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a b s t r a c t

Empirical studies have identified population-genetic factors as important determinants of the properties
of genotype-imputation accuracy in imputation-based disease association studies. Here, we develop a
simple coalescentmodel of three sequences thatweuse to explore the theoretical basis for the influence of
these factors on genotype-imputation accuracy, under the assumption of infinitely-many-sites mutation.
Employing a demographicmodel in which two populations diverged at a given time in the past, we derive
the approximate expectation and variance of imputation accuracy in a study sequence sampled from
one of the two populations, choosing between two reference sequences, one sampled from the same
population as the study sequence and the other sampled from the other population. We show that, under
this model, imputation accuracy—as measured by the proportion of polymorphic sites that are imputed
correctly in the study sequence—increases in expectation with the mutation rate, the proportion of the
markers in a chromosomal region that are genotyped, and the time to divergence between the study
and reference populations. Each of these effects derives largely from an increase in information available
for determining the reference sequence that is genetically most similar to the sequence targeted for
imputation. We analyze as a function of divergence time the expected gain in imputation accuracy in
the target using a reference sequence from the same population as the target rather than from the other
population. Together with a growing body of empirical investigations of genotype imputation in diverse
human populations, our modeling framework lays a foundation for extending imputation techniques to
novel populations that have not yet been extensively examined.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The field of humangenetics has recentlywitnessed an explosion
in the number of published genome-wide association (GWA)
studies, revealing hundreds of novel disease-associated genes
(Donnelly, 2008; Manolio et al., 2008; Hindorff et al., 2009,
2011). The considerable potential of GWA studies—which examine
thousands to millions of genetic markers in samples of unrelated
individuals with the goal of uncovering genotype–phenotype
correlations—to ultimately improve humanhealth has beenwidely
recognized (e.g., Hardy and Singleton, 2009; Manolio, 2010;
Stranger et al., 2011).

Among factors contributing to the success of GWA studies has
been the advent of genotype-imputation methods that use chro-
mosomal segments shared among subjects to predict, or impute,
genotypes at marker positions not directly measured in individ-
ual GWA studies (Li et al., 2006; Nicolae, 2006; Browning and
Browning, 2007; Marchini et al., 2007; Servin and Stephens, 2007).

∗ Corresponding author.
E-mail address: noahr@stanford.edu (N.A. Rosenberg).

0040-5809/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.tpb.2012.09.006
In imputation studies, the haplotypes of ‘‘reference’’ individuals
that have been genotyped at a higher density than GWA individ-
uals targeted for imputation often serve as template sequences on
the basis of which unknown genotypes in the targets are inferred.
Because imputation increases the number of markers that can
be interrogated for disease associations and permits larger sam-
ple sizes by enabling data sets typed on different platforms to be
merged, it can increase the statistical power of GWA studies (e.g.,
Li et al., 2009; Marchini and Howie, 2010). This important role
for imputation is likely to persist as technology advances; when
whole-genome sequencing of at least a portion of GWA samples
becomes routinely feasible, the power of sequence-based GWA
studies can be improved by imputation in genotyped individuals
using sequenced individuals as templates (Li et al., 2011).

Recent studies have empirically examined the determinants
of genotype-imputation accuracy in globally distributed human
populations (Guan and Stephens, 2008; Pei et al., 2008; Huang
et al., 2009, 2011; Li et al., 2009; Fridley et al., 2010; Surakka et al.,
2010). These investigations have shown that, in imputation-based
GWA studies, population-genetic factors play an important role in
determining levels of imputation accuracy attainable in a study
population. Factors such as the level of linkage disequilibrium in
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a study population and the degree of genetic similarity between
a study population and a reference population whose members
serve as templates have been found in imputation experiments to
be prominent drivers of imputation accuracy (Egyud et al., 2009;
Huang et al., 2009, 2011; Paşaniuc et al., 2010; Shriner et al., 2010).
Though empirical work on genotype imputation has provided
some understanding of the population-genetic factors that affect
imputation accuracy, theoretical work exploring the influence of
these factors on imputation accuracy has been limited.

A theoretical approach to studying genotype imputation un-
der a population-genetic model offers the potential for produc-
ing a variety of insights. First, by obtaining expressions for the
mean and the variance of the imputation accuracy as a function
of population-genetic parameters, we can explain patterns of im-
putation accuracy observed in empirical studies in terms of the
population-genetic factors that affect the underlying genealogical
relationship between study and reference individuals. Second, us-
ing simple expressions, imputation accuracy can be evaluatedwith
less computation than in simulation-based approaches, enabling
investigators to predict imputation accuracy under a model rather
than implement computationally intensive simulations. Third,
unlike targeted simulations specific to particular populations of
interest, a general modeling framework can be adapted for organ-
isms beyond humans in which imputation-based association stud-
ies and large-scale genomic resources have begun to emerge (e.g.,
Atwell et al., 2010; Druet et al., 2010; Kirby et al., 2010; Badke et al.,
2012; Hickey et al., 2012).

Jewett et al. (2012) introduced a theoretical model for eva-
luating imputation accuracy as a function of population-genetic
parameters. Using a coalescent framework, they analytically
studied the effect of reference-panel size on imputation accuracy,
aswell as the degree towhich the use of reference haplotypes from
the same population as a target sequence (an ‘‘internal’’ reference
panel) improves the accuracy of imputation compared to the use
of reference haplotypes from a separate population (an ‘‘external’’
reference panel). In order to incorporate a large sample size in
obtaining their analytical results, however, Jewett et al. (2012) did
not account for randomness in themutation process. Instead, their
treatment of mutation amounted to an assumption that mutation
is a deterministic process, in which mutations accumulate along
a genealogical branch in direct proportion to the branch length.
Consequently, under this assumption, the best template for
imputation is always a haplotypewhose coalescence timewith the
target sequence on which genotypes are to be imputed is smallest.

Here, we consider a coalescent model of genotype imputation
that, at the cost of examining only a small sample size, allows for
randomness in the imputation process resulting from the stochas-
ticity of mutation. Assuming the infinitely-many-sites mutation
model, we derive the approximate expectation and variance of
imputation accuracy under a straightforward imputation scheme,
conditioning on amutation parameter (θ ), a proportion of markers
genotyped in a given length of a chromosome (p), and a time to di-
vergence between the target population and an external reference
population (td). As in Jewett et al. (2012), our derivations account
for randomness in the genealogy by considering the distribution of
genealogies under a model in which study and reference individ-
uals are sampled from two populations that diverged at time td in
the past. We pose the following questions: (1) What are the influ-
ences of θ, p, and td on the expectation and variance of imputation
accuracy? (2) What is the expected gain in imputation accuracy in
a study sequence targeted for imputation by using a reference se-
quence from the same population as the target rather than from a
different population? Answers to these questions provide informa-
tion on the factors that affect genotype-imputation accuracy, with
implications for the design of imputation-based association stud-
ies and the expansion of genomic databases.
2. Theory

In this section, we introduce a theoretical framework that
permits the computation of the approximate expectation and
variance of imputation accuracy in a target sequence on the
basis of one of two reference sequences. The framework has
four parts: a coalescent model for the genealogical relationships
among lineages, a mutation model, a decision rule that guides the
selection of the reference sequence for the imputation, and an
imputation scheme that specifies how the imputation is performed
and its accuracy evaluated. The computations employ three
approximations, including a Monte Carlo step for the evaluation
of certain integrals.

