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ABSTRACT The potential for imputed genotypes to enhance an analysis of genetic data depends largely on the accuracy of
imputation, which in turn depends on properties of the reference panel of template haplotypes used to perform the imputation. To
provide a basis for exploring how properties of the reference panel affect imputation accuracy theoretically rather than with
computationally intensive imputation experiments, we introduce a coalescent model that considers imputation accuracy in terms of
population-genetic parameters. Our model allows us to investigate sampling designs in the frequently occurring scenario in which
imputation targets and templates are sampled from different populations. In particular, we derive expressions for expected imputation
accuracy as a function of reference panel size and divergence time between the reference and target populations. We find that
a modestly sized “internal” reference panel from the same population as a target haplotype yields, on average, greater imputation
accuracy than a larger “external” panel from a different population, even if the divergence time between the two populations is small.
The improvement in accuracy for the internal panel increases with increasing divergence time between the target and reference
populations. Thus, in humans, our model predicts that imputation accuracy can be improved by generating small population-specific
custom reference panels to augment existing collections such as those of the HapMap or 1000 Genomes Projects. Our approach can
be extended to understand additional factors that affect imputation accuracy in complex population-genetic settings, and the results
can ultimately facilitate improvements in imputation study designs.

GENOTYPE imputation is the estimation of genotypes at
untyped markers using patterns of haplotype structure

(Halperin and Stephan 2009; Li et al. 2009; Marchini and
Howie 2010). Imputation is a powerful tool in modern ge-
netic studies. It is routinely used to increase the fraction of
the genome covered in genome-wide association studies
(GWAS) conducted in human populations, thereby increas-
ing power to detect risk variants through linkage disequilib-
rium (LD) mapping (Marchini et al. 2007; Becker et al.
2009; Hao et al. 2009; Spencer et al. 2009; Li et al. 2010).
Imputation based on a shared set of markers in data sets
genotyped on different platforms enables large-scale meta-
analyses (Barrett et al. 2008; de Bakker et al. 2008; Zeggini
et al. 2008). In sequencing studies of rare variation, im-
putation can improve the accuracy of genotype calls from

sequencing reads (Li et al. 2010, 2011), and power for rare-
variant tests of association can be increased by augmenting
sequence data with imputed samples (Zawistowski et al. 2010).

Imputation procedures generally involve a set of target
samples in which genotypes will be imputed, a reference
panel of phased haplotypes from which genotypes are
copied, and an algorithm for the copying procedure. Each
target sample is genotyped for single-nucleotide polymor-
phisms (SNPs) whose genotypes serve as a scaffold for more
complete haplotypes. Reference samples are more densely
genotyped than the target samples, and might even be fully
sequenced. Imputation algorithms typically employ a com-
putationally intensive hidden Markov model that uses
genotypes from the SNP scaffold of a target sample to
choose haplotypes from the reference panel that are most
similar (Scheet and Stephens 2006; Browning and Browning
2007; Marchini et al. 2007; Purcell et al. 2007; Li et al.
2010). Genotypes are then imputed in the target by locally
copying reference haplotypes that provide the best match.

Analyses of the imputed genotypes, such as in marker-
based association tests, depend on imputation accuracy
(Huang et al. 2009b), which in turn depends on numerous
factors, including the haplotypic diversity of the target
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population, the size of the reference panel, and the genetic
similarity of the reference and target individuals (Huang
et al. 2009a, 2011; Browning and Browning 2009; Interna-
tional HapMap3 Consortium 2010; Jostins et al. 2011).
Therefore, when performing imputation, and when prospec-
tively designing imputation-based studies, it is important
to understand how sampling approaches and population
parameters affect imputation accuracy.

Currently, imputation accuracy is generally assessed by
experiments on real or simulated data, in which known
genotypes are masked, imputed, and compared to their true
values. A thorough analysis of the effect of study design
variables on imputation accuracy requires many experi-
ments, a computationally expensive task that restricts the
number of parameter combinations that can be tested. An
alternative strategy is to develop a theoretical model that
incorporates the study design variables as parameters and
permits analytical calculations of imputation accuracy as
a function of these variables. Such a model could enable
faster predictions of imputation accuracy across a wider
range of study designs than use of the empirical method.
Moreover, analytical expressions for imputation accuracy as
a function of model parameters can facilitate an intuitive
understanding of the relationship between imputation accu-
racy and features of empirical studies.

In this article, we introduce a coalescent-based theoret-
ical model of imputation. We consider a single target
haplotype to be imputed for untyped markers and a refer-
ence panel of haplotypes, of which one will be chosen as the
template for imputation. Our model relies on the premise
that for a given target haplotype, an imputation algorithm
ideally chooses as a template the reference haplotype whose
number of sequence differences from the target is smallest.
We take from the reference panel the haplotype with the
closest genealogical history to the target, in terms of
coalescence time, to serve as the template; this haplotype
will have, on average, the fewest sequence differences from
the target. By selecting the template haplotype in this way,
our model mimics existing imputation approaches that
attempt to select the haplotype, or set of haplotypes, with
the closest genealogical relationship to the target (Pasaniuc
et al. 2010; Howie et al. 2011). Under our imputation
scheme, we quantify imputation accuracy as a function of
reference panel size and demographic parameters for the
populations containing the target and reference haplotypes.

The flexibility of the coalescent framework enables com-
plex population-genetic models to be considered. Here, we
use the model to investigate imputation-based study designs
in the age of next-generation sequencing. In practice,
researchers have typically relied on large, publicly available
data sets to serve as reference panels. Although public panels
are easily accessible and often result in sufficient imputation
accuracy, the haplotypes available often derive from a differ-
ent population than the study sample in which genotypes are
imputed. Advances in sequencing technology now permit the
creation of custom reference panels that contain genome

sequences of individuals from the same source population as
the study sample—perhaps even a subset of the study sample
itself. Custom panels, however, will likely be smaller than
public panels, owing to the sequencing cost required to create
them. It is therefore of interest to determine the practical
utility of custom panels by assessing the improvement in im-
putation accuracy for either replacing a public panel with
a potentially smaller custom panel or augmenting the public
panel with custom reference haplotypes.

Using our coalescent framework, we address this ques-
tion by considering two potential reference panels for
imputation in the same target population. The first is an
“internal” reference panel of haplotypes drawn from the
target population and is meant to represent a custom panel.
The second is an “external” reference panel of haplotypes
from a distinct population, such as one included in a public
database. Our model predicts that an internal reference
panel, even when considerably smaller than an existing ex-
ternal reference panel, nearly always improves imputation
accuracy. We examine the dependence of this improvement
on the relative sizes of the two panels and on demographic
parameters such as divergence times and population growth
rates. Our results suggest that in practice, augmenting an
existing external reference panel (1000 Genomes, for exam-
ple) with even relatively few haplotypes from the study pop-
ulation of interest can improve genotype imputation.

Overview of the Model

We use a coalescent framework to model genotype imputa-
tion at a nonrecombining genetic locus intended to repre-
sent a short region along a chromosome. We assume that
genotypes for a single target haplotype T will be imputed.
We define a reference panel to be a set of sequenced or
densely genotyped haplotypes that does not include T.
One haplotype from the reference panel will be chosen as
an imputation template, and alleles from the template hap-
lotype will be copied onto T. Assuming that mutations accu-
mulate in proportion to time, the reference haplotypes with
the fewest sequence differences from T are the descendants
of the lineage with which T first coalesces. Under this
assumption— which holds in expectation under the infinitely
many-sites model (e.g., Wakeley 2008)—an imputation al-
gorithm that always selects the haplotype in the reference
panel with the fewest sequence differences from T (or one
such haplotype in case of a tie) is equivalent to the algorithm
choosing the reference haplotype with the closest genealog-
ical history to T. Thus, when predicting the accuracy pro-
duced by a reference panel, to a first approximation, it is
reasonable to use a model that considers only coalescence
times, rather than a more complete model with stochastic
mutations. As we will see, considering only coalescence
times is desirable because it makes analytical computations
simple, fast, and straightforward to interpret.

By including haplotypes from multiple reference panels
in our model, we can compare the performance of reference
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panels from different populations. Here, we consider a sce-
nario with two possible reference panels for imputing T. The
first is an internal reference panel consisting of n1 haplo-
types sampled from the same population as T. The second
is an external reference panel consisting of n2 haplotypes
sampled from a distinct population. Defining the “optimal
panel” as that which produces the highest accuracy for im-
puting T, we compute the probability of optimality for both
the internal and external reference panels and quantify the
gain in imputation accuracy obtained by using the optimal
rather than the suboptimal panel.

We model the genealogical history of T and the reference
haplotypes using a two-population coalescent model of di-
vergence (Takahata and Nei 1985; Rosenberg 2003) (Figure
1A). The two populations are labeled 1 and 2, and T is
sampled from population 1. The populations diverged from
an ancestral population at time tD in the past, and no mi-
gration has occurred between the descendant populations.
Therefore, more recently than the divergence time (t , tD),
a lineage can coalesce only with other lineages from the
same population. This assumption is reasonable for pairs
of populations that are geographically isolated. More an-
ciently than the split (t . tD), all remaining lineages are
assumed to belong to a homogeneous ancestral population,
and any two lineages are allowed to coalesce. We assume
effective population sizes of N1 diploid individuals for pop-
ulation 1, N2 for population 2, and NA for the ancestral
population.

