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Under the coalescent model, the random number n; of lineages ancestral to a sample is nearly deter-
ministic as a function of time when n; is moderate to large in value, and it is well approximated by its
expectation E[n,]. In turn, this expectation is well approximated by simple deterministic functions that
are easy to compute. Such deterministic functions have been applied to estimate allele age, effective pop-

ieyworfis: ) ulation size, and genetic diversity, and they have been used to study properties of models of infectious
Copflreos’ég?t'o“ disease dynamics. Although a number of simple approximations of E[n;] have been derived and applied to

problems of population-genetic inference, the theoretical accuracy of the resulting approximate formu-
las and the inferences obtained using these approximations is not known, and the range of problems to
which they can be applied is not well understood. Here, we demonstrate general procedures by which the
approximation n, =~ E[n;] can be used to reduce the computational complexity of coalescent formulas,
and we show that the resulting approximations converge to their true values under simple assumptions.
Such approximations provide alternatives to exact formulas that are computationally intractable or nu-
merically unstable when the number of sampled lineages is moderate or large. We also extend an existing
class of approximations of E[n,] to the case of multiple populations of time-varying size with migration
among them. Our results facilitate the use of the deterministic approximation n, ~ E[n,] for deriving
functionally simple, computationally efficient, and numerically stable approximations of coalescent for-

Computational complexity

mulas under complicated demographic scenarios.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many coalescent distributions and expectations can be obtained
by conditioning on the random number n, of lineages at time t in
the past that are ancestral to a sample of ng lineages at timet = 0
in the present (Fig. 1). Quantities that can be obtained by condi-
tioning on n; include Wakeley and Hey’s (1997) formula for the
joint allele frequency spectrum between two populations, Taka-
hata’s (1989) formula for the probability of concordance between
a gene tree and a species tree, Griffiths and Tavaré’s (1998) for-
mula for the distribution of the age of a neutral allele, Rosenberg’s
(2003) formulas for the probabilities of monophyly, paraphyly, and
polyphyly in two populations, and many others (Takahata and Nei,
1985; Hudson and Coyne, 2002; Rosenberg, 2002; Rosenberg and
Feldman, 2002; Degnan and Salter, 2005; Efromovich and Kubatko,
2008; Degnan, 2010; Bryant et al., 2012; Helmkamp et al., 2012;
Jewett and Rosenberg, 2012; Wu, 2012).
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When many lineages are sampled (and ng is large), summing
over all possible values of n; can be computationally expensive. As
aresult, evaluating formulas that condition on n; can be computa-
tionally difficult or intractable for modern genomic datasets with
hundreds or thousands of sampled alleles. In addition, formulas
for the probability distribution P(n,) of the number of ancestors at
time t (Griffiths, 1980; Donnelly, 1984; Tavaré, 1984) involve sums
of terms of alternating sign that produce round-off error when t
is small and ny is large (e.g. t < 1072 coalescent time units and
ng 2 50), further complicating the evaluation of formulas that con-
dition on n (Griffiths, 1984).

When computing formulas that depend on the distribution
P(n,), round-off error can be eliminated by using asymptotic ap-
proximations of P(n;) that were derived by Griffiths (1984), or by
using an alternative expression for P(n;) (Griffiths, 2006). How-
ever, as we will discuss, approximations to coalescent formulas
obtained by this approach may have similar computational com-
plexities to the exact formulas, and can therefore be computation-
ally slow or intractable on large datasets. Therefore, it is of interest
to devise general procedures for deriving approximate coalescent
formulas without requiring conditional sums over all possible val-
ues of n;.

One alternative to summing over n; is to use an approximation
in which n; is assumed to be equal to its expected value E[n;] with
probability one. This approximation was used by Slatkin (2000) to
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Fig. 1. The number n, of coalescent lineages at time t in the past that are ancestral
to a set of ng lineages sampled at time t = 0 in the present. In this example, np = 4
and n; = 3 at the given time t.

address the problem of round-off error in the distribution P(n;) and
by Volz et al. (2009) to obtain approximate distributions of coales-
cent waiting times. The approximation can greatly reduce the com-
plexity of computing coalescent formulas by reducing the number
of different values of n; over which conditional summations must
be computed (Jewett and Rosenberg, 2012).

The surprising fact is that approximations of this kind are of-
ten very accurate because n; changes almost deterministically over
time and is well approximated by its expected value (Watterson,
1975; Slatkin, 2000; Maruvka et al., 2011). In fact, Maruvka et al.
(2011) demonstrated that the deterministic nature of n; is appar-
ent even when the number n; of ancestral lineages is not large.
From Fig. 2, it can be seen that the variance in n; increases as the
number of ancestral lineages decreases, with n, deviating most
from E[n.] when n;, < 30 in the example shown. However, n; is
well approximated by its mean when t is small. E[n,] is also a good
approximation of n; as t — oo and both n; and E[n;] approach
unity. The approximation n; ~ E[n.] can be used to obtain ap-
proximations of coalescent distributions that are computationally
fast, numerically stable, and accurate for a broad range of sample
sizes no.

In addition to deriving fast and numerically stable approxima-
tions to coalescent formulas, the approximation n, ~ E[n;] can be
combined with simple approximate formulas for E[n,] (Slatkin and
Rannala, 1997; Slatkin, 2000; Rauch and Bar-Yam, 2005; Volz et al.,
2009; Frost and Volz, 2010; Maruvka et al., 2011) to derive func-
tionally simple approximate expressions for coalescent quantities
(Slatkin, 2000; Volz et al., 2009; Jewett and Rosenberg, 2012).

Despite the utility of the approximation n, =~ E[n], it is not
widely known and general procedures for applying it to obtain ap-
proximate coalescent formulas have not been developed. More-
over, the theoretical accuracy of the approximate formulas is not
well understood. Here, we discuss general approaches by which
the approximation n; &~ E[n;] can be applied to obtain functionally
simple, computationally efficient, and numerically stable approx-
imations of coalescent distributions. We show that the resulting
approximate formulas converge to their true values under simple
assumptions, and we derive approximate expressions for the er-
ror. We also discuss methods for approximating E[n;] under demo-
graphic models that include multiple populations of time-varying
size with migration among them. Our results facilitate the use of
the approximation n; ~ E[n;] for obtaining computationally fast
and numerically stable formulas that can be applied to enhance
coalescent computations on large genomic datasets with compli-
cated demographic histories.

2. Approximating formulas that condition on n,
2.1. Difficulties of computing coalescent formulas
We first consider applications of the approximation n; ~ E[n;]

to the problem of reducing the computational complexity and
numerical instability of coalescent formulas that are derived by

2

10
2]
(0]
(o]
®©
o
£
5 10 q
9]
e}
€
=}
=z
10° \ \ \ \ \
10°  10*  10° 107 107 10° 10’

Time (coalescent units of N generations)

Fig. 2. The deterministic nature of the number of ancestral lineages n; at time ¢t
in the past. Red dots indicate the number of lineages remaining at each coalescent
event in a single genealogy of ny = 100 lineages sampled from a population of
constant size under the coalescent model. The expectation E[n;] computed using
Eq.(13)is shown in blue. It can be seen that n, is well-approximated by its expected
value.

conditioning on n; at a particular time ¢ in the past. In particular,
we consider functions of the form

F& =) fxin)Pmy), (1)

where n; = (ny., ..., k) is a vector describing the number of
ancestors of each of k different sets of sampled alleles with initial
sample sizes {ni,O}Lr The sets of lineages of sizes {ni,o}f;] can be
drawn from different populations, but they can also come from the
same population. Here, f (x) is a quantity of interest that we wish
to compute, such as an expectation parameterized by a variable x
or a probability distribution function for a random variable X. The
sum is carried out over k variables, one for each entry in n¢, and the
ith sum proceeds from 1 to n; o.

Two primary difficulties arise when evaluating functions of the
formin Eq. (1). First, summing over all values of n; can be computa-
tionally expensive, making conditional formulas computationally
intractable when many lineages are sampled. Second, for any given
number of sampled alleles, i, the distribution P(n; ;) of the number
of ancestors is given by a complicated expression

P(n,.) = Z (—172) = D) g Mo ()

N1 — i) (Nio) G

. (2)

J=nit

where nj;; = n!/(n—j)! andng = (n+j— 1)!/(n— 1)! and where
time, t, is in coalescent units of N generations (Tavaré, 1984). Due
to terms of alternating sign in Eq. (2), this distribution is subject to
round-off error when o > 50 and t < 10~2, making calculations
inaccurate. Therefore, because of difficulties with computational
complexity and numerical instability, it is of interest to find other

means of evaluating formulas of the form given in Eq. (1).

2.1.1. The Griffiths approximation

One approach for eliminating round-off error in coalescent for-
mulas of the form given in Eq. (1) is to use a set of asymptotic
approximations derived by Griffiths (1984). Griffiths showed that
asng — ooandt — 0, n, has an asymptotically normal distri-
bution. He derived expressions for the asymptotic mean u; and
variance otz of this distribution. Griffiths’ asymptotic formulas can
be used to obtain numerically stable approximations to formulas
of the form given in Eq. (1) by replacing the distribution P(n; ;)
(i=1,...,k)with the corresponding asymptotic normal distribu-
tion (Chen and Chen, 2013). Using Griffiths’ asymptotic formulas,
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the approximation of Eq. (1) is

k
1 (=i )2 /202
fo =) fling) [ [ —=—e M, (3)
; 111 V2moi;

where u;; and o;, are the mean and variance of Griffiths’ normal
approximation to the distribution P(n; ), and where the summa-
tion is taken over n;; = 1,...,n;0 fori = 1,..., k. Throughout
this manuscript, we refer to an approximation of the form in Eq. (3)
to an exact coalescent formula of the form given in Eq. (1) as Grif-
fiths’ approximation of the formula.

