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1. Introduction

In mathematical and statistical phylogenetics, the properties of evolutionary trees are 
used to make inferences about the processes that have given rise to those trees [2,11]. 
Each tree examined in a data set is an element of some class of trees, and the mathematics 
pertaining to that class suggests quantities that can be informatively measured for the 
trees contained in the class. Often, for a label set X containing n labels, the class of trees 
of interest is the set of bifurcating labeled topologies associated with the label set. For 
example, if an investigator seeks to understand the evolutionary relationships among n
named species in a taxonomic group, the phylogenetic problem of interest is to identify 
from data the appropriate labeled topology among the (2n − 3)!! possibilities.

For many phylogenetic problems, it is not the labels of specific lineages that are of 
interest, but rather, the shape of the evolutionary tree [6,9]. For example, does the tree 
shape fit a model in which each lineage is equally likely to be the next to split into 
descendant lineages? If not, what biological features of lineages produce differences in 
the rates at which lineages split? Are the rates affected by abiotic factors, such as features 
of the environments that the lineages inhabit? For such questions, it is not the labeled 
topologies that are of interest, but rather, the unlabeled topologies.

The importance of the unlabeled topologies has grown with the proliferation of phy-
lodynamic studies—in which fast-evolving genetic sequences from pathogens are investi-
gated using evolutionary trees [4,7]. When many genetic sequences are collected across 
large numbers of hosts on influenza, SARS-CoV-2, or other pathogens, the placement of 
specific sequences in the tree is of less interest than what the tree shape reveals about 
transmission chains, clusters of epidemiologically related cases, and the processes that 
spread the pathogen. Hence, although unlabeled topologies have long been examined as 
mathematical objects [2,11], phylodynamic studies have given rise to new quantities that 
can be computed from them as statistics for measuring their properties [1,5].

Colijn & Plazzotta [1] introduced a variety of statistics for unlabeled topologies — bi-
furcating unlabeled rooted trees — focusing on metrics for comparing pairs of unlabeled 
topologies. Underlying some of their statistics is a bijection they devised between the 
set of unlabeled topologies with n � 1 leaves and the positive integers. Each unlabeled 
topology t is associated with a positive integer that is computed recursively from the in-
tegers associated with the immediate subtrees of its root. In reverse, given an integer, the 
left and right subtrees associated with that integer are calculated, uniquely identifying 
the associated unlabeled topology. The “distance” between unlabeled topologies is the 
absolute difference between their associated integers. Rosenberg [8] then studied the bi-
jection between unlabeled topologies and positive integers, characterizing the unlabeled 
topologies associated with the smallest and largest values among the integers associated 
with unlabeled topologies of n leaves, and investigating the asymptotic growth of those 
quantities.

The Colijn–Plazzotta bijection and distance metric assume bifurcating trees. However, 
in scenarios in which the rate of divergence of evolutionary lineages is large compared 
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to the rates of evolution along lineages individually, it is natural to instead consider 
multifurcating trees. In such cases, a sequence of bifurcations might be indistinguishable 
from a multifurcation event if insufficient time has occurred between bifurcations for 
mutations to accumulate. Additionally, in cases in which multiple genealogical lineages 
of interest trace to a single parent — such as in an instantaneous diversification of a 
lineage into multiple descendants — a tree has a genuine multifurcation.

Here, we introduce bijections between unlabeled multifurcating topologies and positive 
integers. We consider multifurcating trees in two different ways. First, for fixed k � 2, 
we consider the class of unlabeled multifurcating topologies in which each internal node 
possesses exactly k immediate descendants (strict k-furcation). Next, for fixed k � 2, 
we consider the class of unlabeled multifurcating topologies in which internal nodes can 
vary in their numbers of immediate descendants, with each node possessing at least two 
and at most k immediate descendants. The bijections between unlabeled multifurcating 
topologies and positive integers can be used in comparing trees in a manner analogous 
to the use by Colijn & Plazzotta [1] of the bijection for bifurcating topologies.

In Section 2, we recall the Colijn-Plazzotta ranking scheme for bifurcating trees. Next, 
in Section 3, as a prelude to the general case of strictly k-furcating trees, we extend the 
scheme to strictly trifurcating trees; in Section 4, we complete the generalization. In 
Section 5, we consider trees that are at-most-k-furcating. We conclude with a discussion 
in Section 6.

2. Bifurcating trees

We begin by recalling the Colijn–Plazzotta scheme for assigning ranks to bifurcating 
unlabeled rooted trees [1,8]. Let Bn be the set of bifurcating unlabeled rooted trees 
with exactly n leaves. For n = 1, Bn has a single unlabeled tree with one leaf. Let 
B = ∪∞

n=1Bn be the set of bifurcating unlabeled rooted trees, considering all possible 
numbers of leaves. We write B∗ = B \B1.

For a tree b ∈ B, let m : B → Z+ be the function that yields the number of leaves 
of b. Let s : B∗ → B × B be a function that extracts a vector containing the imme-
diate subtrees of the root of a tree (in a canonical order that we describe shortly). We 
abbreviate by b1 and b2 the first and second coordinates of s(b).