At time t = 0, corresponding to the present, n1 reference
haplotypes in addition to the single target haplotype T are
sampled from population 1, and n2 reference haplotypes are
sampled from population 2. The divergence time tD and the
panel sizes n1 and n2 are treated as model parameters. We
refer to a lineage with descendants only in population 1 as
a lineage of type 1. Similarly, a lineage with descendants
only in population 2 has type 2, and a lineage with descend-
ants in both populations has type 1–2. We assume that

among available reference haplotypes, the optimal tem-
plates for imputing T are the descendants of the lineage with
which T first coalesces. Thus, the internal reference panel is
optimal if T first coalesces with a lineage of type 1 and the
external panel is optimal if T first coalesces with a lineage of
type 2. If T first coalesces with a lineage of type 1–2, then
the two reference panels are equally appropriate, and we
say that both are optimal.

Model

We use our coalescent model of genotype imputation to
compute the probability of optimality for each reference
panel and to quantify differences in imputation accuracy
between potential reference panels. For the problem of
imputing the target T, we first derive the probability of op-
timality for an internal reference panel of n1 haplotypes and
for an external reference panel of n2 haplotypes, sampled
from populations with a divergence time of tD (in units of
2NA generations). Let C1 be the event that T first coalesces
with a lineage of type 1, let C2 be the event that T first
coalesces with a lineage of type 2, and let C12 be the event
that T first coalesces with a lineage of type 1–2. From our
definition of optimality, it follows that ℙ(C1), the probability
that the target T first coalesces with a lineage of type 1, is
the probability that the internal reference panel is optimal
for imputing T. Similarly, ℙ(C2) is the probability that the
external reference panel is optimal, and ℙ(C12) is the prob-
ability that the two reference panels are both optimal, with
equal expected imputation accuracy.

In the case that exactly one reference panel is optimal, it
is of interest to quantify the improvement in imputation
accuracy achieved by using the optimal as opposed to the
suboptimal reference panel. Assuming that mutations follow
a Poisson process, under the infinitely many-sites model, the
expected number of sites incorrectly imputed in T is propor-
tional to the coalescence time between the target and the

Figure 1 Two-population coalescent model for imputa-
tion reference panel selection. (A) Two populations, la-
beled 1 and 2, of sizes N1 and N2 diploid individuals,
diverge from an ancestral population of size NA at time
tD. A single haplotype T for which genotypes at untyped
markers are to be imputed is sampled from population 1.
We consider two possible reference panels for imputing T:
an internal reference panel of n1 haplotypes sampled from
population 1 and an external reference panel of n2 hap-
lotypes sampled from population 2. If T first coalesces with
a type 1 lineage (blue), then the internal panel is optimal
for imputing T (event C1). The external panel is optimal
(event C2) if T first coalesces with a lineage of type 2 (red).
Finally, if T first coalesces with a type 1–2 lineage (orange),
then the two reference panels are equivalent (event C12).

(B) To compute the probability of optimality for each reference panel, we condition on D (the event that T coalesces before the divergence), the
quantities iD and jD (the numbers of lineages originating in populations 1 and 2, respectively, that remain at the time of divergence), and iC, jC, and kC
(the numbers of type 1, type 2, and type 1–2 lineages remaining at the instant when T first coalesces). In the realization pictured, T does not coalesce
before the divergence time (event Dc) and iD ¼ 3, jD ¼ 2, iC ¼ 2, and jC ¼ kC ¼ 1. Because T first coalesces with a type 1–2 lineage (event C12), the two
reference panels are equivalent for imputing T.
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imputation template; the sites that produce imputation
errors are precisely those sites at which mutations occur
on either the target or the template branch more recently
than their coalescence. Expected imputation accuracy for
a given reference panel can then be quantified by the
expected time that T first coalesces with a haplotype from
the panel. We now derive several measurements of imputa-
tion error to evaluate the difference in imputation accuracy
between the internal and external panels.

Reference panel optimality probabilities

We consider two approaches for obtaining optimality probabil-
ities, a closed-form computation and a recursive computation.

Closed-form computation: Let C1, C2, and C12, respectively,
be the events that the internal reference panel is optimal for
imputing T, the external panel is optimal, and the two pan-
els are equally appropriate. To compute the probabilities for
each of these events, we partition the coalescent model into
three components: (1) the events in population 1 more re-
cent than the divergence from the ancestral population, (2)
the events in population 2 more recent than the divergence,
and (3) the events in the ancestral population (Figure 1B).
Because we assume that no migration occurs between pop-
ulations 1 and 2, the coalescent processes in populations 1
and 2 in the period more recent than the divergence are
independent. Conditional on the numbers of lineages remain-
ing from populations 1 and 2 at the divergence time, the
coalescence events in the ancestral population are indepen-
dent of the events that occur more recently than the diver-
gence time.

First, we consider the genealogy of haplotypes in
population 1 from the present back to the divergence time
tD. Define D to be the event that lineage T coalesces more
recently than tD and Dc to be the event that T does not
coalesce by tD. Note that if T coalesces before tD, then the
lineage with which it first coalesces can have descendants
only in population 1 and must therefore have type 1. It
follows that if event D occurs, then C1 also occurs, so that
ℙ(C1, D) = ℙ(D). If, however, T does not coalesce before the
divergence time, then it enters the ancestral population,
where it can also coalesce with lineages of types 2 and
1–2. In this scenario, to identify the optimal reference panel,
we must consider the coalescence events in population 2
and the ancestral population.

The coalescent process in the ancestral population de-
pends on the numbers of lineages from populations 1 and 2
that survive at the divergence time. Let iD, 1 # iD # n1, de-
note the number of lineages from population 1 (other than T)
that survive to enter the ancestral population at the diver-
gence time tD (Figure 1B). Similarly, let jD, 1# jD # n2, be the
number of lineages from population 2 that survive at the di-
vergence time. Because the coalescent processes in popula-
tions 1 and 2 are independent, jD is independent of both iD
and D.

By conditioning on the number of lineages from each
population remaining at the divergence time tD, we can
write the quantity ℙ(C1) as

ℙðC1Þ ¼ ℙðC1;DÞ þ ℙðC1;DcÞ
¼ ℙðDÞ þ Pn1

iD¼1

Pn2

jD¼1
ℙðC1;Dc; iD; jDÞ

¼ ℙðDÞ þ Pn1

iD¼1

Pn2

jD¼1
ℙðC1jDc; iD; jDÞℙðDc; iD; jDÞ

  ¼ ℙðDÞ þ Pn1

iD¼1

Pn2

jD¼1
ℙðC1jDc; iD; jDÞℙðDc; iDÞhn2; jDðtD;N2Þ;

(1)

where the last equality follows from independence between
populations 1 and 2 and hn,ℓ(t; N) is the probability that n
lineages sampled from a diploid population with effective
size N coalesce down to ℓ lineages at time t. Tavaré (1984)
demonstrated that

hn;ℓðt;NÞ ¼
Xn
m¼ ℓ

ð2m2 1Þð21Þm2ℓℓðm21Þn½m�
ℓ!ðm2 ℓÞ!nðmÞ

e
2
�m
2

�
tNA=N

;

(2)

where n[m] = n(n21) ⋯ (n 2 m + 1), n(m) = n(n + 1) ⋯
(n + m 2 1), and the factor of NA/N in the exponent is due
to the fact that time is measured in units of 2NA generations.

To obtain the probability ℙ(Dc, iD), let Aℓ
nðt;NÞ be the

event that n lineages in a diploid population of effective
size N coalesce down to ℓ lineages at time t. Define In,ℓ,
where

In;ℓ ¼
�
n
2

� �
n21
2

�
⋯
�
ℓþ 1
2

�
¼ n!ðn2 1Þ!

2n2ℓℓ!ðℓ2 1Þ!; (3)

is the number of ways that n lineages can coalesce to ℓ
lineages (e.g., Rosenberg 2003). Then ℙ(Dc, iD) is derived
by noting that for Dc and iD to both occur, the n1 + 1 total
lineages originating in population 1 must coalesce to iD + 1
lineages at the divergence time tD. This can occur in
In1þ1;iDþ1 ways. In In1;iD of these, the n1 reference haplotypes
coalesce to iD lineages without T also coalescing. Thus,

ℙðDc; iDÞ ¼ ℙðDc;AiDþ1
n1þ1ðtD;N1ÞÞ

¼ ℙðDcjAiDþ1
n1þ1ðtD;N1ÞÞℙðAiDþ1

n1þ1ðtD;N1ÞÞ

¼ In1;iD
In1þ1;iDþ1

  ℙðAiDþ1
n1þ1ðtD;N1ÞÞ

¼ iDðiD þ 1Þ
n1ðn1 þ 1Þ hn1þ1;iDþ1ðtD;N1Þ: (4)

The probability ℙ(Dc) is obtained by summing over all pos-
sible values of iD,

ℙðDcÞ ¼
Xn1

iD¼1

ℙðDc; iDÞ; (5)
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and the probability ℙ(D) in Equation 1 can be computed as

ℙðDÞ ¼ 12 ℙðDcÞ ¼ 12
Xn1

iD¼1

ℙðDc; iDÞ: (6)

The final term to derive in Equation 1, ℙ(C1|Dc, iD, jD), is the
probability that T first coalesces with a lineage of type 1 assum-
ing that, in addition to T, iD lineages from population 1 and jD
lineages from population 2 survive to the ancestral population.

