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Abstract The neighbor-joining algorithm for phylogenetic inference (NJ) has been
seen to have three specific properties when applied to distance matrices that contain
an admixed taxon: (1) antecedence of clustering, in which the admixed taxon agglom-
erates with one of its source taxa before the two source taxa agglomerate with each
other; (2) intermediacy of distances, in which the distance on an inferred NJ tree
between an admixed taxon and either of its source taxa is smaller than the distance
between the two source taxa; and (3) intermediacy of path lengths, in which the num-
ber of edges separating the admixed taxon and either of its source taxa is less than
or equal to the number of edges between the source taxa. We examine the behavior
of neighbor-joining on distance matrices containing an admixed group, investigating
the occurrence of antecedence of clustering, intermediacy of distances, and interme-
diacy of path lengths. We first mathematically predict the frequency with which the
properties are satisfied for a labeled unrooted binary tree selected uniformly at ran-
dom in the absence of admixture. We then introduce a taxon constructed by a linear
admixture of distances from two source taxa, examining three admixture scenarios
by simulation: a model in which distance matrices are chosen at random, a model in
which an admixed taxon is added to a set of taxa that reflect treelike evolution, and a
model that introduces a perturbation of the treelike scenario. In contrast to previous
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conjectures, we observe that the three properties are sometimes violated by distance
matrices that include an admixed taxon. However, we also find that they are satisfied
more often than is expected by chance when the distance matrix contains an admixed
taxon, especially when evolution among the non-admixed taxa is treelike. The results
contribute to a deeper understanding of the nature of evolutionary trees constructed
from data that do not necessarily reflect a treelike evolutionary process.

Keywords Admixture - Neighbor-joining - Phylogenetics - Rogue taxon

1 Introduction

The neighbor-joining (NJ) algorithm (Saitou and Nei 1987; Studier and Keppler 1988;
Gascuel and Steel 2000) is a distance-based clustering method widely used in phylo-
genetic analysis. Given a pairwise distance matrix D, NJ forms a bifurcating tree by
iteratively selecting and merging pairs of nodes in an order governed by a specified
criterion, until the tree is fully resolved. When the input D is additive in the sense
that its distances represent distances between taxon pairs in a generating tree whose
branches are each assigned distance values (Buneman 1974; Steel 2016), NJ recovers
the generating tree precisely (Atteson 1999; Bryant 2005; Steel 2016).

Distance matrices computed from data often fail to satisfy the additivity condition
(Felsenstein 1984), however, particularly when populations evolve in a non-treelike
manner—for example, by processes of hybridization or admixture in which certain
groups are descended from pairs of source groups that have long been separated. In
population-genetic studies that have used NJ to build trees that represent genetic rela-
tionships among populations, admixed taxa have been observed to behave in specific
ways during the application of the NJ algorithm (Bowcock et al. 1991; Cavalli-Sforza
et al. 1994; Mountain and Cavalli-Sforza 1994; Ruiz-Linares et al. 1995; Kopelman
et al. 2013). In particular, NJ analyses of distance matrices in human populations
tend to place admixed populations on relatively short external branches that lie in
an intermediate position in the inferred tree in relation to source populations for the
admixture. For example, using mean genetic distances calculated across multiple loci
genome-wide, Kopelman et al. (2013) illustrated this phenomenon in mestizo popula-
tions descended from European and Native American populations in Latin America,
finding that they appeared as pendant edges along the “spine” of an NJ tree connecting
the European and Native American populations.

Kopelman et al. (2013) formalized the definitions of three properties often seen in
trees constructed by NJ in the presence of admixture. First, during the agglomerative
construction of the inferred tree, taxa admixed between two parental sources are often
seen to agglomerate with a group containing one of those sources before those sources
agglomerate with each other (antecedence of clustering, Fig. 1). Second, the distance
of an admixed taxon on an inferred NJ tree to the more distant of its source populations
is often seen to be smaller than the distance between the source populations themselves
(intermediacy of distances, Fig. 2). Third, the number of edges separating an admixed
taxon from the more distant of its source populations in terms of path length on the
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Fig. 1 Antecedence of clustering (Property 1). Taxa #; and 7, are source taxa, and #, is a taxon admixed
with sources 71 and 5. In the example trees shown, triangles represent subtrees. Clades containing the source
taxa are colored in red, and a clade containing the admixed taxon #, appears in blue. The unlabeled triangle
contains one or more taxa but does not contain t1, 7, or ;. If we denote a clade containing taxon #; by
Cy;, three choices exist for the pair of clades that agglomerate first in neighbor-joining, among (Ct,, Ct,),
(Ct;, Cry), (Cry, Cy,,); this pair is connected by solid rather than dashed edges. a (Cy;, Cyp,,). b (Cr,, Cy,,)-
¢ (Cyy, Cry). Cases (a) and (b) satisty Property 1, antecedence of clustering. Case (¢), in which the source
taxa t1 and rp agglomerate before either agglomerates with #,, violates Property 1

t
t'I-L

to

Fig.2 Example tree in which 71 and #, are regarded as source taxa and 7, is treated as an admixed taxon. X
is the unique node that lies at the intersection of paths t; — 2, 11 — t, and 5 — t,,. The tree shown satisfies
Property 2, intermediacy of distances, as dy; 1, < dt; 1, and dy, 1, < dp; 1,. Because it has by 1, = 4,
biy.1, =5, and by 1, = 5, it also satisfies Property 3, intermediacy of path lengths: by, 1, < by, 1, and

thstn = btl o)

inferred NJ tree is often seen to be smaller than the number of edges separating the
source populations from each other (intermediacy of path lengths, Fig. 2).

Using computations that mechanistically considered the application of NJ to dis-
tance matrices, Kopelman et al. (2013) studied the characteristics of NJ trees that
incorporate an admixed taxon whose distances are formed from the linear mixture of
distances involving two source taxa. They investigated two special cases of distance
matrices: an additive distance matrix with an arbitrary number of taxa and a general
4-taxon distance matrix. For the former case, they demonstrated that intermediacy of
distances and intermediacy of path lengths are necessarily observed. For the latter, they
showed that antecedence of clustering also holds in addition to the other two proper-
ties. They conjectured that the three properties are general features of the application
of NJ on admixed distance matrices.

In this paper, we extend the mechanistic computation of Kopelman et al. and exam-
ine their conjectures in more general settings. We find that, contrary to the conjectures,
the properties do not always hold for nonadditive distance matrices with n > 5 taxa.
On the basis of simulations, however, we also find that the properties hold much more
often than is expected by chance under a null model in which admixed taxa are absent.
We explore the dependence on model parameters of the extent to which the properties
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hold. The results provide further information useful for interpreting the outcome of
NIJ in circumstances that contain admixed populations.

2 Null Model Without Admixture

Before evaluating by simulation the extent to which the properties of Kopelman et
al. hold in cases with admixture, we first predict their frequencies using a null model
without admixture. Consider a tree with n taxa, labeled #1, 2, ..., t,. We choose a
taxon t, to play the role of an admixed taxon, with source populations #; and #,. Let
d;; be the distance between leaves #; and ¢; of the tree for some distance measure d,
and let b;; be the number of edges of the tree that lie on the path from #; to ¢;.

We formally state the properties of Kopelman et al. involving an admixed taxon
t, and source taxa f; and fp: (1) For antecedence of clustering, the admixed taxon
must cluster with one of the sources before the sources cluster with each other; (2)
for intermediacy of distances, d;, ;, < di, .1, and dy, ;, < dy, 1, must hold; and (3) for
intermediacy of path lengths, by, ;, < b 1, and by, 1, < by, 1, must hold.

At each step of NJ agglomeration of taxa, the algorithm evaluates a quantity g;;
for each pair (i, j) of taxa, or previously agglomerated clusters of taxa, represented
as internal nodes of the constructed tree. The pair with the minimal value of the
quantity is then merged (“Appendix A”). When two or more pairs of clusters have the
same minimal g;;, the tie is broken at random. When the tie involves clades containing
source taxa and an admixed taxon and could thus affect whether Property 1 is attained,
however, we adopt the convention of Kopelman et al. and agglomerate a pair of clades
satisfying Property 1.

Note that we are concerned here with the way in which NJ acts on distance matrices
in general, and we do not concern ourselves with the way in which the distance measure
d is computed from data. Although the examples that motivate the problem arise from
consideration of trees of populations, with distances between populations computed as
averages across many loci in the genome, the taxa in the distance matrix can represent
any taxonomic entities for which it is of interest to compute a tree.

2.1 Exact Calculation

We now predict the probability that a random tree—with three distinct taxa chosen
at random to fulfill the roles of taxa t, t», and f,—satisfies (or violates) the three
properties. Note that although ¢, is in the role of an admixed taxon and #; and #, are in
the roles of source taxa, no admixture occurs. We consider random trees to be selected
from the uniform distribution on labeled unrooted topologies with n taxa. There exist
2n—=5!"=2n—-5)2n —3) x --- x 5 x 3 x 1 such topologies (Felsenstein 2004),
each with 2n — 3 edges.

2.1.1 Property 1: Antecedence of Clustering

The three taxa of interest are #1, t2, and #,. Three choices exist for the agglomeration
that occurs first: ((Cy,, Cr,), Cr,), ((Cyy, Cy,), Cy), and ((Cy,, Cy,), Cy), where Cy,
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represents a clade containing taxon #;. The first of these cases, in which taxa #; and
ty are agglomerated first, produces a violation of Property 1. We would, therefore,
predict a probability of violation of antecedence of clustering equal to 1/3.

2.1.2 Property 2: Intermediacy of Distances

The three distances on the tree are d,1,, dy,1,, and dy,;,. By symmetry, with random
choices of the three values, all six possible arrangements of the values from smallest to
largest are equiprobable. For Property 2 to be satisfied, d;,;, > d,;, and dy,1, > dpys,
are required. Assuming that d has probability O that two distances are equal, each
of the six orderings has probability 1/6. Four of the six, d, , < diy,;, < diyiys
dij,ty < dng, <dy,,dyg, < dyn <dpg,,anddy g, < diy, < dy g, fail to satisty
one or both of the conditions. Thus, the predicted probability for Property 2 to be false
is 2/3.

2.1.3 Property 3: Intermediacy of Path Lengths

For Property 3 to hold, the inequalities b;,;, > by, ;, and by, 1, > by, ;, must simultane-
ously hold. We compute the probability that they hold for randomly chosen unrooted
labeled topologies. As the output of NJ is an unrooted bifurcating tree, we compute
the probability that a random unrooted labeled bifurcating tree, with three fixed taxa
selected at random, labeled 71, 1, and ¢, satisfies the pair of inequalities.

Let X be the unique node that is an intersection of the paths t; — 1>, t; — t,,, and
tr —t, (Fig. 2). X is the unique node assigning 1, >, and #, to different subtrees. Then

bun > by, <= byx +byx > byx +b,x < byx > by, x
by = by, <= byx +byx > bpx +by,x = byx > by x.

We can assign a 4-vector (n, by, x, by, x, by, x) to each of the (2n — 5)!! trees in the
set of unrooted binary trees with n leaves. Each of the entries, b;, x, by, x, and b;, x,
ranges from 1 to n — 2, the maximal distance possible from a leaf to an internal node
of an unrooted bifurcating tree with n taxa. Note that multiple trees can share the same
vector of four variables.

A taxon can be added to a tree characterized by (n, by, x, by, x, by, x) in one of four
ways:

(i) The new taxon, taxon n + 1, is added to an edge in path #; — X. The new tree
then has the 4-vector (n 4 1, by, x + 1, by, x, by, x). There are by, x ways to place
taxon n + 1 on the path #1; — X, each corresponding to a distinct edge that is
subdivided by the placement of the new taxon.

(i) The new taxon is added to an edge in path #, — X. The new tree has the 4-vector
(n+1,byx,by,x + 1, b, x). There are by, x ways to place taxon n + 1 on the
patht, — X.

(iii)) The new taxon is added to an edge in path 7, — X. The new tree has the 4-vector
(n+ 1, by x, bx, by, x + 1). There are b;, x ways to place taxon n + 1 on the
patht, — X.
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(iv) The new taxon is added to an edge that is not in any of paths t{ — X, t» — X
or t, — X. The new tree has the 4-vector (n + 1, b, x, b, x, by, x). Because the
tree has 2n — 3 edges in total, the number of ways to place taxon n + 1 is
(2n —3) — (byx + by x + by, x).