The asymptotic approximations derived by Griffiths are useful
for eliminating round-off error when evaluating the distribution
of n;. However, although Griffiths’ normal approximations are very
fast to compute, the complexity of Eq. (3) is similar to that of Eq. (1)
because the same number of terms of approximately the same
complexity must be computed in both formulas. Thus, it is of in-
terest to identify alternatives to Griffiths’ asymptotic formulas that
can be used to evaluate coalescent expressions in a computation-
ally efficient way when the sample size is large. The key challenge

. .. . . k
is to eliminate the multiple summation over []_, n; o terms.

2.1.2. The deterministic approximation

We consider an alternative to Griffiths’ asymptotic formulas
that is useful for reducing the computational complexity of equa-
tions of the form given in Eq. (1) when the number ng of sampled
lineages is large. The alternative is to assume that the number n;
of lineages ancestral to a given sample of ng alleles is equal to its
expected value E[n;] with probability 1. The result of this approx-
imation is that the summation in Eq. (1) collapses to a single term

f0 = f&In)P(n,) ~ f(x|E[n,]), (4)

ng

which is fast to evaluate. Throughout this manuscript we refer to
an approximation of the form in Eq. (4) to an exact coalescent for-
mula of the form given in Eq. (1) as the deterministic approximation
of the formula.

To our knowledge, the deterministic approximation was first
used by Slatkin (2000) to treat problems with round-off error in the
distribution P(n; ;). We demonstrate here that this approximation
can often be used as an alternative to Griffiths’ approximation, to
reduce the computational complexity of coalescent formulas that
contain terms of the form in Eq. (1).

2.2. Approximating distributions that condition on the path of n;

A more general version of the approximation in Eq. (4) applies
to formulas that can be obtained by conditioning on the path of the
stochastic process n, over a range of time values [r, s], rather than
on the instantaneous value of the process n; at the single time point
t. In particular, consider the stochastic process n; (0 < t < o0),
where the value at t = oo refers to the t — oo limit, and let nj
denote a sample path of the process on the time interval [r, s]. We
consider approximations to coalescent quantities f (x) that can be
expressed using formulas of the form

fx) = f(X|n[r,s])p(n[r,s])d0‘\’[r.s]a (5)
Alr,s]

where f (x|ny; 5) is the conditional expression for f (x) given a par-
ticular sample path ny; 5 on the interval [r, s], A 5 is the sample
space of all paths of the stochastic process n; on the time interval
[r, s],and p(n(; 5) is the probability density function of these paths.

Such conditional formulas represent a wide variety of coales-
cent quantities. For example, consider a single set of sampled alle-
les (k = 1and n; = n;) on the time interval [r, s] = [0, c0). If we

define the conditional function

1 ifny =1
fxInp,o0) = {o otherwise,

then Eq. (6) is an indicator random variable that takes on the value
1if the ny sampled alleles find their most recent common ancestor
before time x. In this case, Eq. (5) is the cumulative distribution
function of the time to the most recent common ancestor (TMRCA).

Alternatively, we could consider the time interval [r, s] and
define the conditional function f (x|, 5) to be

s
f(x|n[r,s]) = / n, dz.
z

=r

(6)

This quantity is the total sum of branch lengths of the sample path
on the time interval [r, s]. In this case, f (x) in Eq. (5) is the expected
branch length of the genealogy on the time interval [r, s].

2.2.1. Approximating Eq. (5)
By analogy with Eq. (4), quantities of the form given in Eq. (5)
can be approximated as

f(x) = f(X|n[r,s])p(n[r,s])de’[r.s] %f(X|E[ﬂ[r,s]]), (7)
'A[r,s]

where E[ny 4] is the expected sample path of the stochastic
process n, over the time interval [r, s]. Such approximations not
only reduce the complexity of computing coalescent quantities by
eliminating the integral over all possible paths, they also facilitate
the derivation of approximate coalescent formulas that would
otherwise be difficult to derive analytically.

2.2.2. An application of Eq. (7)

For a single sample of ny alleles, specifying the term f (x|nj; 5)
in Eq. (7) by f(X|njrs) = f;:r n,dz is particularly useful for com-
puting quantities that depend on the expected number of segre-
gating sites in all or in part of a genealogy. In particular, under the
infinitely-many-sites model, the expected number of mutations S
on a genealogy at a locus of length b bases is proportional to the
expected total branch length L of the genealogy:

6b
E[S] = E[E[S|L]] = E[0bL/4] = ZE[L]’ (8)

where 8 = 4Ny is the population-scaled mutation rate per-site
per-generation, N is a specified haploid effective population size,
is the per-site per-generation mutation rate, and L is given in units
of N generations. If L 5 is the total length of a genealogy over the
time interval [r, s], then the expected number of segregating sites
Str.s1 in the interval is

6b
E[Syq] = ZE[L[r’S]]. (9)

The expectation on the right-hand side of Eq. (9) can be computed
using the following theorem:

Theorem 2.1. Let L 5 be the total sum of branch lengths of the ge-
nealogy of ng sampled alleles in the time interval [r, s] with0 <r <
s < oc. Then the expectation E[L;; 5] is given by

E[L[r,s]] = /S E[nz]dz- (10)

=r

The proof of Theorem 2.1 is given in Appendix A. As we demon-
strate in Section 5, Eq. (10) can be used to compute quantities such
as the number of mutations that are private to a given population
or sample and terms in the joint allele frequency spectrum among
a pair of populations. A result similar to Theorem 2.1 that consid-
ers the full genealogy up until the time to the most recent common
ancestor was proved by Chen and Chen (2013).
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3. The theoretical accuracy of the approximate formula

In this section we consider the accuracy of the approximate
coalescent formula obtained using Eq. (4). In comparison with
Griffiths’ approximation (Eq. (3)), which was shown to converge to
the correct value in the double limit as ng increases to infinity and t
decreases to zero (Griffiths, 1984), we show that the deterministic
approximation (Eq. (4)) of a coalescent formula converges to the
true value ast — 0 and ast — oo with the value of ng fixed.
As we will see, these less stringent criteria for convergence often
allow the deterministic approximation to be more accurate than
Griffiths’ approximation when the sample size ng is small. The
accuracy of the deterministic approximation is formalized in the
following theorem.

Theorem 3.1. Suppose that a function f(x) can be expressed as
fx) = Zn[f(x|nt)IP’(n[), where f (x|n;) is deﬁnedfor all x in some
domain D € R and for n;; € N = [1, n;, 0] (i =1,...,k). Suppose
that the second-order partial derivatives f (x|n[) exist and are

on;, r)n
continuous and bounded in n;; (i = 1, k)for all x € D and for
n; € N =N X--- X N.Then for aﬁxed value of ng, f (x|E[n;])

converges uniformly tof(x) onDast — 0and ast — oo.

The proof of Theorem 3.1 follows from a lemma proved in Ap-
pendix B and is given in Appendix C. We also obtain an approxi-
mate expression for the error in the deterministic approximation
ast — Oand ast — oc. In particular, we show that the error
If x) — f(x|E[n¢])| is given approximately by

If () — f(x|E[n.])]

1 ZZCOV(nlt, n}t) ”a

i=1 j=1

f(X|E[ntD (11)

ast — Oand ast — oo (Appendix D). In the commonly-occurring

scenario in which the numbers of ancestors n;; (i = 1, ..., k) are

independent of one another, Eq. (11) reduces to

f ) — f(XIE )| ~ = ZVarm, f) f(x|E[nt]> (12)
l t

Eq. (12) can be evaluated for any given quantity f(x) either by
evaluating Tavaré’s expression for Var(n;) (Eq. (B.10)), or by using
one of the asymptotic expressions for Var(n;) given in Theorem 2
of Griffiths (1984).

4. Approximating E[n;]

In order to apply the approximation n; ~ E[n,], it is necessary
to compute E[n;]. Chen and Chen (2013) noted that the expected
value E[n;] can be computed for a population of variable size N(t)
at time t in the past using the formula derived by Tavaré (1984)

Z(z (no)m —( )z’(t),

”o @

where njj = nl/(n —i)!andng = (n — 1 +1)!/(n — 1)!, where
time t is in units of generations, and where t(t) = f;zo 1/N(z)dz
is a rescaling of time (see Section 4.1). In a population of constant
size N(t) = N, =(t) simplifies to 7(t) = t/N. Although Eq. (13)
has a functionally simple form (a polynomial in e~*®), it can be
slow to compute when the sample size ny is large, and it does not
hold for complicated demographic models with migration. Because
there is currently no closed-form expression for E[n;] in the case
of migration, it is of interest to obtain accurate approximations of
E[n,] in this more complicated scenario. Note that the problem of
approximating E[n,] is distinct from the problem of approximating
n; by E[n;].

E[n¢|ng] = (13)

Several studies derived simple deterministic approximations of
E[n,] in a single panmictic population (Griffiths, 1984; Slatkin and
Rannala, 1997; Rauch and Bar-Yam, 2005; Volz et al., 2009; Frost
and Volz, 2010; Maruvka et al., 2011). With the exception of the
approximations derived by Griffiths (1984), these studies all used
a differential equation approach to obtain approximations of E[n;],
all employing slight variations on the same differential equation.
Here, we show that this differential equation can be extended to
obtain an approximation of E[n;] under models with migration
among populations.

