract—Ranked gene trees, which consider both the gene tree topology and the sequence in which gene lineages separate, can

potentially provide a new source of information for use in modeling genealogies and performing inference of species trees. Recently,

we have calculated the probability distribution of ranked gene trees under the standard multispecies coalescent model for the evolution

of gene lineages along the branches of a fixed species tree, demonstrating the existence of anomalous ranked gene trees (ARGTs), in

which a ranked gene tree that does not match the ranked species tree can have greater probability under the model than the matching

ranked gene tree. Here, we fully characterize the set of unranked species tree topologies that give rise to ARGTs, showing that this set

contains all species tree topologies with five or more taxa, with the exceptions of caterpillars and pseudocaterpillars. The results have

implications for the use of ranked gene trees in phylogenetic inference.

Index Terms—Anomalous gene trees, coalescent, genealogies, phylogenetics, population genetics
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1 INTRODUCTION

UNDER the “multispecies coalescent” [3], [4], [6], [12],
[13], [17], a standard model for the evolution of gene

trees along the branches of species trees, the topology most
likely to be possessed by a random gene tree that evolves on
a fixed species tree does not necessarily match the species
tree topology [3]. Terming gene tree topologies with
probability greater than that of the matching topology
anomalous gene trees (AGTs), for each species tree topology
with five or more taxa, and for asymmetric four-taxon
species tree topologies, there exist species tree branch
lengths that give rise to AGTs [3].

For a given gene tree topology, in examining the existence
of AGTs, all possible sequences of coalescences that can
produce the topology—all possible rankings or labeled
histories—are combined into a single topology that is treated
as unranked. Evaluations of the properties of AGTs then
utilize computations of a formula under the multispecies
coalescent for the probabilities of unranked gene tree
topologies conditional on species trees [6], [21].

We have recently developed an analogous formula for the
probabilities of ranked gene tree topologies conditional on
species trees [5], [16]. Could there be anomalous ranked gene
trees, or gene tree labeled histories more likely to be
produced than the labeled history that matches the species
tree? In a five-taxon example, we demonstrated the existence
of anomalous ranked gene trees (ARGTs), in which gene tree

labeled histories that disagree with the species tree labeled
history are more likely to be produced than the matching
labeled history [5]. This result was surprising, as the simplest
case for anomalous unranked gene trees—the four-taxon
asymmetric species tree—does not produce ARGTs [5].
Given that ARGTs occur for five taxa, it is then natural to
determine the extent to which the existence of ARGTs
generalizes beyond the specific five-taxon case.

Here, we perform a complete characterization of the set
of species trees that give rise to ARGTs, finding unexpect-
edly that ARGTs do in fact exist for most species tree
topologies. In Section 2, we introduce notation. In Section 3,
we state and then prove the main theorem. Section 4
considers a series of consequences of the main result, and
the paper concludes with a discussion in Section 5.

2 NOTATION

In general, the notation and setup follow [5]. We highlight a
few key concepts, and refer the reader to [5] for further
details. Given a species tree T—a binary rooted tree together
with its edge lengths—the ranked species tree � associated
with T consists of the labeled topology  of T together with
the order in which the speciation events (vertices) of T occur.
We enumerate the vertices starting from the root, so that for
a species tree with n species, the root vertex has rank 1, and
the most recent interior vertex has rank n� 1.

Ranked gene trees are defined analogously to ranked
species trees. Given a species tree, a ranked gene tree matches
the ranked species tree if both trees have the same labeled
topology and the same ranking. An anomalous ranked gene tree
is a ranked gene tree that does not match the ranked species
tree and that has probability under the multispecies
coalescent greater than that of the matching ranked gene
tree. We say that a species tree topology (ranked or
unranked) produces an ARGT if there exist speciation times
such that the species tree with the given speciation times has
at least one ARGT.
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E-mail: tanja.stadler@env.ethz.ch.

Manuscript received 31 Mar. 2012; revised 19 July 2012; accepted 24 July
2012; published online 3 Aug. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tcbb@computer.org, and reference IEEECS Log Number TCBB-2012-03-0080.
Digital Object Identifier no. 10.1109/TCBB.2012.110.

1545-5963/12/$31.00 � 2012 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM



We provide names for two special (unranked) topologies
(Fig. 1). A caterpillar topology contains one interior vertex
descended from all other interior vertices. A pseudocaterpil-
lar topology has at least five leaves and contains one interior
vertex v descended from all except two of the other interior
vertices; these two exceptions both descend from v and
neither descends from the other.

For a ranked species tree and a ranked gene tree, a ranked
history is a list of the intervals on the species tree during
which the coalescences in the gene tree take place (Fig. 2).
Unlike coalescent histories, which identify locations of
coalescences according to their species tree edges [6], [14],
ranked histories instead locate coalescences by the time
intervals during which they occur. The intervals are ordered
so that the interval above the root is �1, and each subsequent
interval is bracketed by two successive interior vertices; for
each i from 1 to n� 1, interval �i extends from the time si�1 of
vertex i� 1 to the time si of vertex i (s0 is infinite and si is
smaller for larger values of i); we further set ti ¼ si�1 � si.
Thus, with n taxa, a ranked history for a gene tree and species
tree is a vector of length n� 1, whose ith component
indicates the interval in which the ith coalescence, ordered
forward in time, takes place. A given pair consisting of a gene
tree and a species tree potentially has multiple possible
ranked histories; given a species tree, a given ranked history
can potentially apply to multiple gene trees. Further details
regarding ranked histories appear in [5].

Under the multispecies coalescent model, gene trees are
generated conditional on a fixed species tree, such that
lineages follow separate coalescent processes along each
branch of the species tree, and such that coalescences happen
independently along separate concurrent branches [4]. The
probability that n gene lineages coalesce to i lineages along a
species tree branch of length t coalescent time units is a

known function gn;iðtÞ [18]. This function is a linear
combination of exponential terms, reflecting the occurrence
in coalescent models of exponential distributions that
represent waiting times to coalescences. We use here that
gn;nðtÞ ¼ e�

n
2ð Þt and limt!1 gn;1ðtÞ ¼ 1. Along a single species

tree branch, the number of distinct sequences of events in
which n lineages coalesce to i lineages is denoted hin [5].
Under the multispecies coalescent, these sequences are
equiprobable. We restrict our attention to cases with one
gene lineage sampled for each leaf of the species tree.