Let ay ; jx be the number of trees having the same 4-vector (n, i, j, k). Because
the total number of unrooted labeled binary trees with n taxa is (2n — 5)!!,

n—2n—-2n-2

Z Z Z ani jk = 2n =5

i=1 j=1k=1

The probability for a random tree with n taxa to have 4-vector (n, i, j, k) is then
Puijk = an, jk/(2n — 5)!1. By considering the ways to add taxon n + 1 to an
n-taxon tree described in (i)-(iv), we can produce a recursion:

anitijk = (= Dani-1,jx + (G = Dani j—1.x + (k = Dani jr—1
+Q2n—-3—i—j—Kkanji M

The unique unrooted labeled bifurcating tree for n = 3 gives the initial condition for
the recursion, oras q,1,1 = 1, withaz; jx = Oforall (i, j, k) with (i, j, k) # (1,1, 1).

Dividing Eq. 1 by the total number of trees with n + 1 taxa, [2(n + 1) — 5]!!, we
have

1 1 i—1 ji—1
Q= R = 2 T3  — s R T g Sy
k—1 m—-3—i—j—k
eI TR R |
and

Poviin= ("1 Yp . | J=1\p k—1\,

n+1,i,j,k = m—_3 n,i—1,j.k + 3 i, j—1,k + —2n — i, k=1

i+j+k
i (1 Cm-3 ) Faio s @

with initial conditions P31 1,1 = 1 and P3; jx = O for all (i, j, k) with (i, j, k) #
(1,1, 1).

For a tree having a 4-vector (n, i, j, k) to satisfy Property 3, we must have b;, x >
bs, x and by x > by, x. This condition is equivalent to j > k andi > k. To evaluate
the probability that Property 3 holds, we must sum over all possible {i, j, k} that also
satisfy j > k and i > k. This sum is

n—2n—2n-2

P (Property 3 holds) = Z Z Z Puijk- 3)

k=1 j=k i=k
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Table 1 The exact probability that Property 3 fails to hold in a random unrooted labeled binary tree with
n taxa

n Number of Trees Number of Labeled P(Property 3 Fails)
Satistying Property 3 Unrooted Trees

3 1 1 0

4 2 3 0.333333
5 8 15 0.466667
6 54 105 0.485714
7 468 945 0.504762
8 4950 10,395 0.523810
9 62,640 135,135 0.536464
10 920,430 2,027,025 0.545921
11 15,373,260 34,459,425 0.553874
12 287,746,830 654,729,075 0.560510
13 5,965,860,600 13,749,310,575 0.566097
14 135,691,860,150 316,234,143,225 0.570913
15 3,359,026,786,500 7,905,853,580,625 0.575122
16 89,901,262,801,350 213,458,046,676,875 0.578834

The number of unrooted labeled binary trees is (2n — 5)!!. The probabilities are computed using Eq. 3

The exact probabilities that Property 3 holds for small values of n can be obtained
from Eq. 3 by recursively evaluating Eq. 2. The probability it is violated is one minus
the expression in Eq. 3 (Table 1). We can observe from Table 1 that the probability of
a violation increases from 0O for n = 3 to 0.579 for n = 16.

2.2 Simulation

Having examined the exact probabilities for the three properties to fail in a random
unrooted binary tree, we now evaluate by simulation the frequency of occurrence of
these properties in trees obtained by application of NJ to random distance matrices
without admixture.

For n taxa, we represent a symmetric n x n distance matrix by D = [x; i1, where
x;j is the pairwise distance between taxa i and j in a set of n taxa {1, 2,...,n}.
Because the number of independent entries in D™ is ('2'), we can represent D as an
(g) -dimensional vector that gives the lower triangle of D:

n
X = (x21, X31, %32, -+ +» Xnls Xn2s - > Xnn—1)T € RG), “)

ordering the vector by the first index i and then by the second index j, withi > j.
Our null model considers n species with no admixture and an n x n distance matrix

D). The entries in X", the lower triangle of the matrix, are chosen independently

at random, each from a uniform-[0, 1] distribution. The distance matrix is symmetric,
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Table 2 Percentage of

violations of the three properties
among 99,000 inferred NJ trees 1 2 3 1&2 1&3 2&3 1&2&3
using random input distance
matrices without admixture

Property violated

4 333 669 333 299 333 29.9 29.9
5 331 66.7 465 284 33.1 40.1 28.4
6 332 665 441 280 29.7 383 26.3
7 332 664 449 281 29.2 39.3 26.2
8 332 66.6 469 281 29.6 40.9 26.4
9 331 667 486 279 29.6 424 26.5
10 336 668 49.6 283 30.0 43.1 26.8
11 333 665 501 282 29.8 434 26.7
12 335 666 502 283 29.8 435 26.8
Distances are sampled 13 332 668 503 281 294 437 265
independently as uniform-[0, 1]

random variables. In each 14 333 667 508 283 29.6 44.0 26.7
matrix, the roles of source taxa 15 335 669 513 286 29.8 443 26.9

are played by 71 and 7 and the 16 334 667 514 285 299 444 270
admixed taxon is #,

and we fill in the upper triangle by symmetry, assigning values of 0 along the diagonal.
All off-diagonal entries are assumed to be strictly positive.

For each number of taxa n, we generated 99,000 n x n random symmetric matrices
D). This total number of matrices was chosen to match the number that will be
used in simulation models with admixture in Sect. 3, where 1000 copies of random
admixed distance matrices will be generated for each of the 99 admixture values in
{0.01,0.02, ...,0.99}.

For each distance vector x”, NJ outputs a specific tree topology. Because (21— 5)!!
labeled unrooted binary tree topologies exist for a given n, the space of distance
matrices [0, 1]) can be divided into (21 — 5)!! subsets D%’_) withi = 1,..., 2n=5)!!
and Uglfs)” D%) = [0, 1](3), each corresponding to an inferred NJ tree topology
7; (Davidson et al. 2017). Thus, NJ was applied to each simulated x to identify its
associated topology.

The numbers of violations of Properties 1, 2, and 3 and the numbers of simultaneous

violations of two or all three properties among 99,000 matrices forn = 4,5, ..., 16
are shown in Table 2.

2.2.1 Property 1

In the exact calculation in Sect. 2.1, the expected number of violations for Property 1
15 99,000 x 1/3 = 33,000, independent of the number of taxa. The simulation depicted
in Table 2 shows that the number of violations from the null model simulation is near
1/3 of the total number of simulations for all choices of 7, in close agreement with the
expected number of Property 1 violations.
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Fig. 3 Simulated probabilities that Properties 1, 2, and 3 are violated under a null model in which distance
matrices are generated randomly without admixture. a Property 1. b Property 2. ¢ Property 3. The exact
probability for a random labeled unrooted binary tree to violate the properties and the simulated probability
for a neighbor-joining tree inferred from a random input distance matrix to violate the properties are both
shown. For the calculation for Property 3 for n = 4 to n = 16, the values plotted are taken from Table 1.
Simulation values are based on 99,000 matrices for each n; the values for n = 4 ton = 16 appear in Table 2

2.2.2 Property 2

In the null model, the exact probability that Property 2 fails is 2/3, independent of the
number of taxa n. Based on the exact calculation in Sect. 2.1, the expected number of
violations of Property 2 is 99,000 x2/3 = 66,000. Our null model simulation result
in Table 2 agrees well with the predicted number from the exact calculation. It shows
no systematic dependence of the number of Property 2 violations on .

2.2.3 Property 3

As Table 1 shows, the null probability of violations for a random tree with a random
assignment of source and admixed taxa is 1/3 when n = 4, and it increases with n. In
agreement with the exact calculation, the number of violations in the NJ simulation
under the null model is near 1/3 of the total number of simulations, and it also increases
with n (Table 2). As shown in Fig. 3, however, the simulated results differ slightly
from the values from the recursion relation in Eq. 3, except when n = 4 and 5.

The discrepancy between the simulated and exact values arises because for n > 6,
the sampling of the distance space used in the simulation is not uniform across the
discrete tree space used in the exact calculation. In our exact calculation in Sect. 2.1, a
random tree topology is considered from a uniform distribution of (2n — 5)!! labeled
unrooted binary tree topologies. In our null model simulation, the input distance matri-
ces are instead sampled from a uniform distribution on the distance matrix space
[0, 1.

This uniform sampling from the distance matrix space does not translate into uni-
form sampling from the tree space. The probability that a randomly chosen distance
matrix results in a given tree topology 7; is proportional to the volume of the sub-
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" \ith different

set D(") of [0, 1](2) and different tree topologies 7; can produce D
volume (Eickmeyer et al. 2008; Eickmeyer and Yoshida 2008).
The cases of n = 4 and 5 have only one unlabeled unrooted tree topology, and thus,

each labeled unrooted tree is equally likely to be produced: all D(T@ have the same

volume in [0, l](;). In these cases, the uniform random sampling of a distance matrix
is equivalent to the uniform random sampling of a labeled unrooted tree topology. For
n = 4, of the three possible labelings, one violates Property 3, so that the expected
number of violations for n = 4 is 99,000 x 1/3 = 33,000. Of the 15 labelings with
n = 5, 7 violate Property 3, and the expected number of Property 3 violations for
n =5is99,000 x 7/15 = 46,200. Our simulated results for n = 4 and 5 accord with
the expected values from the exact calculation (Table 2).

For n > 6, more than one unlabeled unrooted tree topology exists, and the dif-
ference in volume in [0, 1](;) for distinct 7; results in nonuniform sampling of the
labeled unrooted tree topology. This difference accounts for the difference between
the probability from an NJ simulation using random matrices under the null model
and the exact probability from random trees.

3 Model with Admixture

The simulation without admixture in Sect. 2.2 closely accords with the exact compu-
tation under the null model in Sect. 2.1, which did not include the effect of admixture.
To the extent that the simulations and exact computations differ, we can attribute the
difference to differences in the assumptions of the simulation and the calculation. Hav-
ing explored the null model with no admixture, we now examine the three properties
on distance matrices with admixture.

As before, let t; and r, be the source taxa, and let ¢, be the taxon admixed with
sources t; and fp. The remaining n — 3 taxa (3, %4, ..., t,—1) have no systematic
relationships with one another. To model admixture in distance matrices, we adopt the
linear mixture model of Kopelman et al. (2013), in which the distance between #, and
any t;,i =1,2,...,n—1,is

Xpi = axy; + (1 —o)xy;. (5)

Here, o is an admixture fraction for population 1, representing the contribution of
population 1 to the admixed population. Using Eq. 5, the distance matrix including
the admixed population is

0 Xop v X(n—1)1 (I —a)xay
X21 o - X(n—1)2 axyg
D™ —
X(n-11  X@u—1)2 " 0 axm-n1 + (1 —a)xmE-1)2
(I —a)xz1 axzr -+ axp-—n1+ (1 —a)xup-1)2 0

6)
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We denote the (n — 1) x (n — 1) source distance matrix from which the n x n admixed
distance matrix is created by S»=D with Sl.(;fl) = Dl.(;) fori,j=1,2,...,n— 1.
We assume all off-diagonal entries are strictly positive and that the matrix S”~1 is
symmetric.

Kopelman et al. showed that, for arbitrarily many taxa, Properties 2 and 3 hold
when the admixed distance matrix D™ in Eq. 6 is additive. A distance matrix with
its last row and column generated by Eq. 5, however, is not additive in general, and in
fact, it is “rarely” additive. To illustrate what this statement means, for the n = 4 case,
where the source taxa are labeled 1 and 2, and the admixed taxon is taxon 4, consider
the distance matrix D®:

0 xi2 x13 x4
p® — | *2 0 x23 xma
x31 x2 0 x34
x41 x4 x43 O

0 X2 X31 (I —a)xa
_ X21 0 X32 axyy
N x31 x32 0 axzy + (1 —a)x3p |’
| (1 —a@)x21 axzr ax3p + (1 —a)xs 0

with (x21, x31, X32) € Ri.

The necessary and sufficient condition on (x31, x31, x32) for D@ to be additive—
or, in other words, to represent a tree metric—is that a four-point condition (Buneman
1974; Steel 2016) is satisfied for all taxon quartets (i, j, k, £):

Xij + xke < max{xig + Xje, Xie + Xji}. (7

It suffices to consider this condition for (i, j, k,¢) = (1,2,3,4), (1,3,2,4), and
(1, 4, 2, 3), as other cases are redundant. Aggregating inequalities from each of these
assignments of taxa 1, 2, 3, and 4 to (i, j, k, £), for each assignment, the largest two
of x21 + x43, x31 + x42, and x41 + x32 among the three values must be equal.