To derive ℙ(C1|Dc, iD, jD) in closed form, let iC, jC, and kC
be the numbers of lineages of types 1, 2, and 1–2, respec-
tively, remaining at the instant when T first coalesces. The
probability ℙ(C1|Dc, iD, jD) is computed by summing over all
possible values of iC, jC, and kC,

ℙðC1jDc; iD; jDÞ ¼
XminfiD ; jDg

kC¼0

XiD2kC

iC¼dkC ;0

XjD2kC

jC¼dkC ;0

ℙðC1; iC; jC; kCjDc; iD; jDÞ; (7)

where da,b = 1 if a = b and da,b = 0 otherwise.
To derive the probability ℙ(C1, iC, jC, kC|Dc, iD, jD), let

N(iD, jD / iC, jC, kC) be the number of ways in which iD
lineages of type 1 and jD lineages of type 2 can coalesce
down to iC, jC, and kC lineages of types 1, 2, and 1–2, re-
spectively. Then ℙ(C1, iC, jC, kC|Dc, iD, jD) is given by

ℙðC1; iC; jC; kCjDc; iD; jDÞ ¼ NðiD; jD/iC; jC; kCÞiC
IiDþjDþ1;iCþjCþkC

: (8)

The quantity N(iD, jD / iC, jC, kC) is derived in the Appendix.
The probability of optimality for the external reference

panel, ℙ(C2), and the probability that the two reference
panels are equally optimal, ℙ(C12), are computed in a similar
manner to Equation 1. Because the occurrence of D implies
that the event C1 has also occurred, however, ℙ(C2, D) =
ℙ(C12, D) = 0. Thus, the probability that the external refer-
ence panel is optimal can be written as

ℙðC2Þ ¼
Xn1

iD¼1

Xn2

jD¼1

ℙðC2jDc; iD; jDÞℙðDc; iDÞhn2;jDðtD;N2Þ; (9)

and the probability that the two reference panels are both
optimal is

ℙðC12Þ ¼
Xn1

iD¼1

Xn2

jD¼1

ℙðC12jDc; iD; jDÞℙðDc; iDÞhn2;jDðtD;N2Þ:

(10)

The closed-form expressions for ℙ(C2|Dc, iD, jD) and
ℙ(C12|Dc, iD, jD) in Equations 9 and 10 are similar to Equa-
tions 7 and 8. For ℙ(C2|Dc, iD, jD), we compute

ℙðC2jDc; iD; jDÞ ¼
XminfiD ;jDg

kC¼0

XiD2kC

iC¼dkC ;0

XjD2kC

jC¼dkC ;0

ℙðC2; iC; jC; kCjDc; iD; jDÞ;

(11)

where ℙ(C2, iC, jC, kC|Dc, iD, jD) is given by

ℙðC2; iC; jC; kCjDc; iD; jDÞ ¼ NðiD; jD/iC; jC; kCÞjC
IiDþjDþ1;iCþjCþkC

: (12)

Similarly, for ℙ(C12|Dc, iD, jD), we compute

ℙðC2jDc; iD; jDÞ ¼
XminfiD ; jDg

kC¼1

XiD 2 kC

iC¼0

XjD 2 kC

jC¼0

ℙðC12; iC; jC; kCjDc; iD; jDÞ; (13)

where ℙ(C12, iC, jC, kC|Dc, iD, jD) is given by

ℙðC12; iC; jC; kCjDc; iD; jDÞ ¼ NðiD; jD/iC; jC; kCÞkC
IiDþjDþ1;iCþjCþkC

: (14)

Recursive computation: Computing the closed-form expres-
sions (8), (12), and (14) is time–intensive for large iD and
jD. Therefore, the probabilities ℙ(C1), ℙ(C2), and ℙ(C12)
are difficult to calculate using Equations 1, 9, and 10 with
large panel sizes n1 and n2. In this section, we derive an
efficient recursive approach for computing the probabilities
ℙ(C1|Dc, iD, jD), ℙ(C2|Dc, iD, jD), and ℙ(C12|Dc, iD, jD).

Assume that at some time t . tD, in addition to lineage T,
i lineages of type 1, j lineages of type 2, and k lineages of
type 1–2 exist in the ancestral population. Conditional on
this configuration, let ~ℙðC1ji; j; kÞ denote the probability
that T first coalesces with a lineage of type 1. We con-
struct a recursive equation for ~ℙðC1ji; j; kÞ by conditioning
on the lineage pair involved in the next coalescence event
and considering its effect on the subsequent coalescent
process.

Let m = i + j + k + 1 be the total number of lineages
remaining. Each of the ðm2 Þ pairs of lineages is equally likely
to be the next to coalesce. Nine distinct pairs of lineage types
can coalesce in the next event. For each pair, we compute
the probability that the next coalescence will involve line-
ages of the specified types. Conditional on the lineage types
that coalesce, we compute the subsequent probability that
T first coalesces with a type 1 lineage. If the next coa-
lescence involves T and a type 1 lineage, an event that
occurs with probability i=ðm2 Þ ¼ 2i=½mðm21Þ�, then event
C1 occurs. Alternatively, if the next coalescence occurs be-
tween T and either a type 2 or a type 1–2 lineage, events
that occur with probabilities j=ðm2 Þ ¼ 2j=½mðm21Þ� and
k=ðm2 Þ ¼ 2k=½mðm21Þ�, respectively, then C1 cannot occur.
For the remaining lineage pairs, T is not involved in the
next coalescence, and the probability of C1 depends on the
lineage pair that is involved in the event. For example, two
type 1 lineages coalesce with probability ð i

2 Þ=ðm2 Þ ¼
iði21Þ=½mðm21Þ�, reducing the number of type 1 lineages
to i 2 1. The coalescent process then restarts with i 2 1, j,
and k lineages of types 1, 2, and 1–2, respectively. Given
this new configuration, the probability of event C1 is
~ℙðC1ji21; k; jÞ. The remaining cases for the recursion appear
in Table 1.

By conditioning on the possible lineage pairs for the next
coalescence, we obtain a recursion:
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~ℙðC1ji; j; kÞ  ¼  
2i

mðm2 1Þ þ
iði2 1Þ þ 2ik
mðm2 1Þ   ~ℙðC1ji2 1; j; kÞ

þ jðj2 1Þ þ 2jk
mðm2 1Þ   ~ℙðC1ji; j2 1; kÞ

þ 2ij
mðm2 1Þ  

~ℙðC1ji2 1; j2 1; kþ 1Þ

þ 
kðk2 1Þ
mðm2 1Þ  

~ℙðC1ji; j; k2 1Þ:
(15)

Equation 15 holds for i. 0, j$ 0, k $ 0. ~ℙðC1j0; j; kÞ ¼ 0 for
all j, k$ 0 because there must be at least one lineage of type
1 for event C1 to occur. The recursion is incorporated into
Equation 1 by replacing ℙ(C1|Dc, iD, jD) with ~ℙðC1jiD; jD; 0Þ.

The terms ℙ(C2|Dc, iD, jD) in Equation 9 and ℙ(C12|Dc, iD, jD)
in Equation 10 can also be evaluated recursively, following
the same logic used to obtain Equation 15. Denote by
~ℙðC2ji; j; kÞ the probability that T first coalesces with a type
2 lineage. Then

~ℙðC2ji; j; kÞ  ¼  
2j

mðm2 1Þ þ
iði2 1Þ þ 2ik
mðm2 1Þ   ~ℙðC2ji21; j; kÞ

þ jðj2 1Þ þ 2jk
mðm2 1Þ     ~ℙðC2ji; j2 1; kÞ

þ 2ij
mðm21Þ    

~ℙðC2ji2 1; j2 1; kþ 1Þ

þ kðk2 1Þ
mðm21Þ    

~ℙðC2ji; j; k2 1Þ:
(16)

Equation 16, which can replace ℙ(C2|Dc, iD, jD) in Equation
9, holds for i $ 0, j . 0, k $ 0.   ~ℙðC2ji; 0; kÞ ¼ 0 for all
i, k $ 0.

Finally, conditional on i, j, and k, denoting by ~ℙðC12ji; j; kÞ
the probability that T first coalesces with a lineage of type
1–2,

  ~ℙðC12ji; j; kÞ  ¼  
2k

mðm2 1Þ þ
iði2 1Þ þ 2ik
mðm2 1Þ   ~ℙðC12ji21; j; kÞ

þ jðj2 1Þ þ 2jk
mðm2 1Þ   ~ℙðC12ji; j2 1; kÞ

þ 2ij
mðm2 1Þ  

~ℙðC12ji2 1; j2 1; kþ 1Þ

þ kðk2 1Þ
mðm2 1Þ  

~ℙðC12ji; j; k21Þ:
(17)

The boundary condition for Equation 17 is   ~ℙðC12ji; 0; 0Þ ¼  
~ℙðC12j0; j; 0Þ ¼ 0 for i, j$ 0, because production of a type 1–
2 lineage requires at least one type 1 lineage and at least one
type 2 lineage. The recursion is incorporated into Equation
10 by replacing ℙ(C12|Dc, iD, jD) with   ~ℙðC12jiD; jD; 0Þ.

Expected coalescence times

In this section, we derive formulas that quantify and com-
pare imputation accuracy for internal and external reference
panels. Let S1 be the number of sites that are incorrectly
imputed when using an internal reference panel and let S2
be the number of sites incorrectly imputed when using an
external reference panel. We compute the expected numbers
of incorrectly imputed sites, E[S1] and E[S2], conditional on
reference panel sizes n1 and n2 and divergence time tD.