As background for our derivation, we begin with a brief
overview of approximations of E[n,] in a single population. We also
take the opportunity to compare these approximations of E[n;] to
one another in terms of their relative accuracy, and we theoret-
ically validate these approximations by showing that they are in
fact asymptotically equal to E[n;] in certain limits.

4.1. Approximating E[n,] in a single population

Slatkin and Rannala (1997) derived a differential equation for
E[n;] in a single population:
Var(n;)

dE[n;] _ E[n,] 1
dt __( 2 )W_ 2N(t)

where N(t) is the size of the population at time t in the past. The
approximate formulas for E[n,] derived by Slatkin and Rannala
(1997), Volz et al. (2009), Frost and Volz (2010), and Maruvka et al.
(2011) can each be derived by making various simplifying approx-
imations of Eq. (14). In each approximation, Var(n;) is assumed to

be much smaller than E['z“] ,s0 that the term Var(n;) /(2N (t)) can

be neglected. Slatkin and Rannala (1997) and Volz et al. (2009) fur-
ther assumed that E[n;] >> 1 in order to obtain the approximation

dE[n] _ _E[nt]z
dt 2N’

Frost and Volz (2010) and Maruvka et al. (2011) retained the term
—E[n;]/(2N(t)), obtaining the approximation

dE[n;] ~ (E[nr]> L (16)
dt 2 N(t)

Egs. (15) and (16) can both be simplified further by using a trick
implemented by Slatkin and Rannala (1997). In particular, Griffiths
and Tavaré (1994) showed that the distribution of the number of
ancestral lineages at time t generations in a population of time-
varying size N(t) is the same as the distribution of the number of
ancestral lineages in a constant population of size N = 1 at time
() = fzt:o 1/N(z)dz. Thus, Slatkin and Rannala (1997) noted, it is
sufficient to solve Egs. (15) and (16) for the case of N = 1 and then
evaluate the solution at time 7 (t). This approach yields the solution

(14)

(15)

Elnd~ ——% (17)
14+ nor(t)/2

for Eq. (15) and the solution

E[n] Mo+ (1 — ng)e—©72
for Eq. (16). These approximations of E[n;] are summarized in Ta-
ble 1.

Egs. (17) and (18) are well-motivated by the approximations
used to obtain Egs. (15) and (16) from Eq. (14). However, these
approximations do not guarantee that Egs. (17) and (18) will be
accurate, nor do they shed light on the ranges of parameter values
over which we can expect the approximate expressions for E[n;] to
hold. By comparing Eqs. (17) and (18) to asymptotic formulas for
E[n;] derived by Griffiths (1984), for which theoretical results on
accuracy exist, a characterization of their accuracy can be obtained.

(18)
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Table 1
Approximations of E[n;], with 7 (t) = f;:o 1/N(z)dz.
Authors Assumptions Equation Solution
. 2
Slatkin and Rannala Var(n) < E[n,], E[n;] > 1 LEn] ~ —Huk Elnd ~ 1ror

(1997), Volz et al. (2009)

Frost and Volz (2010), Maruvka Var(n;) < E[n;] %E[nr] A — (5[121,1) E[n:] ~ W
etal.(2011) o

This paper Var(n,) < E[n;] LE[ng] ~ — (”’;*”) + Z’S_;} (E[nicJmi¢ — E[ng Jme;) Numerical solution
Griffiths (1984)* ng — oo, t — 0, npt < 00 No equation. Derived using a limit theorem approach. E[n:] = W

¢ The equation for E[n,] presented in Griffiths (1984) is given in terms of variables that are functions of ny and t, and is expressed for the case of a population of constant
size. For purposes of comparison, we have expressed the formula from Griffiths in terms of ng and t, and we have modified it to include the transformation 7 (t) to account

for the variability in population size.

4.1.1. Accuracy of approximations of E[n,] in the double limit as t —
Oand ng — oo
Griffiths (1984) proved that as ng — oo and ast — 0, E[n,] is
asymptotically given by the simple expression
no
no + (1 — ng)e70/2’
which is exactly equal to the expression of Frost and Volz (2010)
and Maruvka et al. (2011) (Eq. (18)). Thus, Eq. (18) is asymptoti-
cally equal to E[n;] in the double limit as no — oo and t — 0. Fur-
thermore, because 7(t) — 0ast — 0, it follows that e 7(0/2 ~
1—1(t)/2ast — 0.Thus,in the double limitsny — coandt — 0,
we have
No N No
no + (1 — ng)e~7(®/2

E[n]~

(19)

ng + (1 —np)(1—1(t)/2)
~ Mo
T 1+net ()2
Eq. (20) implies that the approximation of Slatkin and Rannala

(1997) and Volz et al. (2009) (Eq. (17)) is asymptotic to E[n;] in
the double limit ng — ocand t — 0.

(20)

4.1.2. Accuracy of approximations of E[n.] in the single limitast — 0
for fixed ngy

Comparing Egs. (17) and (18) with Tavaré’s (1984) formula for
E[n:] (Eq. (13)) allows us to establish that Eqs. (17) and (18) are
asymptotically equal to E[n;] as t — O for fixed values of ng. In
particular, from Eq. (B.8), we have

E[n] =no —z(t) (7) + 0z (). (21)

In comparison to Eq. (21), expanding Eq. (17) around t(t) = 0
gives ng — t(t)n?/2 + O((t)?), and expanding Eq. (18) around
7(t) = 0givesng—T1(t)ng(ng—1)/24+0O (r(t)?). Thus, Egs.(17)and
(18) are both asymptotic to E[n;] as t — 0, with Eq. (18) holding
more accurately when ng is small.

4.1.3. Accuracy of approximations of E[n;] in the single limit as t —
oo for fixed ny

Although both Eqgs. (17) and (18) are asymptotically equal to
E[n;]ast — 0, only Eq. (18) is asymptotic to E[n;] ast — oo. This
result follows from the fact that as t — oo, Eq. (18) approaches
unity, which is the limiting value of E[n;] as t — o0, whereas
Eq. (17) approaches zero.

The asymptotic behavior of approximations (17) and (18) is
shown in Fig. 3 for the case of np = 10 sampled alleles in a
population of constant size. It can be seen that both formulas (17)
and (18) converge to the true mean E[n;] as t — 0 with ng fixed,
with Eq. (18) converging more quickly. Although the sample size
ng is small, Eqs. (17) and (18) are still very good approximations
of E[n;] as t — 0. Furthermore, although Eq. (17) is inaccurate for

10
— (1]
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» —
o 14 ngt/2
8 6 no
£ no + (1 —ng)e=t/2
5
8 4
S
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Fig. 3. Comparison of simple approximations of E[n;] in one population with
ng = 10 sampled alleles. The exact mean E[n;] (Eq. (13), blue) is compared to
the approximation of Slatkin and Rannala (1997) and Volz et al. (2009) (Eq. (17),
purple) and to the approximation of Frost and Volz (2010) and Maruvka et al. (2011)
(Eq. (18), green).

large times ¢, it has comparable accuracy to Eq. (18) at small ¢t and
has a functionally simpler form. Thus, the simpler Eq. (17) can be
useful for deriving simple approximate formulas when accuracy is
needed only at small t.

4.2. Approximating E[n;] under migration

In this section, we extend the derivation of Slatkin and Rannala
(1997) to the case of k populations, each of variable size N;(z)
(i =1,...,k)at time z > 0 in the past, with migration among
them. In the model we consider, lineages in population i migrate
to population j at rate m;; as time moves backward, where the m;
represent backwards migration rates.

Letn, = (nq;, nay, ..., N,) record the number of ancestral
lineages in all populations at time t in the past. If the lineages fol-
low a coalescent process in each population, then n, satisfies a
time-inhomogeneous Markov process with instantaneous transi-
tion probabilities given by

P = ¢'Ing = @)

k
o\ 1
1- ( ) 5
; 2/ Nij(t)
k k
=3 > ems +0() ifp=¢
= i=1 j=1 (22)
J#
(p,-m,-jS + 0(8) lf(p = (p/ + e — €;
QDI‘) 1 . ’
S+ o0(s ifo = e;
(2 N,-(t)+() p=¢ +e
0 otherwise,

where e; is the ith standard basis vector in which element i is
equal to one and all other elements are equal to zero. In Eq. (22),

the term (%) N%t) is the instantaneous rate at which a coalescent
1
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Fig. 4. The accuracy of the approximation to E[n,] under migration (Eq. (26)) for two populations of time-varying sizes N1 (t) and N, (t). The two populations have the same

size N1(t) = N,(t) = N(t), which grows faster-than-exponentially over time according to the formula dN(t)/dt =

—aN(t)?, where @ = 10, 8 = 5, and N(0) = 1. The

migration rates satisfy my; = my; = m. (A) Curves show the approximation of E[n; (] (the expected number of lineages in population 1 at time t) obtained by numerically
solving Eq. (26). Dots show the estimates of E[n; ;] at the times t = 0.001, 0.01, 0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 obtained by simulating 103
genealogies under the coalescent model according to the transition probabilities in Eq. (22) and computing the number of lineages over this grid of times. Different colored
lines correspond to different values of m. The total length of each error bar is equal to two standard deviations of ny; or n, (, estimated from the 10° replicate simulations
(10° sampled genealogies). (B) The corresponding plot for E[n, (], the expected number of lineages in population 2 at time t. For each value of m, n; o = 100 and ny o = 0

lineages were sampled from populations 1 and 2, respectively.

event occurs in population i, and ¢;m; is the instantaneous rate at
which a lineage migrates from population i to population j, when ¢;
lineages remain in population i at time t. The notation ¢’ = ¢ — e;
indicates that a coalescent event occurred in population i between
the state ¢ at time t and the state ¢’ at time t + §. Eq. (22) is the
generalization of the transition probabilities used in the derivation
of Volz et al. (2009, p.1880).