First, consider the case of x21 +x43 = x31 +x42. Because x43 = ax31 + (1 —at)x32
and x4p = axp1, we can rewrite the equality as xo1 +ax31 + (1 —)x32 = x31 +@x21,
which reduces to x21 + x32 = x31. Similarly, in a second case, in which xp1 + x43 =
x41 + x32, substituting x43 with ax3; + (1 — @)x3 and x4; with (1 — a)xz;, we
obtain x21 + x31 = x32. In the third case, x31 + x42 = x41 + x32, the accompanying
inequalities x21 +x43 < x31 +x42 and x21 +x43 < x41 +x37 giverise to xo; < 0 when
substituting x41 = (1 —a)x21, X420 = @x21, and x43 = ax31 + (1 —«)x32, contradicting
the assumption that all off-diagonal entries of matrix D™ are strictly positive. We
conclude that D@ is additive if and only if xp1 + x33 = x31 or x21 +x31 = x32. These
equations each force the four taxa to be collinear (Kopelman et al. 2013). Note that
for the general n-taxon case of additive D™ the characterization of Kopelman et al.
(2013) has an error (“Appendix B”).

In this section, without imposing the additivity constraint, we explore the behavior
of NJ using input distance matrices of the form of Eq. 6. We investigate two scenarios
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involving the admixture: first, when the original (n — 1) x (n — 1) distance matrix
is random, and second, when the original n — 1 populations follow treelike evolution
(i.e., the source distance matrix S”~1) is additive). For each case, we vary the number
of taxa and the admixture fraction.

3.1 Random Source Matrix with Admixture

As a direct extension of the null model simulation, we generated random source
distance matrices with n — 1 populations, and we then introduced an admixed taxon ¢,.
In this model, the n — 1 non-admixed source populations have random and independent
distances, and distances involving the nth admixed taxon have a linear relationship
with the distances involving taxa ¢ and #,.

For a given number of taxa n, we generated an (n — 1) x (n — 1) random symmetric
source distance matrix S~V which was not necessarily additive, by sampling the
entries in the lower triangle from the uniform distribution on [0, 1] as we did in
Sect. 2.2. We set #; and , as the source taxa, and the admixed taxon #, was created
as a linear admixture of the source taxa 71 and t,. The distances between the admixed
taxon ¢, and the other taxa were computed using the relation in Eq. 5. The resulting
n x n admixed distance matrix D" was used as an input to the NJ algorithm. The
admixture fraction o was varied from 0.01 to 0.99 at an increment of 0.01. For each
number of taxa and each admixture fraction, we generated 1000 random matrices
St—=1 producing 99,000 total D™ matrices for a given n. On each inferred tree, we
examined the three properties.

311n=4

Table 3 shows the numbers of violations of the three properties in the sets of 99,000
matrices for each n. For the case of n = 4, no violations are observed, in accord
with the mathematical result of Kopelman et al. (2013), that, for a 4-taxon scenario,
all three properties hold even without the additivity constraint, as long as an input
distance matrix follows the form of Eq. 6.

312n>5

Property 1: As illustrated in Table 3 and Fig. 4a, the probability for Property 1
to be violated depends on the number of taxa. Initially, the number of violations
for Property 1 increases rapidly. Among the values n = 4,5, ..., 50, it reaches its
maximum at n = 13, where the number of violations is 2314 (2.3%). Once the number
of taxa passes n = 13, the number of violations steadily decreases and approaches a
plateau of values of 750 to 900 for n > 30 (0.75-0.9%).

In the null model in Sect. 2, the probability of violations for Property 1 stays
constant at 1/3 across all n. When admixture is introduced, however, Property 1 has a
substantially higher chance of being satisfied. Even at its maximum of 2.3% atn = 13,
the probability that Property 1 fails is much smaller than in the null model.
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Table 3 Percentage of violations of the three properties among 99,000 inferred NJ trees using random
source distance matrices with admixture, where the taxon #, is a linear admixture of taxa ¢| and t»

n Property Violated
1 2 3 1&2 1&3 2&3 1&2&3
4 0 0 0 0 0 0 0
5 0.1 3.4 0.1 <0.05 0.1 <0.05 <0.05
6 0.4 73 0.1 0.1 0.1 <0.05 <0.05
7 0.8 10.6 0.2 0.3 0.2 0.2 0.1
8 1.3 13.4 0.4 0.6 0.4 0.3 0.3
9 1.5 15.6 0.6 0.7 0.5 0.6 0.4
10 1.9 17.3 0.9 1.0 0.6 0.8 0.6
11 2.0 19.2 1.1 1.1 0.7 1.0 0.6
12 22 20.9 1.3 1.3 0.8 1.1 0.7
13 2.3 22.1 1.5 1.4 0.9 1.3 0.8
14 2.3 23.1 1.6 14 0.9 1.4 0.8
15 23 24.7 1.8 1.4 0.8 1.5 0.8
16 2.2 25.6 1.8 1.4 0.8 1.6 0.7

The distances between the n — 1 source taxa are independently chosen from the uniform distribution on the
interval [0, 1], and the distances involving the admixed taxon #, are computed using Eq. 5. The numbers
shown are aggregated from 99 sets of 1000 simulations, each set with a distinct admixture fraction in
{0.01,0.02, ...,0.99}

(A) (B) ©

=% Null Model Calculation

1

1.0

—£— Random Matrix Simulation

|
1
!

1
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Fig.4 Simulated probabilities that Properties 1,2, and 3 are violated under amodel in which (n—1) x (n—1)
source distance matrices S~ 1) are generated randomly and an admixed nth taxon is added using Eq. 5. a
Property 1. b Property 2. ¢ Property 3. The exact probability for a random labeled unrooted binary tree to
violate the properties and the simulated probability for an NJ tree inferred from a random distance matrix
with admixture to violate the properties are both shown. For the null model, the values are copied from
Fig. 3. For the random matrix model, simulation values are based on 99,000 matrices for each n; the values
for n = 4 ton = 16 appear in Table 3

Property 2: Our simulation finds a rapid increase in the number of violations for
Property 2 as n increases for small n < 10 (Fig. 4b). The rate of increase slows when
n becomes large.
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The dependence of Property 2 on the number of taxa n differs from the null model
simulation, in which the number of violations is constant across all n. From n = 4 to
6, the number of violations for Property 2 is an order of magnitude smaller than in the
null model. The deviation from the null model for Property 2 reduces gradually as n
increases. At n = 29, the number of violations reaches 50% of the value from the null
model. The effect of admixture in reducing violations compared to the null model is
not as drastic for Property 2 as for Property 1.

Property 3: As shown in Table 3, when n = 5, the number of Property 3 violations
is the same as that of Property 1, 107 among 99,000 simulations. Interestingly, all
107 violations of Properties 1 and 3 occur on the same set of distance matrices. The
number of matrices D violating both properties is also 107.

The number of violations of Property 3 at n = 6is 109, close to the result atn = 5.
Once n > 6, the number of violations for Property 3 increases steadily from 224
(0.2%) forn = 7to 1788 (1.8%) for n = 16. Compared to the null model, the fraction
of input distance matrices violating Property 3 is considerably smaller. As was seen
for Property 1, Property 3 is more sensitive to the introduction of admixture than is
Property 2.

313n=>5

The n = 5 case is of particular interest as n = 5 is the smallest number of taxa giving
violations of the properties, and it has only one unrooted unlabeled bifurcating tree
topology. Therefore, to understand the effects of model parameters in more detail, for
n = 5, we performed simulations with a larger number of replicates, 100,000, for each
admixture fraction in {0.01, 0.02, ..., 0.99}.

For each (n — 1) x (n — 1) input source distance matrix S~ we estimated the
(n — 1)-taxon source tree ’Ts(n_l) using NJ. The corresponding admixed NJ tree TD(")
was inferred from the associated D). Based on their topologies, the source NJ trees
TS("*]) were classified into three possible unrooted labeled binary 4-taxon topologies,

and the admixed NJ trees TD(") were assigned to one of 15 possible unrooted labeled
binary 5-taxon topologies. We then characterized the inferred topologies in relation to
Properties 1 and 3, as these properties closely depend on tree topology.

Table 4 aggregates the topology classifications of TS(4) and TISS) from 99 sets of
100,000 matrices, each with a distinct admixture fraction, totaling 9,900,000 matrices.
The three unrooted labeled binary 4-taxon source topologies are equally likely to be
produced. This result accords with the n = 4 case in our null model simulation in
Sect. 2.2.

Topology of T g): Unlike the source NJ trees, the admixed NJ trees TS) display
an uneven distribution of topologies (Table 4B). For notational simplicity, we use
ts to indicate either of the source taxa, #; and ;. We indicate the admixed taxon t5
by t4, and we use tp to indicate either of the other taxa, 73 and #4. We also define
(B] s B2) = (max{bt| 155 bt2l5}7 min{bt1 155 btzl‘5 })

The most frequent topologies have shape ((ts, t4), ts, (t0, tp)). Two topologies
have this form, with 18.86 and 18.87% occurrences. They possess topological attributes

@ Springer



466

J. Kim et al.

Table 4 Topology classification of inferred NJ trees at n = 5 using random source distance matrices with

admixture

Topology 7&(4> Number of observations Frequency (%)

(A)
(11, ), (13, 14)) 3,298,318 33.32
(11, 13), (12, 14)) 3,302,590 33.36
(11, t4), (12, 13)) 3,299,092 33.32

Topology 7, D(S) Topology category Number of observations Frequency (%)

(B)
((t4,15), 11, (12, 13)) (o, 14), 15, (5, 10)) 3117 0.03
(13, 15), 11, (12, 14)) ((to.14), 15, (15, 10)) 3084 0.03
((t2, 15), 11, (3, 14)) ((ts, 1), 15, (t0, 10)) 1,867,130 18.86
((t4,15), 12, (1, 13)) ((to.14), 15, (15, 10)) 3075 0.03
(13, 15), 12, (11, 14)) ((to.14). 15, (15, 10)) 3121 0.03
((t1,15), 12, (13, 14)) (s, 14), 15, (10, 10)) 1,868,166 18.87
(14, 15), 13, (11, 12)) (o, 14), 10, (5. 15)) 0 0
(2, 15), 13, (11, 14)) ((ts.14), 10, (5, 10)) 936,540 9.46
((t1,15), 13, (12, 14)) ((ts.14), 10, (5, 10)) 936,777 9.46
(13, 15), 14, (11, 12)) ((to.14), 10, (t5. 1)) 0 0
((t2, 15), 14, (11, 13)) ((ts, 14), t0, (13, 10)) 936,127 9.46
((t1, 15), 14, (12, 13)) ((ts, 1), 10, (15, 10)) 934,402 9.44
((13,14), 15, (11, 1)) ((to.10). 14, (15, 15)) 0 0
((t2,14), t5, (11, 13)) ((ts, t0), t4, (ts, 10)) 1,204,777 12.17
(12, 13), 15, (11, 14)) ((ts.10). 14, (15, 10)) 1,203,684 12.16

(A) NJ-inferred source tree (’TS(4)). (B) NlJ-inferred tree with admixture (’TI()S)). Here, t1 and 1, are
source taxa and #5 is the admixed taxon. The topologies of trees appear in Newick format. The num-
bers shown are aggregated from 99 sets of 100,000 simulations, each set with a distinct admixture fraction
in {0.01,0.02, ...,0.99}

commonly observed in NJ trees containing an admixed population. Specifically, the
admixed taxon branches off the path connecting the two source taxa. The admixed
taxon and one of the source taxa form a cherry, satisfying Property 1. The numbers
of edges separating the source taxa and the admixed taxon are minimal: (B, By) =
(3,2). These trees have b;;, = 3 > By, so Property 3 holds true as well.

