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Combining genotypes across datasets is central in facilitating
advances in genetics. Data aggregation efforts often face the
challenge of record matching—the identification of dataset entries
that represent the same individual. We show that records can be
matched across genotype datasets that have no shared markers
based on linkage disequilibrium between loci appearing in different
datasets. Using two datasets for the same 872 people—one with
642,563 genome-wide SNPs and the other with 13 short tandem
repeats (STRs) used in forensic applications—we find that 90–98%
of forensic STR records can be connected to corresponding SNP re-
cords and vice versa. Accuracy increases to 99–100%when ∼30 STRs
are used. Our method expands the potential of data aggregation,
but it also suggests privacy risks intrinsic in maintenance of data-
bases containing even small numbers of markers—including data-
bases of forensic significance.

forensic DNA | genomic privacy | imputation | population genetics |
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With the increasing abundance of genetic data, the useful-
ness of a genetic dataset now depends in part on the pos-

sibility of productively linking it with other datasets. Thus, for
example, genome-wide association study samples typed with different
SNP sets are routinely combined by cross-imputation, in which
markers typed only in a subset of samples are probabilistically im-
puted in each sample, so that all markers can be analyzed in all sam-
ples (1–3). Similarly, datasets gathered on short tandem repeat (STR)
markers with different protocols can be computationally adjusted to
enlarge samples for joint analysis when sets of alleles at individual
markers differ between datasets (4, 5). Such efforts magnify the value
of genetic datasets without requiring coordinated genotyping.
One issue that arises in combining multiple datasets is the

record-matching problem: the identification of dataset entries
that, although labeled differently in different datasets, represent
the same underlying entity (6, 7). In a genetic context, record
matching involves the identification of the same individual ge-
nome across multiple datasets when unique identifiers, such as
participant names, are unavailable. This task is relatively simple
when large numbers of SNPs are shared between marker sets: if
records from different datasets match at enough of the shared
SNPs, then they can be taken to represent the same individual.
What if no markers are shared between two genetic datasets?

Can genotype records that rely on disjoint sets of markers be
linked? Genetic record matching with no overlapping markers has
many potential uses. Datasets could become cross-searchable even
if no effort has been made to include shared markers in different
marker sets. Record matching between new and old marker sets
could determine whether an individual typed with a new set has
appeared in earlier data, thereby facilitating deployment of new
marker sets that are backward-compatible with past sets.
The presence of linkage disequilibrium (LD)—nonindependence

of genotypes at distinct markers, primarily those that are proxi-
mate on the genome—can enable record matching without shared
markers. As a result of LD between markers in different datasets,
certain genotype pairs are more likely to co-occur, so that some
potential record pairings are more likely than others. The princi-
ple applies even to different marker types not often genotyped

together, such as SNPs and STRs, provided that LD exists across
marker types [as is true of SNPs and STRs (8, 9)].
Relying on this principle, we devised an LD-based record-matching

algorithm and evaluated its performance with nonoverlapping marker
sets: one of SNPs and the other of STRs. Using 872 people from
52 populations (Table S1), we considered SNPs on a genotyping ar-
ray used for population genetics and genome-wide association (10).
For our STR set, we examined the Combined DNA Index System
(CODIS) loci commonly used in forensic genetics (11) as well as
subsets of a larger set of 432 STRs typed in the same people (12).
Our STR application enables record matching in forensic ge-

netic contexts, where STRs are widely used. Record matching
between SNP and STR panels has two additional motivations
specific to forensics. First, SNP technological advances enable cost-
effective genotyping of large numbers of SNPs, which could allow
more precise genetic inferences than are possible with current STR
panels. However, forensic testing in the United States continues to
rely largely on the 13 STRs selected in the 1990s (13, 14), increasing
to 20 STRs for new profiles beginning in 2017 (15), partly because
millions of profiles for the 13 STRs have already been gathered in
law enforcement databases (16). Reliable record matching between
SNP and STR profiles could facilitate development of a backward-
compatible SNP set that enables new SNP profiles to be matched
against known STR profiles collected in past decades.
Second, the legality of the use of forensic genetic markers in light

of US constitutional protections against unreasonable searches is
based partly on a premise that these markers provide only the
capacity for identification and no other information about a person
(17–19). To test this premise, many investigations have examined
phenotypic associations with the CODIS markers, mostly con-
cluding that such associations are small enough to be unimportant
(17, 20, 21). Record matching of CODIS and SNP data would
make it possible to link a CODIS profile to a whole-genome SNP
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profile that could enable consequential phenotypic predictions,
potentially undermining the claim that the CODIS markers are
phenotypically trivial. Thus, applying record matching with forensic
markers is important for establishing the level of “genetic privacy”
present in a forensic marker profile.

