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Abstract
High-dimensional datasets on cultural characters contribute to uncovering insights about factors that
influence cultural evolution. Because cultural variation in part reflects descent processes with a hierarch-
ical structure – including the descent of populations and vertical transmission of cultural traits – methods
designed for hierarchically structured data have potential to find applications in the analysis of cultural
variation. We adapt a network-based hierarchical clustering method for use in analysing cultural variation.
Given a set of entities, the method constructs a similarity network, hierarchically depicting community
structure among them. We illustrate the approach using four datasets: pronunciation variation in the
US mid-Atlantic region, folklore variation in worldwide cultures, phonemic variation across worldwide
languages and temporal variation in first names in the US. In these examples, the method provides
insights into processes that affect cultural variation, uncovering geographic and other influences on
observed patterns and cultural characters that make important contributions to them.
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Social media summary: Network-based clustering reveals structure in cultural variation in pronunci-
ation, folklore, phonemes and first names

Introduction

In recent years, increasingly available large-scale datasets on aspects of variation across human cultures
and within cultures over time have provided rich information about fine-scale details of human cul-
tural variation and the factors that influence its dynamics (Mesoudi, 2016; Kolodny et al., 2018). For
example, investigations of variation in folktales among cultures have identified interactions of cultural
diffusion and demic diffusion in the spread of folklore and mythology (Bortolini et al., 2017; Thuillard
et al., 2018). A study of design features of traditional canoes across Polynesian societies has suggested a
faster rate of cultural change in canoe traits that were less significant to functional performance of the
watercraft, in line with the faster evolution that occurs for non-functional rather than functional gen-
etic variants (Rogers & Ehrlich, 2008). Studies of variation in the presence and absence of linguistic
characters across languages have uncovered influences of ancient migrations on patterns of language
variation observed today (Atkinson, 2011; Creanza et al., 2015).

The analysis of complex data to reveal features of cultural variation makes use of a variety of stat-
istical methods designed for high-dimensional data analysis more generally. Such methods include
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analyses of distance matrices based on cultural traits of interest (Rogers & Ehrlich, 2008; Creanza et al.,
2015; Bortolini et al., 2017; Thuillard et al., 2018), multivariate analysis techniques such as principal
components analysis (Creanza et al., 2015), correlations involving spatial statistics and geographic
maps (Atkinson, 2011; Creanza et al., 2015; Bortolini et al., 2017) and hierarchical tree-based cluster-
ing (Creanza et al., 2015; Thuillard et al., 2018).

Viewed in relation to their underlying generative processes, different forms of cultural variation
often possess shared features (Cavalli-Sforza & Feldman, 1981; Boyd & Richerson, 1985). Different
cultural entities might possess a shared variant, as a result of processes such as the independent origin
of functionally significant variants, random recurrence of non-functional variants or cultural
exchange. Salient among the forces contributing to patterns of cultural variation is shared descent,
so that even if independent origins and cultural exchange are important in specific settings, hierarch-
ical or geographic structure can often contribute to features of cultural variation.

Owing to the importance of shared descent in influencing cultural variation, tools for analysing
cultural variation data can employ methods suited to the analysis of genetic data, which also possess
signatures of shared descent; thus, many statistical methods used in cultural data analysis are similar to
those used for genetic data (Bromham, 2017; Gray et al., 2010; Pagel, 2009). Recently, we have intro-
duced a method, NetStruct, for use in understanding genetic variation data that result from hierarch-
ical genetic structure (Greenbaum et al., 2016, 2019). The method, employing ideas from network
analysis, produces a distinctive form of visualization of hierarchical population relationships. It has
been seen to detect subtle patterns that have been overlooked using earlier forms of data analysis.

The NetStruct method consists of three main steps: construction of similarity matrices between
entities; community detection in similarity matrices; and hierarchical visualization of communities.
The method is general beyond genetic data, as the form of the data contributes only to the choice
of similarity function. It can thus be modified for use with other types of data that result from distinct
but related generative processes, including data on cultural variation.

Here, we adapt the NetStruct method for use in the study of cultural evolution. We examine a var-
iety of datasets on different forms of cultural variation, considering geographic variation in English
pronunciation, variation across cultures in folklore, phonemic variation across languages and temporal
variation in frequencies of first names. Using each of the four forms of cultural data, we illustrate the
potential of the method as an exploratory tool to reveal features of geographic and temporal structure
in cultural phenomena and to extract patterns that can inspire hypotheses about underlying mechan-
isms. Each example additionally highlights a different aspect of the hierarchical analysis: analyses at
different levels of detail in the hierarchy, identification of characters that are important in driving
the partitioning, analysis of outliers and the relationship of the hierarchy to features of entities beyond
those used in its construction.

Results

Generalizing the NetStruct pipeline

In the first step of the NetStruct method, for a set of entities, each having a value for each of a series of
characters, we construct an n × m data matrix A with n rows corresponding to entities and m columns
corresponding to characters. Entry Aij gives the value of character j for entity i; this value can be either
categorical or quantitative, depending on the type of character.

The similarity between two entities i1 and i2, denoted si1,i2 , is computed by a function applied to
rows i1 and i2. We normalize pairwise similarities so that they take on values in [0,1]. The resulting
n × n similarity matrix S then becomes the adjacency matrix of a similarity network. The similarity
function is chosen based on a particular application of interest.

In a network, community structure exists when high concentrations of edges occur within certain
groups of nodes in the network and low concentrations occur between these groups (Girvan &
Newman, 2002). In the second step of NetStruct, we iteratively remove edges with lower weights
from the network to reveal the finer-scale structure within coarser communities. NetStruct uses a
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community-detection Louvain algorithm (Blondel et al., 2008) together with an iterative edge-pruning
method (Greenbaum et al., 2019). The Louvain algorithm maximizes a ‘modularity score’ for each
community, quantifying the difference between the actual density of edges within the community
and the expected density if all edges in the network were distributed at random while preserving
the degree distribution of the network. The Louvain algorithm starts by assigning each node to its
own community, sequentially merging nodes into communities in a manner that produces the greatest
modularity increase – until no further increase occurs. NetStruct iteratively removes edges below a
weight threshold of increasing value and applies community detection in each subdivided community
at each iteration, generating hierarchical structure at multiple levels.

Finally, in the last step, the communities detected at each iteration are assembled to form the output
hierarchy, which can be visualized as a hierarchical tree coded by a colouring scheme. Because cluster-
ing is hierarchical, each entity can belong to multiple communities, or clusters, at different hierarchical
levels; that is, each cluster can have finer-scale ‘child’ clusters.