3 GENERAL EXISTENCE RESULTS FOR ANOMALOUS

RANKED GENE TREES

3.1 Review of the Five-Taxon Case

We have previously observed that although ARGTs do not
exist for three-taxon or four-taxon species trees, they do
exist for certain five-taxon species trees [5]. This observation
relied on a particular way of ordering vertices in the species
tree while lengthening one species tree time interval and
shrinking the others.

In brief, for five-taxon species trees that have three taxa on
one side of the root (the “left” side) and two on the other side
(the “right” side), the species divergences can be ordered so
that the single divergence on the right side occurs most
recently (Fig. 2). By making this divergence and the two
divergences on the left side occur over a short period of time,
while setting the root of the species tree far back in the past, a
scenario is generated in which all gene tree coalescences
except the final one are likely to occur during the long time
interval leading up to the root. The three possible sequences
of gene tree coalescences—right-left-left (Fig. 2a), left-right-
left (Fig. 2b), and left-left-right—are not equiprobable, and in
fact, if the long branch leading to the root is sufficiently long
and the remaining branches are sufficiently short, then the
matching sequence, right-left-left, is the least probable.

The particular behavior that leads to ARGTs in our five-
taxon example generalizes to larger trees. In particular, when
coalescence events occur during the same time interval but in
separate populations, different sequences of coalescences
need not be equiprobable. As we will show below, scenarios
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Fig. 1. A caterpillar tree (left) and a pseudocaterpillar tree (right).

Fig. 2. A ranked species tree with the “right-left-left” sequence of divergences. This ranked labeled species tree is denoted T RLL. (a) Unranked gene
tree topology (((AB)C)(DE)) with ranked gene tree topology ðððABÞ2CÞ3ðDEÞ4Þ. (b) Unranked gene tree topology (((AB)C)(DE)) with ranked gene tree
topology ðððABÞ2CÞ4ðDEÞ3Þ. (c) Unranked gene tree topology ((((AB)C)D)E). The unranked gene tree topologies are identical in (a) and (b); however,
the ranked gene tree in (a) matches the ranked species tree, while the ranked gene tree in (b) does not match the ranked species tree. In both (a)
and (b), the ranked history is (1,2,2,2), as the three most recent internal vertices of the gene tree occur in interval �2 and the root vertex occurs in
interval �1. In (c), the ranked history is (1,1,2,2).



with different numbers of lineages in simultaneous but
separate populations can be used to obtain a general
characterization of the set of species tree unranked topolo-
gies that have at least one ranking that produces ARGTs.

3.2 Statement of the Main Result

We are now ready to state our main theorem.

Theorem 1. 1) Every noncaterpillar, nonpseudocaterpillar
species tree topology with five or more taxa produces
anomalous ranked gene trees. 2) Every species tree topology
that is a caterpillar or pseudocaterpillar, or that has fewer than
five taxa, produces no anomalous ranked gene trees.

We first outline the proof, and proceed to demonstrate all
of the steps. We first show that caterpillar and pseudoca-
terpillar species tree topologies do not produce ARGTs
(Propositions 2 and 3). Three-taxon and four-taxon trees
were treated in [5, Sections 5.1 and 5.2].

Otherwise, consider a noncaterpillar, nonpseudocater-
pillar species tree topology with five or more taxa.
Assuming without loss of generality that the number of
“left” descendants of each node is always greater than or
equal to the number of “right” descendants, we then
identify a subtree of this topology that has ‘ � 3 left-
descendant leaves and r � 2 right-descendant leaves
(Lemma 4). This step fails for caterpillars, pseudocater-
pillars, and trees with fewer than five taxa.

We assign this subtree a ranking that is not “maximally
probable” (in a sense described in Section 3.5). This assign-
ment is always possible for noncaterpillar, nonpseudocater-
pillar trees with five or more taxa (Corollary 8). Mimicking
our earlier five-taxon work [5], we then choose branch
lengths that lead to ARGTs for the subtree, keeping all branch
lengths outside this subtree long enough that coalescences of
gene lineages outside the subtree are likely to occur in the
order suggested by the ranked species tree (Proposition 9
and Lemma 10). This step follows similar reasoning to that
used in related proofs with unranked trees [2], [3], [20].

3.3 Caterpillars and Pseudocaterpillars

In this section, we consider the cases of caterpillars and
pseudocaterpillars in Theorem 1 (part 2).

Proposition 2. A caterpillar species tree has no anomalous
ranked gene trees.

Proof. Let Y be the set of ranked histories for nonmatching
ranked gene tree G, and let X be the set of ranked
histories for the matching ranked gene tree Gcat. We first
show that for a given ranked history x and a gene tree G
evolving on an n-taxon caterpillar species tree T cat, if
x 2 Y , then the probability IP½G; x j T cat� does not depend
on G. A caterpillar species tree T cat has only one internal
branch in interval �i, i ¼ 1; . . . ; n� 1, because only one
branch in each interval is ancestral to more than one leaf
of the species tree. Suppose x is a ranked history both for
the matching ranked gene tree Gcat and for a nonmatch-
ing ranked gene tree G. For ranked history x, let �iðxÞ
and �iðxÞ, respectively, denote the numbers of lineages
“entering” and “leaving” the one species tree internal
branch in interval �i. For each i 2 f1; . . . ; n� 1g, using IPi

to denote probability under the multispecies coalescent
of the events in species tree interval �i,

IPi½G; x j T cat� ¼ IPi½Gcat; x j T cat� ¼ g�iðxÞ;�iðxÞðtiÞ=h
�iðxÞ
�iðxÞ: ð1Þ

The numerator is the probability that the correct number
of coalescences occur in interval i, and the denominator

is the number of possible coalescence sequences during
the interval, all of which are equiprobable. The prob-
ability does not depend on the gene tree because both g

and h depend only on the numbers of lineages �iðxÞ and
�iðxÞ, which in turn depend only on the ranked history

�iðxÞ ¼ n� iþ 1�
Xn�1

j¼1

Iðxj > iÞ ð2Þ

�iðxÞ ¼ �iðxÞ �
Xn�1

j¼1

Iðxj ¼ iÞ; ð3Þ

where Ið�Þ is an indicator function that equals 1 if the
condition obtains and 0 otherwise. Y is a proper subset of
X (because the full set X of ranked histories is the set of

ranked histories for the matching ranked gene tree, and
ð1; 2; . . . ; n� 1Þ 62 Y [5]).