2.1. A coalescent model

Consider two populations P1 and P2 that diverged from an an-
cestral population PA at time td in the past. Further, consider three
haploid individuals—a study individual targeted for imputation
(henceforth simply identified as a target and denoted by I) and two
reference individuals (denoted by R1 and R2). Individuals R1 and I
are from population P1, and individual R2 is from population P2. In
a diploid organism, the haploid individuals can be viewed as single
haplotypes.

For the set of three individuals, let G denote a labeled gene
tree topology. We denote the times during which three and two
lineages exist in the genealogy, and the divergence time between
populations P1 and P2, by T3, T2, and td, respectively. We assume
that the diploid effective population size, denoted by Ne, is the
same for populations P1, P2, and PA. All times aremeasured in units
of 2Ne generations. For convenience, we refer toG as the genealogy
and use the notation T = (T3, T2, td).

The genealogy G can have one of four possible genealogical
types G (Fig. 1): three in which the first coalescence event occurs
more anciently than the population-divergence time td (g =

A, B, C), and one in which the first coalescence occurs more
recently than td (g = D). For each type, we label the external
branches for the lineages of reference individuals R1 and R2 and
target individual I by 1, 2, and 3, respectively (Fig. 1). We examine
the genealogy backward in time, combining the external and
internal branches immediately descended from the root into one
branch that takes on the label for the external branch. Thus, for
instance, branch 2 in genealogy A has length td + t3 + 2t2. Note
that, as shown in Fig. 1, in genealogies A, B, and C, t3 measures
from td back in time, whereas, in genealogy D, t3 measures from
the present.

Under standard coalescent theory, the time (in units of 2Ne
generations) for k lineages in a population to coalesce to k − 1
lineages follows an exponential distribution with parameter


k
2


(Kingman, 1982a,b). For our model of sequences R1, R2, and I , the
probability density function of T2 for genealogies g = A, B, C,D is

fT2(t2|G = g, td) = e−t2 , g = A, B, C,D. (1)

For g = A, B, C , the probability density function of T3 is

fT3(t3|G = g, td) = 3e−3t3 , g = A, B, C . (2)

For genealogy D, however, the lineages for reference sequence
R1 and target sequence I are constrained to coalesce no more
anciently than the divergence time td. Thus, the probability density
function for the time T3 during which all three lineages exist is

fT3(t3|G = D, td) =
e−t3

1 − e−td
1{t3<td}, (3)

where 1{B} is the indicator function that takes a value of 1 if
condition B holds and is 0 otherwise.
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Fig. 1. Four possible genealogical types for a set of three sequences: a candidate reference sequence R1 and a sequence I targeted for imputation from one population, and
another candidate reference sequence R2 from a second population. The two populations diverged from an ancestral population at time td in the past. Times t3 and t2 are
coalescence times for sets of three and two distinct lineages. For genealogies A, B, and C, t3 measures from the divergence time, whereas, for genealogy D, t3 measures from
the present.
We compute the probability P(G = g|td) for g = A, B, C,D by
conditioning on the time interval of the coalescence of reference
sequence R1 and target sequence I . Considering the lineages
backward in time, we define E to be the event that R1 and I do
not coalesce by td and Ē to be the event that R1 and I do coalesce
by td. Because each pair of lineages in the same population has the
same probability of being the first to coalesce, conditional on E ,
genealogies A, B, and C occur with equal probability. Therefore,

P(G = g|td) = P(G = g|E, td) P(E |td) + P(G = g|Ē, td) P(Ē |td)

=




1
3


e−td + (0)(1 − e−td) =

1
3
e−td

if g = A, B, C
(0)e−td + (1)(1 − e−td) = 1 − e−td

if g = D.

(4)

2.2. Stochastic mutation

We examine imputation at a locus evolving according to the
infinitely-many-sites mutation model, with no recombination
(Watterson, 1975). We consider only the polymorphic sites in a
sample of three sequences, ignoring all sites that are not poly-
morphic in the sample. Under the infinitely-many-sites model, the
number of polymorphic sites in a sample is the same as the number
of mutations in its gene genealogy, and we use the terms ‘‘poly-
morphic sites’’ and ‘‘mutations’’ interchangeably. We denote the
population-scaled mutation parameter by θ = 4NeµL, where µ is
the mutation rate per base per generation, and L is the length (in
bases) of the sequence under consideration.

For our computations of the mean and the variance of the
imputation accuracy, we will need for each genealogical type g
various distributions related to numbers of mutations that occur
on a random genealogy. Let Xi be the total number of mutations
that occur on branch i under the neutral coalescent model with
infinitely-many-sites mutation (i = 1, 2, 3). We assume that, with
probability p, a given site is genotyped in the target, and that sites
are chosen independently for genotyping. Reference sequences R1
and R2 are assumed to be genotyped at all sites at which the set
of three lineages {R1, R2, I} is polymorphic. Let Yi be the random
number among the Xi mutations on branch i that are genotyped
in the target. Let hi(T; g) denote the length of branch i for a given
genealogy assumed to have time T and type g .

We assume that the total number of mutations Xi on a
branch, conditional on its branch length hi(T; g), follows a Poisson
distribution with parameter hi(T; g) θ/2. That is,

Xi|T, g ∼ Poisson(hi(T; g) θ/2), (5)

where hi(T; g) is specified in Table 1 for g = A, B, C,D and
i = 1, 2, 3. Because individual sites are genotyped in the target
independently of each other, each with probability p, conditional
on the total number of mutations Xi on branch i, the random
number ofmutations Yi on branch i that are genotyped in the target
follows a binomial distribution with parameters Xi and p,

Yi|Xi ∼ Bin(Xi, p). (6)

Eqs. (5) and (6) imply that, conditional on the coalescence and
population-divergence times T, the number of mutations Yi on
branch i that are typed in the target follows a Poisson distribution:

Yi|T, g ∼ Poisson(hi(T; g) θp/2). (7)

Similarly, the number of mutations Xi − Yi on branch i that
are untyped in the target follows a binomial distribution with
parameters Xi and 1 − p:

(Xi − Yi)|Xi ∼ Bin(Xi, 1 − p). (8)

Eqs. (5) and (8) then imply that

(Xi − Yi)|T, g ∼ Poisson(hi(T; g) θ(1 − p)/2). (9)
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Table 1
Branch lengths hi(T; g). For genealogical types g = A, B, C,D and branches i =

1, 2, 3 under the two-population model in Fig. 1, the branch lengths are given in
units of 2Ne generations.