Results
We split 872 people into two disjoint subsets: a training set for
learning associations between STR alleles and their surrounding
SNP haplotypes and a test set for assessing record-matching ac-
curacy. We considered 10 schemes with varying fractions of the
full data allocated to training and test subsets; for each scheme, we
examined 100 random assignments of people to the two subsets
(100 “partitions”). We focus on a scheme with intermediate sizes
for the training set (75%; n = 654) and the test set (25%; n = 218).

Imputation Accuracy. In principle, one way to link records is by
genotype imputation, in which alleles of untyped loci are prob-
abilistically predicted using genotypes at nearby typed loci (2, 3).
If STR genotypes can be imputed from SNPs with perfect ac-
curacy, then a complete set of STR genotypes can be produced
from neighboring SNPs (22).
We assessed imputation accuracy at the CODIS loci using

Beagle (23), imputing genotypes at each STR based on SNP
genotypes within a 1-Mb window centered on the STR. First, in
the training set, we used Beagle to phase the SNP genotypes to-
gether with the STR genotypes, producing a set of estimated
haplotypes that included the STR alleles. Second, we imputed
STR genotypes in the test set using the phased haplotypes from
the training set as a reference panel.
Considering all of the CODIS markers, Beagle imputation ac-

curacies exceed the accuracy of a null imputation method that ig-
nores LD with nearby SNPs (Fig. 1), but they are lower than typical
SNP imputation accuracies (2, 3, 24). Combining across the 13 loci
and across 100 partitions into training and test sets, the null im-
putation method produces a mean of 11.7 of 26 alleles imputed
correctly, whereas imputing with Beagle leads to a corresponding
mean of 15.2. These accuracies are similar to those obtained at non-
CODIS tetranucleotide STRs (Fig. S1). As has been seen previously
(24), imputation accuracy is negatively correlated with measures of
genetic diversity (Table S2), and the larger space of possible ge-
notype predictions for multiallelic STRs renders their imputation
accuracies lower than those observed for lower-diversity SNP loci.

Match Scores. Because imputation accuracies are not near one,
records cannot be linked by simply imputing STR genotypes and
identifying the record that matches the imputed genotype. It is

nevertheless possible to combine imputation information across
loci, producing a score that quantifies agreement between a set
of STR genotypes and a set of SNP genotypes.
We term the set of L STR genotypes carried by an individual

an “STR profile,” and we term the set of SNP genotypes of an
individual—aggregating neighboring SNPs for all of the STR
markers—a “SNP profile.” Ri represents the STR profile for an
individual i, with the diploid genotype at the lth locus in the
profile denoted Ril. Similarly, Sj is the SNP profile for individual
j, and Sjl is the set of diploid SNP genotypes in SNP profile j in
the window around the lth STR.
Fellegi and Sunter (6) proposed match scores interpretable as

log-likelihood ratios comparing the hypotheses that two records
are drawn from the same or different people. For each possible
SNP–STR profile pair, we computed the match score
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Here,M is an indicator variable, withM= 1 indicating that two records
are drawn from the same person (or identical twins) and with M =
0 indicating that they are drawn from unrelated people. The right-hand
equality in Eq. 1 holds because in the ratio PðRi, Sj
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of a profile of one type, SNP or STR, only if the profile is
considered jointly with a profile of the other type. The quantity
P(RijSj, M = 0) simplifies to P(RijM = 0) because Ri and Sj are
independent if M = 0, and then to P(Ri) for the same reason
that the quotient P(SjjM = 1)/P(SjjM = 0) reduces to 1.
STR genotypes at distinct loci are assumed to be independent in

accord with the distant chromosomal locations of the CODIS loci.
Consequently, the probability of observing STR profile Ri given
SNP profile Sj and M is a product