NetStruct visualizes community structure using a diagram that depicts hierarchical relationships
among clusters. Each cluster is assigned an interval representation of a colour gradient; the root
node is assigned the unit interval. Child clusters are assigned equal portions of the interval associated
with their parental node. Clusters are coloured by the midpoint of the associated interval, such that at
each hierarchical level, child clusters of the same parent have colours that are more similar than are
those of different parents. The colour scheme facilitates interpretation, as the original entities can
be labelled by the finest-scale cluster to which they are assigned in the diagram.

To generalize the use of NetStruct beyond genetic data, we require a function that describes simi-
larity between pairs of entities of interest. Many similarity measures are possible, and NetStruct is
applied to the similarity matrix after it has been constructed. For a given dataset of interest, the
similarity function is chosen in a manner suited to the application. We follow Greenbaum et al.
(2016, 2019) in choosing frequency-weighted similarity measures that emphasize shared rare values
of a character.

Variation in pronunciation across locations

For our first example, we examined data on individual variation in pronunciation. Local variation in
communication variants has the potential to provide insight into cultural transmission and spatial pat-
terns of distinctiveness and interaction in a population (Nerbonne & Kleiweg, 2003; Rendell &
Whitehead, 2005; Aplin, 2019). To understand the relationship between geography and individual-
level pronunciation of a shared human language, we applied NetStruct to data on English pronunci-
ation variation in the middle and south Atlantic region of the US.

LAMSAS pronunciation data
We obtained pronunciation variation data from the Linguistic Atlas of the Middle and South Atlantic
States (LAMSAS; Kretzschmar et al., 1993). These data consist of dialect records on pronunciations of
everyday words collected in 1933–1942 from 11 states: Delaware, Maryland, New Jersey, New York,
North Carolina, Pennsylvania, South Carolina, Virginia and West Virginia, with some records from
eastern Georgia and northeastern Florida included as well.

We restricted our analysis to n = 839 informants interviewed by the major field worker (Nerbonne
& Kretzschmar, 2003) and m = 69 words recorded for most informants. We constructed the n × n
similarity matrix based on phonetic transcriptions of pronunciations of the m words. The similarity
is greater when informants share many pronunciations, and when they share rare pronunciations
(see the Methods section). We then applied NetStruct to infer hierarchical structure.

Hierarchical structure of pronunciation variation: Levels of detail
Figure 1 presents the hierarchical structure of pronunciation variation in the LAMSAS data. In
Figure 1a, we colour informants on the map by their finest-scale clusters in the tree diagram. In
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the NetStruct colour scheme, informants with more similar colours appear closer in the tree diagram,
and those with distinct colours are placed in different branches at relatively high levels in the hierarchy.
For example, in Figure 1a, the distant colours purple and yellow belong to different major branches of
the hierarchy; informants coloured purple are mostly in the northern part of the Atlantic region and
those coloured yellow are mostly in the southern part.

To examine the two major clusters at a finer level of detail, we reapply the colouring, for each clus-
ter assigning the root node the colour corresponding to the midpoint in the unit interval (Figure 1b
and c). Within each of the two clusters, finer levels of the hierarchy group together informants who are
geographically closer. In the cluster that contains most of the individuals from the more northerly
regions (Figure 1b), pronunciation distinctions can be observed in groups corresponding largely to
New York and to West Virginia. In the cluster that contains most of the more southerly individuals
(Figure 1b), a distinction is noticeable between finer clusters corresponding to North Carolina and to
Virginia, with some individuals in both states placed in small clusters.

We repeat the process to examine Figure 1c in even finer detail. This analysis, in Figure 1d and e,
illustrates that at lower levels of the hierarchy, clusters are not always associated with geographical fea-
tures. However, we observe that year of birth is strongly associated with cluster assignment at this local
geographic scale (Figure 1d and e). In other words, in some tree branches, clusters within a branch
correspond to age structure, rather than to geography.

This analysis highlights that our clustering extracts one set of features from pronunciation variation
at high hierarchical levels – geographical variation in informants – and at lower hierarchical levels, it
captures other features, such as age structure. The analysis of multiple hierarchical levels assists in the
interpretation of the patterns both at the broadest scale as well as at fine-scale levels.

Variation in folklore motifs across cultures

In the study of folklore and mythology, recurring plot patterns, or ‘motifs’, occur across cultures. Motif
variation can provide insight into cross-cultural patterns, including migrations and cultural transmis-
sion in relation to ethnolinguistic barriers (Berezkin, 2010; Bortolini et al., 2017; Korotayev et al., 2017;
Thuillard et al., 2018). Here we used folklore motifs to analyse cultural variation, identifying motifs
important in constructing the proposed hierarchical relationships.

Figure 1. Hierarchical features of variation in English pronunciation in the middle and south Atlantic region of the US.
(a) Hierarchical tree of the pronunciation similarity network. Informants are marked on the map by the colour of the finest-scale
cluster to which they belong. (b, c) Two major clusters detected at the first level of the hierarchy in (a), each re-coloured with the
full colour interval. (d, e) Two finer-scale clusters of the hierarchy in (c). In these panels, colours are assigned based on placement
in the area of the hierarchy circled in (c), with all descendants of a child in the circled area assigned the same colour. The colours in
(d) correspond to 1/4 and 3/4 on the unit interval, and the colours in (e) correspond to 1/14, 3/14, 5/14, 7/14, 9/14, 11/14 and 13/14.
For convenience, the child clusters associated with specific internal nodes in the tree diagrams are numbered. Birth-year distribu-
tions of informants in these child clusters appear on the right.
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Database of folklore
We examined data on the presence and absence of folklore motifs in individual cultures. Using folklore
data from around the world, Berezkin et al. (Berezkin et al., 2009; Korotayev et al., 2017) tabulated
recurring motifs prominent in links between folklore traditions, defining a motif to be ‘any image,
compositional structure, episode or chain of episodes found in more than one text’. Berezkin et al.
reported a list of cultures for each motif.

We focused our analysis on the n = 65 regions in the Berezkin et al. database and the m = 2459
motifs appearing in at least two of these regions. We computed similarities between pairs of regions
based on numbers of shared motifs, negatively weighted by motif frequency (see the Methods section).

Hierarchical structure of folklore variation: important characters
Figure 2a presents the hierarchical structure of motif variation extracted using the pairwise similarities
calculated based on all motifs. The geographic regions are mostly clustered into three large areas:
Eurasia and Africa (purple), North America (blue) and South America (orange), with varied place-
ment of populations from Australia and Oceania.