Genealogical type Branch
1 2 3

A td + t3 td + t3 + 2t2 td + t3
B td + t3 + 2t2 td + t3 td + t3
C td + t3 td + t3 td + t3 + 2t2
D t3 2td − t3 + 2t2 t3

Finally, conditional on T, the numbers of mutations on any two
branchesYi andYj that are genotyped in the target are independent.
The difference between two independent Poisson-distributed
variables is described by the Skellam distribution (Johnson and
Kotz, 1969). Thus, for i, j ∈ {1, 2, 3} and i ≠ j,

(Yi − Yj)|T, g ∼ Skellam(hi(T; g) θp/2, hj(T; g) θp/2), (10)

withmean (hi(T; g)−hj(T; g))θp/2, variance (hi(T; g)+hj(T; g))θ
p/2, and probability mass function

fSk(yi − yj; hi(T; g) θp/2, hj(T; g) θp/2) = e−
hi(T;g)+hj(T;g)

2 θp

×


hi(T; g)
hj(T; g)

 yi−yj
2

I|yi−yj|

θp

hi(T; g) hj(T; g)


. (11)

Iα(x) is the modified Bessel function of the first kind.

2.3. A decision rule

Recall that in our sample of three haploid sequences—two
references R1 and R2, and a target I—we consider only polymorphic
sites. The target sequence is assumed to be genotyped at only
a subset of the sites that are polymorphic in the set of three
sequences. We now further assume that missing genotypes at
untyped markers in the target are imputed by copying the
corresponding genotypes in a chosen reference sequence that has
been genotyped at all of the sites. The choice of a reference is
specified by a decision rule δ that we introduce below.

Accurate imputation relies on the occurrence of chromosomal
segments that are shared identically by descent between target
and reference sequences. Similar sequences are more likely to
descend from the same ancestral sequence, and therefore we
generally expect imputation accuracy in a target sequence to
increase with increased genetic similarity between the target and
reference sequences. We define a distance statistic di between
reference sequence Ri (i = 1, 2) and target sequence I to be
the number of pairwise differences between the two sequences at
positions genotyped in the target. Because we associate R1, R2, and
I with branches 1, 2, and 3, respectively, we have

di = Yi + Y3.

Smaller values of di indicate greater genetic similarity—measured
at the genotyped positions in the target—between reference
sequence Ri and the target.

We now present a decision rule δ—based on the distance
statistic di—that we use to select one of the two reference
sequences, R1 or R2, for imputation in the target (Box 1). In short,
rule δ selects the genetically more similar reference sequence to
the target, as measured by di.

Box 1. Rule δ

• If d1 < d2 , use reference R1 .
• If d2 < d1 , use reference R2 .
• If d1 = d2 , with probability 1/2, use reference R1 , and, with probability

1/2, use reference R2 .
Fig. 2. Schematic of the imputation procedure. (A) An example genealogy with
mutations. (B) The full data for the genealogy in (A). (C) The imputation process.
In (B) and (C), each row represents a sequence, and each column represents a site.
White and gray boxes indicate the two allelic types at a site, and thick black lines
indicate positions genotyped in the target.

2.4. An imputation scheme

Once a reference sequence is chosen for imputation in the
target, we substitute missing genotypes at untyped markers in the
target by those at corresponding positions in the reference. We
illustrate the reference selection and the imputation procedure in
Fig. 2.

Imputation accuracy is assessed as the proportion of polymor-
phic sites untyped in the target that are imputed correctly on the
basis of a chosen reference sequence. Let Ri, i = 1, 2, denote the
chosen sequence, and let Rj, j ≠ i and j = 2, 1, denote the refer-
ence sequence that is not chosen. If R1 is chosen as the template for
imputation, the imputation accuracy obtained is

Z =
X2 − Y2

3
ℓ=1

(Xℓ − Yℓ)

. (12)
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Alternatively, if R2 is chosen as the template, then the imputation
accuracy is

Z =
X1 − Y1

3
ℓ=1

(Xℓ − Yℓ)

. (13)

In both cases, the numerator isXj−Yj, because, under the infinitely-
many-sites mutation model, polymorphic sites produced by
mutations on the branch for reference sequence Rj are exactly
where reference Ri and target I have identical genotypes. Thus, to
count the number of sites imputed correctly in the target when
using reference sequence Ri, one simply counts the number of
mutations on the branch for reference sequence Rj that are not
genotyped in the target but that are imputed. The denominator3

ℓ=1(Xℓ − Yℓ) corresponds to the total number of untyped
polymorphic sites in the target that are subsequently imputed; in
the case that

3
ℓ=1(Xℓ − Yℓ) = 0, Z is undefined because there are

no genotypes to impute.

2.5. Expectation and variance of imputation accuracy

At sites genotyped in both reference and target sequences, the
number di of pairwise differences between reference Ri (i = 1, 2)
and target I is observable. Given d1 and d2, we apply rule δ in Box
1 to select a reference sequence for imputing missing genotypes
at untyped markers in the target. In this section, conditioning on
the model parameters—the mutation parameter θ , the proportion
p of polymorphic sites genotyped in the target, and the population-
divergence time td—we derive the approximate expectation and
variance of imputation accuracy Z by averaging over all possible
genealogical types G and coalescence times T3 and T2.

To compute the expectation E[Z |θ, p, td], we consider three
possible scenarios that can occur when we apply rule δ to a
genealogy: reference sequence R1 is selected as the template
sequence for imputation in target sequence I because d1 < d2,
reference sequence R2 is selected because d1 > d2, and a choice
is made randomly between references R1 and R2 because d1 = d2.
Let S1 be the scenario in which d1 < d2 (i.e., Y1 − Y2 < 0), let
S2 be the scenario in which d1 > d2 (i.e., Y1 − Y2 > 0), and let
S3 be the scenario in which d1 = d2 (i.e., Y1 − Y2 = 0). We can
obtain E[Z |θ, p, td] by taking a weighted average of its expectation
conditional on the genealogical type g and the scenario Sw , where
g = A, B, C,D and w = 1, 2, 3, and where the weight is the joint
probability of the genealogical type G = g and the scenario Sw:

E[Z |θ, p, td]

=


g=A,B,C,D

3
w=1

E[Z |g, Sw, θ, p, td] P(g, Sw|θ, p, td). (14)

We first derive the conditional expectations E[Z |g, Sw, θ, p, td]
and the probabilities P(g, Sw|θ, p, td) for g = A, B, C,D and
w = 1, 2, 3, andwe then obtain the expectationE[Z |θ, p, td] using
Eq. (14).

Many quantities in Sections 2.5.1 and 2.5.2 are conditioned on
θ, p, and td, but, for notational convenience, these parameters are
suppressed.

2.5.1. Derivation of E[Z |g, Sw] in Eq. (14)
Let B be a Bernoulli random variable with parameter 1/2. For

any genealogical type g , we can write the expectation E[Z |g, Sw]

under a specific scenario Sw for w = 1, 2, 3:

E[Z |g, Sw]
=



E

 Xj − Yj
3

ℓ=1
(Xℓ − Yℓ)

 g, Sw


if w = 1, 2, where j = 3 − w

E

B
X2 − Y2

3
ℓ=1

(Xℓ − Yℓ)

+ (1 − B)
X1 − Y1

3
ℓ=1

(Xℓ − Yℓ)

 g, Sw


if w = 3.