P
�
Ri
��Sj,M�

=
YL
l=1

P
�
Ril

��Sjl,M�
. [2]

With M = 1, P(RiljSjl, M) is taken to be the imputation probability
estimated by Beagle for STR genotype Ril given surrounding SNP
genotype Sjl. For M = 0, P(Ril) = P(RiljSjl, M = 0) is the Hardy–
Weinberg frequency of genotype Ril estimated using only the
STR allele frequencies in the training set: the STR and SNP
profiles are from different individuals, and therefore, the proba-
bility of an STR genotype is simply the genotype frequency. Thus,
λ(Ri, Sj) compares the Beagle-estimated probability of observing
STR profile Ri in a person carrying SNP profile Sj with the prob-
ability of Ri in the absence of any SNP information.
For each partition into training and test sets, we computed

match scores for each possible SNP–STR profile pairing in the test
set (Fig. 2A). The method produces larger match scores when the
profiles match than when they do not match (p < 2.2 × 10−16)
(Materials and Methods and Fig. 2B). To understand the potential
of the method, we used the match-score matrix to declare matches
between STR and SNP profiles in four scenarios.

One-to-One Matching. We first considered the alignment of a pair
of datasets on the same samples: we have n STR profiles and n
SNP profiles to be matched, and it is known that each STR profile
is from the same person as exactly one SNP profile. The pairing is
not known and may not be trivial to determine even given an
informative match-score matrix because a single STR profile
might have the highest match score for multiple SNP profiles or
vice versa. Given the match scores of each SNP profile with each
STR profile, we conduct one-to-one matching by finding the SNP–
STR profile pairing that maximizes the sum of the match scores
over all paired profiles. Finding this pairing is a special case of

D
18

S
51

FG
A

D
21

S
11

D
8S

11
79

TH
01

V
W

A

D
13

S
31

7

D
16

S
53

9

D
7S

82
0

D
5S

81
8

D
3S

13
58

C
S

F1
P

O

TP
O

XA
lle

lic
 im

pu
ta

tio
n 

ac
cu

ra
cy

0.0

0.2

0.4

0.6

0.8

1.0
BEAGLE
Null

Fig. 1. Allelic imputation accuracies for 13 CODIS loci. The figure shows im-
putation accuracy for the partition of 872 individuals into training (75%) and
test (25%) sets that yielded median (51st greatest) record-matching accuracy
by the Hungarian method among 100 partitions. Beagle accuracy is obtained by
imputing the STR genotype assigned the highest imputation probability by
Beagle. Null accuracy is obtained by imputing the same high-frequency STR
genotype in all individuals regardless of nearby SNP genotypes. Vertical lines
represent 95% confidence intervals based on 10,000 bootstrap resamples of
individuals from the test set. Beagle accuracies are significantly higher (Wilcoxon
signed rank test, two-tailed p < 0.05) than null accuracies at all loci except one
(D18S51; p = 0.09). Beagle accuracy is also higher when measuring total num-
bers of alleles imputed correctly in each person (p < 2.2 × 10−16). Beagle and null
accuracies are negatively correlated with heterozygosities reported in Table S2.
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the linear sum assignment problem solvable by the “Hungarian
method” (25).
Under the null hypothesis of random matching of STR and SNP

profiles, the number of correct assignments among n people is
distributed as the number of fixed points in a random permutation
of length n. This quantity has expectation 1 and is approximately
Poisson(1)-distributed (ref. 26, chap. 3, section 5). Applying the
Hungarian method to the match-score matrix leads to highly ac-
curate matches in the test set (Table 1). For 100 partitions into
training and test sets, it gives a median of 214 of 218 (98.2%)
correct assignments. In 18 of 100 cases, all assignments are cor-
rect. Even in the lowest-accuracy trial, 204 of 218 records are
matched correctly, an extremely improbable result under random
matching (p ≈ 2.8 × 10−385).
It is possible to decrease the rate of false-positive matches by

