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Abstract
Motivation: In the mixed-membership unsupervised clustering analyses commonly used in population genetics, multiple replicate data analyses
can differ in their clustering solutions. Combinatorial algorithms assist in aligning clustering outputs from multiple replicates so that clustering
solutions can be interpreted and combined across replicates. Although several algorithms have been introduced, challenges exist in achieving
optimal alignments and performing alignments in reasonable computation time.

Results: We present Clumppling, a method for aligning replicate solutions in mixed-membership unsupervised clustering. The method uses
integer linear programming for finding optimal alignments, embedding the cluster alignment problem in standard combinatorial optimization
frameworks. In example analyses, we find that it achieves solutions with preferred values of a desired objective function relative to those
achieved by Pong and that it proceeds with less computation time than Clumpak. It is also the first method to permit alignments across
replicates with multiple arbitrary values of the number of clusters K.

Availability and implementation: Clumppling is available at https://github.com/PopGenClustering/Clumppling.

1 Introduction

Population-genetic mixed-membership unsupervised cluster-
ing methods, such as Structure (Pritchard et al. 2000) and
Admixture (Alexander et al. 2009), are essential tools for un-
derstanding patterns of genetic variation in populations.
These methods make use of individual genomes to infer
population-genetic clusters; each individual is assigned a
membership vector, in which each entry represents the in-
ferred membership of the individual in a specific cluster.

Mixed-membership unsupervised clustering typically
employs stochastic steps so that output memberships from in-
dependent runs of a clustering approach on the same set of
individuals can differ. Membership differences across repli-
cate analyses with the same settings can result from one of
two sources. One source is label-switching, in which the clus-
ters and the patterns of co-clustering of individuals across
clusters are identical between runs, but the clusters are or-
dered differently across runs. The second source is genuine
multimodality, in which the clustering algorithm yields multi-
ple local optima that represent different patterns of co-
clustering of individuals. The clustering methods are often
employed with different settings, most notably for the number
of clusters, denoted K, so that membership estimates in differ-
ent runs can differ for additional reasons. Because multiple
potential sources contribute to clustering differences among
replicates, in mixed-membership unsupervised clustering
analysis, it is important to align the clusters across these

replicates—to resolve label-switching, to assess genuine multi-
modality with fixed settings, and to examine clustering solu-
tions with different values of K.

Three main methods exist for resolving the cluster align-
ment across runs of population-genetic unsupervised cluster-
ing: Clumpp (Jakobsson and Rosenberg 2007), Clumpak
(Kopelman et al. 2015), and Pong (Behr et al. 2016). The
methods differ slightly in the precise cluster alignment prob-
lems they solve, the algorithmic rationale for their alignment
solutions, and their computational performance. Our goal is
to introduce a new method that expands the set of scenarios
in which cluster alignment can be performed, connects cluster
alignment in population genetics to classic techniques of com-
binatorial optimization, and introduces computational
improvements. The new method is Clumppling: CLUster
Matching and Permutation Program with integer Linear
programmING.

2 Review of existing approaches

2.1 Clumpp

Clumpp (Jakobsson and Rosenberg 2007) aligns replicates
with equally many clusters. It either enumerates all possible
permutations of clusters for all replicates and returns the
one that maximizes an average pairwise similarity between all
replicates, or adopts a greedy algorithm to sequentially align
successive replicates. The greedy algorithm reduces computational
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time but does not necessarily find the optimal alignment. To fur-
ther speed up the alignment process, Clumpp has a
“LargeKGreedy” method to sequentially align a replicate
column-wise rather than all at once.

2.2 Clumpak

Clumpak (Kopelman et al. 2015) extends beyond Clumpp in
two ways: algorithmic mode detection and algorithmic align-
ment of replicates with different numbers of clusters. First, it
uses Clumpp to align replicates with the same K. It then
detects modes by constructing a similarity network from pairs
of aligned replicates and using the Markov clustering algo-
rithm to define nearly identical groups of replicates in the net-
work: modes. A mode is represented by the mean
memberships of replicates in the mode.

To assess replicates with different numbers of clusters,
Clumpak examines the alignment of modes with Kþ 1 clus-
ters to those with K clusters. It aligns replicates with Kþ 1
and K clusters by including an empty cluster and solving a
one-to-one matching problem.

2.3 Pong

Pong (Behr et al. 2016) views the problem of aligning pairs of
replicates with equally many clusters as an assignment prob-
lem (Burkard et al. 2009). It uses the polynomial-time
Hungarian algorithm for this optimization.

For mode detection among replicates with a fixed number
of clusters, Pong follows a simple approach. It constructs a
similarity network of aligned replicates and uses a user-
specified threshold to remove edges, taking the disjoint cliques
in the network as modes. A representative replicate is then
randomly chosen from each clique to represent the mode.

To align a pair of representative replicates of the major
modes with numbers of clusters K and Kþ 1, Pong considers
mergings of every possible pair of clusters from the replicate
with Kþ 1 clusters and finds the optimal alignment from all
one-to-one alignments. It proceeds through consecutive K val-
ues to align major modes across different K values.

2.4 Improvements provided by Clumppling

The existing methods have been used in thousands of studies.
Nevertheless, opportunities exist for more fully integrating
cluster alignment methods with frameworks of combinatorial
optimization and network theory, for addressing complex
alignment scenarios, and for improving computation time.
We highlight several desirable features of Clumppling
(Table 1):

1) Like Pong, Clumppling performs pairwise alignments us-
ing established algorithms from combinatorial
optimization.

2) Like Clumpak, Clumppling performs mode detection us-
ing established community detection algorithms from
network theory.

3) Unlike the other methods, Clumppling performs align-
ments between all modes at successive values of K, not
only the major modes.

4) Unlike the other methods, Clumppling performs align-
ments between replicates that differ in number of clusters
by more than one.