(15)

We make two approximations to obtain an expression for
E[Z |g, Sw]. First, we use the first-order Taylor approximation that
treats the expectation of a quotient as a quotient of expectations;
although this approximation is not accurate in general, we will
see later that, in our analysis, it is not unreasonable. Next, we
approximate E[Xi − Yi|g, Sw] by E[Xi − Yi|g]; this approximation
amounts to assuming for i ∈ {1, 2, 3} that the number of untyped
mutations on branch i is independent of which reference is closer
to the target at sites genotyped in the target. Although these
quantities are not independent, we will see that this assumption
is also reasonable.

Applying the approximations, for g = A, B, C,D andw ∈ {1, 2},

E[Z |g, Sw] = E

 Xj − Yj
3

ℓ=1
(Xℓ − Yℓ)

 g, Sw


≈

E[Xj − Yj|g, Sw]

E


3
ℓ=1

(Xℓ − Yℓ)|g, Sw


≈

E[Xj − Yj|g]

E


3
ℓ=1

(Xℓ − Yℓ)|g
 , (16)

where j = 3 − w. For g = A, B, C,D and w = 3,

E[Z |g, Sw]

=
1
2

E

 X2 − Y2
3

ℓ=1
(Xℓ − Yℓ)

 g, Sw



+ E

 X1 − Y1
3

ℓ=1
(Xℓ − Yℓ)

 g, Sw




≈
1
2

 E[X2 − Y2|g]

E


3
ℓ=1

(Xℓ − Yℓ)|g
 +

E[X1 − Y1|g]

E


3
ℓ=1

(Xℓ − Yℓ)|g

 . (17)

In Eqs. (16) and (17), for g = A, B, C,D and i = 1, 2, 3,
the expectation E[Xi − Yi|g] can be found by conditioning on
the coalescence times T3 and T2 and then integrating over their
distributions:

E[Xi − Yi|g]

=


∞

t2=0

 a

t3=0
E[Xi − Yi|t3, t2, g] fT3,T2(t3, t2|g) dt3 dt2. (18)



L. Huang et al. / Theoretical Population Biology 87 (2013) 62–74 67
Table 2
Mean numbers of untyped mutations E[Xi − Yi|g], for genealogical types g =

A, B, C,D and branches i = 1, 2, 3. The definitions of E◦, E×, E� , and E√—each of
which is a function of θ, p, and td—appear in Eqs. (23)–(26).

Genealogical type Branch
1 2 3

A E◦ E× E◦

B E× E◦ E◦

C E◦ E◦ E×

D E� E√ E�

The upper limit of the inner integral depends on the genealogical
type:

a =


∞ if g = A, B, C
td if g = D.

(19)

The formula for the expectation of a Poisson random variable
gives

E[Xi − Yi|t3, t2, g] = hi(T; g) θ(1 − p)/2. (20)

In any genealogy, by the independence of coalescence times under
the coalescent model,

fT3,T2(t3, t2|g) = fT3(t3|g) fT2(t2|g). (21)

Using Eqs. (1)–(3),

fT3,T2(t3, t2|g) =


3e−3t3−t2 if g = A, B, C
e−t3−t2

1 − e−td
1{t3<td} if g = D.

(22)

Considering all 12 choices of (g, i) with g = A, B, C,D and i = 1,
2, 3, the 12 cases in Eq. (18) evaluate to four possible quantities,
which we denote as follows:

E◦ =
1
6
θ(1 − p)(3td + 1) (23)

E× =
1
6
θ(1 − p)(3td + 7) (24)

E� =
1
2
θ(1 − p)


1 − (td + 1)e−td

1 − e−td


(25)

E√ =
1
2
θ(1 − p)


2td + 1 − (td + 1)e−td

1 − e−td


. (26)

Table 2 indicates which among the 12 integrals equal E◦, E×, E�,
and E√.

We can then insert the appropriate quantities from Eqs. (23)–
(26) into Eqs. (16) and (17) to obtain the 12 terms E[Z |g, Sw]

that appear in Eq. (14) (Table 3). This completes the derivation of
E[Z |g, Sw].

2.5.2. Derivation of P(g, Sw) in Eq. (14)
We obtain the probability P(g, Sw) by jointly considering the

marginal distribution of g and the conditional distribution of Sw

given a genealogical type G = g:

P(g, Sw) = P(g) P(Sw|g). (27)

The probability P(g) is given in Eq. (4). As in the derivation of
E[Xi − Yi|g], to compute P(Sw|g), we condition on the coalescence
times T3 and T2 and then integrate over their distributions:

P(Sw|g) =


∞

t2=0

 a

t3=0
P(Sw|t3, t2, g) fT3,T2(t3, t2|g) dt3 dt2, (28)
Table 3
The computation of E[Z |g, Sw] for g = A, B, C,D and w = 1, 2, 3. Each initial
expression is obtained using Eqs. (16) and (17), and then simplified using Eqs. (23)–
(26).

Quantity Initial expression Simplified expression

E[Z |A, S1]
E×

2E◦+E×

3td+7
9td+9

E[Z |B, S1]
E◦

2E◦+E×

3td+1
9td+9

E[Z |C, S1]
E◦

2E◦+E×

3td+1
9td+9

E[Z |D, S1]
E√

2E�+E√

2td+1−(td+1)e−td

2td+3−3(td+1)e−td

E[Z |A, S2]
E◦

2E◦+E×

3td+1
9td+9

E[Z |B, S2]
E×

2E◦+E×

3td+7
9td+9

E[Z |C, S2]
E◦

2E◦+E×

3td+1
9td+9

E[Z |D, S2]
E�

2E�+E√

1−(td+1)e−td

2td+3−3(td+1)e−td

E[Z |A, S3]
E◦+E×

2(2E◦+E×)

3td+4
9td+9

E[Z |B, S3]
E◦+E×

2(2E◦+E×)

3td+4
9td+9

E[Z |C, S3]
E◦

2E◦+E×

3td+1
9td+9

E[Z |D, S3]
E�+E√

2(2E�+E√)

(td+1)(1−e−td )

2td+3−3(td+1)e−td

where fT3,T2(t3, t2|g) is calculated with Eq. (22) and a is given in
Eq. (19). In principle, P(Sw|t3, t2, g) can be obtained by considering
the difference Y1 − Y2 and using Eq. (11):

P(S1|t3, t2, g)

=

∞
y1=0

∞
y2=y1+1

fSk(y1 − y2; h1(T; g) θp/2, h2(T; g) θp/2) (29)

P(S2|t3, t2, g)

=

∞
y2=0

∞
y1=y2+1

fSk(y1 − y2; h1(T; g) θp/2, h2(T; g) θp/2) (30)

P(S3|t3, t2, g) = fSk(0; h1(T; g) θp/2, h2(T; g) θp/2). (31)

In practice, the sums are unwieldy, and, instead of computing
them, we use a Monte Carlo approach to evaluate Eq. (28), as de-
scribed in Section 3. This completes the derivation of the expecta-
tion E[Z |θ, p, td] in Eq. (14).