To identify which motifs are most important for extracting the hierarchical features, we adopt the
normalized mutual information (NMI) approach to compare hierarchies constructed using different
sets of motifs (Greenbaum et al., 2019). For a pair of hierarchical clusterings, the NMI measure ranges
from 0 to 1, quantifying the information obtained about one clustering by observing another. The
NMI measure is high when two clustering hierarchies describe similar clustering structures (see the
Methods section). The NMI approach is flexible in that it enables comparisons between subsets of
the hierarchical structure, for example by comparing only the leaves of the hierarchy.

We sampled 100 random subsets of 20, 50, 100 and 500 motifs, for each subset applying NetStruct
to extract a hierarchy from the similarity network based on the sampled motifs. We then computed the
NMI between the hierarchy of the sampled motifs and the hierarchy for all motifs, both for the full tree
and for only the leaf clusters. In both NMI analyses, as the number of motifs in the subset increases,
the mean of the NMI distribution increases (Figure 2b and d). The hierarchy produced by a larger
subset of motifs is more informative than those generated with fewer motifs.

Different motifs can be more informative or less informative regarding the hierarchical structure of
the data. For example, a motif found in all regions, or one not correlated with the main cultural patterns,
will not be informative about the clustering. To identify the most informative motifs, we sampled 5000
subsets of 20 motifs with replacement, counting occurrences of motifs in the 200 subsets possessing the
highest NMI with the full tree and those possessing the highest NMI for leaf clusters. With random sam-
pling, the expected number of occurrences of each motif in the top 200 subsets is 20/m × 200 ≈ 1.6.

The five most informative motifs for the full hierarchical structure appear in Figure 2c. The motif
most frequently found in high-NMI subsets is ‘trickster is a feline’, appearing in 16 of 200 subsets
(p = 1.5 × 10−11, binomial test). This motif is common in Central and South America. ‘To sort
grain’ has 11 occurrences (p = 9.8 × 10−7), and the next three most informative motifs have eight
occurrences each (p = 2.7 × 10−4) and are also associated with large geographic regions (Figure 2c).
Some informative motifs correspond to natural or cultural phenomena restricted by geography,
such as the practice of agriculture and the habitat ranges of animals.

The three most informative motifs for the fine-scale cultural structure represented by the leaves of
the hierarchy are shown in Figure 2e. Each appears eight times, above the number expected from ran-
dom sampling (p = 2.7 × 10−4). Two of these, ‘a drop of blood’ and ‘the packed kingdom’, have
restricted geographic ranges. This result suggests that motifs of local folklore contribute to fine-scale
features of the hierarchy.

In addition to visualizing hierarchical patterns of variation in folklore in relation to geography, this
analysis demonstrates the use of NetStruct to identify characters – folklore motifs in this case – that
play an important role in driving the hierarchical structure. The analysis of many subsets of characters,
and the identification of those that appear in subsets that give rise to high NMI with the full-data ana-
lysis, uncovers those that contribute most to hierarchical clustering patterns.
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Variation in phonemes across languages

A salient feature of linguistic variation is phonemic variation: variation in the sounds present within
languages. Phonemic variation can be used to study inter-language relationships and population

Figure 2. Hierarchical features of variation in folklore
motifs across cultures. (a) Hierarchical tree of the motif
similarity network. Regions are marked on the map by
the colour of the finest-scale cluster to which they
belong. (b) Distributions of normalized mutual informa-
tion (NMI) between hierarchies extracted from sampled
subsets of motifs and from all motifs, with 100 subsets
of 20, 50, 100 and 500 motifs each. (c) Geographic distri-
butions of five motifs that occur most frequently in the
200 of 5,000 subsets of 20 motifs that produce hierarch-
ies with highest NMI to the hierarchy produced by all
motifs. These motifs drive the hierarchy at higher levels,
separating regions into major clusters. (d) Distributions
of NMI between the leaves of hierarchies extracted from
subsets of motifs (those from b) and the leaves extracted
from all motifs. (e) Geographic distributions of three
motifs that occur most frequently in the 200 subsets
that produce hierarchies whose leaf clusters produce
highest NMI to those produced by all motifs. These
motifs are more specific to the hierarchy in lower levels
and potentially capture fine-scale regional differences.
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migrations (Atkinson, 2011; Creanza et al., 2015; Fort & Pérez-Losada, 2016; Pérez-Losada & Fort,
2018), and for our next example, we analyse hierarchical structure in worldwide phonemic variation.

Ruhlen phoneme database
Creanza et al. (2015) analysed two databases that have been assembled on phonemes across large num-
bers of languages. We applied NetStruct on one of these, the Ruhlen database, as studied by Creanza
et al. (2015) to explore phoneme-based hierarchical structure across languages. This database contains
presence/absence information for 728 phonemes, organized by language classification and geography.

In our analysis, we included all n = 2082 languages and m = 454 phonemes that exist in more than
one language. We then constructed the hierarchy based on the pairwise frequency-weighted phoneme-
sharing similarities calculated from the n ×m data matrix (see the Methods section).

Hierarchical structure of phonemic variation: Outlier entities
The hierarchy extracted from phonemic variation clusters languages in accord with geography on a
broad scale (Figure 3a). In Figure 3b, major clusters tend to be localized within continents, in
many places co-occurring with other such clusters.

Figure 3c–e highlights patterns in local regions. In northeastern Siberia (Figure 3d), four of five
languages of the Chukotko–Kamchatkan language family – Alyutor, Chukchi, Kerek, and Koryak –
cluster in one branch (purple to yellow colours), whereas the Kamchadal language is alone in another
(green). Indeed, the first four languages and Kamchadal are assigned to different branches in the
family, Chukotian and Itelmen, and the unity of the family has been uncertain (Fortescue, 2005).

In East Africa (Figure 3e), three languages shown in a distinct colour from their surrounding
languages – Dahalo, Hadza, and Sandawe – are the only three languages in the region that are
click languages, a phonemic group of languages for which clicks function as normal consonants

Figure 3. Hierarchical features of phonemic variation. (a) Hierarchical tree of the phoneme similarity network. Major branches that
contain most of the languages are assigned distinct colours, and other branches are coloured grey. (b) Language map. Languages
are marked by the colour of the finest-scale cluster to which they belong. Three regions are magnified: (c) Northeast Asia; (d) north-
eastern Siberia; and (E) East Africa.
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(Westphal, 1971). Similarly, in Northeast Asia (Figure 3c), Korean, a language isolate, is clustered into
a branch distinct from other neighbouring languages.