Clumppling combines benefits of Clumpak and Pong in re-
lying on ideas used for optimization and alignment in other

fields. It performs alignments in the settings considered by
Clumpp, Clumpak, and Pong and also expands to new
settings.

3 Methods

3.1 Overview

In the application of mixed-membership unsupervised cluster-
ing, the first step is to obtain multiple clustering replicates at
each of multiple values of the number of clusters K. Beginning
from these replicates, the procedure of Clumppling to align
replicates and to extract modes is as follows:

1) Group replicates according to the number of clusters K.
2) For each group of replicates with a shared K:

a) For each pair of replicates in the group, obtain an op-
timal alignment with minimal pairwise cost.

b) Detect subgroups of replicates belonging to shared
modes.

c) Obtain the consensus membership of each mode.
3) Align pairs of modes across different values of K using

their consensus memberships.
4) Visualize the aligned modes.

This pipeline follows that of Clumpak and Pong (Clumpp
does not perform steps 2b, 2c, or 3, and its step analogous to
2a does not involve finding all pairwise alignments).
However, Clumpak and Pong address only a special case of
step 3 in which pairs of modes to be aligned across K values
are the major modes of replicates with K and Kþ 1 clusters.
Clumppling provides alignments between each pair of modes,
major and minor, considering replicates that can have num-
bers of clusters that differ by more than one. This new step is
informative on how major and minor modes relate across K
values and can also assist in aggregating clustering results
with large K in which nonconsecutive K values may be of
interest.

For steps 2a and 2b, the central steps of the alignment pro-
cedure, we seek to improve performance and run time over
previous methods. First, for pairwise alignment of replicates
in step 2a, we use integer linear programming (ILP) from opti-
mization theory. Second, for community detection in step 2b,
we use the Louvain algorithm from network theory.

Table 1. Features of cluster alignment methods: (1) Clumpp, (2) Clumpak,

(3) Pong, and (4) Clumppling.

Feature 1 2 3 4

Aligns same-K replicates on the
same set of individuals

� � � �

Pairwise alignment uses estab-
lished optimization tools

� � � �

Detects modes among same-K
replicates algorithmically

� � � �

Mode detection uses established
network tools

� � � �

Aligns major modes of K and
Kþ 1

� � � �

Aligns all modes of K and Kþ 1 � � � �

Mode alignment uses all repli-
cates in a mode

� � � �

Aligns modes of K and Kþ d,
d > 1

� � � �
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3.2 Initial setup: dissimilarity between replicates

Consider two replicates from a clustering algorithm on N
individuals. Replicate 1, with K1 clusters, can be represented
as a matrix Q of size N � K1. Entry qik is the inferred mem-
bership coefficient of individual i in cluster k. Replicate 2,
with K2 clusters, is a matrix P of size N � K2. Without loss of
generality, suppose K1 � K2.

To align two replicates, we need a measure that quantifies
the similarity or dissimilarity of matrices Q and P. The problem
of aligning the replicates can then be formulated as a
problem of maximizing the similarity, or minimizing the
dissimilarity, between membership matrices, one of whose
columns is rearranged according to various proposed
alignments.

For K1 ¼ K2 ¼ K, Clumpp uses a pairwise similarity be-
tween two membership matrices, defined with the Frobenius
matrix norm jj � jjF as

G0ðQ;PÞ ¼ 1� jjQ� PjjFffiffiffiffiffiffiffi
2N
p : (1)

Clumpp seeks to find the optimal alignment of R replicates by
maximizing a measure of mean pairwise similarity of the R
replicates, termed H0. Clumpak uses this same method for the
case of K1 ¼ K2 ¼ K.

Equation (1) applies only to membership matrices of the
same size. For K1 > K2, we can consider measures that de-
compose the calculation into two levels: similarity or dissimi-
larity first between clusters, one from one replicate and one
from the other, and second, between replicates.

Pong uses this two-level idea to define the similarity be-
tween replicates. Let q�i denote the membership coefficients in
cluster i of replicate 1, with entries q‘i for ‘ ¼ 1;2; . . . ;N; q�i
is the ith column of matrix Q. Similarly, let p�j denote the
membership coefficients in cluster j of replicate 2. A cluster
similarity is derived from the Jaccard index on the overlap in
membership coefficients between clusters q�i and p�j as

J ðq�i;p�jÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
‘2N� ðq‘i � p‘jÞ2

2jN�j

s
; (2)

where N� ¼ f‘ 2 f1; 2; . . . ;Ng : q‘i þ p‘j > 0g. N� is the set
of rows with nonzero membership in cluster i of Q, cluster j
of P, or both.

The similarity between replicates is then defined as the
mean cluster similarity across all clusters for a pair of
replicates:

J ðQ;PÞ ¼ 1
K1

XK1

i¼1

J ðq�i; p�j0 Þ; (3)

where j0 is the cluster in P to which cluster i in Q aligns.
If K1 ¼ K2 ¼ K and all entries of the membership matrices

are nonzero, i.e. N� ¼ N, then J has a form close to G0,
though not quite equal to it. Equations (1) and (3) can be re-
written as follows:

G0ðQ;PÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

PN
‘¼1 ðp‘k � q‘kÞ2

q
ffiffiffiffiffiffiffi
2N
p ; (4)

J ðQ;PÞ ¼ 1� 1
K

PK
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
‘¼1 ðp‘k � q‘kÞ2

q
ffiffiffiffiffiffiffi
2N
p : (5)

G0 ranges from 0 to 1. G0 ¼ 1 trivially if P ¼ Q. G0 ¼ 0 if for
all ‘ ¼ 1; 2; . . . ;N, p‘k ¼ 1 and q‘k0 ¼ 1 for some k0 6¼ k. In
this case, ðp‘k � q‘kÞ2 ¼ 1 for 2 N of the NK pairs ð‘;kÞ.