2.5.3. Derivation of Var[Z |θ, p, td]
Var[Z |θ, p, td] is obtained as

Var[Z |θ, p, td] = E[Z2
|θ, p, td] − E[Z |θ, p, td]2, (32)

where E[Z |θ, p, td] has already been derived (Eq. (14)). It remains
to evaluate E[Z2

|θ, p, td].
As in the derivation of E[Z |θ, p, td], we obtain E[Z2

|θ, p, td] by
conditioning on the genealogical type g and the scenario Sw:

E[Z2
|θ, p, td]

=


g=A,B,C,D

3
w=1

E[Z2
|g, Sw, θ, p, td] P(g, Sw|θ, p, td). (33)

For g = A, B, C,D and w = 1, 2, 3,

E[Z2
|g, Sw, θ, p, td]

= Var[Z |g, Sw, θ, p, td] + E[Z |g, Sw, θ, p, td]2. (34)

We again suppress θ, p, and td. The probability P(g, Sw) in
Eq. (33) and the expectation E[Z |g, Sw] in Eq. (34) have already
been derived (Eqs. (27), (16), (17)). To obtain an expression for
Var[Z |g, Sw] in Eq. (34), we apply the same two approximations
used for obtaining E[Z |g, Sw] in Section 2.5.1. The first-order



68 L. Huang et al. / Theoretical Population Biology 87 (2013) 62–74
Taylor-series approximation for the variance Var[Z |g, Sw] (Casella
and Berger, 2001, p. 245) is followed by an additional approxima-
tion that disregards the dependence on Sw .

Applying the approximations, for g = A, B, C,D andw ∈ {1, 2},

Var[Z |g, Sw] = Var

 Xj − Yj
3

ℓ=1
(Xℓ − Yℓ)

 g, Sw



≈

 E[Xj − Yj|g, Sw]

E


3
ℓ=1

(Xℓ − Yℓ)|g, Sw




2

×


Var[Xj − Yj|g, Sw]

E[Xj − Yj|g, Sw]2
+

Var


3

ℓ=1
(Xℓ − Yℓ)|g, Sw



E


3

ℓ=1
(Xℓ − Yℓ)|g, Sw

2

−

2Cov


Xj − Yj,

3
ℓ=1

(Xℓ − Yℓ)|g, Sw



E[Xj − Yj|g, Sw] E


3

ℓ=1
(Xℓ − Yℓ)|g, Sw




≈

 E[Xj − Yj|g]

E


3

ℓ=1
(Xℓ − Yℓ)|g




2

×


Var[Xj − Yj|g]
E[Xj − Yj|g]2

+

Var


3

ℓ=1
(Xℓ − Yℓ)|g



E


3

ℓ=1
(Xℓ − Yℓ)|g

2

−

2Cov


Xj − Yj,

3
ℓ=1

(Xℓ − Yℓ)|g



E[Xj − Yj|g] E


3

ℓ=1
(Xℓ − Yℓ)|g


 , (35)

where j = 3 − w. For g = A, B, C,D and w = 3,

Var[Z |g, Sw]

= Var

B
X2 − Y2

3
ℓ=1

(Xℓ − Yℓ)

+ (1 − B)
X1 − Y1

3
ℓ=1

(Xℓ − Yℓ)

 g, Sw



= E


B

X2 − Y2
3

ℓ=1
(Xℓ − Yℓ)

+ (1 − B)
X1 − Y1

3
ℓ=1

(Xℓ − Yℓ)


2 g, Sw



− E

B
X2 − Y2

3
ℓ=1

(Xℓ − Yℓ)

+ (1 − B)
X1 − Y1

3
ℓ=1

(Xℓ − Yℓ)

 g, Sw


2

. (36)
Because B is Bernoulli, B2
= B, (1−B)2 = (1−B), and B(1−B) = 0.

Using the independence of B from the imputation accuracy Z , we
can simplify Eq. (36) to

Var[Z |g, S3] =
1
2

Var

 X2 − Y2
3

ℓ=1
(Xℓ − Yℓ)

 g, S3



+Var

 X1 − Y1
3

ℓ=1
(Xℓ − Yℓ)

 g, S3




+
1
4

E

 X2 − Y2
3

ℓ=1
(Xℓ − Yℓ)

 g, S3



− E

 X1 − Y1
3

ℓ=1
(Xℓ − Yℓ)

 g, S3




2

. (37)

When w = 1, Z = (X2 − Y2)/
3

ℓ=1(Xℓ − Yℓ), and when
w = 2, Z = (X1 − Y1)/

3
ℓ=1(Xℓ − Yℓ) (Eqs. (12) and (13)). As

we have elsewhere used an approximation that, conditional on a
genealogical type g , terms Xi − Yi do not depend on whether w
is equal to 1, 2, or 3 (Eqs. (16) and (17)), we here make a similar
approximation that, conditional on g, (Xi − Yi)/

3
ℓ=1(Xℓ − Yℓ)

does not depend on Sw . Thus, instead of conditioning on w = 3,
we can condition on w = 1 or w = 2. If w = 3 is replaced
with w = 1 for terms E[(X2 − Y2)/

3
ℓ=1(Xℓ − Yℓ)|g, Sw] and

Var[(X2 − Y2)/
3

ℓ=1(Xℓ − Yℓ)|g, Sw], and with w = 2 for terms
E[(X1 −Y1)/

3
ℓ=1(Xℓ −Yℓ)|g, Sw] and Var[(X1 −Y1)/

3
ℓ=1(Xℓ −

Yℓ)|g, Sw], we obtain

Var[Z |g, S3] ≈
Var[Z |g, S1] + Var[Z |g, S2]

2

+
(E[Z |g, S1] − E[Z |g, S2])

2

4
. (38)

This approximation reduces Var[Z |g, S3] to simpler computations
conditional on S1 and S2.

In Eq. (35), for g = A, B, C,D and i = 1, 2, 3, the expectation
E[Xi − Yi|g] is computed using Eqs. (18)–(19), and the variance
Var[Xi − Yi|g] can be found using the conditional variance iden-
tity (Casella and Berger, 2001, p. 167). Applying the identity, con-
ditioning on the coalescence times T3 and T2, and integrating over
the coalescence-time distributions, we have

Var[Xi − Yi|g] = E[Var[Xi − Yi|t3, t2, g]]
+Var[E[Xi − Yi|t3, t2, g]]

=


∞

t2=0

 a

t3=0
Var[Xi − Yi|t3, t2, g]

× fT3,T2(t3, t2|g) dt3 dt2

+


∞

t2=0

 a

t3=0
(E[Xi − Yi|t3, t2, g]

− E[Xi − Yi|g])2 fT3,T2(t3, t2|g) dt3 dt2. (39)

In Eq. (39), the upper limit a of the inner integral is given in Eq. (19),
and the joint density function fT3,T2(t3, t2|g) is evaluated using
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Table 4
Variances of the number of untypedmutations Var[Xi−Yi|g], for genealogical types
g = A, B, C,D and branches i = 1, 2, 3. The definitions of V◦, V×, V� , and V√ – each
of which is a function of θ, p, and td – appear in Eqs. (41)–(44).