This analysis, like the analyses of pronunciation and folklore motifs, illustrates the use of the
NetStruct framework to identify geographic effects on entities of interest (assemblages of pronunci-
ation variants, folklore motif repertoires and phoneme inventories). The local patterns additionally
illustrate the potential of the method for understanding effects on entities – in this case, languages –
whose placements in the hierarchy differ from those of their geographic neighbours.

Variation in first names over time

Frequencies of first names among births in a population represent a rich source of cultural data, enab-
ling tests about mechanisms of cultural change (Hahn & Bentley, 2003; Gureckis & Goldstone, 2009;
Berger et al., 2012; Kessler et al., 2012; Acerbi & Bentley, 2014; O’Dwyer & Kandler, 2017). Our final
example used NetStruct to analyse relationships among names in their patterns of temporal variation.

Social Security data on first names
Data on frequent first names from Social Security card applications for births starting in 1880 are pro-
vided publicly by the US Social Security Administration. Separately for male and female names, for
each year of birth, frequency data are provided. We analysed female and male names separately,
restricting attention to 1397 female and 1074 male names of total frequency greater than or equal
to 10,000 until the end of 2019.

Considering each year during 1880–2019 separately, the dataset gives two n × m matrices with
m = 140 years, and n = 1397 for female and n = 1074 for male names. The similarity score between
two names is computed based on the Pearson correlation between their frequency vectors over the
m years of available data (see the Methods section). We generated the NetStruct hierarchy from
these similarities.

To interpret the NetStruct hierarchy, we made use of state-specific data, which are available along-
side the national data starting from 1910. In the state-level data, each of n names has 53 vectors of
counts of length 110, for 53 locations (50 states plus District of Columbia, Puerto Rico and other ter-
ritories) and 110 years (1910–2019). After normalizing counts from each year by the total number of
individuals for that year, we identified for each name the state with the greatest mean normalized fre-
quency over 110 years. In other words, we labelled each name by the state in which it was most
frequent.

Hierarchical structure of variation in temporal patterns among names: Features of entities
We present the hierarchical structure extracted from time series data on the frequencies of female
names, as well as the temporal trends of the corresponding names, in Figure 4a, with seven major
branches of the hierarchy coloured differently. The same visualization for male names appears in
Figure 4e, with five major branches assigned different colours. For both female and male names,
names in branches of different colour have distinct frequency trends over time, with those on the
left indicating names that had the greatest frequency at the beginning of the time series.

Figure 4b and f relabel the hierarchies in Figure 4a and e by the state in which a name has occurred
most frequently over the full dataset. The calculation of the state with highest frequency for a name is
described in the Methods section. Initially, the most populous states were New York and Pennsylvania;
California and Texas have been most populous more recently. Thus, the leftmost names, frequent early
in the period, tend to be associated with New York, and to some extent, Pennsylvania and Texas.
Names in the centre are more closely associated with California. Names in the rightmost clusters
are associated with California or Texas, whose recent population growth has reduced the difference
from California in the number of annual births.

Because the patterns in Figure 4b and f are driven in large part by population sizes of states, we next
relabel the hierarchies using a frequency that is normalized by population size. In particular, we group

8 Xiran Liu et al.

https://doi.org/10.1017/ehs.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2022.15


states into four regions – Midwest, South, Northeast and West – normalizing the region-wise count of
each name by the total number of individuals in the region. The calculation of the region with the
highest normalized frequency for a name is described in the Methods section. Figure 4c and g relabel
the hierarchies in Figure 4a and e by the region in which the normalized frequency is greatest. In this
relabelling, the South is the region that has the largest number of names associated with it, for both
females and males. This pattern is particularly pronounced at the beginning of the time series, during
which the South was the region of greatest frequency for large numbers of names.

Figure 4. Hierarchical features of time series for frequencies of female names (a–d) and male names (e–h). (a, e) Hierarchical tree
of similarity in time series for name frequencies. Major branches are assigned distinct colours. Time series of annual national fre-
quencies appear below the trees, with two names selected from each major branch highlighted. The node area is proportional to
the number of names in a cluster, except that clusters containing greater than 25 names are set to a fixed size and are coloured
half-transparently. (b, f) Recoding of the hierarchies in (a, e) by states of highest frequency. Each cluster shows a pie chart tabu-
lating the states in which names in the cluster have the highest frequency. Time series of name frequencies appear below the hier-
archies. (c, g) Recoding of the hierarchies in (a, e) by regions of highest normalized frequency. The states are grouped into four
regions: West (AK, AZ, CA, CO, HI, ID, MT, NM, NV, OR, UT, WA, WY), Midwest (IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD, WI),
South (AL, AR, DC, DE, FL, GA, KY, LA, MD, MS, NC, OK, SC, TN, TX, VA, WV) and Northeast (CT, MA, ME, NH, NJ, NY, PA, RI, VT).
The normalized frequency of a name in a region is the count of the name in the region normalized by the total number of indi-
viduals in the region. The steps to obtain the states of highest frequency and regions of highest normalized frequency are described
in the Methods section. (d, h) Recoding of the hierarchies in (a, e) by mean number of syllables of names in clusters.
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Figure 4d and h examine the hierarchies in relation to a second variable: the number of syllables in
names. As was seen when considering names by the state with highest frequency, much structure is
observable with this variable. Female names in clusters 1 and 2 of Figure 4a, which share a common
predecessor node as the parent cluster, have similar temporal trends, with a high frequency in the early
twentieth century. In a fine-scale analysis, however, they separate into a branch whose names have
fewer syllables (cluster 1, e.g. Mary, Helen), and a branch whose names have more syllables (cluster 2,
e.g. Dorothy, Virginia). For male names, later names tend to have more syllables than earlier names
(Figure 4h).

In summary, the NetStruct analysis reveals relationships in co-occurrences of names, identifying
names with similar temporal trends. The recoding of clustering hierarchies by additional variables –
the state with highest frequency and the number of syllables – illustrates the use of NetStruct in under-
standing attributes that correlate with, and potentially contribute to, relationships among entities. The
visualization can potentially suggest analyses of other factors that influence the dynamics, including
immigration, regional correlations and differences in naming practices by state over time.

Discussion

Inspired by the potential of hierarchical clustering analyses to illuminate features of population-genetic
variation, we have adapted the network-based clustering framework NetStruct for use in the analysis of
cultural variation. In four examples, we have illustrated several aspects of the framework in applica-
tions to data matrices representing a set of entities, each associated with values of a set of characters.
These applications demonstrate the potential of NetStruct to extract broad- and fine-scale relationships
among entities. They illustrate the use of NetStruct to analyse relationships of geography with cluster-
ing patterns, to uncover the characters that drive relationships and to understand effects on cultural
data points of interest in specific scenarios. The algorithmic perspective incorporates flexibility in
the design of similarity measures and in visualization schemes to aid the analysis.