Let T1 be the random waiting time until T first coalesces
with a lineage that has descendants in the internal reference
panel, that is, a type 1 or type 1–2 lineage. Similarly, let T2
be the waiting time until T first coalesces with a lineage that
has descendants in the external reference panel, that is,

Table 1 Derivation of the recursion   ~ℙðC1ji; j; kÞ
Lineage pair for
next coalescence Resulting lineage

Number of ways
event can occur ℙ(C1jevent)

T, 1 — i 1
T, 2 — j 0

T, 1–2 — k 0
1, 1 1

�
i
2

�
  ~ℙðC1ji21; j; kÞ

1, 2 1–2 ij   ~ℙðC1ji21; j21; k þ 1Þ
1, 1–2 1–2 ik   ~ℙðC1ji21; j; kÞ
2, 1–2 1–2 jk   ~ℙðC1ji; j21; kÞ
2, 2 2

�
j
2

�
  ~ℙðC1ji; j21; kÞ

1–2, 1–2 1–2
�
k
2

�
  ~ℙðC1ji; j; k21Þ

Assume that in addition to lineage T, i lineages of type 1, j lineages of type 2, and k lineages of type 1–2 exist in the ancestral population at some
time t . tD. Conditional on this configuration, let   ~ℙðC1ji; j; kÞ denote the probability that T first coalesces with a lineage of type 1. Column 1 lists
each possible lineage pair for the next coalescence event. Column 2 gives the resulting lineage type for the coalescence. Column 3 contains the
number of ways each event can occur. Column 4 gives the probability that T first coalesces with a lineage of type 1, conditional on the pair of
lineages in column 1 being the next to coalesce. The recursive equation for   ~ℙðC1ji; j; kÞ is obtained by conditioning on all the possible lineage pairs
for the next coalescence.
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a type 2 or type 1–2 lineage. Here, T1 and T2 are measured
in units of 2NA generations. The template haplotype is
selected to minimize the coalescence time with lineage
T (Figure 2). Thus, the total branch length separating the
target from the template is 2T1 when the internal reference
panel is used and 2T2 when the external reference panel is
used.

We model mutation events using the infinitely many-sites
model and assume that the number of mutations at geno-
typed sites along a branch of length t units of 2NA generations
follows a Poisson distribution with mean tuv/2, where u =
4NAm is the per-base population-scaled mutation rate, m is
the per-base per-generation mutation rate, and v is the
number of sites genotyped (or sequenced) in the reference
haplotypes that will be imputed in the target. Under our
model, mutations that occur along the branches separating
the target haplotype and the template haplotype will be
incorrectly imputed. Therefore, when the internal refer-
ence panel is used, the expected number of sites incor-
rectly imputed is

E½S1� ¼ E½E½S1jT1�� ¼ E½2T1uv=2� ¼ uvE½T1�: (18)

Similarly, the expected number of sites incorrectly imputed
using the external panel is

E½S2� ¼ uvE½T2�: (19)

It follows that the expected difference in the number of sites
incorrectly imputed between the external and internal
reference panels is

E½S2 2 S1� ¼ E½S2�2 E½S1� ¼ uvðE½T2�2 E½T1�Þ: (20)

Thus, up to the scaling factor uv, which does not depend
on the model parameters n1, n2, and tD, deriving E[T1] and
E[T2] is sufficient to determine the expected difference
E[S2 2 S1].

Derivation of E[T1]: To compute the expected waiting time
E[T1] until T first coalesces with a lineage that has descend-
ants in the internal reference panel, we condition on the
population in which lineage T first coalesces:

E½T1� ¼ E½T1jD�ℙðDÞ þ E½T1jDc�ℙðDcÞ: (21)

Here, ℙ(D) and ℙ(Dc) are obtained using Equations 6 and 5,
respectively. To obtain the expected waiting time E[T1|D]
until lineage T first coalesces, given that it coalesces in pop-
ulation 1, we integrate the conditional survival function
ST1jDðtÞ of T1 given D:

E½T1jD� ¼
Z tD

t¼0
ST1jDðtÞdt: (22)

ST1jDðtÞ is calculated as follows:

ST1 jDðtÞ ¼ ℙðT1 $ tjDÞ
¼ 12 ℙðT1 , t;DÞ=ℙðDÞ
¼ 12ℙðT1 ,minft; tDgÞ=ℙðDÞ

¼ 12
1

ℙðDÞ
Xn1þ1

i¼1

ℙðT1 ,minft; tDgjAi
n1þ1ðminft; tDg;N1ÞÞℙðAi

n1þ1ðminft; tDg;N1ÞÞ

¼ 12
1

ℙðDÞ
Xn1þ1

i¼1

�
12

In1 ;i21

In1þ1;i

�
hn1þ1;iðminft; tDg;N1Þ

¼ 12
1

ℙðDÞ
Xn1þ1

i¼1

�
12

iði21Þ
n1ðn1 þ 1Þ

�
hn1þ1;iðminft; tDg;N1Þ:

(23)

In the fourth equality, Ak
nðt;NÞ is the event that n lineages

coalesce to k lineages in time t in a diploid population of
size N. In the fifth equality, by the same argument used to
derive Equation 4, the probability that lineage T does not
coalesce when the n1 + 1 sampled lineages coalesce to i
lineages is In1;i21=In1þ1;i. Therefore, the probability that T
does coalesce is 12In1;i21=In1þ1;i. The term ℙ(D) in Equation
23 is given by Equation 6. Although the integral in Equa-
tion 22 can be carried out analytically, we present the for-
mula in its current form because it is easier to modify
Equation 22 from the form given to account for exponential
growth.

The quantity E[T1|Dc] is the expected time until lineage
T first coalesces in the ancestral population with a lineage
that has descendants in population 1, given that it does not
coalesce in population 1. This expected time can be found by
conditioning on the number iD of type 1 lineages that remain
at the divergence time:

E½T1
��Dc� ¼ Pn1

iD¼1
E½T1

��iD;Dc�ℙðiD
��DcÞ

¼
Xn1

iD¼1

�
tD þ 4NA

iD þ 1

�
ℙðDc; iDÞ
ℙðDcÞ : (24)

Figure 2 Coalescence times between the target T and the reference
panels. T1 indicates the time at which the target haplotype T first coa-
lesces with a type 1 or type 1–2 lineage. We choose one of the descen-
dant reference haplotypes from that coalescence event (highlighted in
purple) to be the template from the internal reference panel. We assume
that when using the internal panel, the number of mutations that result in
incorrectly imputed sites follows a Poisson distribution with mean
2T1uv/2, where 2T1 is the total branch length separating the target T
from the templates sampled from the internal panel in units of 2NA

generations. Here, u = 4NAm is the per-base population-scaled mutation
rate, m is the per-base per-generation mutation rate, and v is the number
of bases genotyped in the reference population that will be imputed in T.
Similarly, T2 is the time at which the target haplotype T first coalesces with
a type 2 or type 1–2 lineage and 2T2 is the branch length between T and
the set of potential templates from the external reference panel (the best
external reference panel is highlighted in green).
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Here, we have used the fact that in a population of diploid
size N, the expected sum of the lengths of all external
branches in a genealogy is 4N (Fu and Li 1993). Thus,
the mean length of an external branch in a genealogy with
n + 1 lineages—and consequently, the expected time until
a specific lineage coalesces with some lineage among a set
of n—is 4N/(n + 1). ℙ(Dc, iD) and ℙ(Dc) are found using
Equations 4 and 5, respectively. The quantity E[T1] is
then obtained by inserting Equations 5, 6, 22, and 24 into
Equation 21.

Derivation of E[T2]: To compute E[T2], we condition on the
number jD of type 2 lineages remaining at the divergence
time:

E½T2� ¼
Pn2

jD¼1
E½T2

�� jD�hn2;jDðtD;N2Þ

¼
Xn2

jD¼1

�
tD þ 4NA

jD þ 1

�
hn2;jDðtD;N2Þ: (25)

Exponential growth

Given the utility of population growth models for explain-
ing properties of human genetic variation (e.g., Schaffner
et al. 2005; Coventry et al. 2010), we consider a model
of exponential growth in populations 1 and 2 (Figure 3).
Let N1(t) and N2(t) be functions that define the sizes of
populations 1 and 2, respectively, at time t in the past,
where t is measured in units of 2NA generations. Here,
we assume an ancestral population of constant size and
set N1ðtÞ ¼ N1ð0Þe2a1t and N2ðtÞ ¼ N2ð0Þe2a2t for t 2 [0,
tD] and a1, a2 . 0. We compare the results from this model
to those of the constant-size model to evaluate effects
of exponential growth on imputation reference panel
selection.

Exponential growth changes only the distribution of
coalescent waiting times from our computations in the
previous sections. All derived equations depend on the
waiting times only through the quantity hn,k(t; N), the prob-
ability that n lineages coalesce to k lineages in time t in
a diploid population with constant size N. Thus, for the
exponential growth model, we replace hn,k(t; N) from the
constant-size model by hn,k(t; N(0), a), the probability that
n lineages coalesce to k lineages in time t for a population
with size N(t) = N(0)e2at.

The probability hn,k(t; N(0), a) is computed by solving
for the value t9 such that hn,k(t; N(0), a) = hn,k(t9; Nc) for
a specified constant size Nc, and then computing hn,k(t9;
Nc) using Equation 2. Here, we take Nc = 1 for simplicity.
Let g(t; N(0), a) denote the transformation taking time t
in the growing population to time t9 in the population of
constant size 1. Assuming the size of the growing popula-
tion at time t is N(t) = N(0)e2at, the transformation g(t;
N(0), a) is

gðt;Nð0Þ;aÞ ¼
Z t

0
1=NðzÞdz ¼

8><
>:

eat 2 1
Nð0Þa ; if a 6¼ 0;

t=Nð0Þ; if a ¼ 0;
(26)

where the units of the transformed time t9 = g(t; N(0), a)
are the same as those of the untransformed time t (Griffiths
and Tavaré 1994; Nordborg 2003). Then

hn;kðt;Nð0Þ;aÞ ¼ hn;kðgðt;Nð0Þ;aÞ; 1Þ

¼ Pn
i¼k

ð2i21Þð21Þi2kkði21Þn½i�
k!ði2 kÞ!nðiÞ

  e
2
� i

2

�
gðt;Nð0Þ;aÞNA

; (27)

where the factor NA is needed because the transformed time
t9 is measured in units of 2NA generations. The modified
versions of all equations from the constant-size model ap-
pear in Table 2. Because the case in which populations 1 and
2 have constant size is the a= 0 case of the growth scenario,
results for the constant model can also be obtained using the
formulas in Table 2.