However, the similarity measure J used by Pong does not
reach 0. Because

PN
‘¼1 ðp‘k � q‘kÞ2 � N for all k ¼ 1;

2; . . . ;K,
PK

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
‘¼1 ðp‘k � q‘kÞ2

q
� K

ffiffiffiffiffi
N
p

. Therefore,

J ðQ;PÞ � 1� K
ffiffiffiffiffi
N
p

=ðK
ffiffiffiffiffiffiffi
2N
p

Þ ¼ 1� 1=
ffiffiffi
2
p

.
For Clumppling, we seek a dissimilarity measure for mem-

bership matrices that (1) permits K1 > K2, and (2) spans the
full unit interval [0, 1], with a value of 0 for matrices with no
overlap and a value of 1 for identical memberships. We use a
measure with the two-level composition of Pong but with a
form more similar to that of Clumpp and Clumpak.

For the dissimilarity between cluster i of replicate 1 and
cluster j of replicate 2, Clumppling uses

Cðq�i;p�jÞ ¼
1

2N

XN
‘¼1

ðq‘i � p‘jÞ2: (6)

For the dissimilarity between two replicates with
K1 ¼ K2 ¼ K, it uses

DðQ;PÞ ¼
XK

k¼1

Cðq�k;p�kÞ: (7)

Continuing with K1 ¼ K2, dissimilarity DðQ;PÞ is related
to similarity G0 [Equations (1) and (4)]:

DðQ;PÞ ¼ 1
2N

XK

k¼1

XN
‘¼1

ðq‘k � p‘kÞ2 ¼ ½1�G0ðq‘k;p‘kÞ�2: (8)

We will see shortly how to proceed if K1 > K2.

3.3 Step 2a: pairwise alignment

Given a dissimilarity measure, the alignment of two replicates
involves permuting the clusters of one replicate—the columns
of its associated matrix—to minimize the dissimilarity with
the other replicate.

If K1 ¼ K2 ¼ K, then aligning two replicates is the problem
of finding the optimal one-to-one permutation that minimizes
DðQ; aðPÞÞ, where aðPÞ is the matrix P with columns per-
muted under a permutation a of ½K� ¼ f1; 2; . . . ;Kg.
Minimizing the dissimilarity is equivalent to maximizing the
similarity, the problem considered by Clumpp.

If K1 > K2, then the alignment between two replicates
involves a many-to-one mapping from ½K1� ¼ f1;2; . . . ;K1g
to ½K2� ¼ f1; 2; . . . ;K2g. For K1 � K2 in general, denote the
alignment by a—i.e. aðiÞ ¼ j for i 2 ½K1� and j 2 ½K2�. Each i is
mapped to exactly one j, and each j is the image of at least
one i. The dissimilarity between replicates with alignment a is
a function of Q, P, and a:

DðQ; aðPÞÞ ¼
XK1

k¼1

Cðq�k;p�aðkÞÞ: (9)
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Note that if K1 ¼ K2, then we have

XK1

k¼1

Cðq�k;p�aðkÞÞ ¼
1

2N

XN
‘¼1

XK1

k¼1

ðq‘k � p‘aðkÞÞ2 � 1; (10)

as for each ‘ ¼ 1; 2; . . . ;N,
PK1

k¼1 ðq‘k � p‘aðkÞÞ2 is bounded
above by 2. The maximal dissimilarity satisfies
DðQ; aðPÞÞ � 1

2N 2N ¼ 1.
If K1 > K2, however, then the alignment is no longer one-

to-one, and for a specific ‘,
PK1

k¼1 ðq‘k � p‘aðkÞÞ2 can exceed 2.
For instance, for Q with dimensions N � 3 and P with dimen-
sions N � 2, an individual ‘ with ðq‘1;q‘2; q‘3Þ ¼ ð1;0;0Þ,
ðp‘1;p‘2Þ ¼ ð0; 1Þ, and alignment mapping að1;2;3Þ ¼
ð1;2;2Þ,

PK1
k¼1 ðq‘k � p‘aðkÞÞ2 ¼ 3. Hence, if K1 > K2, then

the maximal value of DðQ; aðPÞÞ can exceed 1. Nevertheless,
for a specific pair ðQ;PÞ, a smaller value of DðQ; aðPÞÞ al-
ways indicates a closer alignment.

The problem of finding the optimal alignment between a
pair of replicates can then be formulated as computing
argminaDðQ; aðPÞÞ. Clumppling uses ILP to perform this
optimization.

Linear programming (LP) concerns the problem of maxi-
mizing or minimizing a linear objective function subject to lin-
ear equality and inequality constraints (Schrijver 1998). These
constraints form a feasible region of a convex polyhedron for
variables that are optimized. LP problems are represented in
canonical form by minxfcTxjAx � b;x � 0g, where x ¼
ðx1;x2; . . . ;xnÞT records the n variables to be optimized, cTx
is the objective function (cost function) to be minimized, and
Ax � b and x � 0 summarize the linear constraints.

ILP problems have additional constraints that some varia-
bles are integers; in those dimensions, the feasible set for the
variables is restricted to lattice points in the polyhedron. An
ILP problem in which all variables must be integers can be
represented in canonical form minxfcTxjAx � b; x � 0;
x 2 Z

ng. Although ILP problems are NP-complete (Schrijver
1998), we can capitalize on extensive effort devoted to solving
them as standard problems in optimization theory.

To formulate the pairwise alignment problem with ILP, we
place dissimilarities Cðq�i; p�jÞ between pairs of clusters in two
replicates in a K1 � K2 matrix C. Denote the alignment a as a
K1 � K2 indicator matrix W, where

Wij ¼
1; if aðiÞ ¼ j;
0; otherwise:

�

Because a is a many-to-one mapping, each row of W in constrained
to sum to exactly 1, and each column of W has sum at least 1.