requiring that matched pairs exceed a minimum match-score
threshold, leaving the remaining records unpaired. Fig. 3A shows
the proportion of accurately assigned, inaccurately assigned, and
unassigned cases as the threshold is varied for partitions with the
maximum, median, and minimum numbers of correct assignments
when all pairs are assigned. In the lowest-accuracy trial, 67.9% of
profiles (148 of 218) can be matched accurately before a single
error is made.
Figs. S2A and S3 display one-to-one matching results when the

training-set and test-set sizes are varied. As the training-set size
increases, matching accuracy increases because a larger refer-
ence haplotype set increases imputation accuracy in the test set
(Fig. S4). Matching accuracy declines as the size of the test set
increases because the difficulty of the matching problem in-
creases when there are more records to be matched.

One-to-Many Matching. In some scenarios, it cannot be assumed
that a one-to-one correspondence exists between profiles of one
type and profiles of the other type. To examine these cases, we
relax the assumption that each entry in each dataset matches ex-
actly one entry in the other dataset. In this more challenging
problem, representing the alignment of a pair of databases with
partially overlapping but nonidentical samples, one STR (or SNP)
profile is a “query,” and we seek the SNP (or STR) profile that
matches the query. Here, rather than using a matrix of match
scores all at once, we consider a row or column vector, quantifying
the suitability of matches of the query in one database to candi-
date profiles in another. This vector corresponds to either a row or
a column of the matrix used for one-to-one matching; it is possible
that a candidate might be identified as the best match for many
queries representing different individuals.
When a SNP profile in the test set is used as a query, we choose

as its match the STR profile in the test set that has the largest
match score with that SNP profile. Across 100 data partitions,
pairing 218 SNP profiles to their highest scoring STR match
produces a median accuracy of 91.3% (199 of 218) (Table 1). The
minimum accuracy is 86.2% (188 of 218), and the maximum is
95.9% (209 of 218). As was seen in one-to-one matching, matching
accuracy increases with the size of the training set and declines as
the size of the test set increases (Figs. S2B and S5).
Similarly, when an STR profile in the test set is the query, we

choose as its match the SNP profile in the test set that has the
largest match score with that STR profile. Pairing STR profiles to
their highest-scoring SNP match produces a median accuracy of
89.9% (196 of 218) (Table 1), with a minimum of 85.3% (186 of
218) and a maximum of 95.4% (208 of 218). Accuracy increases
with training-set size and declines with test-set size (Figs. S2C
and S6).
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Fig. 2. Match scores of records that truly match and
match scores of nonmatches. (A) The matrix of match
scores (Eq. 1) comparing 218 CODIS STR profiles with
218 SNP profiles for the data partition represented in
Fig. 1. Each cell gives a match score for the pairing of
a SNP profile with a CODIS profile. Scores pairing a
given CODIS profile with each SNP profile appear in a
column, and scores pairing a given SNP profile with
each CODIS profile appear in a row. Darker colors
represent larger values. Population memberships
are colored by geographic region: Africa, orange;
Europe, blue; Middle East, yellow; Central/South
Asia, red; East Asia, pink; Oceania, green; Americas,
purple). Of 52 populations in our dataset (Table S1),
47 appear in the test set shown. True matches are on
a diagonal from the bottom left to the top right, and
they tend to have higher match scores than off-
diagonal nonmatches. Population structure is also
visible (Table S3). For example, SNP profiles from
Africans tend to have low match scores with non-
Africans, and match scores of nonmatches tend to
be higher when both CODIS and SNP profiles are
from Native Americans. (B) Kernel density estimate
for match scores. We applied a normal kernel with
bandwidth chosen by Silverman’s rule (option
nrd0 in the density function in R) to the matrix en-
tries in A. Nonmatches tend to have negative log-
likelihood match scores, whereas true matches tend
to have positive scores.

Edge et al. PNAS | May 30, 2017 | vol. 114 | no. 22 | 5673

G
EN

ET
IC
S

ST
A
TI
ST

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619944114/-/DCSupplemental/pnas.201619944SI.pdf?targetid=nameddest=ST3


As in the one-to-one matching case, it is possible to achieve
higher confidence that proposed pairings are correct if some true
matches can be missed. Fig. 3 B and C shows the proportions of
accurately assigned, inaccurately assigned, and unassigned cases as
the match-score threshold is varied. In the lowest-accuracy cases,
when a SNP profile is the query, 41.3% of profiles (90 of 218) are
assigned accurately before a single erroneous match is made, and
when an STR profile is the query, 56.0% of profiles (122 of 218)
are assigned accurately before an error is made.