The probability of a ranked gene tree is the sum of the
probabilities of its ranked histories. Because each ranked
history shared by G and Gcat has the same probability for
each gene tree, and because Gcat has more ranked
histories, the probability of Gcat is strictly greater than
the probability of any other ranked gene tree G. tu

Proposition 3. A pseudocaterpillar species tree has no anomalous

ranked gene trees.

Proof. Without loss of generality, an n-taxon pseudocater-
pillar species tree T pseudo has unranked topology
ððððð. . . ðABÞðCDÞÞEn�4ÞEn�3Þ . . .ÞE1Þ, where (AB) has

rank n� 1 and (CD) has rank n� 2, so that (AB) is the
most recent divergence on the species tree. If the ranked
gene tree does not match the species tree, then exactly

five cases exist for the locations of the coalescences in the
gene tree:

1. The A and B lineages coalesce in interval �n�1 and
the C and D lineages coalesce in interval �n�2 (all
lineages coalesce as recently as possible).

2. The A and B lineages coalesce in interval �n�1 and
the C and D lineages do not coalesce more
recently than sn�3.

3. No coalescences occur in interval �n�1, and one
coalescence occurs in interval �n�2.

4. No coalescences occur in interval �n�1, and two
coalescences occur in interval �n�2.

5. No coalescences occur more recently than sn�3.

Let Gpseudo be the matching ranked pseudocaterpillar
gene tree, and let G be a nonmatching ranked gene tree.
Let X and Y be the sets of ranked histories for Gpseudo and
G, respectively. In all five cases, the probability of a
ranked history x for the matching ranked gene tree can
be written

Kj

Yn�3

i¼1

IPi½Gpseudo; x j T pseudo�; ð4Þ
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where for case j, the coefficient Kj is the probability of

the events in intervals �n�2 and �n�1. Similarly, the

probability of ranked history x for the nonmatching

ranked gene tree is

Cj
Yn�3

i¼1

IPi½G; x j T pseudo�; ð5Þ

where Cj is the probability of the collection of events in

intervals �n�2 and �n�1.
The probabilities of the events more recent than sn�3

in the five cases are

K1 ¼ C1 ¼ g2;1ðtn�1Þg2;1ðtn�2Þ
K2 ¼ C2 ¼ g2;1ðtn�1Þg2;2ðtn�2Þ
K3 ¼ C3 ¼ g2;2ðtn�1Þg2;1ðtn�2Þg2;2ðtn�2Þ

K4 ¼ C4 ¼ g2;2ðtn�1Þ
1

2
g2;1ðtn�2Þg2;1ðtn�2Þ

K5 ¼ C5 ¼ g2;2ðtn�1Þg2;2ðtn�2Þg2;2ðtn�2Þ:

ð6Þ

For each j, Kj ¼ Cj. In case 3, the probability does not

depend on which pair coalesces in �n�2 (A and B, or C

and D). In case 4, the probability does not depend on

which coalescence occurs first.
For events more ancient than sn�3, in each time

interval, only one species tree branch has more than one
gene lineage. Therefore, similarly to the argument in
Proposition 2, for each branch more ancient than sn�3, the
probability of events in the interval depends only on the
number of lineages entering the branch and the number
of coalescences. These quantities depend only on the
ranked history and not on the gene tree topology. Thus,

IPi½G; x j T pseudo� ¼ IPi½Gpseudo; x j T pseudo�
¼ g�iðxÞ;�iðxÞðtiÞ=h

�iðxÞ
�iðxÞ

ð7Þ

for each i < n� 3, where�iðxÞ and �iðxÞ are defined in (2).
From (6) and (7), each ranked history for G has the

same probability as the same ranked history for Gpseudo.
Because Y is a proper subset of X (for example,
ð1; 2; . . . ; n� 1Þ 62 Y ), the probability of Gpseudo exceeds
the probability of any other ranked gene tree. tu

In the next few sections, we show that the nonexistence
of ARGTs for species trees with five or more taxa applies
only to caterpillar and pseudocaterpillar topologies. This
proof involves first identifying a special subtree of the
species tree.

3.4 A Special Subtree

We describe a special subtree that will be used to prove that
most ranked species trees produce ARGTs. Consider a
ranked binary tree topology �. Without loss of generality,
assume that for each node of �, the number of “left”
descendants—that is, the number of leaves descended from
the left side of the node—is greater than or equal to the
number of “right” descendants. By recursively querying
nodes of � starting from the root, we identify a specific
subtree of �, which we term Hð�Þ (Fig. 3). Note that this
subtree depends only on the topology of � and not on the
ranking, and it is convenient to apply H both to ranked and
to unranked trees.

Starting from the root, we search for a subtree that has at
least five taxa and that shares important features of the five-
taxon scenario of [5] that generates ARGTs; in particular,
this subtree is not a caterpillar or pseudocaterpillar, having
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Fig. 3. The subtree Hð�Þ. For the tree �, the special subtree Hð�Þ is the subtree rooted at the node occurring at time sn�m�q�1. Here, Hð�Þ has
mþ 1 left-descendants and q þ 1 � mþ 1 right-descendants. The left and right subtrees of Hð�Þ are depicted as triangles. The most recent
common ancestor (MRCA) of the left-descendants of Hð�Þ can be either less recent than the MRCA of the right-descendants of Hð�Þ (as shown), or
more recent than the MRCA of the right-descendants. Because Hð�Þ has mþ q þ 2 leaves, n�m� q � 2 leaves of � lie outside of Hð�Þ. Note that
nodes ancestral to Hð�Þ cannot have more than one right-descendant because the root of Hð�Þ is, by construction, the most ancient node on � with
at least two right-descendants.



at least three descendants on one side of the root and two on
the other. If the root �0 of � has at least three left-descendant
leaves and two right-descendant leaves, then we define
Hð�Þ to be equal to �. Otherwise, we proceed to the
immediate left-descendant node from the root of �, �1. If
node �1 has at least three left-descendant leaves and at least
two right-descendant leaves, then we define Hð�Þ to be the
subtree of � whose root is �1. Otherwise, we proceed to its
immediate left-descendant, �2, recursively repeating this
process of querying nodes until a suitable subtree is found
or until a leaf is queried without a suitable subtree having
been found. If no subtree with at least three left-descendants
and at least two right-descendants is found, then we set
Hð�Þ to be the empty set. In this manner, we define Hð�Þ to
be the maximal ranked subtree of � with at least three left-
descendant leaves and at least two right-descendant leaves.
For most choices of �, Hð�Þ is simply � itself.