Genealogical type Branch
1 2 3

A V◦ V× V◦

B V× V◦ V◦

C V◦ V◦ V×

D V� V√ V�

Eq. (22). The formula for the variance of a Poisson random variable
gives,

Var[Xi − Yi|t3, t2, g] = E[Xi − Yi|t3, t2, g]
= hi(T; g) θ(1 − p)/2, (40)

where hi(T; g) appears in Table 1. Consequently, in Eq. (39), the
first term is E[Var[Xi − Yi|t3, t2, g]] = E[E[Xi − Yi|t3, t2, g]] =

E[Xi − Yi|g], which has already been obtained in Eq. (18).
For the second term in Eq. (39), the expectations E[Xi −

Yi|t3, t2, g] and E[Xi − Yi|g] are given in Eqs. (20) and (18),
respectively. Considering all 12 choices of (g, i)with g = A, B, C,D
and i = 1, 2, 3, the 12 cases in Eq. (39) evaluate to four possible
quantities:

V◦ =
1
6
θ(1 − p)(3td + 1) +

1
36

θ2(1 − p)2 (41)

V× =
1
6
θ(1 − p)(3td + 7) +

37
36

θ2(1 − p)2 (42)

V� =
1
2
θ(1 − p)


1 − (td + 1)e−td

1 − e−td



+
1
4
θ2(1 − p)2


1 − 2e−td − t2d e

−td + e−2td

1 − 2e−td + e−2td


(43)

V√ =
1
2
θ(1 − p)


2td + 1 − (td + 1)e−td

1 − e−td



+
1
4
θ2(1 − p)2


5 − 10e−td − t2d e

−td + 5e−2td

1 − 2e−td + e−2td


. (44)

Table 4 indicates which among the 12 integrals equal V◦, V×, V�,
and V√.

To complete the calculation of Var[Z |g, Sw], we compute the
covariance Cov(Xj − Yj,

3
ℓ=1(Xℓ − Yℓ)|g) in Eq. (35). For any

genealogy, conditional on the coalescence times T3 and T2, (Xi−Yi)
and (Xj − Yj) are independent for any i and jwith j ≠ i. Then

Cov


Xj − Yj,

3
ℓ=1

(Xℓ − Yℓ)

 g


= Var[Xj − Yj|g], (45)

which has been obtained in Eq. (39).
For g = A, B, C,D, we obtain the eight terms Var[Z |g, S1]

and Var[Z |g, S2] in Eq. (33) by inserting the appropriate quantities
from Eqs. (23)–(26) and (41)–(44) into Eq. (35). We obtain the
remaining four terms Var[Z |g, S3] using Eq. (38) (Table 5). The
resulting quantities are unwieldy, and we do not list the full
expressions for Var[Z |g, Sw]. This completes the derivation of
E[Z2

|θ, p, td] and thus of Var[Z |θ, p, td].

3. Methods of computation and simulation

To calculate the expectation E[Z |θ, p, td] (Eq. (14)), we com-
puted E[Z |g, Sw, θ, p, td] using Eqs. (16) and (17). We obtained
Table 5
The computation of Var[Z |g, Sw] for g = A, B, C,D and w = 1, 2, 3. Each initial
expression is obtained using Eqs. (35) and (38), and then simplified using Eqs.
(23)–(26) and (41)–(44). We omit the simplified expressions, as they are unwieldy.

Quantity Initial expression

Var[Z |A, S1]


E×

2E◦+E×

2 V×

E2
×

+
2V◦+V×

(2E◦+E×)2
−

2V×

E×(2E◦+E×)


Var[Z |B, S1]


E◦

2E◦+E×

2
V◦

E2◦
+

2V◦+V×

(2E◦+E×)2
−

2V◦

E◦(2E◦+E×)


Var[Z |C, S1]


E◦

2E◦+E×

2
V◦

E2◦
+

2V◦+V×

(2E◦+E×)2
−

2V◦

E◦(2E◦+E×)


Var[Z |D, S1]


E√

2E�+E√

2 V√

E2√
+

2V�+V√

(2E�+E√)2
−

2V√

E√(2E�+E√)


Var[Z |A, S2]


E◦

2E◦+E×

2
V◦

E2◦
+

2V◦+V×

(2E◦+E×)2
−

2V◦

E◦(2E◦+E×)


Var[Z |B, S2]


E×

2E◦+E×

2 V×

E2
×

+
2V◦+V×

(2E◦+E×)2
−

2V×

E×(2E◦+E×)


Var[Z |C, S2]


E◦

2E◦+E×

2
V◦

E2◦
+

2V◦+V×

(2E◦+E×)2
−

2V◦

E◦(2E◦+E×)


Var[Z |D, S2]


E�

2E�+E√

2
V�

E2�
+

2V�+V√

(2E�+E√)2
−

2V�

E�(2E�+E√)


Var[Z |A, S3]

Var[Z |A,S1]+Var[Z |A,S2]

2 +
(E[Z |A,S1]−E[Z |A,S2])2

4

Var[Z |B, S3]
Var[Z |B,S1]+Var[Z |B,S2]

2 +
(E[Z |B,S1]−E[Z |B,S2])2

4

Var[Z |C, S3]
Var[Z |C,S1]+Var[Z |C,S2]

2 +
(E[Z |C,S1]−E[Z |C,S2])2

4

Var[Z |D, S3]
Var[Z |D,S1]+Var[Z |D,S2]

2 +
(E[Z |D,S1]−E[Z |D,S2])2

4

Monte Carlo estimates of P(Sw|g, θ, p, td) included in the expres-
sion for P(g, Sw|θ, p, td), using 105 draws from the Skellam distri-
bution defined in Eq. (11). Each of these drawswas obtained by first
sampling t3 and t2 from their respective distributions, conditional
on g (and td). Next, we evaluated the difference between two simu-
lated Poisson randomvariables,with parameters h1(T; g) θp/2 and
h2(T; g) θp/2, respectively. These Poisson variates were sampled
using the GNU Scientific Library function gsl_ran_Poisson.
Thus, the expectation was obtained using three approximations: a
Taylor approximation, an approximation that disregards a depen-
dence on Sw , and a Monte Carlo approximation for integrals asso-
ciated with the Skellam distribution.

The computation of the variance Var[Z |θ, p, td] used some
of the same approximations used in evaluating the mean
E[Z |θ, p, td]. The variance computation incorporated the two steps
of approximation for E[Z |g, Sw, θ, p, td]. Additionally, the same
Monte Carlo samples of P(Sw|g, θ, p, td) employed in evaluating
the mean were used in the variance computation. Beyond the
Taylor approximation and omission of the conditioning on Sw that
were required in obtaining the mean, the variance computation
applied corresponding approximations in obtaining E[Z2

|g, Sw,

θ, p, td].
Given θ, p, and td, we also performed stochastic simulations

under the coalescent to estimate the mean and the variance of the
imputation accuracy by summing over all simulations, employing
Monte Carlo integration as described in Box 2 with M = 105

simulation replicates. To verify the expressions for E[Z |θ, p, td]
and Var[Z |θ, p, td] in Eqs. (14) and (32), we then compared the
simulated means and variances of the imputation accuracy to our
formula-based estimates.