Simulations

To validate our theoretical results, we carried out coalescent
simulations. Given values of n1, n2, and tD, in the constant-
size model, following the method of Jewett and Rosenberg
(2012), we simulated genealogies and estimated probabili-
ties ℙ(C1), ℙ(C2), and ℙ(C12) as the fractions of the simu-
lated genealogies for which the events C1, C2, and C12
occurred. ℙ(C1), ℙ(C2), and ℙ(C12) were obtained from the
same set of 106 simulations.

Results

Agreement of closed-form, recursive, and
simulation-based computations

We derived exact closed-form and recursive equations for
the probability ℙ(C1) that the internal reference panel is
optimal, the probability ℙ(C2) that the external reference

Figure 3 The two-population coalescent model of divergence, assuming
exponential growth in the descendant populations. The sizes of popula-
tions 1 and 2 change over time according to N1ðtÞ ¼ N1ð0Þe2a1t and
N2ðtÞ ¼ N2ð0Þe2a2t , respectively, for t 2 [0, tD]. The quantities a1, a2 .
0 are growth rates, and N1(0) and N2(0) are the sizes of populations 1 and
2 in the present. At time tD, populations 1 and 2 merge instantaneously
into the ancestral population, which has constant size NA. In our analysis,
to explore the effect of exponential population growth on imputation
accuracy, we vary N1(0) and N2(0) while holding N1(tD) and N2(tD) fixed.
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Table 2 Reformulation of the results of Equations (1) through (25) for the case of exponential growth

IndexNumber Quantity Dependencies Description

1 26

gðt;Nð0Þ;aÞ ¼

8><
>:

eat21
Nð0Þa; if a 6¼ 0;

t=Nð0Þ; otherwise:

None Conversion of elapsed time in
units of 2NA generations in
a growing population
of size N(t) = N(0)e2at to
elapsed time in units of 2NA

generations in a diploid
population of constant size N = 1

2 27 hn;kðt;Nð0Þ;aÞ ¼
Pn

i¼k

ð2i21Þð21Þi2kkði21Þn½i�
k!ði2kÞ!nðiÞ

 expf2

�
i
2

�
gðt;Nð0Þ;aÞNAg 1 Probability that k lineages

remain at time t (in units of
N(0) generations) when n
lineages are sampled at time 0

3 4 ℙðDc ; iDÞ¼ iDðiD þ 1Þ
n1ðn1 þ 1Þhn1þ1;iDþ1ðtD;N1ð0Þ;a1Þ 2 Joint probability that T does

not coalesce by time tD,
and iD lineages (not including T)
remain at time tD

4 5 ℙðDcÞ ¼Pn1
iD¼1ℙðDc ; iDÞ 3 Probability that T does not coalesce

before time tD
5 6 ℙ(D) = 1 2 ℙ(Dc) 4 Probability that T coalesces before

time tD
6 15

  ~ℙðC1ji; j; kÞ¼ 2i
mðm21Þ þ

iði21Þ þ 2ik
mðm21Þ   ~ℙðC1ji21; j; kÞ

þ 
jðj21Þ þ 2jk
mðm21Þ   ~ℙðC1ji; j21; kÞ þ 2ij

mðm21Þ  
~ℙðC1ji21; j21; k þ 1Þ

þ 
kðk21Þ
mðm21Þ  

~ℙðC1ji; j; k21Þ

Boundary Condition :   ~ℙðC1j0; j; kÞ ¼ 0 for all j; k$0

None Probability that T first coalesces
with a lineage of type 1, given
that there are i lineages of type 1,
j lineages of type 2 and k lineages
of type 1–2 at time tD

7 16   ~ℙðC2ji; k; jÞ ¼ 2j
mðm21Þ þ

iði21Þ þ 2ik
mðm21Þ     ~ℙðC2ji21; j; kÞ

þ 
jðj21Þ þ 2jk
mðm21Þ     ~ℙðC2ji; j21; kÞ

þ 
2ij

mðm21Þ    
~ℙðC2ji21; j21; k þ 1Þ

þ 
kðk21Þ
mðm21Þ    

~ℙðC2ji; j; k21Þ

Boundary Condition :   ~ℙðC2ji; 0; kÞ ¼ 0 for all i; k$0

None Probability that T first coalesces
with a lineage of type 2, given
that there are i lineages of type
1, j lineages of type 2 and k
lineages of type 1–2 at time tD

8 17   ~ℙðC12ji; k; jÞ ¼ 2k
mðm21Þ þ

iði21Þ þ 2ik
mðm21Þ   ~ℙðC12ji21; j; kÞ

þ 
jðj21Þ þ 2jk
mðm21Þ     ~ℙðC12ji; j21; kÞ

þ 
2ij

mðm21Þ   
~ℙðC12ji21; j21; k þ 1Þ

þ 
kðk21Þ
mðm21Þ    

~ℙðC12ji; j; k21Þ

Boundary Condition :   ~ℙðC12ji;0;0Þ ¼   ~ℙðC12j0; j;0Þ for all i; k$ 0

None Probability that T first coalesces with
a lineage of type 1-2, given
that there are i lineages of type 1,
j lineages of type 2 and k lineages
of type 1-2 at time tD

9 1 ℙðC1Þ ¼ ℙðDÞ þPn1
iD¼1

Pn2
jD¼1  

~ℙðC1jiD; jD; 0ÞℙðDc ; iDÞhn2 ;jD ðtD;N2ð0Þ;a2Þ 6, 5, 3, 2 Probability that T first coalesces with
a lineage of type 1

10 9 ℙðC2Þ ¼
Pn1

iD¼1

Pn2
jD¼1  

~ℙðC2jiD; jD; 0ÞℙðDc; iDÞhn2 ;jD ðtD;N2ð0Þ;a2Þ 7, 3, 2 Probability that T first coalesces with
a lineage of type 2

11 10 ℙðC12Þ ¼
Pn1

iD¼1

Pn2
jD¼1  

~ℙðC12jiD; jD;0ÞℙðDc ; iDÞhn2 ;jD ðtD;N2ð0Þ;a2Þ 8, 3, 2 Probability that T first coalesces with
a lineage of type 1–2

12 23 ST1 jDðtÞ ¼ 12
1

ℙðDÞ
Xn1þ1

i¼1

�
12

iði21Þ
n1ðn1 þ 1Þ

�
hn1þ1;iðminft; tDg;N1ð0Þ;a1Þ 5, 2 Survival function of the time until

lineage T coalesces, given
that T coalesces before time tD

13 22 E½T1jD� ¼ R tDt¼0 ST1 jDðtÞdt 12 Expected time until T coalesces,
given that T coalesces before time tD

(continued)
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panel is optimal, and the probability ℙ(C12) that both panels
are equally optimal. Both the exact and recursive computa-
tions require the function hn,k(t; N) to be evaluated. How-
ever, Equation 2 for hn,k(t; N) is numerically unstable for
small t and large n. Therefore, for small t and large n, we
used an asymptotic approximation to hn,k(t; N) (Griffiths
1984). For n lineages sampled in the present, the distribu-
tion of the number of lineages at time t (expressed in
units of 2N generations) is asymptotically normal with mean
m = 2h/t and variance s2 = 2ht21(h + b)2[1 + h/
(h + b)2 h/a2 h/(a + b)2 2h]b22 as t / 0, n / N,
and 1

2 nt/a,N, where b=2t/2 and h = ab/{a(eb 2 1) +
beb}. We used the asymptotic approximation to hn,k(t; N)
when both n $ 40 and tD # 0.1, and we used Equation 1
otherwise.

Table 3 gives values of ℙ(C1) computed using the exact
and recursive approaches at two divergence times tD and
several reference panel sizes n1 and n2. For larger n1 or
n2, where closed-form evaluation of ℙ(C1) is computationally
difficult, we report only values computed using the recursion
(Equation 15). The closed-form and recursive probabilities
agree at parameter values where a comparison is possible.
To allow large reference panel sizes to be considered, we
subsequently restrict our attention to the recursion.

The closed-form and recursive expressions also agree
with the results of the simulations (Table 3). Because the
simulations do not rely on the asymptotic approximation,
when tD # 0.1 and either n1 $ 40 or n2 $ 40, differences
between analytical and simulation results are potentially
attributable to errors in the approximation. However, these
differences are generally negligible.

Comparison of internal and external reference panels

We report ℙ(C1), the optimality probability for an internal
reference panel, and E[S2 2 S1], the expected difference in
the number of incorrectly imputed sites between the exter-
nal and internal reference panels, for a range of panel sizes
and for large and small divergence times. The optimality
probability ℙ(C1) is interpreted as the probability that a given
locus is imputed more accurately when using the internal

reference panel compared to the external panel. The rela-
tive accuracy for imputation using the external panel com-
pared to the internal panel is quantified by E[S2 2 S1].
A positive value of E[S2 2 S1] indicates that using the
external reference panel will, on average, result in more
imputation errors than using the internal panel. A negative
value indicates that the external panel will result in fewer
imputation errors on average, and a value of zero indicates
that the two panels are expected to produce the same num-
ber of incorrectly imputed sites. E[S2 2 S1] is reported in
units of the population-scaled mutation rate uv = 4NAmv

for a set of v imputed bases.