Lemma 4. Consider a tree topology � with three or more leaves.
The subtree Hð�Þ is nonempty if and only if � has five or
more leaves, is not a caterpillar, and is not a pseudocaterpillar.

Proof. Consider the sequence of nodes �0, �1, �2,. . . , as
constructed above. Let �� be the first node in the
sequence that has five or fewer descendant leaves.
Hð�Þ is empty if and only if all previous nodes in the
sequence (if there are any) each have exactly one right-
descendant, and �� itself does not have both three left-
descendants and two right-descendants. This condition
is obtained if and only if 1) �� has only three or four
descendants, or 2) the subtree rooted at �� is a five-taxon
caterpillar or pseudocaterpillar and all previous nodes in
the sequence each have exactly one right-descendant.
Condition 1 obtains if and only if � has three or four
leaves. Condition 2 obtains if and only if � is a caterpillar
or pseudocaterpillar with five or more leaves. tu

3.5 Maximally Probable Coalescence Sequences

Our proof relies on an examination of the relative order of
coalescences in the left and right subtrees of Hð�Þ for a
ranked species tree topology �. Suppose there are two types
of lineages, type ‘ (“left”) and type r (“right”). Consider a
random sequence of coalescence events W , starting from the
present and moving back in time. Each event in the sequence
has one of two distinct types, type L and type R. An L event
occurs from the coalescence of two lineages of type ‘; an R

event occurs from the coalescence of two lineages of type r.
Two ‘ lineages can coalesce or two r lineages can coalesce;
an ‘ lineage cannot coalesce with an r lineage. Among the set
of pairs of lineages that can coalesce—the set containing all
pairs of ‘ lineages and all pairs of r lineages—each pair is
equally likely to be the next to coalesce.

Suppose random sequence W has m events of type L and
q events of type R. Such a sequence describes the
coalescence of mþ 1 lineages of type ‘ and q þ 1 lineages
of type r to two lineages, one of type ‘ and one of type r. Let
Wk denote the subsequence of W that begins at position k

(so that W1 ¼W ), and let W
ðjÞ
k denote the jth letter in

sequence k. The probability that random coalescence of the
lineages leads to the particular sequence w can be written
recursively as follows:

IP½w1;m; q� ¼

mþ1
2

� �
mþ1

2

� �
þ qþ1

2

� � IP½w2;m� 1; q� if w
ð1Þ
1 ¼ L

qþ1
2

� �
mþ1

2

� �
þ qþ1

2

� � IP½w2;m; q � 1� if w
ð1Þ
1 ¼ R:

8>>><
>>>:

ð8Þ

For m > 0, we define IP½w1;m; 0� ¼ 1 and for q > 0 we
define P ½w1; 0; q� ¼ 1. Equation (8) can be obtained by
noting that because each possible coalescence has the same
probability of being the next to occur, the probability that
the first event in the sequence has type L is the ratio of the
number of ways that an event of type L can occur, or the
number of pairs of ‘ lineages, mþ1

2

� �
, to the total number of

ways of choosing the next event, or the total number of
pairs of lineages of the same type, mþ1

2

� �
þ qþ1

2

� �
. Similar

reasoning holds if the first event has type R.

Definition 5. In the set Fm;q of sequences consisting of m
events of type L and q events of type R, a sequence is m; q-
maximally probable if its probability under the assumption of
equal rates of coalescence for all lineage pairs permitted to
coalesce (all mþ1

2

� �
pairs of lineages of type ‘ and all qþ1

2

� �
pairs of lineages of type r) is greater than or equal to that of
every other sequence consisting of m events of type L and q
events of type R.

Proposition 6. For m; q � 0 and m � q, among sequences in
Fm;q, the set of m; q-maximally probable sequences consists of
those 2q sequences that contain m� q events of type L

succeeded by q pairs of events, each of which includes one event
of type L and one event of type R.

Proof. By (8), the probability of a sequence w 2 Fm;q is a
product of mþ q terms, where the kth term is the
nonrecursive quotient obtained in (8) from the kth event
in w. Labeling the numerator of this quotient by NkðwÞ
and the denominator by DkðwÞ,

IP½w;m; q� ¼
Qmþq

k¼1 NkðwÞQmþq
k¼1 DkðwÞ

: ð9Þ

The product
Qmþq

k¼1 NkðwÞ does not depend on w; for each

w, this product contains terms mþ1
2

� �
; m

2

� �
; . . . ; 2

2

� �
and

qþ1
2

� �
; q

2

� �
; . . . ; 2

2

� �
, in some order (a different order for

each w). As a result, maximizing IP½w;m; q� amounts to

finding the sequences that minimize
Qmþq

k¼1 DkðwÞ.
Denote the minimal DkðwÞ across sequences in Fm;q by

dk ¼ minw2Fm;qDkðwÞ. We have

Ymþq
k¼1

DkðwÞ �
Ymþq
k¼1

dk: ð10Þ

Thus, if sequences exist for which
Qmþq

k¼1 DkðwÞ achieves
the minimal value of

Qmþq
k¼1 dk, then such sequences have

the maximal value for IP½w;m; q�.
We now identify the sequences for which equality

holds in (10). We can characterize a sequence w 2 Fm;q by
a vector ðx1; x2; . . . ; xmþqÞ, where xk denotes the number
of events of type L that have occurred prior to the kth
event in w. Alternatively, we can characterize w by
ðy1; y2; . . . ; ymþqÞ, where yk denotes the number of events
of type R that have occurred prior to the kth event in w.
The xk and yk satisfy several constraints. First, as

1562 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2012



k� 1 events total have occurred prior to the kth event,
xk þ yk ¼ k� 1. Also, 0 � xk � minðk� 1;mÞ and
0 � yk � minðk� 1; qÞ, because the total number of
events of type L in w is m, the total number of events
of type R in w is q, and at most k� 1 events of a single
type (L or R) can occur before the kth event.

For each sequence w 2 Fm;q, using (8), DkðwÞ can be
written as

DkðwÞ ¼
mþ 1� xk

2

� �
þ q þ 1� yk

2

� �
: ð11Þ

Substituting k� 1� xk for yk, we can write (11) as

DkðwÞ ¼ x2
k þ ðq þ 1� k�mÞxk

þ 1

2
½ðmþ 1Þmþ ðq þ 2� kÞðq þ 1� kÞ�:

ð12Þ

Treated as a quadratic function of xk, the minimum of

DkðwÞ occurs at xk ¼ ½ðm� qÞ þ ðk� 1Þ�=2. However,

because of the constraints on xk (0 � xk � minðk� 1;mÞ),
this minimum need not fall among allowed values of xk.

