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Abstract

The identification of the genetic structure of populations from multilocus genotype data has become a central compo-

nent of modern population-genetic data analysis. Application of model-based clustering programs often entails a

number of steps, in which the user considers different modelling assumptions, compares results across different pre-

determined values of the number of assumed clusters (a parameter typically denoted K), examines multiple indepen-

dent runs for each fixed value of K, and distinguishes among runs belonging to substantially distinct clustering

solutions. Here, we present CLUMPAK (Cluster Markov Packager Across K), a method that automates the postprocess-

ing of results of model-based population structure analyses. For analysing multiple independent runs at a single K

value, CLUMPAK identifies sets of highly similar runs, separating distinct groups of runs that represent distinct modes

in the space of possible solutions. This procedure, which generates a consensus solution for each distinct mode, is

performed by the use of a Markov clustering algorithm that relies on a similarity matrix between replicate runs, as

computed by the software CLUMPP. Next, CLUMPAK identifies an optimal alignment of inferred clusters across different

values of K, extending a similar approach implemented for a fixed K in CLUMPP and simplifying the comparison of

clustering results across different K values. CLUMPAK incorporates additional features, such as implementations of

methods for choosing K and comparing solutions obtained by different programs, models, or data subsets. CLUMPAK,

available at http://clumpak.tau.ac.il, simplifies the use of model-based analyses of population structure in population

genetics and molecular ecology.
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Introduction

Model-based identification of population structure from

individual multilocus genotypes is of great importance

for the study of genetic relationships among individuals

and populations. In diverse organisms, population struc-

ture inference provides a basis for interpreting patterns

of extant genetic variation, serving as a foundation for

the study of evolutionary history (Rosenberg et al. 2002;

Parker et al. 2004; Whitfield et al. 2006; Driscoll et al.

2007; Zhao et al. 2013). In association mapping of com-

plex traits, inference of population structure can assist in

avoiding the false-positive genotype–phenotype associa-

tions that structure can generate (Pritchard & Donnelly

2001; Thornsberry et al. 2001; Hoggart et al. 2003; Breseg-

hello & Sorrells 2006). In conservation genetics and

molecular ecology, population structure inferences are

regularly used to investigate such topics as population

boundaries, population connectivity and gene flow, aid-

ing the understanding and management of natural popu-

lations (Manel et al. 2005; Gompert & Buerkle 2013).

A particularly important family of methods for inves-

tigating population structure examines multilocus geno-

types of individuals using model-based cluster analysis

(Pritchard et al. 2000; Dawson & Belkhir 2001; Corander

et al. 2003, 2004, 2008a,b; Falush et al. 2003, 2007; Guillot

et al. 2005; Tang et al. 2005; Franc�ois et al. 2006; Pella &

Masuda 2006; Chen et al. 2007; Gao et al. 2007; Huelsen-

beck & Andolfatto 2007; Guillot 2008; Alexander et al.

2009; Durand et al. 2009; Hubisz et al. 2009; Shringarpure

& Xing 2009; Alexander & Lange 2011; Huelsenbeck et al.

2011; Frichot et al. 2014). These methods, the most widely
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used of which is STRUCTURE (Pritchard et al. 2000; Falush

et al. 2003, 2007; Hubisz et al. 2009), classify individuals

into a prespecified number of populations, disregarding

predefined labels for the sampled individuals and there-

fore performing ‘unsupervised’ clustering. In typical

uses, STRUCTURE, like many other clustering programs,

views each individual as a distinctive mixture of a set of

inferred statistical populations or clusters, each charac-

terized by distinct allele frequencies. Coefficients of

membership of each individual in the various clusters,

summing to 1 across clusters, are estimated in an itera-

tive procedure. The various ‘STRUCTURE-like’ (Weiss &

Long 2009) programs, which consider both mixed-mem-

bership models that view individuals as mixtures of the

clusters, and assignment models in which membership

coefficients represent probabilities of membership in the

clusters, approach the same conceptual problem with a

variety of choices of modelling assumptions and various

alternative computational strategies. They enable rich

and complex data analyses, allowing the user to modify

a wide variety of parameters and to examine different

models – for instance, supervised models, in which the

predefined population labels are used to assist the infer-

ence process. For most programs, users have consider-

able choice in model assumptions, and they are advised

to test different assumptions as well as a range of prede-

fined values of the number of clusters, K.

STRUCTURE-like algorithms typically involve stochastic

simulations, and therefore can produce different out-

comes in replicate analyses. For this reason, it is impor-

tant to perform several independent assessments of the

same data set using the same modelling assumptions

and free parameters (Rosenberg et al. 2001a; Gilbert et al.

2012). Differences among solutions tend to arise from

two phenomena (Jakobsson & Rosenberg 2007). The first

is ‘label switching’, caused by the arbitrary way in which

inferred clusters are labelled, resulting in unmatched

labels between replicate runs even when the same mem-

bership coefficients are produced. The second type of

difference is ‘genuine multimodality’, in which data

analyses result in two or more truly distinct solutions or

modes. To distinguish label switching from genuine mul-

timodality, Jakobsson & Rosenberg (2007) developed

CLUMPP (Cluster Matching and Permutation Program),

which computes a pairwise similarity score between

pairs of runs with the same K, identifying an optimal

alignment of the replicate runs that eliminates label

switching so that genuine multimodality can be detected.