Two topologies, represented by ((ts, to), ta, (ts, o)), are the next most commonly
inferred labeled topologies, with frequencies 12.16 and 12.17%. In these trees, the
admixed taxon is incident to an internal edge joining two cherries. Each cherry contains
one of the two source taxa, so that the topological distance from the admixed taxon to
either of the two source taxa is three, (B1, B) = (3, 3), whereas b;;;, =4 > Bj. The
topologies therefore satisfy Property 3. In the first step of the NJ agglomeration, either
cherry is formed. In the second step of the NJ algorithm, by adopting the tie-breaking
rule from Sect. 2, the admixed taxon clusters with one of the cherries containing a
source taxon. Thus, Property 1 is satisfied.
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The next most frequent topologies have shape ((ts, t4), to, (ts, to)). This category
has four topologies, each occurring with frequency ~9%. Two source taxa belong
to separate cherries, and the admixed taxon shares one of the cherries with a source
taxon. This structure gives (By, B2) = (4,2) and by, = 4, satisfying Property 3. If
(s, t4) is the first cherry of the NJ algorithm, then Property 1 holds. If (g, 7o) is the
first cherry, then by our convention in the event of a tie, (fg, #4) becomes the second
cluster in constructing the final tree shape ((¢s, t4), to, (ts, t0)), and thus, Property 1
holds under this condition as well.

All topologies with high frequencies (>9%) satisfy Properties 1 and 3. Some
topologies for which the admixed taxon does not appear on the path connecting two
source taxa, however, do occur. Four topologies of the form ((top, t4), ts, (ts, t0))
appear at frequency 0.03%. With (B, B2) = (4, 3) and b;,;, = 3, one source taxon
is maximally separated from the admixed taxon, and the topologies fail to satisfy
Property 3.

Three topologies that violate Property 3 are never observed. Two of these topologies
have shape ((t0, ta), to, (ts, ts)), and the third has the form ((to, t0), ta, (ts, t5));
all contain the two source taxa as a cherry. Both source taxa in topologies
((to,1ta), to, (ts, ts)) are maximally separated from the admixed taxon: (B, By) =
(4, 4). The source taxa in a topology ((to,t0), ta, (ts, ts)) have (By, By) = (3, 3).
Because the source taxa form a cherry and b;;, = 2, all three topologies violate
Property 3.

The topologies that are never observed also fail Property 1, as none of the pos-
sible clustering sequences producing ((top, ta), to, (ts, ts)) or ((to,to), ta, (ts, ts))
involves a clustering of clades containing a source taxon and the admixed taxon prior
to clustering of the two clades containing the source taxa. This observation leads to
the following propositions, the proofs of which appear in “Appendix C”.

Proposition 1 Suppose an input distance matrix to the NJ algorithm has the form in
Eq. 6 withn = 5, t1 and t; being source taxa, and ts being an admixed taxon. Then
the following pairs do not cluster in the first step of the NJ algorithm: (t1, t2), (13, t5),
and (tg, ts).

Proposition 2 Under the same conditions on the input distance matrix as in Proposi-
tion 1, the two source populations t| and t, cannot form a cherry in a final NJ-estimated
tree.

Our simulation finds that an NJ tree that violates Property 1 has one of
four topologies: ((t4, 5), 11, (12, 13)), ((13,15), 11, (12, 14)), ((14,15), 12, (11, 13)), and
((t3, t5), 12, (11, t4)). We claim that these four are in fact the only possible topologies
that violate Property 1. In the first step of NJ, of (;) = 10 possible pairs, Proposition 1
shows that (1, ), (13, t5), and (4, t5) cannot agglomerate. If (¢1, t5) or (2, t5) is the
first cherry, then Property 1 is satisfied. We are left with five potential pairs—(#1, #3),
(t1, t4), (2, 13), (f2, t4), and (3, t4)—as the possible first cherry of an NJ tree whose
construction might violate Property 1.

Suppose that NJ clusters a pair (#3, #4) first. In the second step, NJ clusters two
taxa from {t1, 12, t5, 134}, where t34 is a node representing the (#3, #4) cluster. As shown
in Eq. 9, a tie always occurs in the choice of the next pair to agglomerate when four
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nodes remain. Applying our convention in case of a tie described in Sect. 2, the possible
second cherries are (11, 15), (2, t5), (11, 12), and (5, t34). The first two choices satisfy
Property 1, and we can exclude them. The last two choices result in (71, f) being a
cherry, violating Proposition 2. Therefore, when (3, #4) is the first cherry, no violations
in Property 1 occur.

Now consider the remaining four potential pairs for the first cherry. Each pair con-
tains one taxon from {¢{, f,} and one taxon from {3, #4}. It suffices to examine (¢1, 3)
because the roles of source taxa ¢ and t, are interchangeable, as are the roles of #3 and
t4. If (11, t3) is the first cherry, then the remaining nodes are {#;, 14, t5, 113}, Where 713
represents the (¢1, 3) cluster. Again applying our tie-breaking rule, the possible second
cherries are (3, t5), (5, t13), (2, 113), and (#4, t5). The first two choices satisfy Prop-
erty 1. The last two pairs have a tie at the 4-taxon stage of the NJ algorithm, and either
choice violates Property 1. Therefore, the resulting topology, ((#4, t5), t2, (t1, 13)), aris-
ing from a choice of (1, #13) or (14, t5) as the second cherry, is the only topology that
violates Property 1 when the first cherry is (¢, #3). By exchanging #; and 1, or f3 and
t4 or both, we can deduce Corollary 1.

Corollary 1 When D® is used as an input, (14, 15), t1, (t2, 13)), (13, 15), 11, (12, 14)),
(14, 15), 12, (11, 13)), and ((13, t5), t2, (11, t4)) are the only topologies possible when
the NJ algorithm violates Property 1.

A similar analysis can be carried out for Property 3. Of 15 unrooted labeled binary
tree topologies for n = 5, 7 fail to satisfy by, > by s OF by, > by (shaded boxes
in Figures S1-S3). However, not all of them are attainable by NJ with the admixed
distance matrix in Eq. 6 as an input. This observation can be explained by direct
application of Proposition 2. Excluding three topologies containing (¢, #2) as a cherry
from the 7 topologies violating Property 3, we reach the following Corollary.

Corollary 2 When D® is used as an input, (14, 15), t1, (t2, 13)), (13, 15), 11, (12, 13)),
((t4, 85), 12, (11, 13)), and ((13, t5), t2, (11, t4)) are the only topologies possible when
the NJ algorithm violates Property 3.

From Corollaries 1 and 2, we can deduce that input admixed distance matrices D
violating Property 1 also fail Property 3 and vice versa, as any time one of the four
topologies in the corollaries is produced, it violates Property 3. By Proposition 1, it
must be produced in an order that violates Property 1. Our simulation result from
9,900,000 runs confirms that Properties 1 and 3 coincide when n = 5.

Topology of Tg‘): Because an admixed distance matrix D is created from a source
distance matrix S®—1 by a linear transformation, for a given admixture fraction «, the
independent variables in D™ remain the same as the ones in "~ For this reason,
the underlying structure for the n — 1 non-admixed populations affects the topology
of an NJ tree with admixture.

Table 4A shows that 7'5(4) has a uniform distribution across all three unrooted
labeled binary 4-taxon tree topologies. This distribution changes, however, when we
condition on the properties being attained. We choose input admixed distance matrices
D® whose inferred NJ trees 7, [()5) fail Property 3 and construct their source NJ trees
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Fig. 5 Frequencies of unrooted labeled binary tree topologies for 7. ;4) inferred from random source

distance matrices S®, considering all TS(4) whose corresponding admixed distance matrices DO violate
one of the three properties. a Property 1. b Property 2. ¢ Property 3. For each admixture fraction, a source
distance matrix S®) giving rise to a violation of each property is analyzed, and the frequencies are computed
conditioning on the total number of violations of each property. Each source NJ tree inferred from S@ is
assigned to one of three possible unrooted labeled binary topologies with four taxa. The “All Topologies”
line sums the values in the other three lines, and thus represents each property’s dependence on the admixture

fraction without regard to the topology of ’TS(4). In each panel, values appear for 99 admixture fractions,
summing to 100%. The simulations shown, 100,000 at each value of «, are the same as those considered in
Table 4

from S™. Because Properties 1 and 3 coincide for n = 5, we consider Property 3
only.

Of 12,397 NIJ trees of S® resulting in Property 3 violations, 50.32% have topol-
ogy ((t1, ta), (t2, 13)), 49.68% have topology ((t1, 13), (t2, 14)), and none has topology
(11, 12), (13, 14)). When 7.V has topology (11, 14), (2, 13)), its admixed distance
matrix results in either ((#4, t5), t1, (2, 13)) or ((3, t5), f2, (11, t4)) with approximately
equal frequency. Similarly, when 73(4) has topology ((t1, 13), (2, 14)), its admixed
distance matrix results in either ((#3,1s), t1, (t2, t4)) or ((t4,1ts), t2, (t1,t3)) with
approximately equal frequency. When 7™ has topology ((t1, t2), (13, t4)), the result-

ing admixed NJ tree 7, 155) always satisfies Property 3 (Fig. 5c). This observation leads
to the following proposition, the proof of which appears in “Appendix C”.

Proposition 3 If TS(4), inferred from a source distance matrix S®, has topology

((t1, 1), (t3, 14)), then its corresponding admixed NJ tree T, lgS) always satisfies Prop-
erties 1 and 3 and always contains either (t1, t5) or (t2, t5) as a cherry.

Admixture Fraction Dependence: Having performed a detailed analysis on topo-
logical characteristics of source and admixed NJ trees violating Properties 1 and 3,
we now examine the effect of the admixture fraction « on the properties. As can be
seen in Fig. 5, the number of inferred admixed NIJ trees violating Properties 1, 2, and
3 is minimal near « = 0.5, and it increases as « deviates from 0.5. The frequency
of violations is symmetric around o = 0.5; the behavior of the source taxon #; at
admixture fraction « is equivalent to that of the source taxon #, at admixture fraction
1 — . Because the roles of the two source taxa 71 and t, are interchangeable, it suffices
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to consider @ < 0.5. We examine three cases: « = 0.01 (Figure S1), @ = 0.25 (Figure
S2), and o = 0.5 (Figure S3).

We infer the 4-taxon source NJ tree ’2'5(4) from a random source distance matrix
S® . Based on its topology, each source NJ tree is characterized into one of three
possible 4-taxon unrooted labeled binary trees, which we denote {T](4) , T2(4) , T3(4) }. For
a given admixture fraction o, an admixed distance matrix D is constructed, and its
admixed NJ tree T[()S) is estimated. We categorize each admixed NJ tree into one of 15

possible 5-taxon unrooted labeled binary trees, represented by { Tl(s), TZ(S), ey TI(S5 ) }.
In each graph in Figures S1-S3, we represent each topology with a node and connect
a (7",.(4), Tj(s)) pair with a directed edge from a 4-taxon topology to a 5-taxon topology
when a source and admixed NJ pair having such topologies appear in our simulation.
The edge weight is proportional to the frequency with which a connected pair occurs.
For n = 5, we have shown that Properties 1 and 3 coincide, so we focus on Property 3
only.

When o = 0.01, the proportion of ancestry from population 1 in the admixed
population is small and ancestry from population 2 is large. As illustrated in Figure
S1, most estimated admixed NJ trees satisfying Properties 1 and 3 have (1, #5) as a
cherry. Owing to the small admixture fraction, #, and #5 are the most closely related
pair, and NJ picks (17, t5) as a cluster with high probability. Of the four feasible topolo-
gies 7, ISS) violating Property 3, the ones in which #, and #5 are maximally separated
have the highest frequency among violations: ((#3, t5), t1, (2, t4)) with 53.30% and
((ta, ts5), 11, (12, t3)) With 45.12%.

When « = 0.25, population 2 still contributes a majority of the ancestry to popu-
lation 5, but less so than for « = 0.01. Among (7'5(4), TD(S)) topology pairs satisfying
Property 3 (Figure S2A), three pairs with the highest frequencies place the admixed
taxon t5 on the t; leaf of ’TS(4) and thereby contain (#», 5) as a cherry in T[()S). The fre-
quencies of those pairs decrease from ~26% to ~17-23%, and other (7’5(4), 7, D(S)) pairs

increase in frequency. As in the @ = 0.01 case, among TD(S) topologies violating Prop-
erty 3, (3, t5), t1, (f2, t4)) and ((t4, t5), t1, (2, £3)) occur most often, with frequencies
53.93% and 37.08%, respectively. From 7, 155) topologies accessible by NJ, the other two
topologies violating Property 3, ((#3, t5), t2, (t1, t4)) and ((#4, t5), 12, (#1, ta)), appear
more often, 5.62% and 3.37%, compared to 1.06% and 0.53% when o = 0.01.

When two sources contribute equally to the admixed taxon (o = 0.5), all four fea-
sible topologies 7, D(S) violating Property 3 are approximately equally likely, as shown
in Figure S3: ((#4, t5), t1, (12, t3)) with 24.14%, ((t3, t5), t1, (t2, t4)) with 27.59%,
((ta, t5), 12, (11, 13)) With 25.86%, and ((13, t5), t2, (11, t4)) with 22.41%.