Using the transition probabilities in Eq. (22) and conditioning on
the state at time t, we obtain the following conditional expression
for P(ns = ¢), which we denote by p, (t + §):

k k

k
1_;< )T@ _ZZ%mu(S Py (t)

i=1 j=1
J#

k k
+ DD @i+ DMyopy e (t)

i=1 j=1
J#i

k
o+ 1
+ Zl( 5 ) N (t)ap¢+e,(r) + 0(8). (23)

Subtracting the term p,(t) from both sides, dividing by §, and
letting § — 0 gives the differential equation

dp (f) ; Kk
W _ZCP)N(OP‘/’()_;;%mijw(f)
Kk
+ ZZ(%‘—F

J#
i=1 j=1
J#

k
¢i+1 1
+;( 5 )N(t)p¢+e,<) (24)

To obtain the differential equation for E[n,] (£ = 1,...,k),
we can multiply both sides of Eq. (24) by ¢, and sum over ¢, (Ap-
pendix E) to obtain

pu(t +8) =

l)mijp(p-FEi—Ej (t)

dE[ng] _ (E[Wr]> 1 Var(”zr)
. 2 )N 2Ne()
k
+ D (myElni] — muElng]). (25)

i=1
il

If we assume that Var(n,) = 0, then we obtain the system of k
approximate differential equations

dE[ng] ~ (E[Wt]
dt 2

) o T Z(me ni]l — myElng])  (26)
1#/

for £ = 1,...,k, which can be solved numerically to obtain ap-
proximations of E[ng;].

The accuracy of the approximation obtained by solving the
system of equations in Eq. (26) is shown in Fig. 4 for the case of two
populations with migration among them. The populations have
equal and exponentially growing sizes given by N1(t) = N,(t) =
N(t), where N(t) satisfies the differential equation

N'(t) = —aN(t)”. (27)

This equation represents the model of super-exponential growth
proposed by Reppell etal. (2012). When 8 = 1, the population size
changes exponentially over time according to N(t) = N(0)e~*.In
the example in Fig. 4, we have constrained the migration rates to
be equal, and we consider the case in which ny o = 100 lineages
are sampled from the first population and n, o = 0 lineages are
sampled from the second population. From Fig. 4, it can be seen
that the approximation obtained by solving Eq. (26) is accurate
across a range of migration rates.

5. Applications

In this section, we apply the approximations in Egs. (4), (7)
and (10) to a set of example problems that demonstrate their
utility for approximating coalescent formulas. We explore the
accuracy of the resulting approximations using Theorems 2.1 and
3.1. We also demonstrate how approximations of E[n,] for the
case of multiple populations with migration (Eq. (26)) can be used
to obtain approximate coalescent formulas under complicated
demographic scenarios.

5.1. The expected joint allele frequency spectrum

We first consider the problem of approximating Wakeley and
Hey’s (1997) formula for the expected joint allele frequency spec-
trum between a pair of populations without migration. In Wakeley
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Pop. 1 —»

’ILL()

Fig.5. Wakeley and Hey’s model for computing the expected joint allele frequency
spectrum between a pair of populations. Two daughter populations, 1 and 2,
diverge at time ¢ in the past from an ancestral population (population 3). At the
present time t = 0, ny and n o lineages are sampled from populations 1 and
2, respectively. Wakeley and Hey's formula for the expected joint allele frequency
spectrum computes the expected number z; of segregating sites at which the
derived allele appears in i copies in the sample from population 1 and in j copies
in the sample from population 2, wherei € {1, ..., nyoyandj e {1,...,ny0}. The
model considers only mutations that arose in the ancestral population (red crosses).

and Hey’s model, two populations diverge at time tp from an an-
cestral population (Fig. 5). A sample of 1 o alleles is taken from the
first population and a sample of n, o alleles is taken from the sec-
ond population. Let z; be the random variable recording the num-
ber of polymorphic sites for which the derived allele appears in i
copies in the sample from the first population and inj copies in the
sample from the second population. The expected joint allele fre-
quency spectrum (JAFS) for the two populations is the collection of
expectations E[zg] fori=1,...,mp—1landj=1,...,m0— 1

The expected JAFS is useful for performing inference on
demographic parameters such as divergence times and ancestral
population sizes (Wakeley and Hey, 1997; Gutenkunst et al., 2009;
Nielsen et al., 2009). Wakeley and Hey’s formula for the expected
JAFS is of the form

11,0 2,0
Elzgl= Y > Gy, nog)P(n1g,)P(ny,). (28)
oy =2 N ¢ =2
Here, tp is the divergence time between the two populations, and

n“D—] ’12,th1

Gy ) = > Y Plks = ilny, 1)

k=1 ky=1

(nl,rD ) (nz.rD )
kq ky 93 (29)
<”1,rD +n2.tp ) ki + ko ’

k1+k;

X P(ky = jlna,o0, na,¢p)

where P(k — ijn, n') = ("I:’;/) Kii—ty (" — k) (' —i-+k /M,y @0
where 63 = 4N3ub is the population-scaled mutation rate in the
sequence of length b bases in the ancestral population of size Ns.

The term Cjj(ny ¢, N2,1,) is time-consuming to evaluate, and the
formula in Eq. (28) quickly becomes computationally burdensome
as nyo and ny increase in size (Fig. 6A). Dependence on the
distribution P(n,) also leads to round-off error when n; o or ny g
is large and tp is small. This round-off error is visible in Fig. 6B as
points that deviate from the smooth curve for sample sizes greater
than Ny0 = MN20 ~ 60.

5.1.1. Approximating the JAFS

Although Griffiths’ approximation (Eq. (3)) can eliminate the
round-off error in evaluating Eq. (28), the time needed to compute
the formula using Griffiths’ approximation is nearly the same as the
time needed to compute the exact formula (Fig. 6A). In addition, the
approximation deviates from the true value when the sample size
is small (Fig. 7A).

Instead of using Griffiths’ approximation, we can approximate
Eq. (28) using the deterministic approximation (Eq. (4)). In partic-
ular, we can approximate Eq. (28) as

Elzj] ~ Cj(E[ny,, ], E[n2,61)- (30)

The expectations E[ny ¢, ] and E[n; ¢, ] in Eq. (30) can be computed
using Eq. (13), or they can be approximated using Eq. (17) or
Eq. (18). Because E[ny,] and E[n, ] are not generally integer-
valued, the factorials and binomial coefficients in Eq. (29) can be
computed by reformulating them in terms of gamma functions us-
ing the definitions n! = I'"(n + 1) and (}) = n!/[k!(n — k)!] =
I'n+ 1)/["'(k+ 1) (n — k + 1)]. The result of the approxima-
tion is a considerable reduction in computation time (Fig. 5A) and a
considerable improvement in accuracy both for small and for large
sample sizes (Fig. 5B).

5.1.2. The accuracy and computational complexity of the approxima-
tion in Eq. (30)
Theorem 3.1 tells us that when the second partial derivatives

831 . Gij(ny,tp, N2,,) and 8 Cl] (11,4, N2,¢py) €Xist and are contin-

uous and bounded in ny g, and ny,¢,, then the approximation in
Eq. (30) converges to the true distribution in Eq. (28)ast — 0
and as t — oo. Because Eq. (29) is a finite sum of fractions of
gamma functions in ny ¢, and ny ,, which are smooth, bounded,
and nonzero for (ny ¢, na,¢,) € [1, ny,0] X [1, ny 0], the second par-
tial derivatives of Eq. (29) are smooth and bounded on [1, 117 o] X
[1, ny 0] Therefore, for fixed values of ny and ny o, the error in
the approximation in Eq. (30) decreases to zero as t — 0 and as
t — o0.

We can also estimate the magnitude of the error in the de-
terministic approximation using the result in Appendix D. In par-
ticular, because the lineages in populations 1 and 2 coalesce
independently of one another, we can estimate the error using
Eq. (12), which applies when n;; and n,, are independent. In
Eq. (12), the variances Var(n; ¢,) and Var(n,,,) can be computed
using Tavaré’s formula given in Eq. (B.3). Because the second par-
tial derivatives 82 C,] (n1,¢p, N2,¢p) and 8n2 . Gij(1,¢p, N2.¢p) are dif-
ficult to compute analytlcally, we can evaluate them using finite-
difference approximations; in this example, we used the second-
order forward finite-difference approximation.

The asymptotic accuracy of the approximation in Eq. (30) can
be seen in Fig. 7A for the term E[z1]. In particular, the blue curve,
which corresponds to the error in the deterministic approximation,
approaches zero ast — 0 and ast — oc. From Fig. 7A it can also
be seen that the estimated error in the approximation to the term
E[z11] closely matches the true error, and that it is approximately
equal to the true error in the limits t — 0and t — oo. The error is
also small for the other terms in the JAFS. For example, for the fixed
value tp = 0.01 and for ny o = ny,0 = 30, the fit of the approxima-
tion in Eq. (30) is very accurate for all values of i and j (Fig. 7B).

In contrast with the deterministic approximation, the error in
Griffiths’ approximation (the green curve in Fig. 7A) does not con-
verge to zero as t — 0. Although Griffiths’ approximation is less
accurate than the deterministic approximation for the particular
choice of parameter values considered here, Griffiths’ approxima-
tion is guaranteed to converge to the exact value as t — 0 and
as ny o and ny o increase to infinity. Thus, the accuracy of Griffiths’
approximation will improve for larger sample sizes.