A matrix of similarity scores produced by CLUMPP for

pairs of aligned runs can be used to identify groups of

runs that produce nearly identical solutions and can be

said to fall into the same mode. For example, Wang et al.

(2007) and Jakobsson et al. (2008) identified as modes all

sets of replicates for which the pairwise similarity score

for each pair of runs exceeded a specific threshold. This

approach amounts to identifying fully connected sub-

graphs of a graph, or cliques, where vertices represent

runs and edges indicate occurrences of pairwise similar-

ity scores above the threshold. Once distinct modes are

identified, users can choose a single run from each

inferred mode, or they can alternatively average runs in

each mode by a second application of CLUMPP only on

those runs within the mode. A drawback of this

approach is that determination of modes is often highly

dependent on the exact threshold chosen. Moreover, cli-

ques found by this approach can have a high percentage

of overlap, and therefore might not necessarily represent

truly distinct solutions.

In addition to eliminating label switching and identi-

fying distinct modes for a single K, users often compare

clustering modes for a range of K values. As CLUMPP

aligns only those runs with a fixed value of K, however,

automated alignment of runs across multiple K values

has not been possible. This challenge is particularly

noticeable in cases in which simultaneous examination

of multiple modes at multiple K values is of interest,

such as when the clustering pattern in the most fre-

quently occurring mode for a given K does not provide a

refinement of the corresponding solution for a smaller

choice of K (Wang et al. 2007). Additional tasks, includ-

ing comparisons of results obtained for multiple model

choices, subsets of data, or different programs altogether,

have also required that computations be performed

external to CLUMPP and other cluster postprocessing soft-

ware such as DISTRUCT (Rosenberg 2004) and STRUCTURE

HARVESTER (Earl & Vonholdt 2012). From the end-user

perspective, performing a thorough STRUCTURE-like analy-

sis can be a tedious task.

To overcome these difficulties in identification of

modes, alignment of runs across K values, and automa-

tion of additional postprocessing steps, we have devel-

oped CLUMPAK, the Cluster Markov Packager Across K.

CLUMPAK clusters replicate runs for the same K via a Mar-

kov clustering algorithm that improves upon the com-

monly used fixed threshold approach. CLUMPAK

summarizes the modes identified, eliminating the addi-

tional step of ‘re-CLUMPPing’ runs within modes to obtain

consensus results for each mode. A newly developed

extension further enables cluster matching across differ-

ent values of K and simplifies the examination and pre-

sentation of results across a range of K values. CLUMPAK

additionally allows users to easily compare results

obtained under different models, programs or subsets of

the data. Here, we describe the methods underlying

CLUMPAK, and we use simulations to demonstrate the

ability of CLUMPAK to accurately cluster individual runs.

We further illustrate the use of CLUMPAK on an example

human population-genetic data set.
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Materials and methods

Generating clusters of runs at a single value of K

CLUMPAK aids users in summarizing the entire set of

runs produced for their data set using one or more

clustering programs. Users normally run their analysis

using a range of K values, performing multiple repli-

cates for each K. CLUMPAK obtains similarity matrices

for pairs of replicate runs using the SSCʹ similarity

score of Jakobsson & Rosenberg (2007) as imple-

mented in CLUMPP, employing as a default the LargeK-

Greedy algorithm of CLUMPP with 2000 random input

sequences (both of these choices can be changed

by the user). From among the replicates, CLUMPAK

then identifies different modes within a single value

of K – genuinely different solutions — if they are

present.

First, CLUMPAK treats the similarity matrix as a fully

connected, undirected, weighted graph, G = (V,E),

where vertices in set V represent independent runs, and

the edge weight connecting vertices u and v is the simi-

larity score SSCʹ(u, v). Second, given the weighted graph,

CLUMPAK uses the Markov clustering (MCL) algorithm

(Van Dongen 2000, 2008) to partition the graph into dis-

tinct modes. This algorithm is a general method for iden-

tifying clusters, and it has previously been adapted

for diverse biological problems, including orthology

assignments (Enright et al. 2002), detection of operational

taxonomic units (Ratnasingham & Hebert 2013), and

identification of co-occurring associations among

microbes (Faust et al. 2012). The similarity matrix

obtained for a single K, as represented by the graph G, is

transformed into a column-stochastic matrix or Markov

matrix, where entry (i, j) represents a probability of ‘tran-

sition’ from vertex j to vertex i. The MCL algorithm

involves alternating between matrix ‘expansion’ and

matrix ‘inflation’, where expansion refers to taking the

power of a stochastic matrix (i.e. normal matrix squar-

ing), and inflation refers to taking the Hadamard power

(Horn & Johnson 1991) of the matrix (taking powers en-

trywise) with coefficient r and rescaling the matrix so

that columns sum to 1. These alternating steps of matrix

expansion and matrix inflation are aimed at simulating

random walks on a graph: expansion steps correspond

to computing probabilities associated with paths of

higher length, and inflation boosts the probabilities of in-

tracluster walks, accentuating the similarity of related

runs and the dissimilarity of divergent runs. The single

parameter r, which determines the ‘granularity’ of the

clusters obtained, controls the outcome of the algorithm,

producing finer granularity, and more clusters, with

larger r. Figure 1 illustrates the steps involved in the

clustering process.