The dissimilarity between two replicates in Equation (9)
can be written as follows:

DðQ; aðPÞÞ ¼
XK1

i¼1

XK2

j¼1

WijCij: (11)

The alignment problem can now be formulated with ILP:

arg minW

XK1

i¼1

XK2

j¼1

WijCij;

subject to
XK2

j¼1

Wij ¼ 1 for each i 2 ½K1�;

XK1

i¼1

Wij � 1 for each j 2 ½K2�;

Wij 2 f0; 1g for each i 2 ½K1�; j 2 ½K2�:

(12)

In fact, this minimization is an instance of binary linear
programming (Wolsey 2020), in which variables are restricted
to zeros and ones. The canonical form of this ILP problem
appears in Supplementary Methods. A pairwise alignment
problem framed in this manner can then be solved by stan-
dard ILP methods. Clumppling uses the branch-and-cut algo-
rithm (Mitchell 2002). The optimal solution w� that
minimizes the objective function corresponds to the optimal
alignment under the chosen dissimilarity measure [Equation
(12), as reformulated in Supplementary Equation (1)].

3.4 Step 2b: mode detection via community

detection

For all replicates with equally many clusters, an optimal align-
ment is obtained for each pair using ILP as described in the
previous section. Suppose there are RK replicates with K clus-

ters, and their membership matrices are Qð1ÞK ;Qð2ÞK ; . . . ;QðRKÞ
K .

Between a pair of replicates i and j, the optimal alignment of

QðiÞK to QðjÞK is a�ij, extracted from the solution w� to Equation

(12) that gives the minimal dissimilarity Da�ij
ðQðiÞK ;Q

ðjÞ
K Þ.

To align all replicates simultaneously, Clumppling con-
structs an undirected graph GK ¼ ðV;EÞ using replicates as
nodes V ¼ f1;2; . . . ;RKg. Edge set E ¼ fði; jÞji ¼
1;2; . . . ;RK; j ¼ 1; 2; . . . ;RKg has weights uij negatively
weighted by the normalized dissimilarity of optimal align-
ments: uij ¼ 1 for i ¼ j, and for i 6¼ j,

uij ¼
Dmax �Da�ij

ðQðiÞK ;Q
ðjÞ
K Þ

Dmax �Dmin
; (13)

where Dmin ¼ mini 6¼jfDa�ij
ðQðiÞK ;Q

ðjÞ
K Þg and Dmax ¼

maxi 6¼jfDa�ij
ðQðiÞK ; QðjÞK Þg. A higher weight indicates greater

similarity of two replicates under their optimal alignment.
The RK � RK matrix of edge weights is symmetric.

We seek to find sets of replicates that are collectively similar
to one another when optimally aligned, or modes. For this
task, we rely on community detection algorithms (Fortunato
2010, Javed et al. 2018). In a graph, communities are groups
of nodes that are more densely connected within the group
than outside the group. A community in the graph GK corre-
sponds to a mode in the unsupervised clustering analysis. In
terms of the associated edge-weight matrix, a matrix with
nontrivial communities has a block-diagonal structure, with
two or more blocks corresponding to communities. Entries
within a block tend to exceed entries outside it for the associ-
ated rows and columns—indicating greater edge weights for
node pairs within the same community than for pairs not in
the same community.

Clumppling first tests a null hypothesis of no community
structure. We use a test of Tokuda (2018), based on differen-
ces between (i) random symmetric matrices with a block-
diagonal community structure in which within-block
off-diagonal entries are distributed differently from outside-
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block off-diagonal entries, and (ii) random symmetric matri-
ces in which all off-diagonal entries are independently and
identically distributed. Considering the largest and smallest
eigenvalues of two transformed versions of the symmetric
edge-weight matrix of the graph, the null hypothesis is
rejected if one or both eigenvalues (of either matrix) lies out-
side specified intervals. In our application, if the null hypothe-
sis of no community structure is rejected at p ¼ 0:01, then
Clumppling proceeds to identify community structure in the
undirected weighted graph GK.

For community detection, Clumpak uses Markov clustering
(MCL) (Van Dongen 2000), employing a threshold to remove
some edges with lower weights from the network—i.e. to re-
place smaller edge weights with values of 0—thereby reducing
the density of edges. Clumppling instead uses the Louvain
method (Blondel et al. 2008), which does not require premo-
dification of the network. This algorithm has a “resolution”
parameter that affects the size of the detected communities;
larger values typically find smaller communities and more of
them. Clumppling allows the user to specify its value, with a
default of 1.

The outcome of mode detection via community detection
algorithms is a set of communities of nodes, each of which
corresponds to a subset of replicates that belong to the same
mode. Modes are disjoint so that replicate each belongs to ex-
actly one mode. Suppose mK communities are detected, which
we denote M1

K through MmK
K , with Mi

K \Mj
K ¼1 for all dis-

tinct i; j 2 ½mk�, [mk
‘¼1M‘

K ¼ V, and
Pmk

‘¼1 jM‘
Kj ¼ RK. It is pos-

sible for a mode to possess only one replicate, jM‘
Kj ¼ 1,

although this “singleton” situation is somewhat unusual.

3.5 Step 2c: consensus memberships for modes

For each mode ‘, we obtain a consensus membership matrix
in one of two ways. First, we obtain a mean membership ma-
trix of its replicates:

Q
‘

K ¼
1
jM‘

Kj
X
i2M‘

K

QðiÞK ; (14)

where, for simplicity, the QðiÞK are treated as having already
been aligned.