If k� 1 < ½ðm� qÞ þ ðk� 1Þ�=2, or equivalently, if
k� 1 < m� q, then the minimum of DkðwÞ occurs at a
value that exceeds the largest possible value of xk, and
the minimum among allowed values occurs at
xk ¼ k� 1. Thus, for each k from 1 to m� q, the
minimum of DkðwÞ within the allowed range occurs
when xk ¼ k� 1.

If k� 1 � ½ðm� qÞ þ ðk� 1Þ�=2, or equivalently, if
k� 1 � m� q, then the minimum of DkðwÞ occurs at a
value less than or equal to the largest possible value for
xk. If ½ðm� qÞ þ ðk� 1Þ�=2 is an integer, then the
minimum occurs at xk ¼ ½ðm� qÞ þ ðk� 1Þ�=2. However,
if ½ðm� qÞ þ ðk� 1Þ�=2 is instead halfway between two
integers, then the minimum does not occur at an allowed
value of xk. By symmetry of a quadratic function around
its vertex, two minima occur among allowed values of
xk, at xk ¼ b½ðm� qÞ þ ðk� 1Þ�=2c and at xk ¼ d½ðm �
qÞ þ ðk� 1Þ�=2e. Because ½ðm� qÞ þ ðk� 1Þ�=2 alternates
between integer and noninteger values, as k increases,
starting from m� q þ 1, DkðwÞ alternates between hav-
ing one value of xk that achieves its minimum and
having two such values. There are q of these alternating
pairs as k ranges from m� q þ 1 to mþ q.

Thus, by separately identifying the location of the
minimum or minima for each of the terms DkðwÞ, we
have found a set of vectors ðx1; x2; . . . ; xmþqÞ, each of
which corresponds to a sequence with probabilityQmþq

k¼1 dk. Each such vector begins with xk ¼ k� 1 for k ¼
1 to k ¼ m� q. The next component, xm�qþ1, must equal
m� q, but xm�qþ2 can then be either bm� q þ 1=2c or
dm� q þ 1=2e. Next, xm�qþ3 must equal m� q þ 1, but
xm�qþ4 can be either bm� q þ 3=2c or dm� q þ 3=2e. A
total of q of these alternating pairs occur.

Linking a vector ðx1; x2; . . . ; xmþqÞ to its associated
sequence in Fm;q, the values xk ¼ k� 1 for k ¼ 2 to k ¼
m� q þ 1 indicate that the firstm� q events in a sequence
that achieves the minimal product

Qmþq
k¼1 dk—and that

therefore has maximal probability—all have type L. The
subsequent q alternating pairs of terms, together with
the fact that the total number of events of type L is m,

indicate that for m; q-maximally probable sequences,
starting with event m� q þ 1, either an L or R event is
possible in the first event in a pair. However, the second
event must then have type opposite to that of the first. tu

Note that at each point in each m; q-maximally probable
sequence, the type for the next event (either L or R) always
corresponds to the type for which more events remain in
the sequence; in case of a tie in the numbers of remaining
events of type L and of type R, either type of event can occur
next. Thus, m; q-maximally probable sequences are “gree-
dy” in the sense that the next type of event to occur is
always the type that is more probable.

Corollary 7. The probability of an m; q-maximally probable
sequence is

q þ 1

4q

Ym
k¼qþ1

ðkþ 1Þk
ðkþ 1Þkþ ðq þ 1Þq : ð13Þ

Proof. The formula is obtained by explicit computation with
(8), using the characterization of m; q-maximally prob-
able sequences in Proposition 6. tu

We note that maximally probable sequences and (8)
and (13) can be employed to confirm the limiting five-
taxon results of [5, Section 5.3]. Suppose we label species
divergences in increasing order from the root, which is
always first. Consider five-taxon species trees with three
left-descendants of the root (A, B, and C) and two right-
descendants (D and E), and for which the labeled
topology is ((AB)C)(DE)). Indicate the ranked species
tree by T RLL if the two right-descendants have the most
recent species divergence (Fig. 2), by T LRL if the right-
descendants have the second most recent divergence, and
by T LLR if their divergence is the most ancient diver-
gence in the species tree other than the root. Denote
corresponding gene trees by GRLL, GLRL, and GLLR.
Such trees have ranked topology ðððABÞ2CÞ3ðDEÞ4Þ,
ðððABÞ2CÞ4ðDEÞ3Þ, and ðððABÞ3CÞ4ðDEÞ2Þ, respectively.

Consider the species tree T RLL. Let �2 !1 and let
�3; �4 ! 0. The species tree approaches a scenario in which
two sequences of coalescences proceed concurrently in
interval �2, one with mþ 1 ¼ 3 lineages and the other with
q þ 1 ¼ 2 lineages. One maximally probable sequence gen-
erates ranked gene tree GLRL, and another generates GLLR.
Each of these ranked gene trees has probability 1=8, whereas
the matching ranked gene tree has probability 1=12.

Corollary 8. If m � q, m � 2, and q � 1, then at least one
sequence in Fm;q is not m; q-maximally probable.

Proof. The number ofm; q-maximally probable sequences in
Fm;q is 2q. The total number of sequences in Fm;q is the
number of ways of orderingmevents of typeLand q events
of type R, or mþq

m

� �
. Therefore, we must show mþq

m

� �
> 2q.

If q ¼ 1, since m � 2, the inequality holds. For q � 2,

because m � q, ðmþqm Þ � ð
2q
q Þ ¼

Qq
k¼1ðkþ qÞ=k. Each term

in the product exceeds 2 except the term for k ¼ q, which

equals 2. Because q � 2, at least one term exceeds 2. Thus,
mþq
m

� �
exceeds a product of q numbers, each of which is

greater than or equal to 2, and at least one of which

strictly exceeds 2. tu
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3.6 Proof of the Main Result (Theorem 1)

Consider a ranked species tree topology �. We assume that
� has five or more leaves and is not a caterpillar or
pseudocaterpillar, so that Hð�Þ is nontrivial. Denote by mþ
1 and q þ 1 the numbers of left- and right-descendants of
the root of Hð�Þ, respectively, letting m � q without loss of
generality. Construct the sequence of divergence times of
Hð�Þ, beginning from the most recent. Label a divergence
by L if it occurs on the left side of the root of Hð�Þ and by R
if it occurs on the right side. The sequence of labels
constructed in this manner, denoted W ð�Þ, is in Fm;q.