Populations of constant size: In our analyses of the
constant-size model, we assumed a constant, equal size for
all populations (N1 = N2 = NA). Note that because we express
imputation accuracy in terms of the population-scaled muta-
tion rate uv, only the relative effective sizes of the popula-
tions and not their absolute sizes influence the results of our
analyses. Under this model, if tD is small, then tD measured
in units of 2NA generations is related to the population
differentiation statistic Fst through the approximation
tD � 2log(1 2 Fst) � Fst (Cavalli-Sforza 1969; Reynolds
et al. 1983). We present results for divergence times of tD
= 0.005 (Fst � 0.005) to represent two populations within
a continental region, and tD = 0.05 (Fst � 0.05) to repre-
sent more strongly diverged populations.

Figure 4A shows ℙ(C1) for a range of reference panel
sample sizes n1 and n2 at the smaller divergence time of
tD = 0.005. Each curve corresponds to a fixed external ref-
erence panel size n2, and ℙ(C1) is plotted as a function of the
internal reference panel size n1. ℙ(C1) exceeds 0.5 over most
of the range of values for n1 and n2, indicating that the
internal panel is likely be optimal even when it is much
smaller than the external panel. For example, ℙ(C1) . 0.7
for internal reference panels of n1 $ 400 haplotypes even
when considering an extremely large external panel of n2 =
10,000 haplotypes (light blue curve).

Figure 4B shows ℙ(C1) for the same values of n1 and n2 at
the larger divergence time of tD = 0.05. For fixed values

Table 2, continued

IndexNumber Quantity Dependencies Description

14 24
E½T1jDc � ¼Pn1

iD¼1

�
tD þ 4NA

iD þ 1

�
ℙðDc ; iDÞ
ℙðDcÞ

4, 3 Expected time until T coalesces
with a lineage with descendants
in population 1, given that T first
coalesces after time tD

15 21 E[T1] = E[T1|D]ℙ(D) + E[T1|Dc]ℙ(Dc) 14, 13, 5, 4 Expected time until T coalesces
with a lineage with descendants
in population 1

16 25 E½T2� ¼
Pn2

jD¼1

�
tD þ 4NA

jD þ 1

�
hn2 ;jD ðtD;N2ð0Þ;a2Þ 2 Expected time until T first coalesces

with a lineage with descendants
in population 2

The derivation of each expression is the same as in the case of populations of constant size, except that hn,k(t; N(0),a) is used, rather than hn,k(t; N). The quantities on which
the expressions in the table depend are given in the Dependencies column. The numbers in the Dependencies column correspond to those in the Index column. The number
of each equation—or its analog for the case of populations of constant size—is given in the Number column. Formulas for the case in which populations 1 and 2 have
constant size are obtained by setting a1 and a2 equal to 0.
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of n1 and n2, ℙ(C1) is greater when tD = 0.05 than when
tD = 0.005, indicating an increase in the probability of op-
timality for an internal panel at larger divergence times.
Taken together, Figure 4, A and B, shows that under our
model, smaller internal reference panels are more likely to
be optimal than much larger external panels and that this
improvement increases as the two source populations for the
panels become more genetically distinct.

Next, we compute the expected difference E[S2 2 S1] in
the number of incorrectly imputed sites between internal
and external reference panels to quantify the improvement
in accuracy (Figure 4C, tD = 0.005; Figure 4D, tD = 0.05).
Increasing the size n1 of the internal panel while holding the
external panel size n2 fixed results in an increase in E[S2 2
S1]. Conversely, increasing n2 while holding n1 fixed leads
to a decrease in E[S2 2 S1]. Because the internal reference
panel size has no effect on E[S2] and the external panel
size does not affect E[S1], an increase in E[S2 2 S1] for
fixed n1 represents an increase in E[S2], while an increase
of E[S2 2 S1] for fixed n2 indicates a decrease of E[S1]. The
model thus predicts the intuitive result that increasing the
size of a reference panel (internal or external) leads to fewer
imputation errors. Increasing the number of haplotypes in
a reference panel has the largest improvement when the
panel is initially small. For example, once the internal panel
has reached a certain size (n1 � 30 for tD = 0.005), includ-

ing additional haplotypes in the panel produces only small
increases in accuracy. Similarly, the addition of haplotypes to
the external panel yields the greatest improvement in accu-
racy when the external panel is small; hence, a gap is visible
between the lines for n2 = 50 (orange) and n2 = 100 (pur-
ple) in Figure 4, C and D, while the lines for n2 = 500 (red)
and n2 = 10,000 (light blue) are nearly indistinguishable.

The magnitude of the divergence time affects the
expected accuracies of the reference panels. Comparison of
Figure 4, C and D, shows that the performance of the
internal reference panel relative to the external panel
improves for the larger divergence time. For example, at
the smaller divergence time, n1 = 67 haplotypes are re-
quired in the internal panel to acquire the same expected
imputation accuracy as an external panel of n2 = 100 hap-
lotypes (Figure 4C, purple line). For the larger divergence
time, an internal reference panel need only contain n1 = 17
haplotypes to provide the same expected accuracy as n2 =
100 haplotypes in an external panel (Figure 4D, purple
line).

The results from Figure 4 can be directly interpreted in
terms of events in the coalescent model. ℙ(C1) increases
with tD for fixed n1 and n2 because increasing the divergence
time between the populations lengthens the amount of
time that the target haplotype T remains in population 1,
where it can coalesce only with type 1 lineages. In

Figure 4 Imputation performance for the
constant-size two-population model. For
two different divergence times tD, the figure
shows the probability ℙ(C1) that the internal
reference panel is optimal and the expecta-
tion E[S2 2 S1] of the number of additional
imputation errors made when imputing using
the external reference panel rather than the in-
ternal reference panel. (A) ℙ(C1), tD ¼ 0.005. (B)
ℙ(C1), tD ¼ 0.05. (C) E[S2 2 S1], tD ¼ 0.005. (D)
E[S2 2 S1], tD ¼ 0.05. E[S2 2 S1] is reported
in units of the population-scaled mutation rate
uv ¼ 4NAmv for the imputed region of v bases.
Reference panel size is the number of haplotypes
in the panel. For clarity, the scale of C and D
differs from that of A and B.

Table 3 Comparison of closed-form, recursive, and simulated probabilities

tD ¼ 0.01 tD ¼ 0.05

n1 n2 Closed form Recursion Simulation Closed form Recursion Simulation

5 5 0.4069 0.4069 0.4069 0.5083 0.5083 0.5082
5 10 0.2807 0.2807 0.2808 0.4164 0.4164 0.4164
5 50 0.1188 0.1188 0.1191 0.3034 0.3034 0.3038

10 10 0.4392 0.4392 0.4392 0.6051 0.6051 0.6053
10 50 – 0.2146 0.2153 – 0.4830 0.4836
50 50 – 0.6078 0.6068 – 0.8778 0.8790
50 100 – 0.5404 0.5378 – 0.8670 0.8682

100 100 – 0.7268 0.7274 – 0.9494 0.9499

ℙ(C1) computed analytically using closed-form (Equations 7 and 8) and recursive (Equation 15) expressions, and estimated from coalescent simulations using 106 replicates.
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fact, for large divergence times or large n1, the target T is
likely to coalesce before reaching the ancestral population,
explaining why ℙ(C1) � 1 nearly independently of n2 for
larger tD. E[S2 2 S1] levels off quickly as n1 and n2 increase
because the expected time until a single lineage in a diploid
population of constant size N coalesces with one of ℓ other lin-
eages is 4N/(ℓ + 1) (Fu and Li 1993). Thus, for our parameter
values, the expected time until T coalesces with a type 1 lin-
eage is E[T1] = 4N/(n1 + 1) and the expected time until T
coalesces with a type 2 lineage is E½T2� ¼ tD þPn2

jD¼1hn2;jD
ðtD;NÞ½4N=ðjD þ 1Þ�, where jD is the number of lineages from
population 2 that remain at time tD. The quantity 4N/(ℓ + 1)
is small even when ℓ is only moderately large. Hence, changes
in E[T1] and E[T2] with respect to n1 and jD, respectively, are
small once n1 or jD exceeds around 50 lineages. Because jD
increases quickly with n2 for small tD, both E[T1] and E[T2]
change little once n1 and n2 are moderate in size. E[S2 2 S1],
which is proportional to E[T2] 2 E[T1], therefore changes
little as well.

Exponentially growing populations: We next examine
ℙ(C1) and E[S2 2 S1] under a model of exponential growth
in populations 1 and 2. Here we assume that both popula-
tions have size NA at the divergence time tD and size 100NA

in the present. We again show results for divergence times of
tD = 0.005 and 0.05, measured in units of 2NA generations.

Figure 5A compares ℙ(C1) under the constant-size model
(solid lines) and exponential growth model (dashed lines)
at the smaller divergence time of tD = 0.005. For fixed n1
and n2, the value of ℙ(C1) under the growth model is less
than the corresponding ℙ(C1) value for the constant model.
For instance, ℙ(C1) is 0.68 for n1 = 200 and n2 = 500 under
the constant-size model, but it falls to 0.35 for the growth
model. The differences in accuracy between the growth and
constant-size models are similar although less pronounced
for the larger divergence time (Figure 5B). Thus, recent
exponential growth in the populations from which the ref-
erence and target haplotypes are sampled has the effect of
reducing the optimality of the internal reference panel.