We also obtain a representative membership matrix, the
matrix of the replicate that has the largest sum of edge
weights within the community:

~Q
‘

K ¼ arg max
QðiÞK :i2M‘

K

X
j2M‘

K;j 6¼i

uij: (15)

Either Q
‘

K or ~Q
‘

K can be used as the consensus membership of
replicates in the mode. Clumppling uses Q

‘

K as its default.
Suppose the set of the distinct numbers of clusters is K.

After building networks of replicates for each K, we obtain a
set of modes together with consensus memberships:

fðM‘
K;Q

‘

KÞ : ‘ 2 ½mK�gK2K: (16)

3.6 Step 3: alignment of modes across K

Finally, with modes defined, we align modes across values of
K. In particular, we order the values of K 2 K in decreasing
order: K1 � K2 � � � � � KjKj. We then obtain a multipartite

graph of the pairwise alignments between modes across differ-
ent values of K.

For adjacent K values in K, Ki and Kj, where j ¼ iþ 1,
there exist mKi �mKj pairs of modes. For each such pair, we
use ILP [Equation (12)] to align consensus memberships from

Equation (16). The optimal dissimilarity is DðQ‘i

Ki
; a�ðQ‘j

Kj
ÞÞ,

where ‘i 2 ½mKi �, ‘j 2 ½mKj �, and a� is the mapping of clusters

of Q
‘j

Kj
to clusters of Q

‘i

Ki
that produces the optimum.

We then use these dissimilarities between modes as weights
to create a bipartite graph between modes of Ki and modes of
Kj. For instance, the weight between mode ‘i of Ki and mode
‘j of Kj can be set to

lðKi;‘iÞ;ðKj;‘jÞ ¼ 1�DðQ‘i

Ki
; a�ðQ‘j

Kj
ÞÞ; (17)

where larger weights indicate closer alignments. Note that
theoretically, the dissimilarity D can exceed 1 for a pair of
modes with different numbers of clusters. However, such a
situation requires pairs of clusters to be matched extremely
poorly between different values of K, an unlikely scenario af-
ter optimal alignment. Hence, negative weights in Equation
(17) are unlikely.

Combining the bipartite graphs between pairs of adjacent
values of K, we obtain a jKj-partite graph representing align-
ments across modes with different numbers of clusters. We
call our approach to the alignment of modes across K the
“direct” approach.

For consecutive values of K, we also consider a second ap-
proach that modifies the method of Pong; we term this second
approach the “merge” approach. This approach enumerates
all possible ways to merge a pair of clusters from the mode
with Kþ 1 clusters to produce K clusters. It then uses our ILP
method to align two matrices of the same size. A total of

Kþ 1
2

� �
alignments are performed, and the one that

achieves the smallest dissimilarity is chosen to be the optimal
alignment between the two modes. Note that unlike the
“direct” approach, which permits nonconsecutive K values,
the “merge” approach requires the values of K to be
consecutive.

3.7 Visualization

To display all modes at all numbers of clusters, we proceed se-
quentially in the order ðK1;K2; . . . ;KjKjÞ, arranging values of
K with K1 � K2 � . . . � KjKj. Proceeding from i ¼ 1 to
i ¼ jKj � 1, for each adjacent pair ðKi;Kiþ1Þ (e.g. Kþ 1 and K
if their numbers of clusters are consecutive), we choose the
most closely aligned pair of modes between them as
“anchors.” We then perform the following three steps:

1) All other modes with Ki clusters are aligned to the Ki

anchor.
2) All other modes with Kiþ1 clusters are aligned to the

Kiþ1 anchor.
3) The modes of these two different K values are then

aligned according to the alignment of the ðKi;Kiþ1Þ an-
chor pair.

For example, consider three numbers of clusters ðK1;K2;K3Þ,
each with two modes. Suppose the most closely aligned mode
pair for ðK1;K2Þ is (K1-Mode1, K2-Mode2) and that for
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ðK2;K3Þ, it is (K2-Mode1, K3-Mode2). First, we align modes
of ðK1;K2Þ: (1) K1-Mode2 is aligned to the anchor K1-Mode1.
(2) K2-Mode1 is aligned to the anchor K2-Mode2. (3) Clusters
in modes of these two K values are rearranged according to
the alignment between K1-Mode1 and K2-Mode2. Next, we
align modes of ðK2;K3Þ in the same way: (1) K2-Mode2 is
aligned to the anchor K2-Mode1—which was already accom-
plished in the previous step (1), as alignments between modes
with the same K apply symmetrically. (2) K3-Mode1 is aligned
to the anchor K3-Mode2. (3) Across modes of K2 and K3, the
alignment follows that between K2-Mode1 and K3-Mode2. In
this way, all modes across ðK1;K2;K3Þ are aligned.

For visualization of aligned modes, Clumppling plots
each mode as a “classic” structure plot—a stacked bar
chart of equal height—with clusters represented by different
colors (e.g. Rosenberg 2004). The number of replicates in a
mode is marked above the associated plot. To visualize rela-
tionships between modes with different numbers of clusters,
modes appear in a multipartite graph according to the
across-K alignment. Modes with the same K appear in the
same “layer,” where the number of layers is K, the number
of distinct K values considered. For each K, modes are or-
dered in decreasing size (i.e. the number of replicates in the
mode) and decreasing within-mode similarity [described in
Equation (18)]. Modes with adjacent K values are joined by
edges colored based on the edge weight [Equation (17)],
with darker colors indicating larger weights and closer
alignments. Minimal dissimilarities between pairs of modes
under their optimal alignment—i.e. the optimal objective
function values from Equation (12)—appear as labels on
the edges, with smaller values indicating closer alignments.
To visualize the variability within a mode, in addition to
the structure plot, Clumppling provides a histogram of pair-
wise dissimilarities under optimal alignment of replicates
within modes (Supplementary Fig. S1).