Needle-in-Haystack Matching. An even more difficult problem
arises when only one among all possible SNP–STR profile pairings
is a true match. This scenario represents the case in which a da-
tabase query to locate a match is performed only for one profile.
Perfect accuracy is achieved if the match-score distributions for
matches and nonmatches do not overlap. To evaluate accuracy in
this scenario, we recorded the fraction of true matches with match
scores exceeding the largest score among nonmatching profiles.
Across partitions into training and test sets, the median percentage

of true matches with match scores exceeding the maximum match
score among nonmatches is 45.0% (98 of 218) (Table 1). The mini-
mum is 8.3% (18 of 218), and the maximum is 73.4% (160 of 218). As
in the other cases, matching accuracy increases with increasing training-
set size and declines with increasing test-set size (Figs. S2D and S7).

Adding STRs. Record matching proceeds by accumulating infor-
mation about the agreement of a pair of records across loci. Thus,
adding more loci is expected to increase record-matching accuracy. To
evaluate the effect of the number of loci, we repeated our matching
procedures in non-CODIS STR sets of varying size (Fig. 4). For each
procedure, accuracy increases as more loci are considered. Median
accuracy increases to 97.2% (212 of 218) in 20-locus panels for
one-to-many matching procedures and 71.6% (156 of 218) for needle-
in-haystack matching. Almost all 30-locus panels (99 of 100) produce
perfect matching accuracy in one-to-one matching, and most produce
accuracy above 99% in one-to-many matching (84 of 100 with query
SNP profiles; 51 of 100 with query STR profiles).With 50-STR panels,
in the median trial, 96.8% of true matches (211 of 218) have match
scores exceeding the highest match score among unmatched pairs.

Discussion
We have shown that genetic records can potentially be linked even
if they contain nonoverlapping sets of markers. Despite the small
number of markers in one of our datasets—13 STRs—multimarker
profiles can be matched to genome-wide SNP profiles with median
accuracies in excess of 90% (Table 1). Furthermore, record-
matching accuracy increases with the number of markers, and
with only a few dozen markers, accuracy nears 100% (Fig. 4).
The fact that such high match accuracies are achievable despite

relatively low imputation accuracies at individual STRs is perhaps
surprising. In domesticated cattle, McClure et al. (22) observed
that SNP haplotypes are highly predictive of the allele of an STR

lying within the haplotype and that STR profiles could, therefore,
be imputed with high accuracy. In humans, however, LD between
STRs and surrounding SNPs is weaker, with many distinct STR
alleles appearing on the same SNP haplotype in a population and
with multiple SNP haplotypes possessing the same STR allele (8,
9). Nevertheless, because some LD does exist and because SNP-
based imputation accuracies exceed null imputation accuracies,
LD information can be accumulated across markers to permit
record matching—not unlike the manner in which small differences
in allele frequency across populations can be accumulated across
markers to enable inference of ancestry (27, 28).

Table 1. Record-matching accuracies for the CODIS markers

Scenario

13 CODIS markers CODIS and 4 new markers

Median Minimum, maximum Median Minimum, maximum

One-to-one 0.982 0.936, 1.000 1.000 0.986, 1.000
One-to-many: SNP query 0.913 0.862, 0.959 0.982 0.959, 0.995
One-to-many: STR query 0.899 0.853, 0.954 0.968 0.940, 0.991
Needle-in-haystack 0.450 0.083, 0.734 0.757 0.211, 0.899