To obtain a suitable level of granularity with the MCL

algorithm, a useful preprocessing step is to use a thresh-

old for the inclusion of edges in the graph (S. van

Dongen, personal communication). This threshold can be

set by the user or determined dynamically given the

properties of the graph analysed (the default setting in

CLUMPAK). Specifically, for a given data set and for each

value in the range of thresholds explored, the mean node

degree, as well as the fraction of singleton nodes, repre-

senting runs that are not connected to any other runs, is

examined (accomplished using the vary-threshold option

of MCL). The dynamic threshold that is used by CLUMPAK

is the largest threshold for which the fraction of single-

tons is smaller than 0.1, and the mean node degree across

all nodes in the graph is at least 50% of the total number

of vertices. Once a threshold has been set, edges whose

weights are smaller than the threshold are removed, and

the weights of the remaining edges are shifted down-

ward by the value of the threshold (accomplished using

the tf option of MCL). Other than using a threshold, the

default parameters of MCL are used by CLUMPAK (equiva-

lent to setting the parameter r to 2 without using pre-

inflation). Notably, MCL can cluster two vertices

together even if the input graph does not contain an edge

connecting them; thus, the choice of the threshold is less

influential than in the clique approach.

Once clusters are identified within replicate runs with

the same K value, CLUMPAK utilizes CLUMPP (Jakobsson &

Rosenberg 2007) for obtaining an average run representing

each cluster and DISTRUCT (Rosenberg 2004) for graphical

display of the results. CLUMPAK reports to the user the num-

ber of replicate runs clustered in each mode detected, the

mean posterior probability of runs clustered in each mode,

and the mean CLUMPP scores between all pairs of runs

within a mode. Notably, the largest mode (the one contain-

ing the largest number of replicate runs) might not have

the highest mean posterior probability; users are advised

to consider both attributes when interpreting their results.

Aligning clustering results across different K values

CLUMPAK aligns cluster labels across replicate runs, clus-

ters of runs, and different K values. CLUMPAK relies on a

previously developed algorithm for alignments at fixed

K values (Jakobsson & Rosenberg 2007), whereas the

label-matching algorithm for different K values is a novel

extension and proceeds as follows. We refer to the matrix

of membership coefficients [Q]C9K as the Q-matrix, with

C rows corresponding to individuals and K columns cor-

responding to clusters, and the value in the cth row and

kth column representing the membership coefficient

for individual c in cluster k as inferred in a single run

(or the mean of a set of runs). Each matrix consists of

non-negative entries, and the sum of the entries in any

© 2015 John Wiley & Sons Ltd
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row is 1. Following Jakobsson & Rosenberg (2007), the

similarity score between replicate runs i and j (i.e. two

Q-matrices of the same dimension) is defined as

G0ðQi;QjÞ ¼ 1� kQi �QjkF
ffiffiffiffiffiffi

2C
p ; ð1Þ

where k � kF denotes the Frobenius matrix norm. The nor-

malization constant
ffiffiffiffiffiffi

2C
p

constrains G’ to lie between 0

and 1 (see eq. 6 in Jakobsson & Rosenberg 2007).

Consider now a pair of Q-matrices produced for two

consecutive K values, [Qi]C9K and [Qj]C9(K+1). To account

for the different sizes of Qi and Qj, a column of zeros is

added to Qi, as a final (K + 1) column, representing a

cluster that does not exist for K clusters, but does exist

for K + 1. This addition produces a C 9 (K + 1) matrix

Q̂. We then compute the similarity score

G00ðQi;QjÞ ¼
kQ̂i �QjkF

ffiffiffiffiffiffi

2C
p : ð2Þ

Using Gʹʹ to measure similarity, the optimal alignment

of matrices Qi and Qj is defined as the permutation of

columns of Qj that maximizes Gʹʹ over all (K + 1)! possi-
ble permutations. We sequentially align clustering solu-

tions starting from an initial value K0, aligning a solution

with K0 + 1 clusters to the K0 solution, the K0 + 2 solu-

tion to the K0 + 1 solution, and so on. This process exam-

ines alignments of the various modes at K0 + 1 clusters

to the corresponding modes at K0 clusters.

Comparing results across different models

CLUMPAK enables a comparison of clustering solutions

across different programs (e.g. comparing output from

STRUCTURE and ADMIXTURE), different model choice (e.g.