4 Evaluation of performance

The Clumppling implementation is described in the
Supplementary Methods. We compare the alignment perfor-
mance of Clumppling to the two existing methods, Clumpak
and Pong, that align replicates across K values. Because they
only align equal or consecutive K values, the evaluation does
so as well—although Clumppling accommodates replicates
with numbers of clusters differing by more than 1.

4.1 Performance measure

For replicates with a shared K, we use a performance measure
based on the similarity score H0 of Clumpp and Clumpak. For
a mode M‘

K, let H0‘ denote the mean similarity score for all
pairs of replicates in the mode after its replicates
Q1;Q2; . . . QjM‘

Kj
are all aligned pairwise:

H0‘ ¼

1; jM‘
Kj ¼ 1;

1

jM‘
Kj

2

� � XjM‘
Kj�1

i¼1

XjM‘
Kj

j¼iþ1

G0ðQi; a
�ðQjÞÞ; jM‘

Kj > 1;

8>>>><
>>>>:

(18)

where a� is interpreted as the mapping of clusters of Qj to
clusters of Qi for the optimal alignment of Qi and Qj.

Next, to obtain a mean similarity score involving all repli-
cates and modes, we calculate a weighted similarity score H
that assigns each replicate the mean similarity score of its as-
sociated mode:

HK ¼
1

RK

XmK

‘¼1

jM‘
KjH0‘: (19)

We modify Equation (19) to exclude singleton modes ‘
with jM‘

Kj ¼ 1. Because singletons always have similarity
score 1 in Equation (18), their existence can upwardly bias
the weighted similarity score. With sK singleton modes, the
singleton-excluded weighted similarity score becomes

~HK ¼
1

RK � sK

XmK

‘¼1; jM‘
Kj6¼1

jM‘
KjH0‘: (20)

Note that removal of the singletons reduces the number of
replicates that need to be aligned; it is useful to track the value
sK along with ~HK.

Because we compare the performance of Clumppling with
methods that only support the alignment of replicates with
consecutive values of K, we use a performance measure suited
to consecutive K values. To evaluate across-K alignments, we
measure the G0 similarity [Equation (1)] between the most
closely aligned pair of modes aligned across each ðK;Kþ 1Þ.
For this computation, an optimal alignment a� has first al-
ready been identified for this pair of modes in Section 3.6.
Two of the clusters in the mode with Kþ 1 clusters are neces-
sarily matched to the same cluster in the mode with K clusters,
or a�ðiÞ ¼ a�ðjÞ for exactly one unordered pair of
i; j 2 ½Kþ 1�, i 6¼ j. We apply the alignment a�: we merge these
two clusters, adding their columns in the membership matrix
together to produce a single column. Mathematically, suppose
the original N � ðKþ 1Þ membership matrix for the mode
with Kþ 1 clusters is P, with columns fpkgk2½Kþ1�. It now
becomes a new N � K membership matrix P0 with columns

p0k ¼
X

i:i2½Kþ1�;a�ðiÞ¼k

pi; for k ¼ 1;2; . . . ;K:

Now the two membership matrices, Q and P0, both have size
N � K. G0ðQ;P0Þ is computed for these two matrices.

Note that because this similarity calculation merges clus-
ters, it measures the similarity of a mode with K clusters and a
mode with Kþ 1 clusters according to its value for a quantity
optimized by the “merge” and not the “direct” approach.
Hence, it is expected to have higher values when the “merge”
rather than the “direct” approach is used to produce the opti-
mal alignment. Because Pong uses the “merge” approach to
align modes with consecutive numbers of clusters, the calcula-
tion evaluates Clumppling against Pong by a measure that
Pong seeks to optimize.

We evaluate the performances of all four possible combina-
tions of the mode consensus approach and the approach for
performing alignments. That is, we use either “representative”
[Equation (14)] or “average” [Equation (15)] as the consensus
membership of a mode. For alignments of modes with K and
Kþ 1 clusters, we use either the “direct” approach or the
“merge” approach in identifying the alignment with the mini-
mal dissimilarity [Equation (9)].

6 Liu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/1/btad751/7473369 by Stanford M
edical C

enter user on 07 January 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad751#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad751#supplementary-data


4.2 Datasets

We demonstrate the use of Clumppling and compare the
alignment performance of the methods with two datasets. The
first contains an unsupervised Admixture analysis of 399 indi-
viduals focused on the human population of Cape Verde.
This dataset has replicates with small values of K. It provides
an example in which many individuals, including 44 individu-
als in the admixed population of Cape Verde (Verdu et al.
2017), possess nontrivial memberships in multiple clusters;
the original analysis of Verdu et al. (2017) considered 50 rep-
licates each at K ¼ 2;3; 4;5; we reanalyzed those replicates.
For this dataset, we ran Clumppling using the default resolu-
tion parameter of 1 for the Louvain mode detection.

The second dataset provides an example of alignment with
relatively large values of K: a study of 600 chickens from 20
populations (Rosenberg et al. 2001) focused on values of
K ¼ 17; 18;19, and we add K ¼ 20;21 here (“chicken data-
set”). We begin from the original data, 27 genotyped loci in
each of the 600 individuals, running Structure (Pritchard et al.
2000) for 20 replicates for each K from 17 to 21. We ran
Structure with a burn-in period of length 5000 in the
“Admixture” model followed by 50000 MCMC repetitions,
as in Rosenberg et al. (2001). For mode detection in
Clumppling, we used 1.05 for the resolution parameter; for
this more challenging dataset, increasing the resolution above
the default of 1 leads to a larger number of modes but with
greater within-mode similarity.

4.3 Analysis of clustering replicates

For each value of K, we used Clumppling to align the 50
Admixture replicates for the Cape Verde dataset. Alignments
based on mean memberships for the mode consensus and the
“direct” approach for alignment across K values appear in
Fig. 1.