3.2 Random Additive Source Matrix with Admixture
In the previous section, we investigated the properties of inferred NJ trees when the
underlying source distance matrices S”~ 1, from which the nth admixed taxon was

created, were arbitrary. Here, we focus on a model in which the underlying n —
1 populations evolve independently in a treelike manner, and the admixture occurs
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between two randomly sampled populations. In the absence of the admixed taxon, NJ
recovers the true tree given additive Sn—1) (Atteson 1999; Bryant 2005; Steel 2016).
Inclusion of admixed taxon #, in phylogeny reconstruction, however, can disrupt the
NIJ inference for the underlying n — 1 populations as well as relationships between the
source taxa and the admixed taxon on the inferred NJ tree.

Kopelman et al. proved that when the admixed distance matrix D™ is additive,
Properties 2 and 3 must hold, irrespective of the number of taxa n. Under the only
slightly weaker condition of assuming an additive source distance matrix S"*~1, how-
ever, we find that they do not necessarily hold. In this section, we examine the three
properties of the inferred NJ tree in the case that an admixed taxon is constructed from
an additive source distance matrix.

To simulate an evolutionary tree with n — 1 populations, we employed a Yule pure
birth process (Yule 1925; Aldous 2001; Nee 2006) with birth rate A = 1 and scaled the
total tree height to equal 1. From each simulated tree, we computed a source distance
matrix S~ by summing edge lengths along the shortest path between each pair
of taxa on the tree. We then added an admixed taxon ¢, and constructed an admixed
distance matrix D from the additive S~ using Eq. 5. For each admixture fraction o
in {0.01, 0.02, ..., 0.99}, we generated 1000 random admixed distance matrices D™
formed from random additive source distance matrices S, resulting in 99,000
total matrices for a given number of taxa n. We varied n from 4 to 50. Note that the
scaling of the source tree height—multiplying S~ by a constant—only scales the
NIJ branch lengths and does not affect the order of agglomeration, as the admixture
step (Eq. 5), the NJ Q-criterion (“Appendix A”), and the inference of edge lengths all
utilize linear transformations of the source distance matrix S”~1.

The simulated numbers of violations for Properties 1, 2, and 3 from n = 4 to 16
appear in Table 5. No violation is observed for Properties 1 and 3 across all numbers
of taxa used in our simulation. Property 2, however, exhibits violations, the number of
which depends both on the number of taxa n and on the admixture fraction . When
n = 4, Property 2 shows no violations. This result is consistent with the mathematical
result of Kopelman et al. (2013) that all three properties hold when n = 4, irrrespective
of the additivity of the input distance matrix D). As n increases, the probability that
Property 2 fails increases as well. The number of simulations violating Property 2
rapidly grows with a small number of taxa, from 0 to 20% for n = 4 to 10. The rate
of increase slows gradually as n becomes large (Fig. 6b).

The probability that Property 2 holds also depends on the admixture fraction. For
all numbers of taxa in our simulation, the number of violations is minimal when the
admixture fraction is 0.5. In particular, when n = 5, Property 2 shows no violations
in the range from o« = 0.37 to 0.63. As « deviates further from 0.5, the number of
violations increases (Fig. 7), reaching maxima at the extreme values « = 0.01 and
0.99. As discussed in Sect. 3.1, the dependence of the number of violations on the
admixture fraction is symmetric with respect to & = 0.5, as the roles of the source
taxa, t; and 1, are interchangeable.

To gain a better understanding of the dependence of Property 2 on «, we analyzed
Ay =dyy, — diyr, and Ay = dy,y, — dyy 1, for all NJ-inferred trees from input admixed
distance matrices. Property 2 requires that dy,;, < d; 1, and dy,;, < dy,1,, s0 NJ trees
violating Property 2 have either A > 0 or A, > 0. We find no occurrences in which
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Table 5 Percentage of violations of the three properties among 99,000 inferred NJ trees using random
additive source distance matrices with admixture, where the source distance matrix Sst=1 jg additive, and
the taxon 7, is a linear admixture of taxa ] and #

n Property violated
1 2 3 1&2 1&3 2&3 1&2&3

4 0 0 0 0 0 0 0
5 0 5.4 0 0 0 0 0
6 0 10.7 0 0 0 0 0
7 0 14.0 0 0 0 0 0
8 0 16.4 0 0 0 0 0
9 0 18.3 0 0 0 0 0
10 0 19.8 0 0 0 0 0
11 0 21.3 0 0 0 0 0
12 0 22.6 0 0 0 0 0
13 0 23.8 0 0 0 0 0
14 0 249 0 0 0 0 0
15 0 25.6 0 0 0 0 0
16 0 26.6 0 0 0 0 0

The distances between the n — 1 source taxa correspond to pairwise distances between tips in a randomly
generated tree, and the distances involving the admixed taxon #,; are computed using Eq. 5. The numbers
shown are aggregated from 99 sets of 1000 simulations, each set with a distinct admixture fraction in
{0.01,0.02, ...,0.99}

(A) B) ©

| =% Null Model Calculation

1.0

— —&— Random Tree Simulation |- —
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Fig.6 Simulated probabilities that Properties 1, 2, and 3 are violated under amodel in which (n—1) x (n—1)
source distance matrices S”* 1) are additive, and an admixed nth taxon is added using Eq. 5. a Property 1.
b Property 2. ¢ Property 3. The exact probability for a random labeled unrooted binary tree to violate the
properties is also shown; for the null model, the values are copied from Fig. 3. For the random tree model,
simulation values are based on 99,000 matrices for each n; the values for n = 4 ton = 16 appear in Table 5

D™ results in both A; > 0 and A, > 0, so that if D generated from an additive
S=D violates Property 2, then only one of d;,,, and d,,;, is observed to be greater than
or equal to dy,;,. For this reason, we can assign A = max(Aj, Ay) for each NJ tree
violating Property 2, and the quantity A can be interpreted as a degree of violation of

@ Springer



Mathematical and Simulation-Based Analysis of the Behavior... 473

(A) B) ©

0.8

] \ ] \ 1\ \

0.6

= Null Model
5 71 —— Random Matrix ] 1
—— Random Tree

Probability that Property 2 Fails
0.4

0.8

|
|
%

0.2

Probability that Property 2 Fails
4
L
|
!

I L A A I A O L
0O 02 04 06 08 10 O 02 04 06 08 10 O 02 04 06 08 1.0
Admixture Fraction Admixture Fraction Admixture Fraction

Fig.7 Dependence of the probability that Property 2 is violated on the admixture fraction o under a model
in which an admixed distance matrix D is constructed from an additive (n—1) x (n — 1) source distance
matrix S"~D. an=4.bn =5 cn=10.dn =20.en = 30.fn = 50. Simulated values from the null
model without admixture and a random source matrix model are also shown. The simulations shown are the
same ones considered for the null model in Fig. 3, the random matrix model in Fig. 4, and the random tree
model in Fig. 6. Because the null model has no parameter «, each of 99 values of « is randomly associated
with 1000 simulations

Property 2. Whether A = Aj or A, depends on «. For lower numbers of taxa, n < 10,
all NJ trees have A = A; whena < 0.5 and A = A when o > 0.5. As n increases,
it is possible to observe either A = Aj or A = A for o =~ 0.5 (Fig. 8).

We have seen in Fig. 7 that the number of Property 2 violations is maximal when
the admixture fraction is skewed toward O or 1. For those admixture fractions close to
the boundary, however, A is small (Fig. 8). This result can be explained as follows.
For small admixture fractions (¢ < 1), most of the genetic contribution to #, comes
from source population #,. Based on Eq. 5, the distance between #,, and 7, is small, and
distances from all the other taxa ¢#; to #, (x;;,) are close to distances x;,. Therefore,
t, and 1, likely form a cherry, and the admixed taxon 7, behaves like the source taxon
tp on the NJ-inferred tree 7, Ign)' If we denote a node representing the most recent
common ancestor of # and t, as C, then d;,c ~ d;,c and Ay = dyy;, — dpyy, =
(dyc +di,c) — (dyc +dyc) = di,c —dic <K 1. The same explanation applies to
Ay « 1 at large admixture fractions (1 — o < 1).

As «a deviates further from the boundary values, Property 2 violations become less
frequent, but the degree of the violation A is larger than when o isnearOor 1. Whenn =
5, the maximal A occurs at @ = 0.18 and the maximal A, ata = 0.84. As the number
of taxa increases, the admixture fraction giving the maximal degree of violation shifts
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Fig. 8 The A measurement of the magnitude of Property 2 violations and its dependence on admixture
fractions « under the random additive source matrix model with admixture.an = 5.bn = 10. ¢ n = 20.
dn = 30. e n = 50. For each n, among 99,000 simulations, 1000 for each admixture fraction « in
{0.01,0.02, ...,0.99}, NJ trees violating Property 2 are plotted. For each NJ tree violating Property 2, the
degree of violation A is computed. Because no NJ tree violates both dy 1, > dy1, anddy; 1, > diy1,,,€ach NJ
tree violating Property 2 is assigned to either A = A = dy1, —dy 1, (orange) or A = Ay =dypy1, —dy1y
(blue). The simulations shown are the same ones considered for the random tree model in Fig. 7

toward ¢ = 0.5. These results suggest that when the admixed population is formed
from similar proportions of two source populations, the probability that Property 2 is
violated is smaller. If a violation does occur, however, then the chance is higher that
its magnitude is higher compared to the case in which either one of two populations
is a major source for the admixture.

A comparison of Property 2 under all three models appears in Fig. 7. When n = 4,
no difference is observed between the random source matrix model and the additive
source matrix model because all properties are satisfied irrespective of the source
matrix used. Both models involving admixture show fewer violations compared to
the null model without admixture. For n = 5 to 20, compared to the random source
matrix model (Section 3.1), Property 2 fails more frequently when the source distance
matrix S~V is additive. For n > 20, the random source matrix model displays more
violations, and the difference between the two models increases with the number
of taxa. Across the number of taxa used, the additive source distance matrix model
consistently shows a stronger dependence on the admixture fraction.
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3.3 Perturbed Random Additive Source Matrix with Admixture

The previous section examined source population distance matrices that represented
the outcome of an ideal treelike evolution. Next, to model deviations from additiv-
ity that occur in distance matrices, owing to the frequently imperfect representation
by distance matrices of an underlying treelike evolutionary descent, we simulated
scenarios that consider “noise” added to an underlying additive metric.

For a given number of taxa n, we followed the procedure of Sect. 3.2 to generate
additive source distance matrices S~ from simulated random trees. For each entry
djjin S®=D e added arandom noise term drawn from a truncated normal distribution
whose underlying untruncated normal random variable had mean 0 and variance 0.
To keep the perturbed distances between taxa nonnegative, the distribution from which
the noise term was drawn was truncated below at —d;;. From the perturbed distance

matrix S®—D , the nth taxon was created as an admixture of source taxa f and #,, and
the distances between the admixed taxon #, and the other taxa were computed using
Eq. 5. The resulting n x n perturbed admixed distance matrix D™ was used as an
input to the NJ algorithm.

For each n, we varied the perturbation of matrices S®=D from additivity by choosing
values of o from 0.00 to 1.00 with increment 0.01. We also varied the admixture
fraction « from 0.01 to 0.99 with increment 0.01. For each (o, «) pair, we simulated
1000 distance matrices, giving 9,999,000 in total.

Figure 9 displays the frequency with which Properties 1, 2, and 3 fail to hold for
n=4,5,8, 12, and 16 as functions of the perturbation o and the admixture fraction
. For o = 0, no noise is added to the additive S~ and the failure percentages are
expected to match those of the random tree model with admixture (Sect. 3.2). Indeed,
in accord with Sect. 3.2, no violations are observed for Properties 1 and 3 across
all values of n and «, and the number of violations of Property 2 shows a similar
dependence on « to that seen in Sect. 3.2. When the noise is small (o < 0.1), its
effect is negligible, and all three properties behave similarly to those in the random
tree model with admixture. In particular, the fraction of violations of Properties 1 and
3 is at most 0.1%, with no systematic dependence on n and «.