Proposition 9. Consider a ranked species tree topology � with
nontrivial Hð�Þ and with mþ 1 left-descendants and q þ 1
right-descendants of Hð�Þ. If Wð�Þ is not m; q-maximally
probable in Fm;q, then � produces anomalous ranked gene trees.

To prove the proposition, we first establish that by choosing
intervals to be either short or long, we can make the
probability arbitrarily close to 1 that either no coalescences
or all possible coalescences occur in the interval.

Lemma 10. Let T be a ranked species tree with n leaves. For
interval �j with length tj, j ¼ 2; . . . ; n� 1, label the j species
tree branches by bjk, k ¼ 1; . . . ; j. For branch bjk, let ajk be the
number of lineages available to coalesce and let cjk be the
number of coalescence events. Then,

1. For any " > 0, there exists tj > 0 such that
IP½cj1 ¼ 0; . . . ; cjj ¼ 0 j T � > 1� ".

2. For any " > 0, there exists tj > 0 such that
IP½cj1 ¼ aj1 � 1; . . . ; cjj ¼ ajj � 1 j T � > 1� ".

Part 1 states that for a given interval on a ranked species
tree, we can choose the interval length short enough that,
with probability close to 1, no coalescences occur in that
interval. Part 2 states that we can choose the interval length
long enough that, with probability close to 1, all lineages
that can coalesce in the interval do coalesce in the interval.

Proof. For part 1, the probability that no coalescences occur
on the j branches in interval �j is

Yj
k¼1

gajk;ajkðtjÞ ¼
Yj
k¼1

e�ð
ajk
2
Þtj : ð14Þ

The values of ajk in (14) depend on the coalescence
events that have occurred in intervals �i, i > j. Because
(14) is decreasing in each of the ajk, the equation is
minimized when no coalescences occur in any of the
intervals �i, i > j, so that ajk is maximal. Regardless of
where coalescences occur, ajk � n for each j and k.
Hence, choosing tj such that tj < ½� logð1� "Þ�=½ðn2Þj�,

Yj
k¼1

e�ð
ajk
2
Þtj �

Yj
k¼1

e�ð
n
2Þtj > 1� ":

For part 2, note that for any branch k in interval j
with ajk ¼ 1, IP½cjk ¼ 0� ¼ 1 because g1;1ðtÞ ¼ 1 for any
t > 0. Using the fact that for all i � 1, limt!1 gi;1ðtÞ ¼ 1
[18], we can choose tj large enough such that for each
k ¼ 1; . . . ; j, gajk;1ðtjÞ > 1� "=j. The probability that cjk ¼
ajk � 1 for each k is the product

Qj
k¼1 gajk;1ðtjÞ, which

exceeds 1� ". tu

Proposition 9 can now be proven by considering the

special subtree Hð�Þ. Suppose the root of Hð�Þ occurs at si.

By making all intervals �j short except for �iþ1 immediately

below the root of Hð Þ (and �1 above the root of the full

tree), which is made long, the only intervals that are likely

to have a coalescence event are �iþ1 and �1. Because �iþ1 has

exactly two branches in which coalescence events can occur,

if the topology of Hð�Þ has a nonmaximally probable

sequence of species divergences, then the most likely

ranked gene tree does not match the ranked species tree

topology.

Proof of Proposition 9. We let G1 ¼ � denote the matching
ranked gene tree topology. Without loss of generality, the
topology of � can be written as

ððð�1;�2Þ; A1Þ; . . . ; An�m�q�2Þ;

where Hð�Þ ¼ ð�1;�2Þ and each of A1; . . . ; An�m�q�2

represents a single taxon. If n�m� q � 2 ¼ 0, then

Hð�Þ ¼ �. Here, �1 has mþ 1 � 3 leaves and �2 has

q þ 1 � 2 leaves, with m � q and mþ q þ 2 � n. Labeling

the internal nodes of �1 and �2 by L and R, respectively,

we assume that the LR sequence for the nodes of �, w1, is

not maximally probable. Consider a nonmatching ranked

gene tree G2 with the same topology as �, except that

Hð�Þ is replaced by HðG2Þ ¼ ð��1;��2Þ, where ��k is

defined as follows on the same leaves as �k, k ¼ 1; 2.

Suppose that labeling the internal nodes of ��1 and ��2 by

L and R, respectively, results in a maximally probable

sequence, w2, of coalescences. We let x ¼ ð1; 2; . . . ; i; i þ
1; . . . ; iþ 1Þ, where i ¼ n�m� q � 1 by construction of

Hð�Þ, denote the ranked history in which all left- and

right-descendants of Hð�Þ (and HðG2Þ) coalesce in

interval �iþ1, and in which there is exactly one

coalescence event in each interval �j, j � i.
Because the sequence w1 of LR events in HðG1Þ is not

maximally probable, and the sequence w2 in HðG2Þ is

maximally probable, IP½w2� ¼ IP½w1� þ � for some � > 0.

We also have that h :¼ h1
mþ1h

1
qþ1 is the number of ways of

choosing lineages to coalesce according to ranked history

x in interval �iþ1. Thus, given ranked history x and given

some sequence of coalescences (either w1 or w2), the

probability is 1=h that the sequence is compatible with a

particular ranked gene tree topology. Choose some ��

such that 0 < �� < �. We select " such that

" ¼ min 1� IP½w� þ ��
IP½w� þ � ;

��

h

� �
;

and we choose times between divergences on the species
tree, t2; t3; . . . ; tn�1, such that the probability of history x

exceeds 1� ". Thus, as IP½G2jx� ¼ IP½w2�=h,

IP½G2� > IP½G2; x� >
1

h
ð1� "ÞIP½w2�

¼ 1

h
ð1� "ÞðIP½w1� þ �Þ

� 1

h
ðIP½w1� þ ��Þ:
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Finally, because IP½G1jx� ¼ IP½w1�=h,

IP½G2� > IP½G1 j x� þ ��=h > IP½G1; x� þ ��=h
� IP½G1; x� þ " > IP½G1�:

Therefore, G2 is an ARGT. tu
Now, we can finally prove our main result.