For the chicken dataset, for each K, alignments based on
mean memberships for the mode consensus and the “direct”
approach for alignment across K values appear in Fig. 2. An
additional analysis of alignments across non-consecutive K
values appears in Supplementary Fig. S2.

For comparison, we ran Clumpak and Pong. Clumpak uses
the LargeKGreedy algorithm of Clumpp to align replicates
for fixed K values. In the MCL algorithm, it uses a threshold
automatically generated from the graph properties to control
inclusion of edges of the graph. It uses the Distruct for many
K’s feature to align single results—major modes—for different
K values. Clumpak alignment results appear in
Supplementary Fig. S3.

We ran Pong (Behr et al. 2016) using its sum-squared dis-
tance metric for calculating the similarity between clusters; we
chose the sum-squared distance rather than the Jaccard simi-
larity in Pong, as it is closer to the objective used by
Clumppling. A fixed threshold of 0.9 is chosen for the Cape
Verde data and 0.955 for the chicken data to exclude edges
with weights below the threshold from the pairwise similarity
graph of replicates for mode detection. We chose these values
to be lower than the Pong default of 0.97 in order to avoid
producing large numbers of singleton modes. When identify-
ing disjoint cliques in the graph of pairwise similarities for
mode detection, we used the Pong default greedy approach to
iteratively remove the maximal clique from the graph if no
disjoint cliques are found. Alignment results for Pong appear
in Supplementary Figs S4 and S5.

For within-K alignments, the performance of Clumppling,
Clumpak, and Pong appears for Cape Verde in
Supplementary Table S1; Supplementary Table S2 shows the
numbers of replicates detected within modes by the three
methods for the two datasets. Supplementary Tables S3 and
S4 show corresponding results for the chicken dataset. For be-
tween-K alignments, Clumppling is evaluated in each of four

Figure 1. Clumppling-aligned modes for the Cape Verde dataset (K from 2 to 5), using the mean memberships as mode consensus and the “direct”

approach to alignment across K values. The multipartite graph shows the alignment across different K. Edges are colored by the edge weight [Equation

(17)]; darker color indicates a larger weight and thus better alignment. The numbers on the edges are the optimal solutions for pairwise alignments,

representing minimum values in Equation (12). Each structure plot displays a mode, where the modes for the same K appear in decreasing order by their

size—marked in parentheses above the top right corner of each plot—and then their within-mode similarity (if there is a tie in size).
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combinations: using representative or average memberships,
and using the “merge” and “direct” approaches to alignment.
The performance of Clumppling, Clumpak, and Pong in
across-K alignments for the Cape Verde dataset appears
in Supplementary Table S5 and for the chicken dataset in
Supplementary Table S6.

4.4 Performance for within-K alignment

In the Cape Verde dataset, for K ¼ 2 and K ¼ 3, all three
methods find a single mode (Supplementary Table S2). No
singletons are observed, and the singleton-excluded weighted
similarity score ~H is 1 for all three methods (Supplementary
Table S1). For K ¼ 4, although Clumpak gives the largest

Figure 2. Clumppling-aligned modes for the chicken dataset (K from 17 to 21), using the mean memberships as mode consensus and the “direct”

approach to alignment across K values. The figure design follows Figure 1.
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score, this score discards 11 singletons. For K ¼ 5,
Clumppling has the fewest modes and the largest within-
mode similarity between replicates.

In the chicken dataset, at different values of K, Clumppling
achieves consistently greater values of the singleton-excluded
similarity score (Supplementary Table S3). It does so while
finding no singleton modes; the other two methods both iden-
tify singletons at most values of K (Supplementary Table S4).

4.5 Performance for across-K alignment

In the Cape Verde dataset, across-K alignments have compa-
rable performance for the various methods, with high similar-
ity scores (Supplementary Table S5). In the more challenging
chicken dataset, with larger values of K, Clumppling produces
the largest similarity scores between the most closely aligned
pair of modes at consecutive values of K (Supplementary
Table S6). The choice of the “representative” approach for
mode consensus and the “merge” approach for cluster align-
ment gives the highest scores, but the three other choices all
produce large values for the score as well. Clumpak and Pong
achieve comparably high scores only in one of four transitions
between K values (20–21 for Clumpak, 17–18 for Pong).

4.6 Run time

Run time with Clumppling (using the “direct” approach) is
comparable to Pong; both are faster than Clumpak. In
Clumppling, the “direct” approach is faster than the “merge”
approach. A detailed comparison of the run time for the three
methods appears in Supplementary Results and
Supplementary Table S7.

5 Discussion

Clumppling is a new method for aligning replicate mixed-
membership unsupervised clustering analyses. Building upon
Clumpp (Jakobsson and Rosenberg 2007), Clumpak
(Kopelman et al. 2015), and Pong (Behr et al. 2016), it per-
forms alignment tasks that have not been addressed by earlier
methods—alignment of all modes for one value of K with all
modes of another value of K, and alignment of modes across
nonconsecutive K values. Clumppling applies algorithms
from combinatorial optimization and network theory in pro-
ducing similar alignments to those obtained by the other
methods (Figs 1 and 2 and Supplementary Figs S3–S5), often
with higher values of a similarity score for replicates within
modes at fixed K (Supplementary Tables S1 and S3) or modes
at consecutive K values (Supplementary Tables S5 and S6),
and in comparable or reduced computation time
(Supplementary Table S7). Thus, it compares favorably with
other methods in terms of its novel features, algorithmic justi-
fication, performance measures, and run time.

5.1 Algorithmic innovations

Clumppling introduces methodological advances for cluster
alignment. Though Pong previously described the alignment
problem as a standard combinatorial optimization problem,
the Clumppling ILP formulation of the alignment of two repli-
cates allows it to capitalize on efficiencies of ILP solvers.
Hence, Clumppling is comparable in speed to Pong.