Each entry gives the fraction of individuals matched correctly between SNP and STR profiles, with 75% of the
data in the training set and 25% in the test set. The minimum, median, and maximum are taken across
100 partitions of the set of individuals into training and test sets. In columns 4 and 5, 13 CODIS STRs are
augmented with 4 STRs from the 2017 CODIS addition (D2S441, D10S1248, D19S433, and D22S1045). In one-to-
one matching, pairings are assigned assuming that each CODIS entry has a SNP counterpart and vice versa. In
one-to-many matching, we record the proportion of times that the highest match score for a query profile (SNP
or STR) arises from the profile that truly matches. In needle-in-haystack matching, we count the proportion of
true matches with match scores exceeding the largest score among nonmatches.
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Fig. 3. The proportions of profiles unassigned, correctly assigned, and incor-
rectly assigned as thematch-score threshold is varied.When the threshold is large,
all profiles are unassigned (lower left vertex). Gradually lowering the threshold
leads to assignment of all profiles, tracing a curve to the right edge. Of 100 par-
titions into training and test sets, the figure plots trials with maximum, median,
and minimum accuracies when all possible profiles are paired. (A) One-to-one
matching. (B) One-to-manymatching selecting the STR profile that best matches a
query SNP profile. (C) One-to-many matching selecting the SNP profile that best
matches a query STR profile. (D) Needle-in-haystack matching counting the pro-
portion of true matches with match score that exceeds the maximal match score
among nonmatches. In D, after the match-score threshold is lower than the
largest match score among nonmatches, all pairings are marked incorrect.
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Imputation accuracy is negatively correlated with genetic di-
versity measures in the samples in which genotypes are imputed,
and thus, it is often greater in low-diversity populations than in
high-diversity populations (24, 29). Here, this effect accumulates
across loci, and mean match scores are, therefore, greater for
matches in low-heterozygosity Native Americans than in high-
heterozygosity Africans (Table S3). The increase in match scores
applies also to nonmatching pairs in low-diversity populations,
however, because the greater similarity among individuals in such
populations inflates the mean match score for these pairs (Fig. 2).
Because match scores are inflated in low-diversity populations for
both matches and nonmatches, differences between mean match
scores for matches and nonmatches are similar across groups, so
that the potential to separate matches from nonmatches need not
be greatest in low-diversity groups (Table S3).
Our study adds to a growing list of record-matching scenarios in

genetics. Vohr et al. (30) used SNPs to calculate likelihood ratio-
based match scores, relying on a phased reference panel to assist
in assigning low-coverage sequence reads to the same individual.
Conceptually similar methods have also been used to identify
mismatches between genotypes and expression data (31, 32). Our
method augments this work by using the record-matching frame-
work and enabling matches between markers of different types,
even when imputation accuracy is far below one.
The fact that CODIS imputation accuracies are relatively low

(Fig. 1) suggests that, from a SNP profile, it is unlikely that the full
CODIS STR profile of an individual can be reliably imputed.
However, if that profile already appears in a CODIS STR data-
base, then a match between the SNP profile and its associated
STR profile might be possible to identify. The feasibility of record
matching suggests a form of backward compatibility with the
CODIS STR database, in which SNP rather than STR profiles
would be collected on future samples and queried against both new
SNP databases and existing STR data. STRs could then be typed on
such samples to validate an STR–STR match only if a strong SNP–
STR match is suggested. Although matching accuracy was imper-
fect, that stringent match-score thresholds permitted many accurate
matches before the first error was made suggests that backward
compatibility by record matching and exclusion of unlikely pairings
may be achievable for a substantial fraction of samples.
The utility of record matching in advancing forensic genetics

depends on the degree to which it scales to typical forensic dataset
sizes, numbering in the thousands or millions of profiles. We find
that record-matching accuracy increases as larger training sets
become available but decreases with the test-set size. An increase

in the number of CODIS loci from 13 to 20 (15) increases the
potential of record matching; accuracies were considerably higher
in our 20-STR scenarios than in the 13-STR CODIS examples;
4 loci in the 2017 update to the CODIS markers are available in
the data of ref. 12, and combining them with the 13-locus set in-
deed provides a substantial accuracy increase (Table 1). We expect
that accuracy could potentially be increased further if STR gen-
otypes were produced by a procedure that obtains the full DNA
sequence of the STRs rather than the length of the repeated unit,
thereby subdividing repeat-length alleles into finer allelic classes
(33, 34); with this approach, the level of resolution at which alleles
are classified as distinct could be tuned to a level that maximizes
the record-matching accuracy.
Even with quite large test sets, it is plausible that some profiles

could be paired with high confidence. If the match scores λðRi, SjÞ
from Eq. 1 are viewed as likelihood ratios, then by Bayes’ rule,