comparing output for a no-admixture model and an

admixture model), or different subsets of genetic mark-

ers across the same data set (e.g. comparing output for

half of the markers to the other half), each with its own

sets of runs. Hereafter, all three of these scenarios are

termed ‘different models’. CLUMPAK first analyses and

summarizes the results of each model separately, but it

aligns cluster labels across the two models, thus

enabling easy visual inspection of the results. Addition-

ally, CLUMPAK provides users with CLUMPP similarity

3

0.9
0.4

0.9

0.70.5

0.90.85

0.6

0.45 0.3

0.6
0.8

6

7

1
5

4 2
0.6

Similarity matrix

Markov matrix 

Markov clustering 
algorithm is 

applied

Edges with 
weights <0.5 are 

removed and 0.5 is 
subtracted from 
remaining edges

The 
similarity 

matrix and 
graph are 

equivalent

1 2 3 4 5 6 7

1 1 0.70 0.60 0 0.90 0.60 0.45

2 0.70 1 0.90 0.80 0 0.30 0.60

3 0.60 0.90 1 0.85 0.50 0 0

4 0 0.80 0.85 1 0.40 0 0

5 0.90 0 0.50 0.40 1 0 0

6 0.60 0.30 0 0 0 1 0.90

7 0.45 0.60 0 0 0 0.90 1

3

6

7

1
5

4 2
The equilibrium 

matrix 
represents 

distinct clusters

Equilibrium matrix

1 2 3 4 5 6 7

1 1 -- -- -- 1 -- --

2 -- -- -- -- -- -- --

3 -- 1 1 1 -- -- --

4 -- -- -- -- -- -- --

5 -- -- -- -- -- -- --

6 -- -- -- -- -- 1 1

7 -- -- -- -- -- -- --

1 2 3 4 5 6 7

1 0.38 0.13 0.07 0 0.44 0.10 0

2 0.15 0.33 0.30 0.26 0 0 .010

3 0.08 0.27 0.37 0.30 0 0 0

4 0 0.20 0.26 0.43 0 0 0

5 0.31 0 0 0 0.56 0 0

6 0.08 0 0 0 0 0.50 0.40

7 0 0.07 0 0 0 0.40 0.50

3

0.4

0.4

0.2

0.40.35

0.1

0.1
0.3

6

7

1
5

4 2
0.1

The graph is transformed into a 
column-stochastic matrix

(A) (B) (C)

(D) (E) (F)

Fig. 1 Schematic of the Markov clustering algorithm for a similarity matrix of 7 independent STRUCTURE runs. (A) Similarity matrix, with

the entry in a cell representing the similarity of the runs represented in the associated row and column. (B) A graph equivalent to the

similarity matrix, with nodes representing runs and edges representing similarity scores for distinct pairs of runs (loops connecting
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kov clustering algorithm.
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scores between the modes identified for the two models,

and for comparison, CLUMPP similarity scores within

each mode.

Simulation study

We used simulations to assess the accuracy of CLUMPAK in

differentiating runs into distinct clustering solutions. We

simulated STRUCTURE-like outputs directly, for three a priori

distinct populations, each with a sample of 25 individuals.

Q-matrices were generated for three predefined clusters

(K = 3). A single simulation contained 40 Q-matrices, cor-

responding to 40 individual STRUCTURE-like runs.

We explored two aspects of variation across runs.

First, we allowed mean membership coefficients for each

a priori population to vary across replicate runs, repre-

senting stochastic variation across individual STRUCTURE-

like runs. Second, within each run and each population,

we varied individual membership coefficients around

the population mean for that run. The standard deviation

(SD) parameters for these two sources of variation are

termed SDRUNS and SDINDIVS, respectively (described in

more detail below). By increasing these standard devia-

tions, we obtained Q-matrices that are increasingly more

challenging for accurate clustering (see Supplementary

Note 1 for the relation of the similarity scores between

runs to SDRUNS and SDINDIVS).

The simulations assumed that each a priori population

is characterized by its own ‘seed’ membership coeffi-

cients, q
ðiÞ
k , denoting the mean genomic proportion within

a priori population i originating from cluster k (k = 1, 2,

3). Thus, for example ðqð1Þ1 ; q
ð1Þ
2 ; q

ð1Þ
3 Þ ¼ ð0:5; 0:4; 0:1Þ, corre-

sponds to a scenario in which the mean membership

coefficients for individuals belonging to population 1 are

0.5, 0.4 and 0.1 for clusters 1, 2 and 3, respectively. We

chose the seed vectors on the basis of empirical examples,

as described in Appendix S1 (Supporting Information).

We simulated data in a two-step manner as follows.

First, for each run (m = 1, 2, . . ., 40), a set of mean mem-

bership coefficients for each a priori population was sam-

pled around the predefined population seed vector. For a

priori population i, we sampled around the seed vector

using a Dirichlet distribution DirðaðiÞ � qðiÞ1 ; aðiÞ�qðiÞ2 ; aðiÞ�qðiÞ3 Þ;
where a(i) is a concentration parameter adjusted so that

the standard deviation of the first component of the Di-

richlet distribution was equal to a predefined value of

SDRUNS (see Appendix S2, Supporting Information). Let

ðq̂ðiÞ1 ; q̂
ðiÞ
2 ; q̂

ðiÞ
3 Þ denote the mean membership coefficients

for population i that were sampled for a certain run (for

clarity, we omit the notation of the run index). This vec-

tor is the output of the first simulation step.

In the second step, we sampled individual member-

ship coefficients around the run-specific ðq̂ðiÞ1 ; q̂
ðiÞ
2 ; q̂

ðiÞ
3 Þ

vector of population-mean membership coefficients for

each of the 25 individuals belonging to a priori popula-

tion i. To this end, we sampled around q̂
ðiÞ
k using

DirðbðiÞ�q̂ðiÞ1 ; bðiÞ�q̂ðiÞ2 ; bðiÞ�q̂ðiÞ3 Þ; where b(i) is a concentration

parameter adjusted so that the standard deviation of the

Dirichlet distribution was equal to a predefined value of

SDINDIVS (Appendix S2, Supporting Information). In

summary, obtaining a single Q-matrix requires sampling

once around ðqðiÞ1 ; q
ðiÞ
2 ; q

ðiÞ
3 Þ for each a priori population

i = 1, 2, 3, and then for each i, sampling 25 sets of mem-

bership coefficients around ðq̂ðiÞ1 ; q̂
ðiÞ
2 ; q̂

ðiÞ
3 Þ. A single simu-

lation iterates this process 40 times, obtaining a

simulated set of 40 STRUCTURE-like runs on 75 individuals.