The expected difference E[S2 2 S1] in imputation accu-
racy between the two panels is also affected by exponential
growth. When the divergence time is small (tD = 0.005), the
expected difference in accuracy for a given n1 and n2
decreases very slightly under exponential growth (Figure
5C). The change in E[S2 2 S1] between the constant-size
and growth models is more extreme at the larger divergence
time (Figure 5C). Thus, imputation accuracy for an external
reference panel relative to an internal panel improves in the
exponential growth model. Recall that for the larger diver-
gence time, only n1 = 17 internal haplotypes were required
to achieve the same expected accuracy as n2 = 100 external
haplotypes under the constant model. Under the exponen-
tial growth model, the number of internal haplotypes
needed to match the performance of the n2 = 100 external
haplotypes increases to n1 = 46. Although smaller internal
reference panels can still achieve accuracy similar to that of
larger external panels in the presence of exponential
growth, the number of internal haplotypes required to do
so increases.

The effects of growth can be understood using intuition
about the coalescent model. Including exponential growth
in our coalescent model increases the mean waiting time for
coalescent events compared to the constant-size case (Fig-
ure 6). Therefore, the probability that the target T coalesces
more recently than the divergence time tD decreases, and
the number of type 2 lineages jD that enter into the ancestral
population increases. Both of these factors increase the prob-
ability that T will survive to the ancestral population and,
therefore, the probability that Twill coalesce first with a type
2 or type 1–2 lineage. This explains the reduction in ℙ(C1)
observed for the growth model. Similarly, the decrease in
E[S2 2 S1] under the exponential growth model compared
to the constant-size model can be explained by the longer
coalescent waiting times. The expected waiting time E[T1]
until T coalesces with a type 1 lineage increases; however,
the expected waiting time E[T2] until T coalesces with a type
2 or type 1–2 lineage decreases because the longer waiting
times in population 2 result in a larger number of type 2

Figure 5 Imputation performance for the ex-
ponential-growth two-population model. For
two different divergence times tD, the figure
shows the probability ℙ(C1) that the internal
reference panel is optimal and the expectation
E[S2 2 S1] of the number of additional imputation
errors made when imputing using the external
reference panel rather than the internal reference
panel. Values for the exponential growth model
are plotted with dashed lines and, for comparison,
the corresponding values for a constant-size
model are shown with solid lines. (A) ℙ(C1), tD ¼
0.005. (B) ℙ(C1), tD ¼ 0.05. (C) E[S2 2 S1], tD ¼
0.005. (D) E[S2 2 S1], tD ¼ 0.05. E[S2 2 S1] is
reported in units of the population-scaled muta-
tion rate uv ¼ 4NAmv for the imputed region of
v bases. Reference panel size is the number of
haplotypes in the panel. For clarity, the scale of C
and D differs from that of A and B.
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lineages surviving to the ancestral population. Both the in-
crease in E[T1] and the decrease in E[T2] lead to a reduction
in E[S2 2 S1] since E[S2 2 S1] } E[T2] 2 E[T1].

Discussion

We have introduced a theoretical model of genotype im-
putation accuracy, employing the coalescent framework to
model the ancestry of an imputation target haplotype and
a set of reference haplotypes. We examined an imputation
algorithm that chooses the reference haplotype with the
most similar genealogical history to the target as the
template for imputation, and we used the expected co-
alescence time between the target and template haplotypes
to predict the expected number of incorrectly imputed sites
in the target.

Framing imputation in a coalescent model has two major
benefits. First, the coalescent model enables the derivation
of analytical formulas for imputation accuracy. These for-
mulas provide a computationally fast method for studying
accuracy across a range of imputation study design varia-
bles, and they facilitate the interpretation of observed
relationships between imputation accuracy and demo-
graphic parameters in terms of well-understood properties
of the coalescent model. Second, the coalescent allows
complex modeling of population histories, so that a variety
of relationships between the reference and target popula-
tions can be considered. Here we presented a simple model
with a single study population and a single external
population. However, this basic model can be extended to
more complicated imputation scenarios by specifying differ-
ent demographic settings for the coalescent. For example,
the model can be reformulated to include multiple exter-
nal populations, each with a unique number of available
haplotypes and a distinctive divergence time from the study
population. Equations analogous to the ones derived in this
article can be computed for the more complicated model
and used to determine the optimal imputation reference
panel when several external panels are available.

We used the model to study the effect of population
subdivision on imputation accuracy, employing a two-
population divergence model to compare internal reference

panels drawn from the same source population as the target
to external panels from a distinct population. To quantify
imputation accuracy, we focused on two quantities: (1)
ℙ(C1), the probability that a target lineage on which geno-
types are to be imputed coalesces first with a lineage from
the internal panel, and (2) E[S2 2 S1], the expected differ-
ence in the number of imputation errors between the exter-
nal and internal reference panels.

We have interpreted ℙ(C1) as the probability that the
internal reference panel is optimal and results in fewer
expected imputation errors at a locus than the external
panel. ℙ(C1) has two additional interpretations. First, a rea-
sonable imputation strategy is to augment an available ex-
ternal panel with internal reference haplotypes. In this
setting, ℙ(C1) is the probability that the target lineage will
coalesce first with one of the additional internal lineages.
Thus, ℙ(C1) can be interpreted as the probability that impu-
tation accuracy improves by augmenting the existing exter-
nal reference panel with internal haplotypes. A second
alternative interpretation of ℙ(C1) is obtained by considering
imputation on a genome-wide scale, rather than at a single
locus. In a genome-wide context, ℙ(C1) can be viewed as the
fraction of sites in the genome that are more accurately
imputed by the internal reference panel than by the external
reference panel.

The model predicts that even when an internal reference
panel is considerably smaller than an external panel, the
internal panel is nearly always optimal in the sense that it
contains the haplotype with the closest genealogical history
to the target. Furthermore, the probability of optimality for
the internal panel, ℙ(C1), increases as the divergence time
increases. For populations of constant size, a large external
reference panel can provide approximately the same accu-
racy as a modestly sized internal reference panel if the di-
vergence time is small (E[S2] � E[S1]). As the divergence
time increases, a small internal reference panel results in
increasingly more accurate imputation compared to the
large external panel. The expected improvement in imputa-
tion accuracy for a smaller internal panel becomes less pro-
nounced if the populations experience exponential growth
following the divergence. Thus, exponential growth attenu-
ates the effect of the divergence time, improving the relative
performance of an external reference panel in terms of both
optimality probability and expected imputation accuracy
when compared to populations of constant size.

The results from our model have implications for im-
putation strategies in population-based genetic association
studies. Currently, large public data sets from the HapMap
(International HapMap3 Consortium, 2010) and 1000
Genomes (1000 Genomes Project Consortium, 2010) proj-
ects are frequently used as external reference panels.
However, advances in sequencing technology will enable
investigators to create custom internal reference panels from
the same source population as their study samples. Not only
will custom internal panels enable successful imputation of
rare variants private to the target population, our model

Figure 6 The effect of population growth on coalescent waiting times.
Increasing the present-day size N(0) of a population while holding the size
N(tD) at time tD fixed increases the mean waiting time for each coales-
cence event.
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predicts that a custom internal reference panel will often
improve imputation accuracy in general, even if it is much
smaller than an existing external reference panel. Under the
model, the best strategy is to combine the internal haplo-
types with an available external panel to create a single
cosmopolitan reference panel. This approach combines the
benefits contributed by the large sample size of the external
panel and the greater genetic similarity of the internal
panel.

Our equations for panel optimality and imputation
accuracy rely on a rule that mimics computational imputa-
tion algorithms: the reference haplotype whose coalescence
time with the target is minimal serves as the imputation
template. In actual data, this rule might not always hold, as
stochasticity of mutations and the use of small sets of “tag-
ging” SNPs for estimating pairwise distances among haplo-
types could cause a sequence whose coalescence time with
the target is not minimal to be most genetically similar to
the target. The problem may be more pronounced for rare
variants that do not exist on a unique background of tagging
SNPs. In addition, the rule for template selection might not
be strictly followed by imputation software. We have as-
sumed that the entire length of the target haplotype is im-
puted using the same reference haplotype; however, owing
to past recombination events, a real target haplotype is
likely to be composed of multiple segments, each with a dis-
tinct optimal template. Our model, therefore, implicitly
assumes that an imputation algorithm will correctly jump
between reference haplotypes when imputing a target. Devi-
ations from this assumption provide a source of imputation
error that was not treated in our analysis. Furthermore, as
our analysis considered known haplotypes, we did not ex-
plicitly account for haplotype phasing errors. Haplotyping
accuracy is known to increase with sample size, so that small
internal reference panels may be more prone than large
external panels to haplotyping errors that reduce imputation
accuracy (Browning and Browning 2011). Consequently, our
results can be interpreted as an approximation to the impu-
tation error owing to use of a particular reference panel,
without considering stochasticity in the choice of template
haplotype and without considering phasing errors or errors
that might occur from the imputation algorithm. In future
research, it will be important to examine factors such as
stochasticity in mutation, properties of sets of tagging SNPs,
and recombination.

We have assumed that no migration occurs between the
two populations in our model. Relaxing this assumption will
likely reduce the magnitude of the difference in accuracy
obtained on the basis of the internal and external panels.
Migration allows the target haplotype to coalesce with
a lineage ancestral to the external reference panel more
recently than the divergence time, either if the target
migrates to the population containing the external reference
panel or if an ancestor of an external reference haplotype
migrates to the population containing the target. Therefore,
including migration in the model could reduce the expected

coalescence time between the target and an ancestor of the
external reference panel, leading both to an increase in
accuracy and to an increase in the probability of optimality for
an external reference panel. Determining rates of migration
that lead to a noticeable effect requires further investigation.