As o increases, more noise is added to the additive source distance matrix, and thus,
S®=1 deviates further from additivity. With sufficiently large o, the noise contributes
more to a distance entry than does the underlying additive matrix, and results are
similar to those of the random matrix model with admixture (Sect. 3.1). Forn = 5,
the maximum failure rates for Properties 1 and 3 are 0.8% and 0.8%, respectively,
both observed at (o, ) = (0.97,0.02); for n = 16, they are 3.8%, at (o, a) =
(0.96, 0.45), and 3.4%, at (o, @) = (0.90, 0.16), respectively. These values accord
with the corresponding values from the random matrix model with admixture: 0.8% at
a=097and0.8% atax = 0.97 forn = 5,and3.9% ata = 0.49and2.8% atax = 0.12
for n = 16. As was seen in previous sections, the behavior of all three properties is
symmetric around o = 0.5, as the roles of taxa #; and #, are interchangeable.

In general, the numbers of violations for all three properties increase with n. For
a given n, the total numbers of violations of Properties 1 and 3 summed over all
admixture fraction values increase with o . For a given set of parameter values (n, o, @),
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Fig. 9 Percentage of simulated matrices in which Properties 1, 2, and 3 are violated under a model in
which a truncated normal noise term is added to each entry in additive source distance matrices =D ‘and
admixed nth taxon is created using Eq. 5. The standard deviation o of the noise term (prior to truncation)
was varied from 0.00 to 1.00 at increment 0.01, and the admixture fraction () was varied from 0.01 to 0.99
at increment 0.01. Each point in the plot represents a percentage among 1000 simulated matrices for a pair
(0, &) and is colored according to the scale at right

the failure rate for Property 2 substantially exceeds those of Properties 1 and 3, and
the number of Property 2 violations depends more on n and « than on the noise o.
We can compare the dependence on o of the number of violations for a given n across
properties by summing the total number of violations over all « and normalizing the
difference between the maximal and minimal numbers of violations by the maximum.
As o varies from 0 to 1, the number of Property 2 violations changes by 38.2% when
n =5 and 9.9% when n = 16. By comparison, Properties 1 and 3 both change by
100%.

4 Discussion

In this paper, we have analyzed the effect of an admixed taxon on neighbor-joining
inference of evolutionary trees. We have focused on three specific characteristics of
the inferred trees that concern an admixed taxon and its two source taxa: antecedence
of clustering, intermediacy of distances, and intermediacy of path lengths. Compared
to a null model containing no admixture, the three properties were satisfied more
frequently when pairwise distances involving an admixed taxon were included in the
distance matrix (Eq. 6). The fact that violations were sometimes observed, however,
shows that the conjectures of Kopelman et al. (2013) are not true in general, failing
on some subsets of distance matrices.

In the case of additive source distance matrices S 1, from which admixed distance
matrices D™ were constructed, we observed no violations of Properties 1 and 3.
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Additive source distance matrices also generated fewer violations of Property 2 than
did either random source distance matrices without the additivity constraint on S~ 1
or additive source distance matrices that were modified by perturbation terms. These
results are sensible in light of the result of Kopelman et al. (2013) that no violations of
Properties 2 and 3 occur when D™ the distance matrix including the admixed taxon,
is additive—a result that pertains to a more stringent setting than those considered in
our simulations.

For the 5-taxon case including an admixed taxon, we found that certain tree topolo-
gies are not accessible as a result of neighbor-joining. In a null model, all 15 labeled
topologies of a 5-taxon unrooted labeled binary tree can be obtained. When we intro-
duce the linear admixture relationship between the admixed taxon and the source
taxa, however, only 12 and 8 of 15 topologies are accessible when the 4-taxon
source distance matrices are drawn from random matrices and random additive trees,
respectively. Note that although the mathematical results for the five-taxon model in
Propositions 1-3 and Corollaries 1 and 2 have been motivated by observations from
the simulations in the random source matrix model with admixture, they hold for all
source distance matrices with four taxa.

4.1 Rogue Taxon Effect

The admixed taxon can be considered as a “rogue taxon” (Sanderson and Shaffer
2002; Thomson and Shaffer 2010; Cueto and Matsen 2011; Westover et al. 2013).
The presence of an admixed population in the distance matrix perturbs the topology
and branch lengths of the reconstructed tree compared to the case of exclusively non-
admixed populations. To examine the admixed taxon’s rogue effect, we restrict an NJ

tree 7, D(") with an admixed taxon to the n — 1 non-admixed taxa, removing leaf 7, from

T, lg") to construct a pruned tree 7, lgn_l). We can compare the topology of 7, IS"_D to
the topology TS("_I) of the source NJ tree constructed from the source distance matrix
St=D,

In the null model in which distances involving the admixed taxon are chosen ran-
domly, many pairs (’Z~'[()n_l), ’Z'S(n_l)) have different topologies (Fig. 10). When the
distances to the admixed taxon are chosen by the linear mixture model, however,
fewer disruptions of evolutionary relationships among the non-admixed n — 1 taxa are
observed. Finally, compared to the random source matrix model with admixture, in
which the distances between the n — 1 taxa are chosen randomly, enforcing the addi-
tivity constraint to the source distance matrix S”~1 greatly reduces the frequency of
the rogue taxon effect.

For all three models, the rogue taxon effect increases in frequency as the number
of taxa increases (Fig. 10a). In the null model, in which the additional taxon is chosen
arbitrarily in a matrix with random distances, 18.0% of ’f[()"_l) trees do not contain
the original source tree when n = 5, growing to 99.9% for n = 50. In the random
source matrix model, the corresponding value at n = 50 is 92.7%, and in the additive
source matrix model, it is a comparatively low value of 37.4%.
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Fig. 11 Influence of the admixture fraction on the rogue taxon effect, the probability that the pruned

tree topology T, l()nfl) differs from the source tree topology 7 =D For each admixture fraction in
{0.01, 0.1, 0.25, 0.4, 0.5} and each number of taxain {4, 5, ..., 50}, 10,000 input admixed distance matri-
ces D are considered for each of three different models. a Null model (Sect. 2.2). b Random source matrix
model with admixture (Sect. 3.1). ¢ Random additive source matrix model with admixture (Sect. 3.2)

The frequency of the rogue taxon effect for an admixed taxon depends on the
admixture fraction and the number of taxa (Fig. 11). Fora given n, consideringo < 0.5,
the rogue taxon effect is rarest when « is small and most frequent when o« = 0.5. This
result is sensible because when the admixture fraction from source taxon ¢ is small,
the admixed taxon is closer to source taxon f, so the probability is high that the
admixed taxon forms a cherry with 7, without disturbing the topology of other taxa
in the original tree. When o« = 0.5 and contributions from the two source taxa to
the admixed taxon are equal, NJ inference is unstable because the admixed taxon can
join a clade containing either source taxon, potentially producing greater influence on
other steps in the inference. Thus, the rogue taxon effect occurs more often.
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To measure the extent to which the rogue taxon effect alters the topology of source

NJ trees, we quantify the topological difference between 7T, [()"_1) and ’]3("_1) using
the Robinson—Foulds (RF) distance (Robinson and Foulds 1981; Steel 2016), which
counts bipartitions of ’2~'L§"_1) that are absent in ’Z'S("_l), and has maximal value three
fewer than the number of taxa in the tree, or n — 4. In the null model, the mean
observed RF distance is 0.18 when n = 5 (maximum 1), increasing to 22.65 with
n = 50 (maximum 43, Fig. 10b). In the random source matrix model, the mean RF
distance at n = 50 is 19.83 (maximum 43, Fig. 10c); the additive source matrix
model has smaller RF distance at n = 50, reaching mean only 0.57 and maximum 7
(Fig. 10d).

The rogue taxon effect with the admixed taxon under NJ parallels a corresponding
analysis that investigated the effect of a rogue taxon on a tree inferred by balanced
minimum evolution (BME) (Cueto and Matsen 2011). Because the NJ and BME
methods are closely related (Gascuel and Steel 2006), we expect the behavior of the
rogue taxon on NJ trees to be similar to the effect of a rogue taxon on BME trees. First,
the high frequency and magnitude of the rogue taxon effect in the null model accord
with Cueto and Matsen (2011), in which a frequent and severe rogue taxon effect was
observed in simulations using treelike distance matrices augmented by distances to a
rogue taxon chosen at random from a specified distribution.

Second, they obtained mathematical results that in BME trees, a rogue taxon can
have significant, but not arbitrary effects, so that some topologies cannot be the inferred
BME tree when the rogue taxon is present. In the simplest case, when n = 5, if the
source BME tree is ((t1, t2), (#3, t4)) and t5 is added, then the BME tree cannot be
((t2, t4), t5, (1, 13)) or ((t2, 13), 15, (21, t4)) (Theorem 3.5 in Cueto and Matsen (2011)).
Our NJ simulations with n = 5 in Fig. 10a, when sorted by the topologies of the source
tree with and without the admixed taxon, suggest that the same rule might apply in
the random source matrix and additive source matrix models, which do not produce
instances of these cases (notice also that in Figures S1-S3, no arrows connect the
associated trees in the random source matrix model). In the null model, however, the
NJ simulations do infer the two topologies forbidden by BME, each with a nonzero
but small frequency (~0.01%). This result can be attributed to the fact that NJ does
not always infer the same topology as BME (Eickmeyer et al. 2008).

4.2 Tree Models

We note that our various analyses make use of a variety of probability distributions on
trees, so that differences in results observed across Sects. 2.1,2.2,3.1,3.2,and 3.3 could
be partially attributable to differences in the probability model. Our exact computations
(Sect. 2.1) use a uniform distribution on the set of labeled unrooted topologies with n
taxa, a model under which we can obtain the exact probability that Property 3 holds
by use of a recursion. As it is not straightforward to draw random distance matrices
so that when NJ is applied, the simulated matrices produce a uniform distribution on
labeled unrooted topologies, our null model simulations (Sect. 2.2) and the admixture
simulations that rely on random matrices (Sect. 3.1) instead consider draws taken
uniformly at random from a space [0, 1](;) of distance matrices for n taxa. The null
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model simulations only approximately reflect the exact computations, as they do not
simulate from the same model under which the exact computations were performed.

Further, in another difference from the null model, our simulations with random
additive source matrices (Sect. 3.2) and the associated simulations with perturbed
additive source matrices (Sect. 3.3) begin from trees simulated by a Yule birth process.
Rather than a uniform distribution, such trees follow the Yule—Harding distribution
on the space of labeled rooted topologies, a distribution we chose because it is more
suitable as a generative evolutionary model than is the uniform model (Blum and
Francois 2006; Steel 2016).

The difference in tree models across our analyses likely contributes to some of the
difference seen across analyses in the frequency of violations of the three properties.
Notably, however, the models have similar trends of increasing numbers of violations
of the properties when the number of taxa is increased. In addition, the model with ran-
dom additive source matrices has the weakest rogue taxon effect, substantially smaller
than in the null model and in the random source matrix model (Fig. 10). This observa-
tion accords with the theoretical result that a distance matrix that is fully additive when
the admixed taxon is included does not have a rogue taxon effect—trivially, because
NIJ recovers the input tree from an additive distance matrix—and the random additive
source matrix model is the closest of the three models to this idealized rogue-free
scenario.

To further study the effect of the model choice on the results, it would be use-
ful to extend the theoretical calculations of Sect. 2.1 to consider the Yule-Harding
model, which does not produce the convenient recursive Eq. 1; to analyze simulations
analogous to those of Sect. 3.2 under the less naturally generative uniform model on
labeled tree shapes; and to devise a method for simulating random distance matrices
that produce a uniform distribution on the set of labeled unrooted topologies after NJ
is applied.

5 Conclusions

This work expands the understanding of the effect of admixture on neighbor-joining
trees. Past empirical NJ trees with admixture and the conjectures of Kopelman et al.
(2013) have suggested that observations of antecedence of clustering, intermediacy of
distances, and intermediacy of path lengths might be taken as evidence of admixture.
We have found that the three properties are not necessarily observed in our simulations
with admixture models; it is therefore possible that counterexamples in data might also
be found. However, the properties do occur more often in a random additive source
matrix model with admixture between a pair of taxa than in null models without
admixture; it is thus useful to continue to treat them as admixture related and to
consider admixture as a potential explanation when the properties are observed.