Interpretations of data on cultural variation

The four examples illustrate the potential of NetStruct for producing novel visualizations to deepen the
understanding of cultural entities – pronunciation repertoires of individuals, folklore repertoires of
cultures, phoneme inventories of languages and time series of name frequencies. The technique can
uncover hierarchical features underlying the variation in cultural traits at different scales, and it
enables the examination of different hierarchical levels. For example, the LAMSAS data, the dataset
among the four that has been studied for longest, has given rise to numerous analyses of dialect vari-
ation, often seeking to partition the Atlantic region into dialects (Lee & Kretzschmar, 1993; Nerbonne
& Kretzschmar, 2003; Nerbonne 2015); our approach contributes to observing hierarchical divisions at
multiple levels, to detecting spatially continuous variation beyond the level of dialects and to identi-
fying birth date as a variable that contributes to deviations from spatial patterns.

Fewer studies have examined the folklore dataset that we have considered. With the use of NMI, we
have shown that NetStruct can help to identify informative motifs for describing broad- and fine-scale
structures of folklore variation. The recurrence of a shared motif in widely separated cultural groups
has been useful for reconstructing cross-cultural contact and examining cultural diffusion. In this con-
text, past studies have considered the diffusion of specific motifs, sometimes chosen as those that are
widespread or that have particular cultural salience (Korotaev et al., 2006; Berezkin, 2010; Ross et al.,
2013; Tehrani, 2013). Rather than choosing motifs based on prior significance, the NMI approach
identifies motifs that are most informative about cultural groupings from patterns of motif occurrence
alone. The identification using NMI of motifs of particular informativeness can further focus the
choice of specific motifs for use in detailed analysis of diffusion patterns of folklore across worldwide
cultural groups; studies such as those examining ‘The Tale of the Kind and the Unkind Girls’ (Ross
et al., 2013) and ‘Little Red Riding Hood’ (Tehrani, 2013) can be informative for interpreting patterns
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in well-known motifs, but studies of other motifs might be more informative for understanding cul-
tural diffusion.

NetStruct requires little prior knowledge of datasets of interest. For the phonemes, as in the prin-
cipal components analysis of Creanza et al. (2015), NetStruct identifies broad-scale geographic differ-
entiation by a method that supposes no prior relationships among entities. Our analysis illustrates the
potential to highlight distinctions of certain languages from their neighbours, finding that phonemic
distinctiveness can reflect the distinctiveness of one language in relation to others.

For first names, previous studies of the data have examined many aspects, including spatial corre-
lations (Barucca et al., 2015; Pomorski et al., 2016) and phonemic influences (Berger et al., 2012); our
analyses of the state of greatest popularity and of patterns in syllables contribute further to under-
standing patterns in name frequencies. Some studies of naming patterns are model based, assuming
factors that drive the variation and incorporating these factors as variables in the models to compare
with observed trends (Hahn & Bentley, 2003; Gureckis & Goldstone, 2009; Berger et al., 2012; Kessler
et al., 2012; Acerbi & Bentley, 2014; O’Dwyer & Kandler, 2017); our approach can augment such stud-
ies by suggesting hypotheses that can be used in evaluating different generative models.

In our choices of examples for application of NetStruct, the four datasets had several features in
common. First, in each case, entities corresponding to rows of the initial data matrix had a natural
set of relationships reflected in the NetStruct hierarchy – geographic proximity of informants for
the pronunciation data, geographic proximity of cultures for the folklore data, geographic proximity
of languages for the phonemic data and proximity in time of the period of greatest popularity for
the data on names. Second, additional salient attributes of the entities could be considered – birth
dates for pronunciation informants, locally specific components of folklore such as geographically
restricted cultural practices and animal ranges, family memberships for languages, and states of great-
est popularity and numbers of syllables for names. Additional datasets with spatial structure, temporal
structure or both, such as data on attributes of ceramics or other artefacts of material culture, or data
on individual variation in word choices or other idiolectal variation, potentially provide natural exam-
ples as well. For future datasets, the existence of geographic and temporal structure and the availability
of other meaningful attributes on entities of interest can be used to support use of NetStruct and to
guide interpretation of the results that it produces.

Limitations and extensions

We have chosen to focus on similarity measures borrowed from genetics in which the sharing of a
rare genetic variant between two individuals or populations suggests recent common ancestry.
Similarly, for cultural data, in which shared descent is also a salient phenomenon, our use of a
frequency-weighted trait-sharing similarity measures presupposes the potential importance of shared
rare variants in characterizing relationships between entities. However, the choice of similarity meas-
ure occurs prior to the application of NetStruct; the emphasis of similarity measures on shared rare
variants can therefore be tuned as appropriate to a specific type of data. A possible systematic differ-
ence from the genetics context is that fast-evolving cultural data could generate more homoplasy than
is seen for genetic markers (Tehrani & Collard, 2002; Haasl & Payseur, 2011), so that a shared rare
variant could be less meaningful in cultural data than in genetic data. Distance-based hierarchical
clustering studies in genetics have generally identified many shared features in population relation-
ships irrespective of the similarity measure considered, even for fast-evolving genetic markers with
significant homoplasy (Takezaki & Nei, 1996). In a preliminary analysis of the choice of similarity
measure, considering the LAMSAS data, we see that generally similar patterns are obtained with
two additional similarity measures: a measure that is not frequency weighted and a measure designed
specifically for linguistic data (Figures S1 and S2). With a specific scientific question and dataset, mea-
sures that encode aspects of similarity of greatest interest can be considered, and researchers can
employ multiple similarity statistics to identify patterns that are robust and patterns that are distinct-
ive to particular measures.
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As in genetic studies that use tree-like models of population relationships, we have assumed that a hier-
archical relationship between clusters exists, focusing on transferring the application of a hierarchical clus-
tering method from population-genetic data to data on cultural variation. In cultural data, as is often seen
in population-genetic data, the appropriate generative model that underlies the data need not be fully tree
like. Studies in population genetics have introduced methods for testing the suitability of evolutionary trees
for explaining patterns of genetic variation, a key concept being the ‘treeness’ of the data (Cavalli-Sforza &
Piazza, 1975; Patterson et al. 2012; Pickrell & Pritchard 2012). It would be of interest to develop compar-
able approaches for testing the extent to which a hierarchical structure from NetStruct explains cultural
variation data; a permutation test of Greenbaum et al. (2016) for significance of clustering in a two-level
NetStruct hierarchy containing a root and offspring nodes, devised in the population-genetic context, can
potentially be adapted for arbitrary hierarchies and applied to data on cultural variation.