5.2. Expected numbers of segregating sites under migration

In this section, we demonstrate how approximate expected
numbers of segregating sites can be computed under complicated
demographic scenarios involving variable population sizes and
migration. In particular, we combine Eq. (10) with approximations
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of E[n;] obtained using Eq. (26) to compute the expected number
of private alleles in a sample from a population. Private alleles are
useful for studying the historical relationships among populations
(Tishkoff and Kidd, 2004; Szpiech et al., 2008), and the number of
private alleles is a commonly-used measure of distinctiveness in
conservation studies (e.g., Kalinowski, 2004; Wilson et al., 2012;
Ariani et al., 2013).

In this example, we again consider two populations, 1 and 2,
that diverged at time tp in the past and that have continued to
share migrants since their divergence (Fig. 8A). Let N1(t) and N, (t)
be the sizes of populations 1 and 2 at time t in the past. We
consider the case in which each population has grown faster-than-
exponentially over time (Eq. (27)) according to N/ (t) = aN;(t)?
(i = 1, 2), where « and 8 are the same for both populations. We
assume that ny ¢ and ny o alleles were sampled from populations 1
and 2, respectively (Fig. 8).

5.2.1. Approximating the expected number of private segregating sites
in a sample

Let S; be the number of mutations that are observed in a region
of length b bases in a sample of nny o lineages from population 1 and
not in a sample of n, o lineages from population 2. The expectation
E[S1] can be obtained by computing the total sum of lengths L; of

genealogy branches that are ancestral only to the sample from pop-
ulation 1 (Fig. 8B). Using Eqs. (9) and (10), E[S1] can be computed as

E[S]—e—bE[L]—@fOOE[ﬁ ldz
= ZEhl=-~ j 1,z1dz,

=0

(31)

where 7y ; is the number of lineages that are ancestral only to the
sample from population 1 and that are not ancestral to the sample
from population 2.

To compute E[7; (], we can solve Eq. (26) for two populations
with initial conditions in which n;y and n; o alleles are initially
sampled from populations 1 and 2, respectively. The solution gives
us E[n; ;] and E[n; ], the numbers of ancestral lineages remain-
ing in populations 1 and 2, respectively, at time t in the past. Solv-
ing the system again with initial conditions in which no alleles are
sampled from population 1 and in which n; o alleles are sampled
from population 2 yields the solutions E[y; ] and E[y; (], which
are the numbers of lineages in populations 1 and 2, respectively,
that are ancestral at time ¢ to the n, o lineages sampled from pop-
ulation 2.

The number of lineages E[X; ] in population 1 at time ¢t that
are ancestral only to the sample from population 1, and not to the
sample from population 2, is then given by E[X; ] = E[ni] —
E[y1.¢]. Similarly, the number of lineages E[X; ;] in population 2 at
time t that are ancestral only to the sample from population 1, and
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Fig. 8. Comparison of stochastic and deterministic coalescent models for computing the expected number of mutations that are private to a sample of alleles from a
population. In each model, two populations, 1 and 2, diverge at time t), in the past. Samples of sizes nq o and n; o are taken from populations 1 and 2, respectively. (A) The
classical stochastic coalescent model. Orange crosses indicate mutations that occur on lineages that are ancestral only to the sample from population 1. (B) The deterministic
coalescent model. The red region indicates lineages ancestral only to the sample from population 1, the blue region indicates lineages ancestral only to the sample from
population 2, and the purple region indicates lineages ancestral to both samples. The width of the shaded region of each color in each population at a fixed time t is the
expected number of lineages of the given type in the given population at that time. The total sum of branch lengths on which a mutation ancestral only to the sample from

population 1 can occur is the area of the region shaded in red.
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Fig.9. Comparison with simulations of analytical approximations of E[S;] obtained
using Eq. (31) with simulations.

not to the sample from population 2, is given by E[X, (] = E[ny ] —
E[y,.¢]. The expected total number of lineages ancestral only to the
sample from population 1is given by E[fi1 ;] = E[X1(]+E[X2,¢]. The
expectation E[S;] is then obtained by plugging the value of E[711 ¢]
into Eq. (31) for a given choice of # and b.

Theorem 2.1 implies that Eq. (31) is exact if E[f1,] is exact.
However, because the differential equation in Eq. (26) is approx-
imate, there will be a small amount of error in our computation of
E[S1]. We examine this error empirically in Section 5.2.2.

5.2.2. The accuracy of the approximation in Eq. (31)

To examine the error in Eq. (31) that arises from the approxi-
mation in Eq. (26), we compared the analytical results obtained us-
ing Egs. (26) and (31) to simulations. Simulations were performed
by sampling genealogies from the Markov chain with transition
probabilities given by Eq. (22) using an approach similar to that
described by Jewett et al. (2012). We discuss the simulation proce-
dure in more detail in Appendix F.

Approximations of E[S;] appear in Fig. 9 for various sample sizes
n1,0 and ny o, along with simulated values for comparison. In our
computations and simulations, we have taken N;(0) = N,(0) = 1,
and we have set N3(t) = N;(tp) + N2 (tp) at the divergence time
tp. The other parameters were chosen in order to model moderate
levels of faster-than-exponential growth and migration: « = 5,
B = 10, and m;; = my; = 10. Because the parameters b
and 6 in our model only affect the computed values of E[S;] by
a constant scaling factor, we set each of these values to unity for
simplicity (b = 1and # = 1). From Fig. 9, it can be seen that the
approximation is very accurate over the range of parameter values,
even when the sample sizes are small.

5.3. The time to the first inter-sample coalescent event

In the examples in Sections 5.1 and 5.2, we have used the ap-
proximation n; ~ E[n;] to compute expected values. However, the
approximation can also be used to derive approximate probabil-
ity distributions. For example, Volz et al. (2009) used a version of
the approximation in Eq. (4) to compute the joint distribution of
coalescent waiting times among a set of sampled lineages in a sin-
gle population of variable size (Volz et al., 2009, Eq. (12)). Here, we
consider the related problem of computing the distribution of the
time until the first coalescent event between two different sets of
sampled alleles in a model with two populations of variable size
with migration among them (Fig. 10).

We again consider a model in which two populations diverge
at time tp from a common ancestral population (Fig. 10). Consider
a sample of ny ¢ alleles from one or both of the populations, and
denote these as “type-1" alleles. Suppose that a second sample of
1y o alleles is taken from one or both populations and denote these
as “type-2” alleles. We refer to lineages ancestral to type-1 alleles
as “type-1” lineages, and we refer to lineages ancestral to type-2
alleles as “type-2” lineages. We are interested in computing the
distribution of the random time V until the first coalescent event
occurs between a type-1 lineage and a type-2 lineage when the
migration rates between the populations are nonzero. We refer to
a coalescent event between a type-1 lineage and a type-2 lineage
as an inter-sample coalescent event.

Inter-sample coalescence times have a number of applications.
For example, when the type-1 and type-2 alleles are sampled from
two different populations, the time to the first inter-sample coa-
lescent event can be used to estimate the divergence time of the
two populations (Takahata and Nei, 1985; Mossel and Roch, 2010;
Liu et al., 2010; Jewett and Rosenberg, 2012). When n; o = 1, the
distribution of the time to the first inter-sample coalescent event
can be used to compute the probability of observing a new haplo-
type, conditional on an observed set of n, o haplotypes (Paul and
Song, 2010), or to predict the accuracy of imputing genotypes on
a haplotype using a reference panel of existing haplotypes (Jew-
ett et al,, 2012; Huang et al., 2013). The expected time of the first
inter-sample coalescent event was computed in a migration model
using simulations by Takahata and Slatkin (1990). Here, we show
how a simple approximate analytical distribution can be derived
using Eq. (26).

5.3.1. Approximating the distribution of the inter-sample coalescence
time

At time ¢ in the past, suppose that x; ; type-1 lineages and y; ;
type-2 lineages remain in population 1 and suppose that x, ; type-
1 lineages and y, ; type-2 lineages remain in population 2. Under
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Fig. 10. The time v until the first coalescent event occurs between an ancestor of
one of ny o type-1 alleles (red) and an ancestor of one of n, ¢ type-2 alleles (blue).
The alleles are sampled from two populations, 1 and 2, of sizes N (t) and N> (t) that
diverged at time tp from an ancestral population (population 3) of size N5(t).

the classical stochastic coalescent model, the instantaneous rate of
coalescence between type-1 and type-2 lineages in population 1
is X1.¢y1.:/N1(t) and the instantaneous rate of coalescence among
type-1and type-2 lineages in population 2 is X, +y, ¢ /N, (t). There-
fore, because lineages can only coalesce within the same popu-
lation, the instantaneous rate of coalescence among type-1 and
type-2 lineages overall is x; 11, /N1(t) + X2,t¥2.¢ /N2 (t).

Let X1,0,00], X2,[0.00]» Y1.[0.00]» aNd ¥2 0,00} denote sample paths
of the stochastic processes describing the numbers of ancestors of
each type in the time interval [0, oo], and denote the collection of
these paths by X[o,«0). Conditional on the sample paths X0 o) and
on the event that no inter-sample coalescent event has occurred
by time t, it follows that in the small time interval [t, t 4+ §], the
probability that no inter-sample coalescent event occurs is

P(Lit,e4811L0,61> X(o,00) X 1 — (X1,6¥1,¢/N1(E) + X2,0¥2,¢ /N2 (£))8
A2 exp{—(X1,e¥1,¢/N1 () + X2,1¥2.¢ /No (1)) 8}, (32)

where {[; g is the event that no inter-sample coalescence occurs
in the time interval [r, s]. Thus, conditional on the sample paths
X[0,00]» the probability that no inter-sample coalescent event oc-
curs in any of v/§ small time intervals of length § between time 0
and time v is given approximately by

P(L10,51, L1s,25] - -
v/8
~ 1_[ o~ ®1,i5¥1,i8/N1(8)+X2,i5Y2,i5 /N2 (i8))8

i=1

s L=s,011X[0,001)

—e Z;j:/i(Xl.iéJ’l,i(S/Nl(i5)+x2,i8)’2,i5/N2(i5))5. (33)

A similar result was obtained for the case of a single population
by Jewett and Rosenberg (2012).