As noted by Kopelman et al. (2013), a limitation of our approach is that common
distance functions in population genetics need not be linear in the admixture coefficient
o when applied to admixed populations (Boca and Rosenberg 2011), so that Eq. 5
will not necessarily apply to specific distance functions. In future work, it will be
informative to consider a form of the admixture model in which the linear combination
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is applied to the allele frequencies that underlie genetic distance computations and
specific distance functions are then computed, rather than treating the distance function
itself as linear.
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Appendix
A The Q-Criterion

For each agglomerative step of the NJ algorithm, the algorithm evaluates the Q-
criterion (Bryant 2005; Gascuel and Steel 2006) and picks a pair of taxa i and j
with the minimal ¢ value, g;j = (n — 2)xij — Y _j_; Xik — 2 1 Xxj- Here, i # j and
i, j range from 1 to n. The Q-criterion gives a linear transformation of the original
input distance matrix D,

Capitalizing on the linearity to make use of matrix algebra (Eickmeyer and Yoshida
2008), we write Q = A x In the matrix A, a and b represent taxon pairs, ranging
from 1 to (;), and r, £, s, and ¢ represent taxa.

n—4 ifa=»>
AW =AW =11 ifa£band{r €N (s, 1} £ 0 (8)
0 otherwise.

For example, for n = 4, annotating rows and columns of A® by the order of the
entries in X,

21 31 32 41 42 43

21 o -1 -1 -1 -1 0 X21
31 | —1 0o —1 -1 0 -1 X31
AD - 32 (-1 -1 0 0o —1 -1 ’ x@ — X32 )
41 | -1 -1 0 0o -1 -1 X41
42 | -1 0o -1 -1 0o -1 X42
43 o -1 -1 -1 -1 0 X43

The process of cherry picking continues until only three nodes are left, at which
point the three remaining taxon groups are joined to a shared node. NJ produces a
particular tree topology given an input distance matrix D if and only if the original
distances x;; satisfy an associated set of linear inequalities defined by the Q-criterion.

B Correction to Section 4.1 of Kopelman et al. (2013)
In the case of an additive n-taxon matrix D™ with taxon 7, admixed between source

taxa t1 and #p, Section 4.1 of Kopelman et al. (2013) demonstrates that in the NJ tree of
all n taxa, (1) taxa t1, tp, and t,, must be collinear, with 7, between #; and #,. Moreover,
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Fig. 12 The structure required for a tree corresponding to an additive n-taxon admixed distance matrix
whose distances satisfy Eq. 5. Taxa ¢ and  are source taxa, and #, is the admixed taxon. Triangles represent
subtrees, one of which contains taxon #3 either at an internal node or as a leaf node. Admixed taxon ,, must
lie on the path connecting the source taxa, with no other node placed on edges ¢t; — f;, and tp — t,. The

remaining taxa 13, t4, . . ., t,—1 can be in any subtrees connected to either 71 or #) by edges external to the
patht; — t
they showed that (2) each taxon #; fori = 3,4, ..., n — 1 must be collinear with 71,

12, and t,,, with taxon f; exterior to the path from #; to #, to t,. Finally, they claimed
that (3) the NJ tree structure can be characterized by a line from #; to ¢, to #,, with #;
and 7, each placed at a multifurcating node to one of which each taxon #3, #4, . . ., ,—1
must be connected by a single edge (depicted in their Fig. 3b).

We comment here that although points (1) and (2) are correct, the claim (3) does not
follow from (1) and (2) as assumed by Kopelman et al. (2013). It is possible to place
the various taxa ; fori = 3,4, ...,n — 1 in relation to the line segment | — 1, — 12
in a manner in which each #; is collinear with and exterior to the segment, but the
nodes for #; and , are not necessarily multifurcating, and the #; are not necessarily
connected to one of those nodes by only a single edge. It follows from (1) and (2)
merely that exterior to the segment #; — #, — f, are two possibly but not necessarily
multifurcating trees, one rooted at #; and the other rooted at ,, and that each taxon ¢;
fori =3,4,...,n — 1is placed in one of those trees (Fig. 12).

C Proofs for the 5-Taxon Case

In this appendix, we provide the proofs of Propositions 1, 2, and 3 stated in Sect. 3.1
pertaining to distance matrices with admixture D constructed from random source
matrices S,

From the linear mixture model in Eq. 5, the distance matrix forn = 5 taxa, including
one admixed taxon t5 and two source taxa 71 and 1, is:

0 x21 x31 X41 (1 —a)xpg
x21 0 x32 X42 axo]
DO = X31 X32 0 X43 ax3) + (1 —a)x3 |,
X41 xX42 X43 0 axqr + (1 —a)xg
(1 —a)xp1 axpp ax3p + (1 —a)x3p axq) + (1 — a)xan 0

with positive non-diagonal entries (x;; > O forall i and j withi # j).
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Using the matrix representation in Eq. 8, the Q-criterion in the first step in NJ with
5 taxa can be written as Q = A®xO), where A®) e R10x10 x5 ¢ RI0XL We have

A® —

o
x31
x32
X41
<O = |
X43
X51
X52
X53

21 31 32
211 -1 -1
31 | -1 1 -1

32|1-1 -1
41 | -1 -1

1
0

42 | -1 0 -1
43 0o -1 -1

51 |—-1 —1

0

52 | -1 0 -1
53 0 -1 -1

54 L 0 0
S
L
3%4)
3%4)
34(14)
%
a?4)
az4)
&
2
L210 |
_ o1 _
X31
X32
X41
_ X42
xX43
(I —a)x2)
Xy
ax3) + (1 —a)x3p
Loxar + (I — a)xqn ]

LX54

0

41

—1
—1
0

1

—1
—1
—1
0
0
-1

_
I

SCOoOR R coocoo ~

42
-1
0
-1
-1
1
—1
0
-1
0
-1

OSCR coococoocoo~O

43

0

—1
-1
-1
-1

1
0
0

—1
—1

SR coococoo~O0OO0

51
-1
—1
0
—1
0
0
1
-1
—1
—1

Rococococo—~oo0O0

—_

52 53 54
—1 0 07

0o -1 0
-1 -1 0

0 0 -1
—1 0 -1

0o -1 -1
-1 -1 -1

1 -1 -1
—1 1 -1
-1 -1 1.

(10)
0 0+
0 0
0 0 o1
0 0 X1
1 0
0 1 32 =Ms?,
0 of|
0 0 Xi3
0 0
a 04
(11

denoting by M the matrix in Eq. 11, with s® = [x21, X31, X32, X41, X42, x43]7.
Only six independent variables appear in the source distance vector s, and we
can rewrite the Q-criterion as

Q® = (921, 431, 932, q41, 442, 43, 451, G52, G535 G541 T

— AKX — AON® = AO®

12)
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where
A® =AM
21 0 —1 -1 —1 1 o0 [
31 | 240 l-—a -2+« —1 0 —1 ad
RN | -l-a —-l-«a o 0 -1 -1 ay)
41 —2+4a —1 0 l—a —-24a -1 55‘5)
42 —1l—-« 0 -1 —-l-« a -1 5
= 43 0 —-1-a -2+a —-l—-a —-2+a 1= 5%5) :
51 20 —-l1—-a —-l4+a —-1l—-a -1+« 0 ~?5)
52 | -2+420 —a —2+a ¢ —24a 0 s
53 -1 —l1+4a —a —a —14+a -1 ﬁ‘z(;s)
54 L —1 - —14a -1+« —a  —1d I
a®
10
(13)
and 555) (i =1,...,10) is the ith row vector in A®, The pair that is agglomerated

together is the pair corresponding to the row with the minimal value in Q®.

Proof of Proposition 1 'We must show that (¢, 12), (3, t5), and (#4, t5) cannot be the
minimum for the Q-criterion in the first step of NJ. We begin with (#1, #2). By contradic-

tion, suppose that (¢1, #2) has the minimum Q-criterion. This means that g1 = ﬁ§5) 5@
is less than or equal to g, = 5;5) -s® foralli = 2,3, ..., 10. In other words,
@ —a).s® <o. (14)

This linear system of 9 inequalities in the 6 entries of s can be represented as
a matrix B®s® < 0, where 0 = [0, ..., 0]T € R®*! and the ith row of the 9 x 6
matrix BO® is a; —aj41:

ra® _ 397 21 31 32 41 42 43
5 ~5) r2—a —-2+4a -« 0 -1 1
a”’ —a
RO S) 1+o a —l-a -1 0 1
AT 2 -« 0 -1 —2+4a -« 1
a —a l+a —1 0 a —1—-a 1
BY = |3 a0 | = 0 o l—« o l—a —1]-
555) — 5§5) 20 o -« o —a 0
555)_{%5) 2-2a0 —l+4+« l-a¢ —-14« l—« 0
3® _3® 1 —a —-14+a —-14a«a —o 1
ﬁ§5)_5?%) L 1 -1+« —a —a —1+4a 1

We use Fourier—Motzkin elimination (FME, Dantzig and Eaves 1973; Schrijver
1986; Ziegler 1995) to prove that this system of linear inequalities B®s® < 0 with
the constraint s > 0 has no solution, thereby showing that (#1, ) cannot have
the lowest Q-criterion and hence cannot be the first pair to agglomerate in the NJ
algorithm.
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In FME, we sequentially eliminate variables from the system of linear inequalities,
at each step transforming the system into a new system with an equivalent solu-
tion space. Eventually, we eliminate all variables and reach a set of trivially satisfied
inequalities only involving constants, so that the system has solutions. Alternatively,
we reach an inequality with no solution, and the system therefore has no solution.

Briefly, consider a system of inequalities Bx < ¢, where B € R"*" x € R<1
and ¢ € R"™*!. Each row of B represents an inequality, and the solution space for the
systemis P = {x | Bx < ¢} C R". FME eliminates the variable x; by performing row
operations on the augmented matrix (B | ¢). In Step 1, we rearrange the inequalities in

Bx < cinto three sets, based on the signs of the kth column: I = {i € {1,2,...,m} |
bir >0, 1_={ie{l,2,...,m} | bix <O0},and Iy = {i € {1,2,...,m} | by =0}.
In Step 2, foreach i € I U I_, we scale each row (b;1, ..., bin | ¢;) by |bik| so

that elements in column & of (B | ¢) are either 1, —1, or 0. In Step 3, we then define a
new set of inequalities:

" e 1 1
— brixi + — bsixi < —cr + —c (r,s) e I+ x I_
brk ; " |bsk| ; o brk ' |bsk| * *

n

Zbﬁixi <cy L e ly.

i=1

Because the coefficient of xj; is normalized to +1 for row r and —1 for row s,
the combined new set of inequalities does not have xi. In other words, column &
has zeroes as entries. We now have a total of |I;||I_| + |Ip| new inequalities in
X1, X2, - oy Xk—1, Xk+1, - - - » Xn. The system of inequalities has solutions if and only if
FME can successively eliminate all the variables without generating a contradiction.
Otherwise, if the system is inconsistent at one point during the elimination, then it has
no solutions.
We first seek to eliminate the third variable, x3;, represented in the third column:

21 31 32 41 42 43

r2—a 24« l—« 0 —1 17

1+« a —1—«a -1 0 1

2—«a 0 -1 24« l—«a 1

l4+a —1 0 ¢ —-1—«a 1

B® = 0 ¢« l-ua « l-—a -1
2a o —a o —a 0

2—-20 —-l14a«a l—-a -1+« l—« 0

1 —a —-14+a -1+« —o 1

L 1 -1+« —o —a -1+« 1
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Note that 0 < @ < 1 and 0 < 1 — @ < 1. The rearrangement by the sign of x3; gives:

21 31 32 41 42 43
r2—a 24« l—« 0 -1 17
0 o l—«a o l—a -1
2—-20 —-l14a«a l—a -1+« 11—« 0
) 1+« ¢ —-1—«a —1 0 1
Biepi =| 2—a 0 -1 24a l1—a 1]
20 o —a o —a 0
1 - —-l14+a —-1+4a« —a 1
1 -1+« —o —a —-1+4a« 1
L 14+« —1 0 a —1l—«a 1]

Once the rows have been rearranged, we normalize each row with a nonzero entry for
x32 by the absolute value of the entry for x3;:

21 31 3 41 42 43

r 2-a _2—«a 1 0 __1 1 A

11—« 1;“ o l—« lTa

0 = 1 = I ==

2 1 1 —1 1 0

1 1

B _ N T 0 1=
step2 2—«a 0 -1 2+« l —«o 1]
2 1 -1 1 -1 0

1 1

= —%% -1 -1 —ﬁx =

— —O
a o 1 -1 == a
]+« -1 0 a —-1—« 1

Considering linear combinations of rows in /4 and /_, we then have a new system
of inequalities:
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21 31 32 41 42 43
~ =342 2 0 1 1 2
—l+a —1+a? I+a —l+a —1+a?
(=2+a)? 2—a (=2+w)a 1
i “T+a O —2+4+a -5 I+ =
—443a 1 2—a 1
—1+a —1+a 0 1 —T+a T—a
=34 2 0 —1 I+o _ 2
—I4a —I4a —14a — 4o
—24a , 1 1 l—a+a? 1
—l4a + a (—1+a)a 0 -1 (—1+a)a a—a?
2a o 1 2a
I -z 0 % ~ e 1 e
2-« lga 0 —2+O€+ﬁ 2« —la-i-a
1 1 1
) 2 = O T 0
Bstep3 = 1—«a o I+«
1 12« —14+2a
T—a 0 0 —1+a —1+a 0
1 1-2« 1-2« 1 1 1
a (—1+a)a 0 —14a B — 14« + o
1 2+a 1
3 e T 1 Tha
44—« -1 0 -3+« 2—«a 1
4 0 0 0 0 0
=342« 1 —142« 1
— 4o —I4a 0 -2 —14a =
241 -1 0 -2 2-1 1
L 14+« -1 0 o —1—« 1

The highlighted 13th row implies that if B®'s®) < 0, then B}) ;s < 0. We would
then have 4x7; < 0. However, this inequality contradicts our assumption that all off-
diagonal entries of distance matrices are positive, by which we must have x»1; > 0.