These runs were then provided as input to CLUMPAK.

The procedure outlined above represents a scenario

in which all 40 STRUCTURE runs are drawn from a single

set of seed vectors, and we thus expect these runs to be

clustered together, obtaining a single mode. We are

also interested, however, in examining the performance

of CLUMPAK under genuine bimodality, when STRUCTURE-

like runs can be divided into two truly distinct solu-

tions. The procedures for generating simulated data

under bimodality were similar to the unimodal case,

with two exceptions. First, instead of having a single

seed membership vector per population we now have

two: one representing a major mode and the other a

minor mode. Second, among the 40 simulated runs, we

choose a fraction of runs, f, to represent the minor

mode, placing fraction 1-f into the major mode. We

used several values of f, simulating data for f = 0,

0.125, 0.25, 0.375. The fraction 0.125, for example, corre-

sponds to the case in which the minor mode has 5 runs

and the major mode has 35 runs. The f = 0 case repre-

sents a unimodal simulation.

Simulations were performed for a range of values of

SDRUNS and SDINDIVS, 0.01 to 0.15, for both parameters.

Values exceeding 0.15 represent very high variation, as

evident from the similarity scores between simulated

runs, compared to the similarities observed in the empir-

ical data sets that we considered (Note S1, Supporting

Information). For each combination of SDRUNS, SDINDIVS,

and f, we performed 30 simulations. The seed member-

ship coefficients were taken from empirical examples for

which bimodality was evident (Appendix 1, Supporting

Information). The seed vectors for the simulations in

Figs 2 and 3 are based on mean membership coefficients

in major and minor modes for the Mozabite, Bedouin,

and Druze populations at K = 3, for the same set of runs

presented in the Results section (Figs 4 and 5). Simula-

tion sets based on other empirical examples (Supporting

Information) yielded similar results.

We used the simulations both to assess accuracy of

mode identification and to validate choices of settings in

CLUMPAK. Each simulation was given to CLUMPAK as input

under different program settings. First, we modified the

© 2015 John Wiley & Sons Ltd
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similarity threshold, using either a fixed similarity

threshold in the range of 0.6–0.9, reasonable in light of

past choices (Wang et al. 2007; Jakobsson et al. 2008), or

by the default approach in which the threshold was

determined dynamically. We also examined values of

the inflation parameter that differed from the CLUMPAK

default of r = 2.

We used the Jaccard index (Jain & Dubes 1988;

Kaufman & Rousseeuw 1990) to measure the accuracy

of the clustering solution obtained by CLUMPAK in

comparison to the ‘real’ (simulated) modes. This

index varies from 0 to 1, with 1 being a perfect

match between the inferred and simulated clustering

of runs. Specifically, each simulation contains 40 runs;

SDRUNS = 0.01

SDINDIVS = 0.01 SDINDIVS = 0.05

SDINDIVS = 0.075 SDINDIVS = 0.15

SDRUNS = 0.025 SDRUNS = 0.05 SDRUNS = 0.075 SDRUNS = 0.1 SDRUNS = 0.15

(A) (B)

(C) (D)

Fig. 2 Jaccard similarity scores between the clustering solutions obtained by CLUMPAK and the ‘true’ (simulated) partitioning in a uni-

modal case, as a function of SDRUNS, SDINDIVS and either a fixed threshold value or a dynamic threshold. Simulations were carried out

with one underlying mode. Different colours represent different values of SDRUNS as given by the colour palette at the top of the figure.

(A) SDINDIVS = 0.01. (B) SDINDIVS = 0.05. (C) SDINDIVS = 0.075. (D) SDINDIVS = 0.15.
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thus, each has (40 9 39)/2 = 780 pairs of runs. Each

pair was tabulated in one of four categories: (i) N11,

the runs truly belong in the same mode and were

placed in the same mode by CLUMPAK; (ii) N10, the

runs belong in the same mode, but were placed in

different modes by CLUMPAK; (iii) N01, the runs belong

in different modes, but were placed in the same

mode; and (iv) N00, the runs belong in different

modes and were placed in different modes. The Jac-

card index is calculated according to the following

formula:

J ¼ N11

N11 þN10 þN01
ð3Þ

SDRUNS = 0.01

SDINDIVS = 0.01 SDINDIVS = 0.05

SDRUNS = 0.025 SDRUNS = 0.05 SDRUNS = 0.075 SDRUNS = 0.1 SDRUNS = 0.15

(A) (B)

SDINDIVS = 0.075 SDINDIVS = 0.15(C) (D)

Fig. 3 Jaccard similarity scores between the clustering solution obtained by CLUMPAK and the ‘true’ (simulated) partitioning in a bimo-

dal case, as a function of SDRUNS, SDINDIVS and either a fixed threshold value or a dynamic threshold. Simulations were carried out with

a fraction f = 0.25 of the runs assigned to the minor mode. Different colours represent different values of SDRUNS as given by the colour

palette at the top of the figure. (A) SDINDIVS = 0.01. (B) SDINDIVS = 0.05. (C) SDINDIVS = 0.075. (D) SDINDIVS = 0.15.
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Availability and requirements

CLUMPAK is available through a Web server, at http://

clumpak.tau.ac.il, or can be downloaded and used on Li-

nux, Unix, and Mac operating systems. With either

approach, CLUMPAK includes calls to CLUMPP, DISTRUCT

and MCL (all of which the user needs to install if run-

ning CLUMPAK locally). In the downloaded version, users

can explore a range of values of optional parameters –
especially those concerned with running CLUMPP – that

are more restricted in the Web server to limit exhaustive

running times.