Proof of Theorem 1. 1) For each noncaterpillar, nonpseu-
docaterpillar species tree topology with five or more
taxa, by Lemma 4, Hð�Þ is nontrivial. Suppose Hð�Þ has
mþ 1 left-descendants and q þ 1 right-descendants. By
Corollary 8, there exists a ranking for the sequence of
coalescences in Hð�Þ that is not m; q-maximally prob-
able. Choose this ranking for the species tree. By
Proposition 9, � produces ARGTs. 2) This result was
obtained in the nonexistence results in [5, Sections 5.1
and 5.2] and Propositions 2 and 3. tu

4 PROPERTIES OF ARGTs

Now that we have demonstrated that most ranked species
trees produce ARGTs, we examine some further properties
of those species trees and the ARGTs that they produce.
First, we consider species tree rankings that give rise to
ARGTs. Next, we investigate the discordance in topology
between species trees and their ARGTs. Finally, we show
that unlike in the unranked case, ARGTs can have
caterpillar topologies.

4.1 Rankings that Produce ARGTs

The proportion of unranked species tree topologies for
which no ranking and choice of branch lengths produces
ARGTs is the ratio of the number of caterpillar and
pseudocaterpillar trees, ð3=4Þn!, to the number of labeled
topologies, or ð2n� 3Þ!!. The ratio ð3=4Þn!=ð2n� 3Þ!! ap-
proaches 0 as n!1. Therefore, most unranked species tree
topologies can be ranked in a way that produces ARGTs.

In fact, we have proven much more than that each
noncaterpillar, nonpseudocaterpillar species tree topology
with five or more taxa has a ranking that gives rise to
ARGTs. We have proven that many rankings give rise to
ARGTs, as all rankings for Hð�Þ that are not m; q-maximally
probable are covered by Proposition 9. Although Theorem 1
completely characterizes which unranked species trees have

some ranking that gives rise to ARGTs, it stops short of a
complete characterization of which ranked species trees give
rise to ARGTs. Indeed, some species tree rankings not
covered by Proposition 9 produce ARGTs. Consider the
ranked species tree in Fig. 4c. Because the sequence
L3L2L1L0R is maximally probable (when the subscripts are
ignored), Proposition 9 does not show that this ranked
species tree produces ARGTs. However, the subtree rooted
at node L0 has the same ranked topology as T RLL; hence, by
making �2, �3, and �4 long and �5 and �6 short, the species
tree in Fig. 4c produces ARGTs. Thus, while our proof of
Theorem 1 utilized the “special subtree” Hð�Þ in the
construction of ARGTs, for this particular ranked species
tree topology, a different “special subtree” can be used in
place of Hð�Þ.

For 4 � n � 8, Table 1 counts the numbers of ranked
species trees on n taxa for which the method of proof of
Proposition 9 demonstrates the existence of ARGTs. To
illustrate the procedure for counting the number of ranked
species trees that produce ARGTs, as determined using
Proposition 9, consider the unranked species tree in Fig. 4a.
There are ð72Þð

5
2Þð

3
2Þ ¼ 630 ways to label the leaves of this

species tree topology, and there are 15 rankings for each
labeled topology. For a given leaf-labeling, let the topology
in Fig. 4a be �. Then, Hð�Þ ¼ �, because the root of � has
two right-descendants ð�2Þ and five left-descendants ð� 3Þ.
Given a ranking of �, such as the one in Fig. 4b, the strategy
in Proposition 9 is to let the interval immediately below the
root of Hð�Þ, �2, be long, and to let the intervals �3; �4; �5; �6

be short. For each leaf labeling, nine rankings of nodes L0,
L1, L2, L3, and R—one of which appears in Fig. 4b—result in
nonmaximally probable LR sequences according to Propo-
sition 6. Therefore, Proposition 9 indicates that 630� 9 ¼
5;670 ranked species tree topologies with the unranked
topology in Fig. 4a produce ARGTs.

Among the other six rankings of L0, L1, L2, L3, and R for
a given leaf labeling, for two of them, the argument in the
proof of Proposition 9 applies with the “special subtree”
rooted at L0 rather than at the species tree root. For
example, the ranking in Fig. 4c is not covered by
Proposition 9, but by making �3 long, and making all other
intervals short, ARGTs are produced in the subtree rooted
at L0. Thus, because the ranking in Fig. 4c is one of two
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Fig. 4. A rooted species tree topology with two of its rankings that give rise to ARGTs. Each internal node excluding the root is labeled L or R
depending on whether it is a left- or right-descendant of the root. The subscripts on the left-descendants provide identifiers, but are otherwise
unimportant. (a) The unranked rooted species tree. (b) A ranking of the species tree topology in which ARGTs are detected by the method in the
proof of Proposition 9, making �2 large and �j small for j > 2. (c) A ranking of the species tree topology that can be seen to produce ARGTs by a
modification of the method in the proof of Proposition 9.



rankings with similar behavior, at least 630� 2 ¼ 1;260
rankings for the unranked species tree topology in Fig. 4a
produce ARGTs undetected by Proposition 9.

4.2 ARGTs with Nonmatching Unranked Topologies

In the five-taxon case in [5], we identified ARGTs with
unranked labeled topologies that differ from the unranked
labeled topology of the ranked species tree. Such ARGTs
exist in general. Under the hypotheses of Theorem 1, our
proof is a general demonstration that ARGTs exist that
differ in unranked topology from the species tree topology.

Corollary 11. If an n-taxon species tree topology � has a special
subtree Hð�Þ with mþ 1 left-descendants and q þ 1 right-
descendants, with m � 2, q � 1, and n � mþ q þ 2, where
the sequence of LR divergences on Hð�Þ is not maximally
probable, then there exists an ARGT G2 with a different
unranked topology from the species tree.

Proof. In the proof of Proposition 9, choose G2 to have a
different unranked topology from the species tree as
follows: Consider the subtree Hð�Þ ¼ ð 1;  2Þ, where  1

is the left subtree of Hð�Þ and has mþ 1 � 3 leaves, and
 2 is the right subtree of Hð�Þ with q þ 1 � 2 leaves.
Then,  , the unranked topology induced by �, can be
written

ððð 1;  2Þ; A1Þ; . . . ; An�m�q�2Þ;

where each of A1; . . . ; An�m�q�2 represents a single taxon.
Suppose  1 is not a caterpillar. Then, let G2 be an

unranked gene tree with topology

ððð �1;  2Þ; A1Þ; . . . ; An�m�q�2Þ;

where  �1 is a caterpillar topology defined on the same
leaves as  1. Choose a maximally probable ranking on
the nodes of ð �1;  2Þ, call it ð��1;�2Þ, and let G2 be

ððð��1;�2Þ; A1Þ; . . . ; An�m�q�2Þ:

Then, G2 is a maximally probable ranking of G2 with
nonempty HðG2Þ ¼ ð��1;�2Þ. The proof of Theorem 1
then applies, and � produces G2 as an ARGT.