By letting § — 0in Eq. (33), we obtain an approximation of the
survival function Syx(v) of the time until the first inter-sample co-
alescent event, conditional on the sample paths X oo):

Syx(v) = P(Lo,011X[0,001)
~ e*fZU:o(Xl,z}’Lz/Nl(Z)+x2,z}’2,z/NZ(z))dZ. (34)

The unconditional survival function S(v) can be obtained by inte-
grating over all sample paths as follows:

S(v) = /
A

= / o= Jroo®1,201,2/N1@+x2,2¥2,2 /N2 (2))dz
A[0,00]

Syx (V)P(X[0,001)dA[0,00]

[0,00]

X p(X[0,001)dA[0, 0015 (35)

where p(X[o,.c]) is the probability density function of the sam-
ple paths Xjo o). EQ. (35) is of the form given in Eq. (5), which is
time-consuming to compute due to the integral over all sample
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Fig. 11. Kernel density estimates (dashed lines) and analytical approximations
(solid lines) of the survival function S(v) of the time V to the first inter-sample
coalescent event between two samples of lineages taken from two separate
populations. Analytical approximations were computed using Eq. (36). These values
were generated using a model in which the type-1 and type-2 lineages were
sampled from different populations (Fig. 10) that diverged at time tp = 0.1 and that
had equal and faster-than-exponentially growing sizes given by N1(t) = N, (t) =
N(t). The migration rates between the populations in the time interval [0, tp] are
mi; = my; = 10. The population sizes N(t) satisfied Eq. (27) with N(0) = 1,
B = 10, and ¢ = 5. The ancestral population was of constant size N3(t) = 1
for t > tp. The sharp change in the slope of the curves at time v = 0.1 is due
to the instantaneous transition from two populations to a single population at the
divergence time tp.

paths X(g, o. However, using an approximation of the form given in
Eq. (7), we can approximate S(v) by

S(v) & e~ JemoEX1ZIEY1 2)/N1 @) +Elxz 2 ELY 21/ Na @)z (36)

Compared with Eq. (35), Eq. (36) is considerably faster to compute
and it has a simple functional form.

5.3.2. The accuracy of the approximation in Eq. (36)

We compared the approximate distribution S(v) given in
Eq. (36) with kernel density estimates of S(v) from simulations
(Appendix F). In our example, we considered a scenario in which
the type-1 and type-2 lineages were sampled from different pop-
ulations that diverged at time tp = 0.1 and which had equal and
faster-than-exponentially growing sizes given by N;(t) = N,(t).
The population sizes N;(t) (i = 1, 2) satisfied Eq. (27) with N;(0) =
1, 8 = 10, and o = 5. The ancestral population was of constant
size N3(t) = 1fort > tp.

To obtain kernel density estimates of S(v), we simulated ge-
nealogies from a coalescent model with transition probabilities
given by Eq. (22) as described in Appendix F. Fig. 11 shows compar-
isons of S(v) computed using Eq. (36) with kernel densities com-
puted from 10° replicates for a variety of different sample sizes n; g
and n; . From the density plots, it can be seen that the approxima-
tion is very accurate, even when the sample sizes are small.

6. Discussion

In this paper, we have considered the accuracy and applications
of the deterministic approximation n, =~ E[n,] for deriving
approximate coalescent distributions that are fast and numerically
stable to compute. In particular, we identified ways in which
the approximation n, = E[n;] can be applied procedurally to
reduce the computational complexity and numerical instability of
coalescent formulas that involve conditional summations over all
possible values of n;, or that involve integrals over all possible
sample paths n; g of the coalescent process describing the number
of ancestral lineages in a given time interval [r, s].
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We have considered two different kinds of approximation. In
Sections 2 and 3, we considered the approximation of n; by its ex-
pected value E[n;]. In Section 4, we considered a second kind of
approximation: approximate formulas for E[n,]. The first approxi-
mation, of n; by E[n,], holds whenever the behavior of n; is nearly
deterministic. As we showed in Lemma B.1, this deterministic be-
havior occurs in the limit ast — 0 and as t — oo. By contrast,
the range of values over which any given approximation of E[n,]
is valid depends on the approximation that is used. For instance,
in Fig. 3, we saw that the approximate function in Eq. (18) is sen-
sible in the limitast — 0 and ast — oo, whereas the simpler
approximation in Eq. (17) is sensible only in the limit as t — 0.

To facilitate the application of these approximations in prac-
tice, we showed that approximate coalescent formulas of the form
given in Eq. (4) converge to their true values as t — 0 and as
t — oo under simple assumptions. We also derived an approx-
imate expression for the error in these deterministic approxima-
tions (Eq. (11)). This approximate expression for the error can be
used in practice to evaluate when any given approximate formula
of the form given in Eq. (4) is accurate.

We obtained approximate formulas for E[n1;] in the case of mul-
tiple populations with time-varying sizes and migration among
them (Eq. (26)). These approximations were produced by extend-
ing differential equations for E[n,] derived for the case of a sin-
gle panmictic population by Slatkin and Rannala (1997), Volz et al.
(2009), and Maruvka et al. (2011). The approximations of E[n,] that
we obtained facilitate the derivation of approximate coalescent
formulas under complicated demographic scenarios. For example,
we showed how approximations of E[n;] under migration could be
used to approximate the expected number of mutations occurring
along the branches of a genealogy (Section 5.2) or to compute an
approximate distribution of coalescent waiting times (Section 5.3)
in demographic models involving multiple populations with mi-
gration. Such applications of the approximation n, & E[n,] are use-
ful because deriving exact formulas for coalescent quantities under
models with both migration and population size changes can be
difficult.

We have described a number of problems to which the approx-
imation n, &~ E[n,;] can be applied. However, we have focused on
quantities that can be derived conditional on knowledge of the to-
tal number of ancestral lineages remaining at a given time t or over
a given time interval [r, s]. Quantities that require knowledge of
the topology of the coalescent tree relating the ancestral lineages,
or of the number of lineages of a particular type, may be more diffi-
cult to derive. It is likely that the approximation n, & E[n;] can be
used to derive a variety of approximate distributions beyond those
discussed here; however, the approximation n; ~ E[n;] must be
applied in a new way for each new class of problem, and the theo-
retical accuracy of these applications must be evaluated anew.

One common use of the approximation n, &~ E[n,] that we did
not consider in this paper is the inference of the size of a popula-
tion at each time in the past by fitting the observed values of n;
obtained from a reconstructed genealogy of a set of sampled alle-
les to the expected values E[n;] (t > 0) under a given demographic
history (Frost and Volz, 2010; Maruvka et al., 2011). The theoretical
accuracy of such fitting approaches is difficult to determine analyt-
ically and remains a subject for further work.

The importance of coalescent approximations has been a sub-
ject of much recent interest, as it has become increasingly rec-
ognized that exact formulas or algorithms can be intractable in
practical scenarios. Many recent studies have made use of a variety
of simplifying assumptions and approximations to the coalescent,
and to coalescent-like problems (Li and Stephens, 2003; McVean
and Cardin, 2005; Marjoram and Wall, 2006; Davison et al., 2009;
Paul and Song, 2010; RoyChoudhury, 2011; Li and Durbin, 2011;
Sheehan et al., 2013). Our results on the approximation n; ~ E[n;]

contribute to this growing toolbox of coalescent-based approxima-
tions that can be used to derive functionally simple, computation-
ally efficient, and numerically stable approximations of coalescent
formulas under a variety of coalescent models. These, and similar
kinds of approximations, will become increasingly important for
making population-genetic computations tractable as the sizes of
genomic data sets continue to grow.
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Appendix A. Proof of Theorem 2.1

Proof. Let ([r, s], £, A) denote the measure space defined on the
interval [r, s] with the Lebesgue o -algebra on [r, s] and Lebesgue
measure A. Let A, 5 denote the space of sample paths ny; g of the
stochastic process n; over the time interval [r, s], and define the
measure space (A s, S, p), where S is the o-algebra generated
by the process n, and p is the probability distribution of sample
paths on A, . We assume that (A, 5, S, p) is complete, or if not,
we assume that it is equal to its completion, which exists by the
Completion Theorem (Rudin, 1975, p. 29). We have

s s
E[L[r.s]] =E |:/ nzdzi| = / / nzp(n[r,sl)dz dA[r,s]. (A])
z=r Alrs) Y Z=T

Tonelli’s theorem (DiBenedetto, 2002, Theorem 14.2, p. 148) states
that the integrals on the right-hand side of Eq. (A.1) can be
exchanged if ([r, s], &£, 1) and (A g, S, p) are complete o -finite
measure spaces and if n,p(nj ) is a nonnegative measurable
function on [r, s] x 4, 5. The function n, is a positive step function
on [r,s] and it is therefore measurable because a measurable
function can be defined as a limit of step functions (Atkinson and
Han, 2009, p. 17). The density function p(n. ) is also positive
and measurable because probability density functions are positive
and measurable by definition (Tao, 2011, p. 193). Therefore, the
product n,p(n ) is positive and it is measurable because the
product of measurable functions is measurable (Franks, 2009, Page
48, Exercise 3.1.11). The space ([r, s], £, A) is complete because
the Lebesgue o -algebra combined with the Lebesgue measure on a
subset of the real numbers forms a complete measure space (Mas-
Colell, 1989, p. 23), and (A5, S, p) is complete by assumption.
Because A([r,s]) = s —r < oo and p(Aq) = 1 < oo, the
measure spaces ([r, s], £, A) and (4 5, S, p) are both sets of finite
measure, and are therefore o-finite by definition (DiBenedetto,
2002, p.71). Therefore, it follows that the integrals in Eq. (A.1) can
be exchanged by Tonelli’s Theorem, yielding