Similarly, we can show that pairs (3, ¢5) and (¢4, ¢5) cannot have the minimum Q-
value and thus do not form cherries in the first step of NJ. For (#3, 5), we start with a
system of inequalities (ﬁés) — 5;5)) -s¥ < 0(i # 9)and eliminate variable x4 to reach
the contradiction xp; < 0. For (24, t5), we start with a system of inequalities (5%) —

ﬁl@) s® <0 (i # 10) and eliminate variable x3; to reach the contradiction x3; < 0.
O

Note that the fact that (¢, t»), (t3, t5), and (4, t5) cannot form cherries in the first
step does not imply that they cannot form cherries in the final NJ tree, as they can
agglomerate in subsequent iterations of the NJ algorithm. In Proposition 2, however,
we show that the final NJ tree of D® cannot have (71, 1) as a cherry at all.

@ Springer



488 J. Kim et al.

Proof of Proposition 2 In Sect. 3.1, our simulations found that the three unrooted
labeled binary tree topologies containing the source taxa #; and #; as a cherry
are unattainable by NJ inference when distance matrices of the form of Eq. 6 are
used. Such topologies are ((t4, t5), t3, (t1, ©2)), ((13, 15), t4, (t1, 12)), and ((#3, t4), t5,
(t1, 12)).

Because (1, 12), (13, t5) and (4, t5) cannot form a cherry in the first step of cherry
picking (Proposition 1), we have so far shown that topologies ((t4, 5), 13, (11, 12))
and ((t3, t5), t4, (11, t2)) cannot be the final NJ tree. To show that (¢1, #;) is not a
cherry in the NJ tree and therefore to prove the proposition, it remains to show that
(13, t4), t5, (11, 12)), the last remaining topology containing (#1, t2) as a cherry, is not
accessible.

Consider a case in which pair (#3, 74) agglomerates in the first iteration and we are
left with four unclustered nodes, {t1, 2, s, t¢}. Here, t¢ represents a clade containing
(3, t4). Distances between the new node 7¢ and the remaining taxa are:

1 .
X6i = 5()631‘ +x4; —x43), i €{1,2,5}.

These distances can be written in matrix form as X = Rx®, where

- 1 0000 0O0O0O0 O
251 00000 010 0 O
| xe 0000 0 O0O0T1 0 0
=l B=l0 3 0 5 0 —% 00 0 0
X6 00 1 0 3 -z 0.0 00
Xes 0000 0 —3 00 3 3

Using the matrix representation in Eq. 8, the Q-criterion for the four remaining nodes is

QW =1[q21, ¢51, 52, 961, 962, G517
_AD% = ADRxD — AORMs® — ADs®_

where

21 51 52 61 62 65

2000 -1 —1 -1 -1 0

50 0-1 0 -1 -1 0 -1

A 2 -1 -1 0 0 -1 -1
61 |[-1 -1 0 0 -1 -1

2 |-1 0 -1 -1 0 -1
6sLo -1 -1 -1 -1 0
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A® = AORM

1 1 1 1
21 -1 —3 —2 —32 -7 !
51 |-(+a) -0+ -ta-o -td+e -fad-o 1
52 |—2-a) —%a ~-le-w —%a “le-a) 1
= 6l [-QC—-w) —30 —5(2-a) —50 —?(2—04) 1
62 |-(1+a0) —Jd+a) -I0-o -td+w —J0-0) 1
1 1 1 1
65 -1 —3 ~2 ~2 -3 1
a@
2
5@
— 3
= 5@
4
5@
5
5@
_6_

As before, ?154) (i = 1,...,6) is defined as the ith row vector in A®. Because
5;4) = 5;2. (i = 1,2,3), pairs {(f2, 11), (t6, 5)} have the same Q-criterion, as do
the pairs {(t5, t1), (t6, 12)} and {(¢s, t2), (s, 1)}. To prove that #; and 7, cannot form
a cherry, it suffices to show that the Q-criterion for (¢, 1), g21 = 554) .s®_ is not
minimum, so that either ﬁg‘) 8@ < 554) .s® or ﬁ§4) .s®W < 5154) . s® must hold.
Equivalently, one of the following pair of inequalities must hold:

@ —a).s® <o
@¥ —a®).s® <o. (15)

By the assumption that (#3, #4) is the cherry from the first iteration of the NJ algo-

rithm, the Q-criterion for (23, #4), qaz = ﬁés) -s@_ from the first iteration of the NJ
algorithm must be minimum:

@Y —a).s® <o, (16)

for all i from 1 to 10 (i # 6) and 51(5) as defined in Eq. 13.

To show that Eq. 15 follows from Eq. 16, suppose to the contrary that (¢, t2) has
the minimal Q-criterion in the second iteration of the NJ algorithm, so that both of the
following hold:

(ﬁ§4) _ 5;4)) s@ <0

@Y —a).s® <o. (17)

We then have a system of 11 linear inequalities that can be represented in matrix form,
B@s® < 0, where
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5@ _ 5@
5(4) _ 5(4)
59 _ 30
50 _ 3
525) _ 5;5)
BY = |3 _ 50
5(5) _ 5(5)
50 _ 50
50 _ 3
5(5) _ 5(5)
85" — |
21 31 32 41 42 43
B o %a —%0{ %a —%a 07
l-a —3(1-a) $(l-a) —-id-a) F(1-a) 0
0 —a 14+« —a -1+« 1
2—« -2 0 —a -2+« 2
l+a 0 -2 —1—« -1+« 2
= 2—« —o 24« -2 0 2
1+« 11—« -1+« 0 -2 2
200 0 -1 0 —1 1
2 — 2« —1 0 —1 0 1
1 —2a 242« -1 -1 2
L 1 -1 -1 20 242« 2

We apply FME to B, noting again that 0 < « < 1. After eliminating variable
x31, we reach the inequality x3; < 0, contradicting the assumption that xo; > 0.
This proves that the pair (¢, #2) cannot have the minimal Q-criterion in the second NJ
clustering step when (3, t4) forms a cherry in the first NJ clustering step, completing
the proof of Proposition 2. O

Proof of Proposition 3 We must show that if a source distance matrix generates topol-
ogy ((t1, 12), (#3, t4)), then its corresponding admixed neighbor-joining tree satisfies
Properties 1 and 3 and contains (1, t5) or (#2, t5) as a cherry.

The Q-criterion for four taxa {t1, t, 13, 14} is Q(4) = A®s®,

21 31 32 41 42 43 RON -

21 0 -1 -1 -1 -1 0 W x21

31 | =1 0 -1 -1 0 -1 3%4) X31
AGZ 32 |-1 -1 0 0 -1 —1|_ 3%4) O >
41 | -1 -1 0 0 -1 -1 a, X41
£21-1 0 -1 -1 0 -1 ag” X42

43 0 -1 -1 -1 -1 0 _agt)_ | X43
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“)

) “ B _ ) :
Because s\ € D((tl’tz)’(&m)), the Q-criterion g1 = a;~ - ' for (#1, £2), or equiva-

lently for (13, t4), qa3 = a?) - is minimal. That is, for i = 2, 3,

(3(4) ;4)) s® <0 (18)
@ —a").s® <o. (19)

Consider an admixed distance matrix D® constructed from source distance matrix
S® _ The Q-criterion for pairs in D follows Eq. 12. Proposition 1 excludes three pairs
from being the first cherry for any input admixed distance matrix, so we are left with 7
potential pairs for the first cherry: (¢1, 13), (t2, 13), (t1, ta), (t2, ta), (13, ta), (t1, t5), and
(2, t5). We claim that the first four pairs, (#1, 13), (2, 13), (t1, t4), and (2, #4), cannot
cluster in the first iteration of the NJ algorithm when s® ¢ D

((t1,12),(13,14))
Suppose for contradiction that (#1, #3) is the first pair to agglomerate in constructing

T[() ) , so that the Q-criterion for (71, 13), g31 = a( ) - s®_ is minimal when s® €

lll)((lzté’m’([3’t4)). Using Eq. 12 and 13, for all i from 1 to 10 (i # 2), the following must
old:

(555) _ 5;5)) s <.

Considering this inequality along with Egs. 18 and 19, we have a linear system of 11
inequalities in the x;;, B®s® < 0, where

- 54) _3%4)' 21 31 32 41 42 43
4) 4) - 1 1 0 0 . -
~(5) "(5) 1 0 -1 -1 0 1
~(5) ~(5) 24« 22—« 14+a 0 1 -
a, —ay _ - ~
a9 50 1+2¢:¢) , 2 )i 2 )i 1 ) 1 8
-« 240 -2+« —a
B® = ~(5) jS) =|l-142¢ l1l—a -l4a« o —a 0|
a0 5l S 2 0 o e,
~(5) ~?5) —2+ 3¢ 2 -1 ¢ l-a -1
%’) JS) — 1 0 —l4+a 2—a -1
~(5) %5) —l4+a 2-20¢ 2420 —-l14a l—-« 0
L 1+« 1 —1 —a o 0
~(5) ~(5)

Application of the FME procedure to B® to eliminate x31 and x4 results in xo; < 0,
a contradiction. Therefore, (#1, t3) cannot be the first cherry of Tlgs).

It follows by symmetry that (#2, #3), (#1, t4) and (#2, t4) cannot cluster in the first
step of the NJ algorithm when an inferred source NJ tree of S® has topology
((t1, 1), (13, 14)). In the 4-taxon source distance matrix S@ with 7, and 5 being
source populations from which the admixed taxon 75 is created, the roles of #; and
1 are interchangeable, as are the roles of 3 and #4.

We have so far proven that (#3, t4), (¢, t5), and (#2, t5) are the only possible clusters
in the first step of the construction of T[(,S) when s@ ¢ D((t1,1),(t3,14))- If @ pair (3, t4)
clusters first, then four nodes, {t1, 12, 5, 134}, are left to join in the second iteration.
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Because Proposition 2 says (¢, #) cannot be a cherry in any 7, 155), the only possible NJ
tree topologies are ((#1, t5), (f2, t34)) and ((¢2, t5), (¢1, 134)). The node 34 represents the
cluster (3, t4), so the final topologies are ((#1, t5), t2, (13, ta)) and ((#2, t5), t1, (13, ta)).

Ifapair (#1, #5) clusters first, then four nodes, {2, 3, 4, t15}, are left to join in the sec-
ond iteration. The possible NJ tree topologies are ((t15, 12), (23, 14)), ((t15, 13), (2, t4))
and ((#15, t4), (2, 13)). Because the node #15 represents the cluster (#1, t5), the final

topologies are ((t1,15), 12, (3, 14)), (11, 15), 13, (12, 14)) and ((11, 15), 14, (12, 13)). By
the same argument, possible final topologies when a pair (#2, t5) is the first cherry are

(12, t5), t1, (13, 14)), (12, 15), 13, (21, 14)), and ((t2, 15), 14, (1, 13)).

All 6 topologies of 7,7 from three possible choices for the first cluster satisfy
Property 3, and the procedures for their construction comply with Property 1. Also,
they contain a cherry involving one of the source taxa and the admixed taxon. O
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