Conclusions: Uses and applications of NetStruct

In population genetics, the interplay of evolutionary processes contributes to producing hierarchical
patterns in genetic composition among populations. Similarly, in the study of cultural data, many
forces interact to shape hierarchical trait variation. Interpreting the clustering results requires consid-
eration of multiple interacting processes and phenomena, including global and local selection pres-
sures on specific cultural variants (e.g. positive, negative, or balancing), the linkage of multiple
variants in ‘cultural complexes’ (similar to genetic linkage) and random drift. As in the study of
genetic data, geographic patterns need not uniquely identify the underlying processes; for example,
similarly to the phenomenon of convergent evolution in genetic data, convergent evolution of cultural
variants (e.g. Tehrani & Collard 2002; Mesoudi et al. 2006; Rogers & Ehrlich 2008) can produce a level
of similarity that can be conflated with shared descent. For example, in our phonemic analysis in
Figure 3, the potential for rapid change in languages can produce similarity in phonemes of otherwise
distant languages. The cluster of languages coloured in light green in Figure 3, which includes lan-
guages from sub-Saharan Africa, the Caucasus and western North America, may result from conver-
gent evolution combined with linkage of phoneme complexes that have developed independently.
Consideration of the mechanistic processes underlying cultural data while incorporating domain-
knowledge specific to datasets of interest is important in interpreting the hierarchical structure
generated by NetStruct. Because cultural data often possess the type of geographic structure, temporal
structure, hierarchical categorization or defining attributes for which NetStruct results can be product-
ively interpreted, patterns from NetStruct can be informative alongside other statistical methods for
assessing specific generative models for cultural data.

As a non-model-based tool, the strength of the method lies in its potential as an exploratory
approach for producing informative patterns, patterns that potentially inspire hypotheses about factors
that drive the features of cultural variation. We suggest that the use of this exploratory approach should
be accompanied by analyses of hypotheses based on additional methods and domain knowledge; ana-
lyses of data on variation in artefacts of culture can be productively advanced by adding NetStruct to
the repertoire of the field of cultural evolution.

Methods

Between-informant similarity for LAMSAS pronunciation variation

We obtained the LAMSAS data from the project website (www.lap.uga.edu/Site/LAMSAS.html). To
eliminate systematic effects of different interviewers, we considered only informants interviewed by
the main interviewer, G. Lowman, who collected the earliest LAMSAS data (Nerbonne & Kleiweg,
2003). We therefore restricted attention to 839 informants interviewed during 1933–1942. Because
words chosen for pronunciation differed across interviews, many words only appear in the records
of a subset of informants. We considered only words collected for at least 700 informants, resulting
in a list of 69 words.
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Consider n informants and m words. Suppose word j has lj distinct transcriptions, counting dia-
critics. Entry Aij of the data matrix is a categorical variable that indicates the transcription of word
j for informant i: Aij∈ {1, 2, …, lj} if the information of word j has been collected from informant
i, or Aij = 0 if word j is unavailable for informant i.

We computed a frequency-weighted transcription-sharing similarity, adapting the allele-sharing
similarity for genetic data (Greenbaum et al., 2019). For two informants i1 and i2, their frequency-
weighted transcription-sharing similarity is calculated as

si1i2 =
∑m

j=1 1− pjAi1 j

( )
I Ai1 j=Ai2 j( )I(Ai1 j=0^Ai2 j=0)∑m

j=1 I(Ai1 j=0^Ai2 j=0) , (1)

where pjAij
is the frequency of transcription Aij for word j. The indicator function I( ⋅ ) is 1 if the con-

dition holds, and it is 0 otherwise. The similarity matrix S is obtained by normalization:

Si1i2 =
si1i2 − smin

smax − smin
, (2)

where smin = min
i1,i2

{si1i2 } and smax = max
i1,i2

{si1i2 }.

In rare instances, two individuals have no shared words with data present. In these cases, we
assigned for the similarity score the mean similarity of the remaining pairs.

Between-region similarity for folklore motif variation

We downloaded the folklore data from the Berezkin et al. database (http://www.ruthenia.ru/folklore/
berezkin/). The database provides (in Russian) for each indexed motif, a list of all numbered regions in
which the motif is present. Considering all 2495 motifs, we constructed the matrix of presence/absence
entries, associating the region and motif names with matrix rows and columns, respectively.

We denote the n ×m matrix by A, where n = 65 is the number of regions and m = 2459 is the
number of motifs appearing in at least two regions; Aij = 1 if motif j appears in region i, and Aij = 0
otherwise. The pairwise frequency-weighted motif-sharing similarity for two regions i1 and i2 is
calculated using a weighted Jaccard distance:

si1i2 =
∑m

j=1 1− fj
( )

Ai1jAi2j∑m
j=1 1− fj

( )
I Ai1 j=0_Ai2 j=0( )

. (3)

The quantity fj = 1
n

∑n
i=1 Aij is the frequency of motif j across all regions. Equation 3 places greater

weight on contributions of less frequent motifs and less weight on common motifs.
We applied the same normalization from Equation 2 to obtain a normalized similarity matrix that

we used in our analysis.

Normalized mutual information

Denote two hierarchical clusterings on n entities by C1 and C2. Suppose they partition the same set of
entities E={e1,e2, …, en} into k and l clusters C1

1 , C
1
2…, C1

k and C2
1, C

2
2…, C2

l , respectively, where

<
k

j=1
C1
j = <

ℓ

j=1
C2
j = E. Note that for each clustering – for example, C – the clusters are not necessarily

disjoint, so that each ei can belong to multiple clusters Cj; indeed child clusters Cj′ are contained in
parent clusters Cj, or Cj′ , Cj. The NMI between these two hierarchical clusterings is then computed
from the C1

j and C2
j following the procedure of Greenbaum et al. (2019). This approach is flexible in
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the sense that NMI can also be computed for subsets of the clusters in the hierarchy, rather than for
the entire set of clusters. To address clustering at the finer scale of the hierarchy, we computed NMI for
the set of leaf clusters at the tips of the hierarchy.

Between-language similarity for phoneme inventories

We obtained phoneme data from the supplement of Creanza et al. (2015). The similarity calculation
follows that of the motif-sharing similarity, except that A now represents an n × m matrix of n = 2082
languages and m = 454 phonemes. Equation 3 gives the similarity between a pair of languages, with fj
denoting the frequency of a phoneme among languages; we normalized the similarity matrix by
Equation 2 for our subsequent analysis.