Fig. 3 shows the mean and the variance of the imputation
accuracy computed both using our formulas and using the simu-
lations. For the parameter values that we considered, the theoret-
ical approximations of E[Z |θ, p, td] obtained using Eq. (14) closely
match the simulated mean imputation accuracy (Fig. 3, top row).
Except when θ is small and p is large, the theoretical estimates of
Var[Z |θ, p, td] obtained using Eq. (32) closely match the simulated
variances (Fig. 3, bottom row).
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Fig. 3. Mean and variance of imputation accuracy as functions of the mutation parameter θ and the proportion p of polymorphic sites that are genotyped in the target. (A)
Mean imputation accuracy obtained by Eq. (14). (B) Mean imputation accuracy obtained using the simulation algorithm in Box 2. (C) The difference between (A) and (B). (D)
Variance of imputation accuracy obtained by Eq. (32). (E) Variance of imputation accuracy obtained using the simulation algorithm in Box 2. (F) The difference between (D)
and (E). For all plots, td is fixed at 0.1. In part (D), values of the approximate theoretical variance that exceed 1 are set to 1.
Box 2. Simulation algorithm for estimating E[Z |θ, p, td] and
Var[Z |θ, p, td]

1. Set parameter values for θ , p, and td .
2. Form = 1 toM:
(a) Generate a genealogical type G using a uniformly distributed random

variable U ∼ Uniform(0, 1). If u < 1 − e−td , set g = D. Otherwise,
generate u′ from Uniform(0, 1), independently of u. Set g = A if
u′

∈ (0, 1/3), g = B if u′
∈ [1/3, 2/3), and g = C if u′

∈ [2/3, 1).
(b) Generate a coalescence time T2 ∼ Exp(1).
(c) If g ∈ {A, B, C}, generate a coalescence time T3 ∼ Exp(3). Otherwise,

generate T3 from the probability density function in eq. 3.
(d) For i = 1, 2, 3, generate a total number of mutations Xi ∼

Poisson(hi(T; g) θ/2) on branch i, where T = (t3, t2, td) and hi(T; g)
is specified in Table 1.

(e) For i = 1, 2, 3, given Xi , sample the number of mutations on branch i
that are genotyped in the target as Yi|Xi = xi ∼ Binomial(xi, p).

(f) If
3

i=1(xi − yi) = 0, return to (a); otherwise, continue.
(g) If y1 − y2 < 0 (i.e., if d1 < d2), compute z(m) =

x2−y23
ℓ=1(xℓ−yℓ)

.

(h) If y1 − y2 > 0 (i.e., if d2 < d1), compute z(m) =
x1−y13

ℓ=1(xℓ−yℓ)
.

(i) If y1 − y2 = 0 (i.e., if d1 = d2), generate B ∼ Bernoulli(1/2). Compute
z(m) =

x2−y23
ℓ=1(xℓ−yℓ)

if b = 1 and z(m) =
x1−y13

ℓ=1(xℓ−yℓ)
if b = 0.

3. Compute the sample mean z̄ =
1
M

M
m=1 z(m) and the sample variance

s2 =
1

M−1

M
m=1(z(m) − z̄)2 that respectively represent simulation-

based estimates of E[Z |θ, p, td] and Var[Z |θ, p, td].

4. The role of the parameters

As the formulas in Eqs. (14) and (32) provide reasonable approx-
imations to the mean and the variance of the imputation accuracy,
we next examined the effects of the parameters on the mean and
the variance.
4.1. The mutation parameter θ

Fig. 4(A) shows themean imputation accuracy as a function of θ ,
demonstrating that, for each of three nonzero choices of p at a fixed
td, the mean imputation accuracy increases with θ . As θ increases,
more mutations are likely to occur, and more sites are genotyped
in the target. Consequently, the genotyped sites are less likely
to suggest a misleading closer relationship between the target
sequence and one reference sequence when the other reference
is in fact more genetically similar to the target. The probability
of making an incorrect decision with the genotyped sites, and
subsequently using the reference sequence that has larger pairwise
distance to the target sequence, decreases with increasing θ .

When p = 0, no sites are genotyped in the target, and no in-
formation exists for deciding which reference sequence is geneti-
cally more similar to the target. Each reference sequence might be
selected with equal probability, independent of θ , and the mean
imputation accuracy does not depend on θ .

For fixed p and td, the variance of imputation accuracy decreases
with increasing θ (Fig. 5(A)). An increase in θ increases the num-
ber of polymorphic sites that need to be imputed in the target, in-
creasing the sample size for the imputation process, and thereby
producing a smaller variance in imputation accuracy (Fig. 5(A)).

4.2. The proportion p of polymorphic sites that are genotyped in the
target

For θ and td fixed, themean imputation accuracy increases with
increasing p (Fig. 4(B)). As in the case of θ , increasing p increases the
number of polymorphic sites available in the target for identifying
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Fig. 4. Mean imputation accuracy for various values of the mutation parameter θ and the proportion p of polymorphic sites that are genotyped in the target sequence. For
td fixed at 0.1, we obtained E[Z |θ, p, td] using Eq. (14). (A) Mean imputation accuracy as a function of θ for fixed values of p. (B) Mean imputation accuracy as a function of
p for fixed values of θ . The values plotted in both panels are extracted from Fig. 3(A).
Fig. 5. Variance of imputation accuracy for various values of the mutation parameter θ and the proportion p of polymorphic sites that are genotyped in the target sequence.
For td fixed at 0.1, we obtained Var[Z |θ, p, td] using Eq. (32). (A) Variance of imputation accuracy as a function of θ for fixed values of p. (B) Variance of imputation accuracy
as a function of p for fixed values of θ . The values plotted in both panels are extracted from Fig. 3(D).
the reference sequence that it most closely resembles. Thus, an
increase in p increases the probability that the more appropriate
of the two reference sequences is identified.

Unlike in the case of θ , the variance of imputation accuracy
increases with increasing p (Fig. 5(B)). Increasing p reduces the
number of polymorphic sites imputed in the target sequence,
decreasing the sample size for the imputation process, and thereby
producing a larger variance in imputation accuracy (Fig. 5(B)).

4.3. The divergence time td

Fig. 6 shows the mean imputation accuracy as a function of
td for different values of θ and p. Both for θ fixed and for p
fixed, the mean imputation accuracy increases as td increases.
Increasing td enables more mutations to accumulate along branch
2 of the genealogy, increasing the probability that references R1
and R2 differ substantially in their similarity to target I . The sites
genotyped in I are then more likely to correctly identify the more
suitable reference sequence to serve as an imputation template,
and thus, to lead to a greater imputation accuracy.