O
�ðM = 1Þ:ðM = 0Þ��λ�Ri, Sj

��
=O

�ðM = 1Þ:ðM = 0Þ�exp�λ�Ri, Sj
��
,

[3]

where O indicates odds. Eq. 3 can be used to determine the match
score necessary to obtain a specified posterior odds and thus,
posterior probability of a match given the prior odds of a match.
To obtain posterior odds of a match >10 (i.e., posterior proba-
bility >10/11), with prior odds 4.3 × 10−9 (1 in 235 million, the
approximate adult population of the United States at the
2010 census), a match score must exceed ln½10=ð4.3× 10−9Þ�≈ 21.6.
When we apply our method using 13 CODIS markers in the par-
tition that leads to median one-to-one matching accuracy with 654
people in the training set, 1 of 218 true match scores in the test set
exceeds this threshold, equaling 21.8. When we include four new
markers of the updated CODIS panel, however, 17 of 218 (7.8%)
true match scores exceed the threshold (maximum score of 31.9).
Thus, with the expanded CODIS set, it is possible that a nontrivial
proportion of CODIS and SNP genotypes could be matched with
high confidence; furthermore, because training-set size increases
matching accuracy (Fig. S2), this proportion could increase with
an increase in training-set size. Our computations with Eq. 3 moti-
vate detailed empirical evaluation in larger datasets.
The potential for record matching of SNP and CODIS STR

profiles, especially with augmented CODIS panels, uncovers new
risks to privacy. Some record pairings have match scores so large
that they are improbable in the absence of a true match. Thus,
authorized or unauthorized analysts equipped with two datasets,
one with SNP genotypes and another with CODIS genotypes,
could possibly identify some pairs of records that are likely to
represent the same person. For people with records linked in this
way, CODIS genotypes would reveal genomic SNP genotypes that
could, in turn, reveal much more information than the CODIS
genotypes themselves—such as precise ancestry estimates, health
and identification information that accompanies SNP records, and
predictions for genetically influenced phenotypes. In this sense,
contrary to the view that CODIS genotypes expose no phenotypes
(17, 20, 21), a CODIS profile on a person together with a SNP
database—if the person is in the database—in principle may
contain all of the phenotypic information that can be reliably
predicted from the SNP record. Conversely, participants in bio-
medical research or personal genomics who have consented to
share their SNP genotypes may be subject to a previously un-
appreciated risk: identification in a forensic STR database.
As in other situations in which data aggregation can unexpect-

edly reveal genetic information at the individual level (35–37), it is
desirable to reevaluate the privacy of forensic STR profiles in light
of the widespread availability of diverse SNP profiles to re-
searchers and the public. Because our record-matching methods
can potentially be extended beyond the detection of identical
people to the detection of relatives—matching a SNP profile of an
individual to an STR profile of a relative—we expect that privacy
considerations will extend to this scenario as well.
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Fig. 4. Record-matching accuracy as a function of number of STRs. For each
number of loci, 100 random locus sets are analyzed for the data partition in
Fig. 1; results are shown horizontally jittered. (A) One-to-one matching.
(B) One-to-many matching selecting the STR profile that best matches a
query SNP profile. (C) One-to-many matching selecting the SNP profile that
best matches a query STR profile. (D) Needle-in-haystack matching.
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Materials and Methods
Data. From the Human Genome Diversity Panel, we examined previously
reported genotypes on 872 samples—the intersection of 938 unrelated sam-
ples with SNP genotypes reported (10), a subset of 1,048 samples with STR
genotypes reported (12), and 978 samples with CODIS genotypes reported
(11). Population information appears in Table S1. Non-CODIS STRs included
431 tetranucleotides and trinucleotide D22S1045, which is in the 2017 CODIS
update (15). We obtained non-CODIS STR positions by querying University of
California-Santa Cruz (UCSC) Genome Browser’s BLAT (38) using the locus
RefSeq sequence (table S1 of ref. 12) and build hg18; for CODIS loci, UCSC
Genome Browser queries used the locus name.