Using the DISTRUCT program (Rosenberg 2004), and by

allowing users to specify graphical parameters used by

DISTRUCT, CLUMPAK provides users with high-quality

images produced for each K (and within each K for each

mode of convergence); the modes are graphically aligned

across K. For its main pipeline, CLUMPAK requires that

users submit the results of clustering programs in STRUC-

TURE or ADMIXTURE format, allowing any range of K values

K = 2

(A) (B)

K = 3 
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K = 3 
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Fig. 4 Major and minor modes identified for 399 individuals from 16 populations, illustrating CLUMPAK’s label matching across K val-

ues. For each K value, STRUCTURE was run 40 times. (A) Membership coefficients produced by CLUMPAK when label matching across K

values was disabled (for illustration only). (B) Membership coefficients produced by CLUMPAK for the same set of runs as in (A), match-

ing labels across K values. Clusters have been permuted to sequentially match the configuration for the lowest K in the range (K = 2).

K = 6 major, 
unsupervised 
model

K = 6 major, 
supervised 
model

M
oz

ab
ite

B
ed

ou
in

D
ru

ze

P
al

es
tin

ia
n

T
un

is
ia

n

M
or

oc
ca

n

T
ur

ki
sh

A
sh

ke
na

zi

S
ar

di
ni

an

Ita
lia

n
T

us
ca

n

F
re

nc
h

B
as

qu
e

O
rc

ad
ia

n

R
us

si
an

A
dy

ge
i

Fig. 5 Membership coefficients compared using two different STRUCTURE models with K = 6. The same set of 399 individuals from 16

populations was used for both panels. For each model, STRUCTURE was run 40 times, and CLUMPAK was used to identify distinct solutions

among runs of the same model as well as to compare the different modes across the two models. For the runs without the locprior

model (unsupervised), the runs are the same as in Fig. 4. Top: the major mode for the unsupervised admixture model without the loc-

prior model. Bottom: the major mode for the locprior (supervised) admixture model.
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and single or multiple runs for each K. CLUMPAK also

implements the methods of Evanno et al. (2005) and Prit-

chard et al. (2000) for selecting a preferred value of K.

Results

Simulations

We used simulations to examine the accuracy of CLUMPAK

in assigning independent STRUCTURE-like runs into sepa-

rate modes. We first compared the default setting of

CLUMPAK, under which a threshold for the inclusion of

edges in the similarity graph (Fig. 1) is chosen dynami-

cally, to a range of fixed values for the threshold.

Figure 2 presents the Jaccard similarity score between

the partition obtained by CLUMPAK and the true partition

for unimodal simulations, in which all replicate runs

were sampled from the same mode. Under this setting,

as the value of the fixed threshold increases, the accuracy

of the clustering obtained using the MCL algorithm

decreases. This pattern is expected, because higher

thresholds lead to sparser graphs, resulting in the sepa-

ration of replicate runs into distinct clusters, whereas in

the correct configuration, all runs are clustered together

to form a single mode. Comparing the four panels in

Fig. 2, representing different values of SDINDIVS, and

comparing different values of SDRUNS for fixed values of

SDINDIVS, the decline in accuracy with an increasing

threshold is more noticeable for simulations at higher SD

values. This pattern is also expected, as higher SD values

indicate more variation between the runs, and hence

sparser graphs at a fixed threshold.

Figure 3 presents the Jaccard score for the bimodal

case, when two distinct modes were simulated, with 25%

of the runs belonging to the minor mode (other fractions

are examined in Supporting Information, Figs S1 and

S2). Here, the accuracy of the fixed threshold exhibits a

peaked pattern, with the most accurate clustering

achieved at intermediate values of the threshold.

Whereas low thresholds lead to erroneous clustering of

all replicate runs into a single mode, thresholds that are

too high break the similarity graph into too many com-

ponents, identifying too many distinct modes. As the

simulated SD values increase, the peak moves to the left,

and thus, the optimal fixed threshold is lower.

The differing performance of the graph clustering

procedure in the unimodal and bimodal cases in Figs 2

and 3 suggests that a single fixed threshold does not

yield an optimal solution applicable in all scenarios, as

the optimal threshold is influenced both by the number

of modes among the replicate runs and by the level of

variation across runs and individuals. These trade-offs

are accommodated using the dynamic procedure imple-

mented in CLUMPAK, which sets the threshold according

to the characteristics of the input data. Indeed, as the

level of variation increases in either of two ways (SDRUNS

and SDINDIVS), the dynamic threshold is set to lower val-

ues, thus allowing more variability within modes

inferred to be distinct (Note S1, Supporting Information).

In both the unimodal and bimodal cases, the perfor-

mance of the dynamic threshold is optimal or near the

optimum for all simulation scenarios (rightmost bars in

each panel of Figs 2 and 3). For example using the

dynamic threshold, in the unimodal simulations, the

mean Jaccard similarity score calculated across 30 simu-

lations for each set of parameters is 1.0 or close to 1.0 in

most settings, including the challenging setting of low

SDINDIVS values coupled with high values of SDRUNS.