The variance of imputation accuracy exhibits a slight decrease
as a function of td, for fixed θ and p (Fig. 7). Increasing td lengthens
the genealogy of the three sequences, so that more mutations
occur along its branches. The larger number of polymorphic sites
then leads to a greater sample size in the imputation process, and
consequently, to a smaller variance in imputation accuracy.
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Fig. 6. Mean imputation accuracy as a function of divergence time td . For fixed values of θ and p, we obtained E[Z |θ, p, td] using Eq. (14). (A) Mean imputation accuracy as
a function of td for fixed values of p, with θ = 1. (B) Mean imputation accuracy as a function of td for fixed values of θ , with p = 0.1.
Fig. 7. Variance of imputation accuracy as a function of divergence time td . For fixed values of θ and p, we obtained Var[Z |θ, p, td] using Eq. (32). (A) Variance of imputation
accuracy as a function of td for fixed values of p, with θ = 1. (B) Variance of imputation accuracy as a function of td for fixed values of θ , with p = 0.1.
4.4. Expected gain in imputation accuracy from the use of an internal
reference

Our numerical studies have found that the choice of parameter
values affects the choice of reference sequence, which in turn
affects the imputation accuracy. To assess the expected gain in
imputation accuracy in a target sequence by using R1 rather than
R2, we plotted simulated mean imputation accuracies in the target
for each of several scenarios with the reference sequence fixed
(Fig. 8(A)). We modified the simulation procedure, replacing steps
(g)–(i) by a single step, in which z(m) = (x2 − y2)/[

3
ℓ=1(xℓ − yℓ)]

is computed for the case in which R1 is used as the template and
z(m) = (x1 − y1)/[

3
i=1(xℓ − yℓ)] is computed if R2 is used. The

difference inmean accuracies between the imputations performed
using R1 and those performed using R2 is largely constant across a
wide range of values for θ and p (Fig. 8(B)).
Denote the expected difference in accuracy—mean imputation
accuracy based on R1 minus mean imputation accuracy based on
R2—by ∆td . Averaging across 40 mean differences, considering
(θ, p) with θ in {1, 2, . . . , 10} and p in {0, 0.1, 0.5, 0.9}, ∆0.1 has
mean 0.0829, and ∆0.01 has mean 0.0099. We can analytically
estimate this expected difference quite accurately using a simple
formula. In particular, ∆td can be computed by a weighted sum of
its conditional expectations given the four values of g , withweights
equal to the values of P(G = g|td). The cases g = A and g = B
are equiprobable, and differ only in that the roles of R1 and R2 are
exchanged in the genealogy. Thus, the contributions of these cases
to ∆td sum to 0. If g = C, R1 and R2 have the same genealogical
distance from the target I , and the value of ∆td is 0. Thus, only the
case when g = D contributes to the difference inmean imputation
accuracy between references R1 and R2.

For g = D, the fraction of sites imputed correctlywith reference
R1 is the fraction of sites due to mutations on branch 2, and
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Fig. 8. Simulated mean imputation accuracy for imputations separately performed using R1 and R2 as the reference sequence. (A) Mean imputation accuracies based on R1
and R2 , as a function of p. (B) The pointwise difference in (A) between mean imputation accuracies based on R1 and R2 , as a function of p. Each point relies on 105 simulation
replicates.
the fraction of sites imputed correctly with reference R2 is the
fraction of sites due to mutations on branch 1. As the expected
number of mutations on a branch is proportional to the branch
length, the expected proportion ofmutations that lie on branch 2 is
approximated by the ratio of the expected length of branch 2 to the
expected length of a genealogywith typeD. Similarly, the expected
proportion ofmutations that lie on branch1 is approximated by the
ratio of the expected lengths of branch 1 and the whole genealogy.
Thus, we obtain

∆td =
2E[T2|G = D, td] + 2td − 2E[T3|G = D, td]
2E[T2|G = D, td] + 2td + E[T3|G = D, td]

× P(G = D|td), (46)

where E[T2|G = D, td] and E[T3|G = D, td] are computed using
Eqs. (1) and (3), respectively, and where P(G = D|td) = 1− e−td is
given in Eq. (4). For any td ≥ 0, E[T2|G = D, td] = 1, and

E[T3|G = D, td] =

 td

0
t3

e−t3

1 − e−td
dt3 =

1 − (1 + td)e−td

1 − e−td
. (47)

We can simplify to obtain

∆td =
2td(1 − e−td)

2td + 3(1 − e−td − tde−td)
. (48)

Evaluating ∆td at td = 0.1 and td = 0.01, we have ∆0.1 = 0.0889
and ∆0.01 = 0.0099, close to the values observed in simulations.

Note that by definition of genealogical type D, td ≥ E[T3|G =

D, td]. Thus, it is easily seen that Eq. (48) is nonnegative, and use
of reference R1 always results in higher imputation accuracy in the
target, on average, than use of reference R2.

5. Discussion

This paper has introduced a theoretical framework for in-
vestigating the population-genetic factors that affect genotype-
imputation accuracy. Our framework includes a two-population
coalescent model for three sequences, as well as a mutation model
to account for stochasticity in themutation process and thus in the
choice of imputation template. Using the model, we have derived
approximate expressions for the expectation and variance of impu-
tation accuracy in the target sequence using a reference sequence
chosen on the basis of genetic similarity to the target at genotyped
positions.

In measuring imputation accuracy as the proportion of poly-
morphic sites that are missing but subsequently imputed correctly
in the target sequence, we found that the mean imputation accu-
racy increases with increasing θ, p, and td. We also observed that
the variance in imputation accuracy decreases with increasing θ
and td but increases with increasing p. Additionally, we found that,
under the model, the expected gain in accuracy when reference R1
rather than reference R2 is used as a template for imputing the tar-
get sequence can be accurately predicted by a formula relating the
expected difference in imputation accuracy to the expected differ-
ence in branch lengths of R1 and R2 (Eqs. (46) and (48)).

Our results on trends in mean imputation accuracy can be
explained intuitively by considering the amount of information
available for determiningwhich of the two reference sequences, R1
or R2, is genetically more similar to the target sequence. For fixed
p and td, examining genotypes in sequences with more mutations
(greater θ ) increases the probability that the reference sequence
that is genetically more similar to the target at typed and untyped
markers alike can be identified. For fixed θ and td, increasing the
proportion p of sites genotyped has a similar effect. For fixed θ
and p, increasing the divergence time td increases the relative
similarity of the internal rather than external reference sequence
to the target. For all three parameters, an increase in the probability
of correctly identifying the genetically more similar reference
sequence leads to an increase in mean imputation accuracy.

The results have implications for empirical studies of imputa-
tion. First, the model develops a framework for simultaneously
considering the roles of θ, p, and td in the design of an imputation
study. To maximize imputation accuracy, investigators might se-
lect a higher value of p in low-θ genomic regions than elsewhere in
the genome. In examining target populations for which reference
sequences are unavailable, the value of td to a reference population
has a substantial influence on imputation accuracy. Themodel pro-
vides a perspective in which the increases in imputation accuracy
from increasingmarker density in a sample (increasing p) and from
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development of amore appropriate reference panel (decreasing td)
can be compared in terms of their relative cost.

We note that, because of the complexity of the computations,
we restricted our attention to a simple demographic model, with
only two reference sequences.We have assumed a straightforward
imputation scheme that copies an entire genomic region of interest
in a template reference sequence into the corresponding positions
in the target sequence, rather than allowing different templates
in different genomic regions. Further, the reference sequences
are assumed to be fully known without error. Each of these
assumptions does not account for the full complexity of practical
studies in human populations. Nevertheless, the simplicity of
our modeling framework has enabled us to study patterns of
imputation accuracy that provide insights into how individual
population-genetic factors influence imputation accuracy. These
insights, alongwith the complementary coalescentmodel of Jewett
et al. (2012) on large samples but without mutation, can help
contribute to further development of advanced strategies for the
design of imputation-based association studies in humans and
other organisms.
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