The ILP formulation also enables Clumppling to address
new scenarios not covered by Pong. In particular, the

many-to-one matching that it permits for clustering replicates
with different values of the number of clusters makes it possi-
ble for Clumppling to perform alignments across values of K,
including across nonconsecutive values. Such alignments can
be useful, e.g. in analyses for which K extends over a large
range (Funk et al. 2020); for large datasets in which computa-
tion is slow, it may be sensible to perform exploratory cluster-
ing with select values of K—say, every fifth value—to then
summarize with Clumppling, and only then, if necessary, to
consider consecutive K in a meaningful range.

Finally, combining the advance from Pong in formulating
cluster alignment in terms of a classic setting in optimization
with the advance from Clumpak of using community detec-
tion algorithms, Clumppling is able to perform a more com-
prehensive analysis of all observed modes. In particular,
Clumppling aligns all modes across K values, rather than
aligning only single modes at each K value, as in Clumpak
and Pong. This alignment is informative to clarify clustering
patterns in scenarios in which multimodality arises as K is in-
creased but a major mode reappears as K is increased still fur-
ther (e.g. Fig. 7 of Wang et al. 2007).

The formalization of the cluster alignment problem here
establishes a framework for further enhancement. By clarify-
ing the components of the problem—pairwise alignment of
replicates at fixed K (step 2a), mode detection at fixed K (step
2b), defining the consensus of modes (step 2c), and aligning
modes across K (step 3)—each component can be separately
investigated. Optimization methods other than the ILP
branch-and-cut algorithm and network-based clustering
methods other than the Louvain algorithm can be further
tested for improvements in their associated steps.

5.2 Empirical performance

The performance differences in our empirical examples are
relatively small. In the Cape Verde example, alignments were
clear across the methods, all of which performed comparably
(Supplementary Tables S1, S2, and S5). In our more difficult
chicken example, Clumppling produced the highest value
for the mean similarity of replicates within modes
(Supplementary Table S3), identified the fewest singletons
(Supplementary Table S4), and produced the highest similar-
ity scores between modes with consecutive values of K
(Supplementary Table S6). In both cases, the modes them-
selves are similar across methods (Fig. 1 and Supplementary
Figs S3A, S4A, and S5A for Cape Verde, and Fig. 2 and
Supplementary Figs S3B, S4B, and S5B for chickens).

Together, Clumpp, Clumpak, and Pong have been widely
used, all performing well in typical empirical settings. When
clustering algorithms uncover clear structure—e.g. with repli-
cable co-clustering of some individuals in one cluster and
other individuals in another—the proper alignment is often
clear, and it is likely to be found by all methods. In a modeling
study describing alignment cost under a Dirichlet model, we
have found that a correct permutation often has cost far be-
low that of the other permutations (Liu et al. 2022).
Clumppling can be added to the list of methods that can be
used to find this permutation.

5.3 Methodological choices and extensions

In developing Clumppling, we have made decisions about a
number of methodological trade-offs. For the pairwise
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alignment step, Pong previously used the polynomial-time
Hungarian algorithm for alignments at a fixed value of K. In
Clumppling, we have chosen to use ILP, which is not
polynomial-time and can be slower than the approach of
Pong, though still faster than Clumpak (Supplementary Table
S7). However, ILP offers the ability to facilitate alignments
across both consecutive and nonconsecutive values of K;
Pong accommodates only consecutive values.

For the alignment cost function, our framework allows any
dissimilarity measure between replicates as the objective for
the ILP problem—provided that it is a linear combination of
pairwise between-cluster dissimilarities. Our specific qua-
dratic function of entries in two membership matrices is
grounded in the analysis of Liu et al. (2023). In particular, if
two replicates have the same number of clusters, then the dis-
similarity that Clumppling seeks to minimize via ILP is exactly
(a constant multiple of) the alignment cost from Liu et al.
(2023).

Choices in community detection affect the granularity of
the modes obtained. In one extreme, each replicate is its own
mode; in the other, replicates with truly distinct co-clustering
patterns are grouped in the same mode. Clumppling follows
Clumpak in using an adaptable parameter for tuning this
granularity. Nevertheless, it is possible that replicates visually
distinguishable as belonging to distinct modes might be
grouped. Such patterns can sometimes be diagnosed by the
appearance of membership vectors that, within individual
replicates, are near a permutation of ð1; 0;0; . . . ; 0Þ, but that
are not near a simplex vertex in the mean of replicates within
the mode. In applications, users can increment the
“resolution” parameter, e.g. by 0.05 or 0.01, choosing
larger values to increase granularity and smaller values to
decrease it.

5.4 Conclusions

With its formulation of the cluster alignment problem in de-
fined steps, combination of pairwise alignment ideas based on
Pong and community detection based on Clumpak, and addi-
tion of new features for mode alignment across values of K,
Clumppling can assist in the many cluster alignments that
take place in population-genetic data analysis. Notably, how-
ever, mixed-membership clustering, also sometimes known as
soft or fuzzy clustering, has broad applications beyond popu-
lation genetics, including elsewhere in bioinformatics, as well
as in image analysis, marketing, and text mining (De Oliveira
and Pedrycz 2007, Airoldi et al. 2014). Problems of compar-
ing and visualizing multiple clustering results in a general con-
text have perhaps been of greater interest for hard clustering
(Meil�a 2007, Zhou et al. 2009, L’Yi et al. 2015), in which
memberships of individuals are assigned to single clusters. For
similar problems of soft clustering, the methods from popula-
tion genetics—Clumppling and its predecessors—are avail-
able. Clumppling can be applied to any membership-based
clustering algorithms applied multiple times on the same set
of entities, and it potentially has broad applications in diverse
uses of mixed-membership cluster analysis.
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