The somewhat lower accuracy in such cases arises from

the separation of the runs into multiple modes; the clus-

tering is still adequate, as in nearly all simulations, there

is a major cluster containing most replicate runs (>35 of

40). In the bimodal simulations, the accuracy of the

inferred clusters obtained using the dynamic threshold is

high for both low and high SDINDIVS and SDRUNS values

and exceeds that of any single fixed value (Fig. 3).

In addition to the manner of choosing the threshold

for inclusion in the similarity graph, the inflation param-

eter, r, of the MCL algorithm, potentially also influences

the clustering of runs. We found that for the range of

values examined (ranging from 1.1 to 12, representing

the range of reasonable values for that parameter; S. van

Dongen, personal communication), however, this

parameter has little influence on the clustering results

for low values of SDINDIVS and SDRUNS, whereas for

higher values the optimal performance is obtained for

r = 2, the CLUMPAK default (Fig. S3, Supporting Informa-

tion). Taken together, for the clustering task of distin-

guishing between modes, we found that the threshold

choice is more influential than the inflation parameter r,

and that the dynamic threshold implemented in CLUMP-

AK produces high accuracy that is optimal or close to

optimal.

Empirical example

To illustrate a data application of CLUMPAK, we have re-

examined a data set of 678 autosomal microsatellites in

399 individuals from 16 European and Middle Eastern

human populations, including 78 individuals of Jewish

descent (Ashkenazi, Moroccan, Tunisian, and Turkish

Jews). Using STRUCTURE, Kopelman et al. (2009) previ-

ously studied the membership coefficients of the 399

individuals for a range of K values. For each value of K,

40 individual STRUCTURE runs were conducted and

assessed using CLUMPP (Jakobsson & Rosenberg 2007).

The clique clustering approach was then used to detect

distinct solutions.
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To re-analyse this data set through CLUMPAK, we first

generated new STRUCTURE replicates, running STRUCTURE

40 times for each value of K from 2 to 6, using the

mixed-membership admixture model with a burn-in

period of 10 000 iterations followed by 20 000 additional

iterations for each run. The resulting runs were pro-

vided to CLUMPAK.

Figure 4 presents the output obtained from CLUMPAK

for this collection of runs before and after label matching

across different values of K. The main distinct solutions –
the major modes for each K as identified by the Markov

clustering algorithm – are similar to those presented by

Kopelman et al. (2009) with of the clique approach. In

addition to the major modes, CLUMPAK further identifies

minor modes for K = 3 (13 runs), K = 4 (7 runs), K = 5 (4

runs), and K = 6 (10 runs). Figure 4 includes the minor

modes for K = 3 and K = 6. Interestingly, the minor

mode for K = 6 distinguishes the Tunisian Jewish popu-

lation from other Jewish populations. This distinction,

which was not present in the major modes reported by

Kopelman et al. (2009), was in fact observed by Kopel-

man et al. when the population structure of Jewish indi-

viduals was examined separately. We might argue,

however, that by simplifying the user experience of

examining minor modes, CLUMPAK can uncover biologi-

cally interesting minor clustering solutions that might

otherwise go unnoticed.

To demonstrate the comparison of models using

CLUMPAK, we ran STRUCTURE a second time on the same

data set of 399 individuals using the admixture model

along with the locprior model (i.e. supervised cluster-

ing), which takes into consideration sampling locations

of individuals, treating separate population identifiers as

separate locations in prior information to assist cluster-

ing. This option is recommended for cases in which the

inferred population structure is weak, or the populations

examined are very closely related (Hubisz et al. 2009).

We ran the locprior model with K = 6, comparing the

results to those obtained without the use of the locprior

model.

Figure 5 illustrates the comparison of 40 runs

obtained for K = 6 without the locprior model to 40 runs

with the locprior model. Visual comparison of the results

obtained under the two models is simplified using the

CLUMPAK alignment across the two models (as well as

across multiple modes obtained under the same model).

This comparison demonstrates the tendency of the

supervised approach to intensify weak population struc-

ture within the a priori populations, leading to somewhat

different inferences. The ‘compare models’ option of

CLUMPAK further provides users with CLUMPP similarity

scores between the modes that were identified by the

two models. Indeed, the similarity score between the

major modes obtained under the two models (0.79) is

lower than the similarity score for the major and minor

modes of the unsupervised runs (0.85), giving further

indication that the results obtained under the two mod-

els are not identical.

Discussion

Analysis of population structure using model-based

clustering methods is a complex task that requires care-

ful handling (Pritchard et al. 2000; Rosenberg et al.

2001b; Evanno et al. 2005; Weiss & Long 2009). Due to

the inherent stochasticity of STRUCTURE and other genetic

clustering programs, independent runs of these pro-

grams often arrive at distinct solutions, and thus, under-

standing the replicability of the results and

distinguishing distinct solutions are not always trivial

tasks. We have developed CLUMPAK to simplify and

enhance the user experience in evaluating, comparing,

and displaying the results produced by these programs.

CLUMPAK treats the problem of grouping STRUCTURE-like

runs as a graph-based clustering problem, providing a

useful method for separating distinct solutions within K

values, averaging runs belonging to the same mode, and

comparing runs across K values. It additionally supports

the possibility of comparing different programs, models,

and subsets of the data and identifying a preferred K

value via the methods of Evanno et al. (2005) and Prit-

chard et al. (2000). Using simulations and an example

data set of Kopelman et al. (2009), we found that CLUMP-

AK can identify major and minor solutions observed in

replicate runs, potentially facilitating the assessment of

biologically interesting clustering behaviour that is only

visible in minor modes. We have also validated the

dynamic procedure by which CLUMPAK identifies the

optimal similarity threshold for each value of K, finding

that this approach, set as the CLUMPAK default, is prefera-

ble to a fixed threshold approach.