Phasing and Imputation. In Beagle 4.1 (23), we set the number of iterations to
10. When phasing, we used defaults for all other parameters: maxlr = 50,000,
lowmem = false, window = 50,000, overlap = 3,000, impute = true, cluster =
0.005, ne = 1 million, err = 0.0001, seed = -99,999, and modelscale = 0.8. When
imputing STRs, we set gprobs = true and maxlr = 1 million, and we used a
linkage map based on GRCh36 coordinates.

For each STR, windows extended 500 kb in both directions from the STR
midpoint (GRCh36 coordinates corresponding to UCSC hg18). For non-CODIS
loci, the number of SNPs in such windows ranged from 80 to 547, with a
median of 262. For CODIS loci, the range was 164–655, with a median of 272.

Imputation Accuracy. Imputation accuracy was assessed as the number of
accurately imputed alleles (24). Null imputations were made disregarding
the neighboring SNP genotypes by imputing the genotype that, under
Hardy–Weinberg equilibrium with the allele frequencies estimated in the
training set, is predicted to lead to the highest accuracy. Denoting the alleles
at a locus 1, . . ., K in decreasing order of their frequencies p1, . . ., pK, the
most frequent homozygote was imputed if p2

1 +p2
2 > 2p2; otherwise, the

most frequent heterozygote was imputed.
To verify that this condition for “null” imputations produces the highest

accuracy, note that, if the most frequent homozygote is always imputed,
then for each individual homozygous for allele 1 (frequency p2

1), two alleles
are imputed correctly, and for each heterozygote with allele 1 (frequency
2p1

PK
k=2 pk), one allele is imputed correctly. The expected number of cor-

rectly imputed alleles per individual is 2p2
1 + 2p1

PK
k=2pk = 2p1.

If instead, the most frequent heterozygote is imputed, then the number of
alleles imputed correctly is two for individuals heterozygous for the two most
frequent alleles (frequency 2p1p2), one for homozygotes for allele 1 or 2
(frequency p2

1 +p2
2), and one for heterozygotes with one of the two most

frequent alleles and another allele that is not one of the two most frequent
(frequency 2p1

PK
k=3pk + 2p2

PK
k=3pk). The expected number of correct al-

leles imputed per individual is, therefore, 4p1p2 +p2
1 +p2

2 + 2p1
PK

k=3 pk +
2p2

PK
k=3 pk or 2p1 + 2p2 −p2

1 −p2
2. Thus, imputing the homozygote produces

a higher expected number of correctly imputed alleles than imputing the
heterozygote if 2p1 > 2p1 + 2p2 −p2

1 −p2
2 or equivalently, p2

1 +p2
2 > 2p2.

Match Scores. To avoid likelihoods of zero in match-score computations, any
diploid genotype assigned probability zero by Beagle was given probability
0.0005, one-half the lowest permissible nonzeroprobability in the Beagle version
that we used. Probabilities were then renormalized to sum to one. Probabilities
for genotypes including alleles unobserved in the training set ormissingwere set
equal under all hypotheses about M so as not to affect match scores.

Testing Match Scores of True Matches Against Nonmatches. To account for
dependencies among values in the same column or row of the match-score
matrix, we fit a linear mixed model with crossed random effects using entries
from the matrix in Fig. 2A: Yij = β0 + β0i + β0j + β1Xij + eij. Here, Yij is the match
score for the pairing of the ith STR and jth SNP profiles, β0 is a global in-
tercept, β0i is a random intercept for scores involving the ith STR profile, β0j is
a corresponding intercept for the jth SNP profile, the indicator variable Xij is
one if Yij represents a true match (i = j), and eij is a normal disturbance with
expectation zero and constant variance. We used R package lmer, comput-
ing p values by Satterthwaite approximation with package lmerTest. This
model was strongly preferred over models that excluded random effects
for either STR or SNP profiles (Akaike Information Criterion and Bayesian
Information Criterion differences >3,000). The estimate for β1, the dif-
ference between scores for matches and nonmatches, was significant
[β̂1 = 26.8,   SE= 0.43,   tð47,088Þ= 62.7,   p< 2.2× 10−16].
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