N
E[L[r,sj] = / / nzp(n[r,sj)dz ddé"[r.s]
Alr,s) Y 2=1

s
= / / nzp(n[rﬁs])d,/%[r,s] dz
z=r J A 5]

= / E[n,]dz,

which completes the proof. O

(A2)

Appendix B. A lemma for proving Theorem 3.1

In this section we present a lemma that is necessary for prov-
ing Theorem 3.1. The lemma states that the number of lineages n;
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that are ancestral to a set of ng sampled lineages approaches its ex-
pected value E[n;] ast — 0 and as t — oo. Specifically, we show
that the random variable n, — E[n;] converges in probability to 0
ast — Oandast — oo. We first show that Var(n;) — 0ast — 0
and as t — oo for fixed ng in a population of arbitrary size N(t).

Lemma B.1. Consider a panmictic population of van’able size N(t)
such that llmHOf -0 N(Z) L _dz = 0and llmHoof —o N(z) L _dz =

For a fixed number, ng, of lineages sampled at time t = 0 from thls
population, Var(n;) — 0ast — Oandast — oo.

Proof. Tavaré (1984, p. 131) showed that the moments of n; in a
panmictic population of constant effective size N can be obtained
using the function

E[(nom] = 2(21 1) ( -1 ) M —i=1)t/2,

B.1
P -1 (o) iy (B1)

where E[(n;)[x1]no] is the kth factorial moment of n¢, n;; = n!/(n—
i)!'andng = (n—141i)!/(n—1)!, and where time ¢ is in coalescent
units of N generations.

Chen and Chen (2013) noted that this formula can be extended
to the case of a population of variable size N(t) using a result
from Griffiths and Tavaré (1994). Specifically, Griffiths and Tavaré
showed that in a population of variable size N(t), n, has the
same distribution as the number n(, of ancestral lineages at time

T(t) = fz[:o ﬁdz in a population of constant size one. Thus, in a
population of variable size N(t), Eq. (B.1) becomes

nop .
- i= 1Y k1ol __
Elnopl = Y \(2i — 1)<< )u —
i=k

B.2
k—1 (o)) (B2)

t
where 7(t) = [,_, N(Z)

Using the definitions (n;)p; = nt — n¢ and (n;)p; = n¢, we can
write

——dz, and where t is in units of generations.

Var(n,) = E[n?] — E[n,]

= E[(n)2] + El(no)n] — EL(n) 1%, (B.3)
where, from Eq. (B.2), we have
X . i(no)pi 7(’.)t(t)
E[(no)z] = Ri—-D@E-1 e \? (B.4)
v ; (o) iy
and
N (o)) -(i)r®
E = 2i—1 2 . B.5
[(ne)pn)] ;} =D 0 (B5)

By assumption, we have t7(t) — oo ast — o0. Since e_(z)z(t) —
Oast(t) — oofori > 2,itfollows from Eq. (B.4) that E[(n;)2;] —
0ast — oo. Similarly, since njy) = n¢), Eq. (B.5) yields

1+ Z(z ()0

=140,

(no)m
no (1)

E[(n¢)m]

(B.6)

from which it follows that E[(n;);1jlng] — 1ast — ooc. Thus,
Var(n;)) — 0ast — oo by plugging the limiting values of
Egs. (B.4) and (B.5) into the right-hand side of Eq. (B.3).

To obtain the limiting behavior of Var(n;) as t — 0, we can

use the fact that e_(é)w) =1- (;) 7(t) + O(z(t)%). Thus, from

Eq. (B.4), we have
E[(ﬂr)[z]]

= Z(zz — (- 1)1(("0))[” [ (;) T(t) + (D(T(t)z)]

_ Z(Zi -
— (o))

i(no)i <l> 3
1H)— 0]
) oo \2 +O(x(t)%)

ng
— () Z(Zi — 1)@ —
i=2

=np% —ng — 7(t) Zo(zi —Di(i—1)

i—2
o)y (1 )
* (o) ¢y (2) OO,

where the three terms in the second equality correspond to the

three terms in brackets in the first equality. The first term, n(z, — N,

in the third equality is obtained by noting that the first term in the

second equality is equal to E[(ng)2;] = ng — np (Eq. (B.4)).
Similarly, from Eq. (B.5) we have

B[]

o)y (1 2
(0]
(o) ¢ ( )+ (=(®9

(B.7)

E[(n)m]

ng — (t) Z(Zl -1

= 1y — 7(b) ( ) +O@En?), (B.3)
where the third equality is obtained by noting that the second term
in the second equality is equal to half the expression for E[(n;)(2;]
evaluated at time t = O; it is therefore equal to ( ) Squaring
Eq. (B.8) gives

Elmon P =g —2n0r(0) (7)) + 0@, (B.9)

Thus, by plugging Egs. (B.7)-(B.9) into Eq. (B.3), we obtain
Var(n;) = n} — ng + O(z(t)) + ng + O(z(t)) — n + O(z(t))
= O(t(1)). (B.10)

Here, we have used the fact that 7(t)> = ©(z(t)). The right-
hand side of Eq. (B.10) follows from the linearity of order
notation (Miller, 2006, p. 21). Thus, it follows from our assumption
that N(t) varies in such a way that t(t) — 0ast — O that
Var(n;) — 0ast — O for fixed values of ng. O

We now show that n;, — E[n;] converges in probability to O as
t > 0andast — o0.

Lemma B.2. Consider a panmictic population of variable size N(t) at
time t, such that lim,_,o f o N(Z) —L_dz = 0and lim;_, » f o Ngz) dz =
00. Suppose that ng lineages are sampled from this population and
consider the number of ancestral lineages n, at time t in the past.
Under the coalescent model, the random variable n, — E[n;] converges

in probabilitytoOast — Oand ast — oc.

Proof. The quantity n; is bounded above by ny and below by
unity. Thus, n; has finite mean and variance and therefore satisfies
Chebyshev’s inequality (Ross, 2007, p. 77). In particular, for any
€ > 0, direct application of Chebyshev’s inequality gives

Var(n;)

Pr(in, — Eln,]| > €) < ——
€

(B.11)
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In Lemma B.1 we showed that for fixed ng, Var(n;) — 0ast — 0
and as t — oo. By the sandwich theorem applied to Eq. (B.11), it
follows that Pr(|n; — E[n¢]| > €) — Oast — Oandast — oo.
Thus, by the definition of convergence in probability (Casella and
Berger, 2002, p. 232), n; — E[n;] converges in probability to 0. O

Appendix C. Proof of Theorem 3.1

Here, we prove that the deterministic approximation (Eq. (4))
is accurate ast — 0 and as t — oo for fixed ng.

Proof. To prove Theorem 3.1, we can expand f (x|n;) around the
point E[n;]. The first term in this expansion is simply our approx-
imation f (x|E[n;]), and we can show that the higher-order terms
in the expansion converge to zeroas t — 0 and as t — oo.

By the second-order mean value theorem (Hendrix and Téth,
2010, p. 41), we have

f&Iny) = fXIE[m]) + Vi f (x|E[n:])(n; — E[n])

1
+(n — E[nt])TiHn[[f(xkt)](nt — E[n]), (C1)

where Hy, [f(x|c;)] is the Hessian of f(x|n;) with respect to n,
evaluated at a point ¢; given by ¢; = E[n;]+q(n; — E[n;]) for some
q € [0, 1]. Taking the expectation of both sides with respect to n;
and noting that f (x) = Zntf(xm[) Pr(n;) = E[f (x|n;)], we obtain

F®) = Elf (xIno)]
1
= f(IE(n.)) + S [(n — E[ne])Ha, [f ()]
— Eln)], (C2)

where the expectation of the second term in Eq. (C.1) is equal to
zero because E[n; — E[n;]] = 0. Rearranging Eq. (C.2) and taking
absolute values gives

If () — f(X|E[n¢])]
1
= 'E [E(nt — E[n¢]) Ha, [f (xIc0) (0 — E[nt])]‘

k k
[ ZZ(n,f E[n;, ) (m.¢ — Elnj,/])

i=1 j=

x (ng

82
X f(X|ct)} ‘ . (C.3)

aniqtanjyf

To prove that f(x|E[n;]) converges uniformly to f(x) on D as
t — O0andast — oo, we can bound the right-hand side of Eq. (C.3)
and show that this bounded quantity goes to zero ast — 0 and as
t — oo forall x € D. From Eq. (C.3), we have

If (%) — f(x[E[m;])]

1
5 |:Z Z |(nl ¢ — E[ni (e — [nj,t])|
i=1 j=1
2
% | g (160 }
k
<MY E[|0nc — Eln Dy — Elng D] - (C4)

i=1 j=1

,,,,,

because we have assumed that the second order partial deriva-

tives f (x|n;) are bounded. Considering the summand on the

an;. 8n

right-hand side of Eq. (C.4), we have

E[|(n;¢ — E[n;]) (nj,c — E[n;(DI]
< E[In;; — E[n(]lIn;c — E[n; 1]
< nioE[Ine — E[nj (111, (C5)

because |n; — E[n;¢]| < n;o. Now, to show that the term on the
right-hand side in Eq. (C.5) convergestoOast — Oand ast — oo,
we can use a convergence theorem from Van der Vaart (2000, The-
orem 2.20). This theorem states that if a sequence W, of random
variables converges in probability to W in the limitasn — oo, then
E[W,;] — E[W]asn — oo, whenever W, is asymptotically uni-
formly integrable. Thus, in Eq. (C.5), E[|n; — E[n;]|]] — E[0] =0
if [nj+ — E[n; ]| is asymptotically uniformly integrable.