Between-name similarity for name frequency profiles

We downloaded the name data from https://www.ssa.gov/oact/babynames/limits.html. For the ana-
lysis, performed separately for female and male names, a matrix entry Aij tabulates the number of
appearances of name i in year j, normalized by the total number of individuals in year j. We write
Aij = 0 if name i is absent during year j, or if it is rare enough to have been omitted from the database
for privacy reasons (fewer than five appearances nationally). For each pair of rows i1, i2 of A, we com-
puted the Pearson correlation ri1,i2 between them, and transformed it to a value in [0,1] by
si1,i2 = (ri1,i2 + 1)/2.

To obtain syllable counts for individual names, two raters separately assigned the counts, discussing
cases of disagreement to assign a number of syllables. We computed averages of the number of sylla-
bles for names in specific clusters.

States of highest frequency and regions of highest normalized frequency for names

Separately for female and male names, let Bijk denote the number of appearances of name i in state k in
year j. The frequency of name i in state k is calculated as fik =

(∑
j
Bijk

)
/
(∑
k′

∑
j
Bijk′

)
. The state of high-

est frequency for name i is obtained by argmaxk( fik), which we denote the majority state in Figure 4b
and f.

The states are then grouped into four regions as described in Figure 4. For each region l containing
a group of states, let Cijl denote the number of appearances of name i in region l in year j, or
Cijl =

∑
k[l

Bijk. For each year j, this number of appearances is divided by the total number of individuals

in a region to obtain the fraction that it represents of all names in the region during year j:
C∗
ijl=Cijl/

∑
i′
Ci′jl . Averaging across years, the normalized frequency of name i in region l is then

calculated as gil =
(∑

j
C∗
ijl

)
/
(∑

l′

∑
j
C∗
ijl′
)
. The region of highest normalized frequency for name i is

obtained by argmaxl(gil), which we denote the majority region in Figure 4c and g.

Acknowledgements. We thank E. Alimpiev for assistance with the folklore data and D. Cotter for assistance with the name data.

Authors’ contributions. XL contributed conceptualization, methodology, investigation, visualization and writing. NAR
contributed conceptualization, methodology, supervision and writing. GG contributed conceptualization, methodology,
supervision and writing.

Financial support. This work was supported by National Institutes of Health grant R01 HG005855 and National Science
Foundation grant BCS-2116322 awarded to NAR, and a grant from the Hebrew University of Jerusalem Center for
Interdisciplinary Data Science Research awarded to GG.

Conflicts of interest. The authors declare that they have no competing interests.

14 Xiran Liu et al.

https://doi.org/10.1017/ehs.2022.15 Published online by Cambridge University Press

https://www.ssa.gov/oact/babynames/limits.html
https://www.ssa.gov/oact/babynames/limits.html
https://doi.org/10.1017/ehs.2022.15


Data availability statement. The data that support the findings of this study are available as supplementary files. Functions
for processing and visualizing NetStruct output are provided, as are example uses of those functions.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ehs.2022.15

References
Acerbi, A., & Bentley, R. A. (2014). Biases in cultural transmission shape the turnover of popular traits. Evolution and Human

Behavior, 35(3), 228–236.
Aplin, L. M. (2019). Culture and cultural evolution in birds: A review of the evidence. Animal Behaviour, 147, 179–187.
Atkinson, Q. D. (2011). Phonemic diversity supports a serial founder effect model of language expansion from Africa.

Science, 332(6027), 346–349.
Barucca, P., Rocchi, J., Marinari, E., Parisi, G., & Ricci-Tersenghi, F. (2015). Cross-correlations of American baby names.

Proceedings of the National Academy of Sciences, 112(26), 7943–7947.
Berezkin, Y. (2010). Tricksters trot to America: Areal distribution of folklore motifs. Folklore: Electronic Journal of Folklore,

46, 125–142.
Berezkin, Y. E., Borinskaya, S. A., Kuznetsova, A. V., & Sen’ko, O. V. (2009). Study of folklore and mythological traditions

using intellectual data mining. Pattern Recognition and Image Analysis, 19(4), 630–633.
Berger, J., Bradlow, E. T., Braunstein, A., & Zhang, Y. (2012). From Karen to Katie: Using baby names to understand cultural

evolution. Psychological Science, 23(10), 1067–1073.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
Bortolini, E., Pagani, L., Crema, E. R., Sarno, S., Barbieri, C., Boattini, A.,… Tehrani, J. J. (2017). Inferring patterns of folktale

diffusion using genomic data. Proceedings of the National Academy of Sciences, 114(34), 9140–9145.
Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. University of Chicago Press.
Bromham, L. (2017). Curiously the same: Swapping tools between linguistics and evolutionary biology. Biology & Philosophy,

32(6), 855–886.
Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution. Princeton University Press.
Cavalli-Sforza, L. L., & Piazza, A. (1975). Analysis of evolution: Evolutionary rates, independence and treeness. Theoretical

Population Biology, 8(2), 127-165.
Creanza, N., Ruhlen, M., Pemberton, T. J., Rosenberg, N. A., Feldman, M. W., & Ramachandran, S. (2015). A comparison of

worldwide phonemic and genetic variation in human populations. Proceedings of the National Academy of Sciences, 112(5),
1265–1272.

Fort, J., & Pérez-Losada, J. (2016). Can a linguistic serial founder effect originating in Africa explain the worldwide phonemic
cline? Journal of The Royal Society Interface, 13(117), 20160185.

Fortescue, M. (2005). Comparative Chukotko-Kamchatkan dictionary. Mouton de Gruyter.
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National

Academy of Sciences, 99(12), 7821–7826.
Gray, R. D., Bryant, D., & Greenhill, S. J. (2010). On the shape and fabric of human history. Philosophical Transactions of the