Similarly, if the left subtree of Hð�Þ is a caterpillar,
say  1 ¼ ðððB1; B2Þ; B3Þ; . . . ; Bmþ1Þ, where B1; . . . ; Bmþ1

are leaves, then the same argument can be repeated
using  �1 ¼ ðððB1; B3Þ; B2Þ; . . . ; Bmþ1Þ. tu

4.3 Caterpillar ARGTs

The behavior of caterpillars provides one of the most
noticeable differences in the properties of ranked and
unranked gene trees. In the unranked setting, caterpillar
species trees are the “most anomalous” case [3], [15], and
any noncaterpillar gene tree topology can be an anomalous
gene tree for any caterpillar species tree topology. In the
ranked setting, caterpillars are the “least anomalous” case,
and along with pseudocaterpillars, they are the only species
trees that do not produce ARGTs at all. Further, for five-
taxon trees, AGTs can never have a caterpillar topology;
however, as the following example demonstrates, five-
taxon ARGTs can be caterpillars.

Consider species tree T RLL—with ranked labeled topol-
ogy ðððABÞ3CÞ2ðDEÞ4Þ as introduced above—and ranked
gene tree Gcat ¼ ððððABÞCÞDÞEÞ. Using [5, Table 4], which
provides the probabilities of ranked histories for the ranked
species tree T RLL, caterpillar gene tree ((((AB)C)D)E) has
probability

IP½Gcat j T RLL� ¼ IP½GLLR; ð1; 1; 1; 1Þ j T RLL�
þ IP½GLLR; ð1; 1; 1; 2Þ j T RLL�
þ IP½GLLR; ð1; 1; 1; 3Þ j T RLL�
þ IP½GLLR; ð1; 1; 2; 2Þ j T RLL�
þ IP½GLLR; ð1; 1; 2; 3Þ j T RLL�:

ð15Þ

Because the caterpillar gene tree Gcat cannot occur if any
coalescence events occur in interval �4, the probability
IP½Gcat j T RLL� is decreasing in t4. The gene tree Gcat also only
has two ranked histories that include a coalescence in
interval �3; consequently, �3 must be small for Gcat to be
more probable than GRLL. Finally, although t2 must be
sufficiently large for ARGTs to exist, for the caterpillar Gcat,
large values of t2 make the ranked history ð1; 2; 2; 2Þ likely.
This history is possible for the matching ranked gene tree
but is not a ranked history for the caterpillar. Consequently,
the region of the parameter space for which Gcat is an ARGT
has very small values of t3 and t4, and small but less
extreme values of t2 (Fig. 5). When t3; t4 ¼ 0, the maximum
of IP½Gcat j T RLL� � IP½GRLL j T RLL� is near t2 ¼ 0:125.

5 DISCUSSION

In this paper, we have shown that surprisingly, anomalous
ranked gene trees exist for all species tree topologies with
five or more taxa, with the exceptions of caterpillar and
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TABLE 1
The Number of Ranked Species Trees that Can be Found to Have ARGTs by Using the Strategy of Proposition 9, and the Number

of Ranked Species Trees that Cannot Have ARGTs because They Have Caterpillar or Pseudocaterpillar Topologies

The number of ranked species tree topologies for which existence of ARGTs is not determined by our proof of Theorem 1 is the difference between
the third column and the sum of the fourth and fifth columns.



pseudocaterpillar topologies. Further, many different spe-
cies tree rankings give rise to ARGTs, and ARGTs can
disagree with species trees in unranked topology. Our
characterization of the set of species trees that give rise to
ARGTs parallels the corresponding result in the unranked
case that all species trees with five or more taxa produce
anomalous unranked gene trees, with the significant
exception that caterpillars and pseudocaterpillars produce
quite different behavior in the ranked and unranked cases.

While our characterization identifies some of the key
properties of ARGTs, many aspects of ARGTs remain
unexplored. For example, for n taxa, how many ranked
species trees can have ARGTs? For a given species tree, how
many ranked gene tree topologies can be ARGTs? Is there a
ranked analogue to wicked forests [3]? Such an analogue
would be a set V of ranked species trees �1; �2; . . . ; �K ,
K � 2, with speciation times, such that for all i; j with i 6¼ j,
if �i ¼ ð�i; siÞ 2 V and �j ¼ ð�j; sjÞ 2 V , then �i is an
ARGT for �j and �j is an ARGT for �i. By Propositions 2
and 3, if wicked ranked forests exist, then they contain no
caterpillars or pseudocaterpillars.

In previous work, we have shown that the democratic
vote method of using the most frequent unranked gene tree
topology to estimate the unranked species tree topology is
statistically inconsistent [3]; the existence of AGTs means
that for some parameter values, democratic vote is
increasingly likely to estimate an incorrect tree given more
gene trees. Here, we have obtained a corresponding result
for ranked trees: as the number of gene trees increases, the
most frequent ranked gene tree can be increasingly likely to
not match the ranked species tree. However, we have not
examined if the most probable ranked gene tree always has
the same unranked topology as the species tree. If the most
probable ranked gene tree matches the species tree in
unranked topology, then in inferring species trees, methods
that estimate ranked trees might be more robust to gene
tree discordance than methods that infer unranked trees.
Further, as the space of parameter values that gives rise to
ARGTs differs from the space that gives rise to AGTs,
combining methods that incorporate rank and methods
that ignore it might provide a basis for circumventing

anomalous regions that confound one approach but not the
other. Thus, as in the case of AGTs, whose investigation
has facilitated evaluations of the consistency properties of
species tree inference methods that use unranked gene
trees [1], [2], [3], [7], [8], [9], [10], [11], [15], [19], [20], the
theory of ARGTs could eventually lead to improved
inference of species trees on the basis of ranked gene trees.
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developing computational methods at the
interface of phylogenetics, macroevolution,
and epidemiology.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1568 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 6, NOVEMBER/DECEMBER 2012



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