Three other tools are currently available to assist

users with postprocessing and presentation of the

results from STRUCTURE-like programs – the aforemen-

tioned CLUMPP (Jakobsson & Rosenberg 2007), DISTRUCT

(Rosenberg 2004), and STRUCTURE HARVESTER (Earl &

Vonholdt 2012). As noted earlier, a typical postprocess-

ing effort has involved use of two or all three of these

programs. CLUMPAK combines many of the features of

these existing tools, incorporating calls to CLUMPP and

DISTRUCT, and providing users with a single program to

accomplish primary aspects of postprocessing (Table 1).

Most of the options provided by DISTRUCT and CLUMPP

also appear in CLUMPAK, including the choice of algo-

rithm in CLUMPP, and colour options, labelling, and

order of populations in DISTRUCT. STRUCTURE HARVESTER

is used for preparing CLUMPP input files and for deter-

mining the most suitable K according to the method of
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Evanno et al. (2005); the former functionality is sub-

sumed in CLUMPAK, and the latter appears in CLUMPAK

via the ‘Best K’ feature. Beyond its incorporation of fea-

tures of these programs in a single convenient form,

CLUMPAK is the first to automate the process of distin-

guishing between distinct solutions for a single K value

and to perform cluster matching across different K val-

ues. Finally, CLUMPAK offers a natural visualization for

comparing results obtained using different models, pro-

grams, or subsets of the data.

One view of ‘genuine multimodality’ in clustering

studies, as opposed to label switching, is that it repre-

sents a failure of clustering programs to identify a sin-

gle optimal mode, and that multimodality is simply an

algorithmic artefact. From this idealistic standpoint,

widely used algorithms such as STRUCTURE are problem-

atic, and rather than facilitating the analysis of multim-

odality as a feature of clustering results, it would be

preferable to improve algorithms to eliminate it. How-

ever, a pragmatic approach to available methods

regards genuine STRUCTURE multimodality as a regular

feature of the analysis that can be used to assist with

biological interpretations (e.g. Rosenberg et al. 2001a;

Wang et al. 2007; Kopelman et al. 2009). Especially for

complex data sets, different modes for a given data set

can reflect the existence of population groupings that

are comparably supported (Pritchard et al. 2000), so

that exploration of multiple modes contributes informa-

tion to an analysis. For example, in examining how dis-

tinct solutions – both major and minor modes – change

across a range of K values, Wang et al. (2007) observed

multimodality at certain values of K, but found that

solutions for larger K could be viewed as refinements

of several of the modes observed at lower K. The dis-

tinct modes at smaller K each possessed some of the

biological structure made apparent at larger K – struc-

ture portended in full by the collection of modes at

small K – and they thus contributed to the understand-

ing of major subdivisions in Native American popula-

tion structure.

Finally, we note that although we have implemented

CLUMPAK primarily for use specifically with STRUCTURE

and ADMIXTURE, it is suitable for use with any program

that generates cluster membership coefficients, provided

the results produced by these programs are appropri-

ately formatted for CLUMPAK. Notably, each of the model-

based clustering programs requires that users make

appropriate choices regarding the underlying model and

optional running parameters (for example, running

STRUCTURE long enough). Although CLUMPAK does not

guide the users regarding these clustering choices, mak-

ing sense of the results of such programs is rendered eas-

ier by the use of CLUMPAK. If the number of distinct

clusters of runs inferred by CLUMPAK is too large, how-

ever, or if the similarity scores between replicate runs are

low, then the STRUCTURE-like program might be uninfor-

mative or might have employed inappropriate settings;

in these circumstances, we advise the user to inspect the

original outputs and parameter choices for the program

used to obtain the membership matrices.

Table 1 Programs that aid in the postprocessing of results obtained from STRUCTURE-like methods

Software Platform Input type/format Description References

STRUCTURE

HARVESTER

Online &

downloadable

Python script

Zipped STRUCTURE result files Determines a choice of K

Produces input files for

CLUMPP

Earl &

Vonholdt

(2012)

CLUMPP Unix, Linux, Dos,

Mac

CLUMPP format* Deals with label switching

within a single K value

Evaluates the similarity of

replicate runs

Jakobsson &

Rosenberg

(2007)

DISTRUCT Unix, Linux, Dos,

Mac

DISTRUCT format*,† Produces graphical display

for a single replicate run

Rosenberg

(2004)

CLUMPAK Online & Unix,

Linux, Mac

Multiple formats, enabling direct input from

STRUCTURE and other STRUCTURE-like programs

Deals with label switching

within a single K value

Deals with label switching

across multiple K values

Clusters replicate runs into

distinct modes

Produces graphical displays

for each mode within each K

Determines a choice of K

This article

*Input files can be obtained from the output of STRUCTURE-like programs.

†One of the input files can be obtained from the output of CLUMPP.
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Data Accessibility

CLUMPAK is freely available for online use and for down-

load at http://clumpak.tau.ac.il. The microsatellite data

of Kopelman et al. (2009) used in the empirical example

are available at https://rosenberglab.stanford.edu/data-

sets.html.
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