Royal Society B: Biological Sciences, 365(1559), 3923–3933.
Greenbaum, G., Templeton, A. R., & Bar-David, S. (2016). Inference and analysis of population structure using genetic data

and network theory. Genetics, 202(4), 1299–1312.
Greenbaum, G., Rubin, A., Templeton, A. R., & Rosenberg, N. A. (2019). Network-based hierarchical population structure

analysis for large genomic data sets. Genome Research, 29(12), 2020–2033.
Gureckis, T. M., & Goldstone, R. L. (2009). How you named your child: Understanding the relationship between individual

decision making and collective outcomes. Topics in Cognitive Science, 1(4), 651–674.
Haasl, R. J., & Payseur, B. A. (2011). Multi-locus inference of population structure: A comparison between single nucleotide

polymorphisms and microsatellites. Heredity, 106(1), 158–171.
Hahn, M. W., & Bentley, R. A. (2003). Drift as a mechanism for cultural change: An example from baby names. Proceedings of

the Royal Society of London. Series B: Biological Sciences, 270(suppl 1), S120–S123.
Kessler, D. A., Maruvka, Y. E., Ouren, J., & Shnerb, N. M. (2012). You name it – How memory and delay govern first name

dynamics. PLoS One, 7(6), e38790.
Kolodny, O., Feldman, M. W., & Creanza, N. (2018). Integrative studies of cultural evolution: Crossing disciplinary bound-

aries to produce new insights. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1743), 20170048.
Korotaev, A. V., Berezkin, Y., Kozmin, A., & Arkhipova, A. (2006). Return of the white raven: Postdiluvial reconnaissance

motif A2234.1.1 reconsidered. Journal of American Folklore, 119(472), 203–235.
Korotayev, A. V., Berezkin, Y. E., Borinskaya, S. A., Davletshin, A. I., & Khaltourina, D. A. (2017). Genes and myths: Which

genes and myths did the different waves of the peopling of Americas bring to the New World? In L. E. Grinin, A.
V. Korotayev (Eds.), History & mathematics: Economy, demography, culture, and cosmic civilizations (pp. 9–77).
Uchitel Publishing House.

Evolutionary Human Sciences 15

https://doi.org/10.1017/ehs.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2022.15
https://doi.org/10.1017/ehs.2022.15
https://doi.org/10.1017/ehs.2022.15


Kretzschmar Jr., W. A., McDavid, V. G., Lerud, T. K., & Johnson, E. (1993). Handbook of the linguistic atlas of the Middle and
South Atlantic States. University of Chicago Press.

Lee, J., & Kretzschmar Jr, W. A. (1993). Spatial analysis of linguistic data with GIS functions. International Journal of
Geographical Information Systems, 7(6), 541–560.

Mesoudi, A. (2016). Cultural evolution: A review of theory, findings and controversies. Evolutionary Biology, 43(4), 481–497.
Mesoudi, A., Whiten, A., & Laland, K. N. (2006). Towards a unified science of cultural evolution. Behavioral and Brain

Sciences, 29(4), 329-347.
Nerbonne, J. (2015). Various variation aggregates in the LAMSAS south. In M. D. Picone & C. E. Davies (Eds.), Language

variety in the South III (pp. 369–382). University of Alabama Press.
Nerbonne, J., & Kleiweg, P. (2003). Lexical distance in LAMSAS. Computers and the Humanities, 37(3), 339–357.
Nerbonne, J., & Kretzschmar, W. (2003). Introducing computational techniques in dialectometry. Computers and the

Humanities, 37(3), 245–255.
O’Dwyer, J. P., & Kandler, A. (2017). Inferring processes of cultural transmission: The critical role of rare variants in distin-

guishing neutrality from novelty biases. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1735),
20160426.

Pagel, M. (2009). Human language as a culturally transmitted replicator. Nature Reviews Genetics, 10(6), 405–415.
Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., … Reich, D. (2012). Ancient admixture in human

history. Genetics, 192(3), 1065–1093.
Pérez-Losada, J., & Fort, J. (2018). A serial founder effect model of phonemic diversity based on phonemic loss in low-density

populations. PLoS One, 13(6), e0198346.
Pickrell, J., & Pritchard, J. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS

Genetics, 8, e1002967.
Pomorski, M., Krawczyk, M. J., Kułakowski, K., Kwapień, J., & Ausloos, M. (2016). Inferring cultural regions from correlation

networks of given baby names. Physica A: Statistical Mechanics and Its Applications, 445, 169–175.
Rendell, L., & Whitehead, H. (2005). Spatial and temporal variation in sperm whale coda vocalizations: Stable usage and local

dialects. Animal Behaviour, 70(1), 191–198.
Rogers, D. S., & Ehrlich, P. R. (2008). Natural selection and cultural rates of change. Proceedings of the National Academy of

Sciences, 105(9), 3416–3420.
Ross, R. M., Greenhill, S. J., & Atkinson, Q. D. (2013). Population structure and cultural geography of a folktale in Europe.

Proceedings of the Royal Society B: Biological Sciences, 280(1756), 20123065.
Takezaki, N., & Nei, M. (1996). Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics,

144(1), 389–399.
Tehrani, J. J. (2013). The phylogeny of Little Red Riding Hood. PLoS One, 8(11), e78871.
Tehrani, J., & Collard, M. (2002). Investigating cultural evolution through biological phylogenetic analyses of Turkmen tex-

tiles. Journal of Anthropological Archaeology, 21(4), 443–463.
Thuillard, M., Quellec, J. L., D’Huy, J., & Berezkin, Y. (2018). A large-scale study of world myths. Trames: A Journal of the

Humanities and Social Sciences, 22(4), 407–424.
Westphal, E. O. J. (1971). The click languages of Southern and Eastern Africa. In T. A. Sebeok (Ed.), Linguistics in

Sub-Saharan Africa (pp. 367–420). De Gruyter Mouton.

Cite this article: Liu X, Rosenberg NA, Greenbaum G (2022). Extracting hierarchical features of cultural variation using
network-based clustering. Evolutionary Human Sciences 4, e18, 1–16. https://doi.org/10.1017/ehs.2022.15

16 Xiran Liu et al.

https://doi.org/10.1017/ehs.2022.15 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2022.15
https://doi.org/10.1017/ehs.2022.15

	Extracting hierarchical features of cultural variation using network-based clustering
	Introduction
	Results
	Generalizing the NetStruct pipeline
	Variation in pronunciation across locations
	LAMSAS pronunciation data
	Hierarchical structure of pronunciation variation: Levels of detail

	Variation in folklore motifs across cultures
	Database of folklore
	Hierarchical structure of folklore variation: important characters

	Variation in phonemes across languages
	Ruhlen phoneme database
	Hierarchical structure of phonemic variation: Outlier entities

	Variation in first names over time
	Social Security data on first names
	Hierarchical structure of variation in temporal patterns among names: Features of entities


	Discussion
	Interpretations of data on cultural variation
	Limitations and extensions

	Conclusions: Uses and applications of NetStruct
	Methods
	Between-informant similarity for LAMSAS pronunciation variation
	Between-region similarity for folklore motif variation
	Normalized mutual information
	Between-language similarity for phoneme inventories
	Between-name similarity for name frequency profiles
	States of highest frequency and regions of highest normalized frequency for names

	Acknowledgements
	References