A sequence of random variables W, is asymptotically uniformly
integrable (Van der Vaart, 2000, p. 17) if

11m lim sup E[|W,| 1w, >m] = 0, (C6)

M—o0 n—oo
where 1w, |>wm; is the indicator random variable with 1w, j>my =
1if [Wy| > M and 1yw,~m; = 0, otherwise. From this defini-
tion, it can be seen that |n;; — E[n; ;]| is asymptotically uniformly
integrable because E[|n;; — E[nj,t]|1mj<t,g[nj’[]‘>M] = 0 whenever
M > sup|n;; — E[n;]| = njo. Therefore, the right-hand side of
Eq. (C.5) converges to zeroast — Oandast — oo forallx € D
and for fixed ny € . By the sandwich theorem, it follows that
E[|(ni¢ — ElniD(nj — E[n;: D] — 0ast — Oandast — oo.
From a second application of the sandwich theorem, it follows that
the left-hand-side of Eq. (C.4), |f (x) — f(x|E[n;])|, converges uni-
formlytoOforallxinDast — Oandast — oo. O

Appendix D. Approximate error in the deterministic approxi-
mation

Eq. (C.3) in the proof of Theorem 3.1 allows us to obtain an es-
timate of the error |[f (x) — f (x|E[n;])| in the deterministic approx-

imation f (x) ~ f (x|E[n;]). From Eq. (C.3), we have
1 k k
F 00 = fKIEmMD] = |5 Z Z [(ni,t — Elni. () (njc — Elny.c])
2
an,ta “f(XIcf)] (D.1)

Now, we showed in Lemma B.2 that n;; — E[n; (] converges in
probability to0ast — 0and ast — oc. It follows that P(||n; —
E[n:]|| > €) —> Oforanye > 0ast — Oandast — oo. Thus,
recalling that ¢; = E[n;] + q(n; — E[n;]), we have P(||[c; — E[n.]]]|
> €) = P(||[mn; — E[n]]]| > €/q) > O0ast — Oandast — oo.
Therefore,ast — 0 and ast — oo, we can make the approxima-
tion ¢; ~ E[n;]. Using the approximation ¢; ~ E[n;] ast — 0 and
ast — oo, and approximating the expectation of a product by the
product of the expectations, we obtain

k k
If () — f(xIE[n )| ~ fZZE[(n,f Elni.())(nj.c — Eln;, )]
i=1 j=1
82

x E [a Fnnean L nt])}'

1 k

EZZCovmmn,t) e CEm) (D.2)

i=1 j=1 Nt
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Appendix E. Details of the derivation of Eq. (25)

To obtain Eq. (25), we multiply both sides of Eq. (24) by ¢, and
sum over all ]_[f‘:1 n; o possible values of ¢.

e~ LS pe0)
¢

dt dt
v @) N,-l(t) ®

Il
M

k
o+ 1 1
+ZX¢jw( N )N(t)p¢+e,<t> (E1)

i=1

Each term in Eq. (E.1) can be separated into cases: cases in which
¢ # i,j,ord =iand £ # j,or £ = jand £ ## i. The first and
last terms on the right-hand side of Eq. (E.1) separate into two
terms each (corresponding to the cases £ = iand £ # i), and
the middle terms on the right-hand side of Eq. (E.1) separate into
three terms each (corresponding to the cases £ = i, { = j, and
¢ # i,j). Each of these terms can be further simplified by noting
that summations over indices ¢, (h # £, i) are summations over
the marginal densities and result in factors of one. Thus, we obtain

dE[n]

3 N1
dt/t - —;ZZW (go ) N(t)pw (1)
@e
_%:cpz ( 5 ) mpw(t)
ko k
- Z Z Z Z QePiMiPy, o ()

i=1 j=1 @ ¢
i#[ Fae 09

- Z Z ©yMyPy, ()
j=1

J#t

k
- Z Z Z QePiMigD g, (£)

i=1 i
izt Pe Qi

+Xk:i22w(<ﬂf+

i=1 j=1 @y ¢

1)mijp<p[ Jpit+1 (t)

o oy

k
+ Z ZW(W + Dmypy,+1(t)

o
+ZZZW(¢: + DmigPy,—1,¢+1(t)

‘ 1 Pt Gi

i+ 1 1
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where Py, om (t) is the probability that n,  and ny, ; lineages remain
at time t from the sampled sets of alleles h and m, respectively.

Numbering the terms in Eq. (E.2) from 1 to 10, terms 1 and 9
cancel because they differ only by a shifted index (¢; + 1 in term
9, compared with ¢; in term 1). Similarly, terms 3 and 6 cancel. In
contrast, terms 2 and 10 do not cancel because the index is shifted
only in the binomial coefficient in term 10. For the same reason,
terms 4 and 7, and terms 5 and 8 do not cancel. Therefore, canceling
terms in Eq. (E.2) and reordering them in the order 2, 10, 4, 7, 5, 8,
we obtain
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Each pair of consecutive terms in Eq. (E.3) can be simplified by

adding and subtracting an additional term to each pair to facilitate
the matching of indices as follows:
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Numbering the terms in Eq. (E.4) from 1 to 9, the adjacent terms
1and 2, 4 and 5, and 7 and 8 cancel because they differ only by a
shifted index. Thus, we obtain
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This completes the derivation of Eq. (25) from Eq. (24).

Appendix F. Simulation procedure

The accuracy of the approximate expressions in Egs. (31) and
(36) was evaluated by comparing each approximation with esti-
mates of the exact values obtained using simulations. The simula-
tion procedure that was used to validate each approximation was
similar to that described elsewhere (Jewett et al., 2012); however,
we provide a brief description of the procedure here.

All simulations were performed under a model in which two
populations of sizes N1 (t) and N, (t), respectively, diverged at time
tp in the past from an ancestral population of size N5(t). Under this
model, if a alleles remain at time t in population i, then the addi-
tional time t, until a coalescent event occurs among these a lin-
eages can be simulated by first sampling the time ¢, to coalescence
in a population of constant size 1, and then rescaling this time ac-
cording to the formula 7,(t) = f;":t 1/Ni(z)dz (see the discussion
of time scaling in Section 4.1). In a population of constant size 1,
the time t, until a alleles coalesce is exponentially distributed with
mean 1/ (§) generations.

In contrast to coalescence times, waiting times between migra-
tion events can be sampled without rescaling time. If a lineages
remain at time t in population i, then the time until one of these
a lineages migrates to the other population j is exponentially dis-
tributed with mean 1/(am;;), where mj; is the backward rate of mi-
gration from population i to population j.

The simulation proceeds as follows. Suppose that n o and n, o
lineages are initially sampled from populations 1 and 2, respec-
tively. The time until the first event of any kind (coalescence or
migration) is sampled by sampling the time t;¢ until the first co-
alescence in population 1, the time t,¢ until the first coalescence
occurs in population 2, the time tyy, until the first migration from
population 1 to population 2, and the time t,); until the first mi-
gration event from population 2 to population 1. The minimum of
these times, min{tic, tiym, tac, tam}, is then identified. If t;c (i = 1
or 2) is the minimum time, then two lineages from population i are
randomly chosen and combined. If t;y; (i = 1 or 2) is the minimum
time, then a lineage in population i is randomly chosen and moved
to population j # i. The current time is set to t = min{t;c, tiy, toc,

toy} and the time until the next event (coalescence or migration)
is sampled using the same procedure. This procedure is repeated
until the time t + min{tc, tim, tac, tam} €xceeds the divergence
time tp. Once t + min{tyc, tim, tac, tau} exceeds tp, all remaining
lineages are merged into the ancestral population of size N5(t) and,
starting from time tp, coalescence times are sampled until a single
lineage remains.

F.1. Simulating the number of private alleles under migration

To obtain a Monte Carlo estimate of the number of private al-
leles in a sample of ny ¢ alleles from population 1, we sampled ge-
nealogies using the above procedure. For each sampled genealogy,
the total sum of lengths L, of branches ancestral only to the sample
of ny ¢ alleles from population 1 was computed. E[S;] was obtained
by multiplying each sampled value of L; by #b/4 and averaging the
resulting values across all replicates. For each combination of pa-
rameter values we tested, E[S;] was computed using 10* sampled
genealogies.

F.2. Simulating the time until the first inter-sample coalescent event

To obtain a Monte Carlo estimate the distribution of the
time until the first inter-sample coalescent event occurs between
n1,0 type-1 lineages and n, type-2 lineages sampled from two
populations, we sampled genealogies using the above procedure.
For each pair of sample sizes n; ¢ and n, o that we considered, we
simulated 10° genealogies. For each genealogy, we recorded the
time V of the first coalescent event between a type-1 and a type-
2 lineage. We then computed kernel density estimates on the 10°
sampled values of V using Matlab’s ksdensity function with default
parameters and with the option ‘function’, ‘survivor’.
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