Despite the fact that we have presented a simplified
model without recombination or migration, our results
provide mathematical formulas that allow us to estimate
imputation accuracy for a variety of demographic and
sampling scenarios. Our equations capture a variety of
phenomena pertaining to imputation accuracy, and they
facilitate the interpretation of these phenomena in terms of
properties of the coalescent model. Genotype imputation is
a valuable tool in genetic studies of complex disease, and
optimizing imputation accuracy is important for conducting
analyses with imputed data. The formulas we have derived
are a step toward the development of more complicated
models that can be used to make practical quantitative
predictions about imputation accuracy, thereby facilitating
sampling design.
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Appendix: The Quantity N(iD, jD / iC, jC, kC)

Here we derive the number of ways N(iD, jD / iC, jC, kC) in
which iD type 1 lineages and jD type 2 lineages can coalesce
to iC, jC, and kC lineages of types 1, 2, and 1–2. This quantity
is used to obtain the closed forms of the probabilities ℙ(C1),
ℙ(C2), and ℙ(C12) (Equations 1, 9, and 10).

We first note that if kC type 1–2 lineages remain, then at
least kC type 1 lineages, and at least kC type 2 lineages, must
coalesce together to produce these lineages. Let i*D and j*D be
the numbers of type 1 and type 2 lineages, respectively, that
combine to create the kC lineages of type 1–2 (Figure A1).
Further, let i*Dr

type 1 lineages and j*Dr
type 2 lineages com-

bine to produce the rth type 1–2 lineage. The possible values
of i*D1

; . . . ; i*DkD
are given by all possible partitions of i*D

objects into kC nonempty subsets. Similarly, the possible val-
ues of j*D1

; . . . ; j*DkC
are given by all possible partitions of j*D

objects into kC nonempty subsets.
Let c(n, k) denote the number of partitions of an in-

teger n into k positive integers (Andrews 1984, p. 16).
Let pqðn; kÞ ¼ ðpq

1ðn; kÞ; . . . ;pq
kðn; kÞÞ denote the qth parti-

tion of this kind, with pq
r ðn; kÞ denoting the rth part in the

partition. We can permute the k parts of the qth partition
in k! ways. Denote the zth permutation of partition q by
pðq;zÞðn; kÞ ¼ ðpðq;zÞ

1 ðn; kÞ; . . . ;pðq;zÞ
k ðn; kÞÞ. For simplicity of

notation, denote the number of labeled histories among
a set of n lineages—the number of sequences in which n
lineages can coalesce to one lineage—by F(n) [ In,1, where
In,1 is computed using Equation 3. Then the quantity N(iD, jD
/ iC, kC, jC) is given by

NðiD; jD    /    iC; kC; jCÞ

¼ PiD 2 iC

i*D¼kC

PjD 2 jC

j*D¼kC

�
iD
i*D

��
jD
j*D

� Pcði*D ;kCÞ
h¼1

Pcðj*D ;kCÞ
g¼1

a
	
i*D; kC;h



a
	
j*D; kC; g



IiD2i*D ;iC

IjD2j*D ;jC

·Rði*D; j*D; kC;h;gÞ
�

iD þ jD 2 ðiC þ kC þ jCÞ
iD 2 i*D 2 iC; jD 2 j*D 2 jC; i*D þ j*D 2 kC

�
:

(A1)

The quantity a(n, k, q) is the number of ways to distribute
n distinguishable objects into k unordered, nonempty sub-
sets whose sizes are those of the parts of the qth parti-
tion pq(n, k). To obtain an expression for a(n, k, q),
define a(f; pq(n, k)) to be the number of parts of the par-
tition pq(n, k) that have size f. Then a(n, k, q) is given by

aðn; k; qÞ ¼

�
n

p
q
1ðn; kÞ; . . . ;pq

kðn; kÞ
�

Qk
f¼1 aðf;pqðn; kÞÞ!

; (A2)

where
�
p
q
1ðn; kÞ; . . .

n
  ;pq

kðn; kÞ
�
is the number of ways to

choose the elements in the k parts and a(f; pq(n, k))! is
the number of ways to permute the parts of size f.Qk

f¼1aðf;pqðn; kÞÞ! is the factor by which we overcount
a(n, k, q) because we take the partitions to be unordered,
and there are a(f; pq(n, k))! arrangements of the subsets of
size f in which the same elements in these subsets are
grouped together.

In Equation A1, IiD2i*D;iC
is the number of labeled histories

for the iD2i*D lineages that coalesce to form type 1 lineages,
and it is computed using Equation 3. Similarly, IjD2j*D;jC

is the
number of labeled histories for the jD2j*D lineages that co-
alesce to form type 2 lineages.

The quantity R(i, j, k, h, g) in Equation A1 is the number
of labeled histories for the i*D þ j*D lineages that ultimately
coalesce to form the kC lineages of type 1–2. Given i*D and j*D,
consider a particular partition of the i*D lineages into kC non-
empty parts, and a particular partition of the j*D lineages into
kC nonempty parts. Each one of the kC type 1–2 lineages is
made by combining a part from the partition of the i*D line-
ages with a part from the partition of the j*D lineages. To find
all possible ways to pair up parts, we fix the indices of the
parts of the j*D lineages and we permute the parts of the i*D
lineages. There are kC! ways to pair up the parts. We index
these ways by z. For the zth way of permuting the parts, the
lineages in part pðh;zÞ

r ði*D; kCÞ combine with the lineages in
part pg

r ðj*D; kCÞ to produce the rth lineage of type 1–2.
The rth pair of parts of lineages undergoes

p
ðh;zÞ
r ði*D; kCÞ þ pg

r ðj*D; kCÞ21 coalescence events on its way
down to a single lineage. Thus, there are

W
	
i*D; j

*
D; kC;p

ðh;zÞ
	
i*D; kC



;pg

	
j*D; kC





[

 i*D þ j*D 2 kC

p
ðh;zÞ
1

	
i*D; kC



þ p

g
1

	
j*D; kC



2 1; . . . ;pðh;zÞ

kC

	
i*D; kC



þ p

g
kC

	
j*D; kC



2 1

!

(A3)

possible ways to order the coalescence events among all
pairs of parts.

Because there are Fðpðh;zÞ
r ði*D; kCÞ þ pg

r ðj*D; kCÞÞ labeled his-
tories for the rth pair of parts as they coalesce to form the rth
lineage of type 1–2, there are Wði*D; j*D; kC;pðh;zÞði*D; kCÞ;
pgðj*D; kCÞÞ

QkC
r¼1Fðpðh;zÞ

r ði*D; kCÞ þ pg
r ðj*D; kCÞÞ labeled histories

Figure A1 An illustration of the quantity N(iD, jD / iC, jC, kC). One
possible way in which iD = 15 type 1 lineages, jD = 12 type 2 lineages,
and one target lineage T can coalesce to iC = 2 type 1 lineages, jC = 2 type
2 lineages, and kC = 3 type 1–2 lineages. Type 1 lineages are in red, type
2 lineages are in blue, and type 1–2 lineages are in orange. In the scenario
pictured, lineage T first coalesces with a lineage of type 2. Here i*D ¼ 10 is
the number of type 1 lineages that coalesce with j*D ¼ 8 type 2 lineages to
produce the kC = 3 type 1–2 lineages. i*D1

¼ 4 is the number of type 1
lineages that combine with j*D1

¼ 3 type 2 lineages to create the first type
1–2 lineage. In general, i*Dr

is the number of type 1 lineages that coalesce
with j*Dr

type 2 lineages to produce the rth type 1–2 lineage.
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for all of the i*D and j*D lineages when paired in this way. Finally,
summing over all kC! possible ways to permute the partitions
of the i*D lineages with respect to the partitions of the j*D
lineages,

R
	
i*D; j

*
D; kC;h; g



¼ PkC !

z¼1
W
	
i*D; j

*
D; kC;p

ðh;zÞ
	
i*D; kC



;pg

	
j*D; kC





·
QkC
r¼1

F
	
p
ðh;zÞ
r

	
i*D; kC



þ pg

r

	
j*D; kC




:

(A4)

We have separately considered three parts of the labeled
history of the lineages in the ancestral population: (1) the
labeled history of the iD2i*D lineages that coalesce to form
type 1 lineages, (2) the labeled history of the jD2j*D lineages
that coalesce to form type 2 lineages, and (3) the labeled
history of the i*D þ j*D lineages that coalesce to form type 1–2
lineages. To combine these components into one full history
for all lineages, we must consider only how the coalescence

times in each of these components relate to the coalescence
times in the other components. Thus, the final quantity in
Equation A1 is the number of ways to interweave the co-
alescence events in these labeled histories. There are
iD2i*D2iC coalescence events among the lineages that ulti-
mately have type 1, jD2j*D2jC coalescence events among the
lineages that ultimately have type 2, and i*D þ j*D2kC coales-
cence events among the lineages that ultimately have type
1–2. The number of ways to interweave the coalescences for
these three histories is equal to the number of ways to
choose which of the iD þ jD2iC2jC2kC total coalescence
events correspond to events within each of these different
histories. This quantity is the trinomial coefficient

�
iD þ jD2 iC 2 kC 2 jC

iD 2 i*D2 iC; jD 2 j*D 2 jC; i*D þ j*D 2 kC

�
: (A5)
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