Definition 2.1. The Colijn–Plazzotta ranking f : B → Z+ for bifurcating unlabeled 
rooted trees is a function that satisfies

f(b) =
{

1 if m(b) = 1
1
2f(b1)[f(b1) − 1] + f(b2) + 1 if m(b) > 1.

We shall abbreviate the Colijn–Plazzotta ranking as the CP ranking. To determine the 
CP rank of a tree, we require it to be written in a canonical form in which f(b1) � f(b2). 
The 1-leaf tree has CP rank 1; hence, if it is an immediate subtree of the root of b and 
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m(b) � 3, then because it has the smallest CP rank among all trees, it is necessarily in 
the second coordinate of s(b). For convenience, we draw all trees b such that b1 is the 
left-hand subtree and b2 is the right-hand subtree. This notation will be generalized for 
larger trees.

That Definition 2.1 describes a bijection and yields an inverse function is proven by 
Colijn & Plazzotta [1] and Rosenberg [8]. For v = 1, the inverse function f−1 : Z+ → B

is the tree with one leaf, and for v � 2, f−1(v) is the tree in B whose two subtrees have 
ranks

(
k1(v), k2(v)

)
=
(⌈√

8v − 7 − 1
2

⌉
, v − k1(v)[k1(v) − 1]

2 − 1
)
. (2.1)

We can also examine the function m : B → Z+ that gives the number of leaves in the 
tree with specified CP rank. The function m satisfies m

(
f−1(1)

)
= 1 and, for v � 2,

m
(
f−1(v)

)
= m

(
f−1
(⌈√

8v − 7 − 1
2

⌉))

+ m

(
f−1
(
v −
⌈√

8v − 7 − 1
2

⌉⌈√
8v − 7 − 3

2

⌉/
2 − 1

))
.

For bifurcating trees with small ranks, Fig. 1 displays the trees along with their ranks 
and the ranks of their subtrees.

3. Trifurcating trees

To prepare for the general k-furcating case, we now consider trifurcating trees, in 
which each internal node possesses exactly three immediate descendant nodes. Let Tn

be the set of trifurcating unlabeled rooted trees with exactly n leaves. As was true for 
the bifurcating case, for the trivial tree with n = 1, Tn consists of a single unlabeled 
tree with one leaf. Let T = ∪∞

n=1Tn be the set of trifurcating unlabeled rooted trees, 
considering all possible numbers of leaves, and let T ∗ = T \T1. Note that for even values 
of n, Tn is empty, as no strictly trifurcating tree can possess an even number of leaves.

We continue to use the notation m and s for concepts analogous to those of the 
bifurcating case. For a tree t ∈ T , let m : T → Z+ count the number of leaves of t. Let 
s : T ∗ → T × T × T denote the vector that extracts the immediate subtrees of the root 
of a tree. We abbreviate by t1, t2, t3 the first, second, and third coordinates of s(t), in a 
canonical order discussed below.

3.1. Ranking scheme

We seek to find a bijection f : T → Z+ between trifurcating trees and positive integers. 
We accomplish this task in a manner analogous to that used in the bifurcating case. In 
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Fig. 1. The Colijn–Plazzotta ranking for bifurcating rooted trees for small ranks. For ranks v from 1 to 30, 
the tree b with CP rank v is shown, as is the ordered pair of CP ranks of the subtrees, (f(b1), f(b2)). Each 
tree is drawn in canonical form, so that the rank associated with the left-hand subtree is greater than or 
equal to the rank associated with the right-hand subtree. The ordered pair 

(
k1(v), k2(v)

)
is obtained from 

eq. (2.1), and the tree is obtained by recursive application of eq. (2.1).

that case, we devised a polynomial that is quadratic in the rank of the first subtree and 
linear in that of the second subtree. With three subtrees, we increase the degree of the 
polynomial by one, and compute a cubic term for the first subtree, a quadratic term for 
the second, and a linear term for the third.

Consider a tree t = (t1, t2, t3). We assume a canonical form in which f(t1) � f(t2) �
f(t3); this form places a dictionary order on trees. To assign the rank f(t), we must sum 
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three quantities: (1) the number of nontrivial trees in T whose first subtree has rank less 
than f(t1); (2) the number of nontrivial trees in T whose first subtree has rank f(t1)
and second subtree has rank less than f(t2); and (3) the number of nontrivial trees in 
T whose first subtree has rank f(t1), second subtree has rank f(t2), and third subtree 
has rank less than f(t3). We then assign t the rank equal to the sum of the quantities 
in (1), (2), and (3), plus 2. The +2 assigns the next available rank to t, accounting for 
the trivial tree with n = 1; we can view the trivial tree as having subtrees with ranks 
(1, 0, 0).

For quantity (3), the number of nontrivial trees in T whose first subtree has rank 
f(t1), whose second tree has rank f(t2), and whose third subtree has rank less than 
f(t3), we count all trees with subtrees (t1, t2, y3), where y3 ranges from 1 to f(t3) − 1. 
The number of such trees is

f(t3)−1∑
y3=1

1 = f(t3) − 1. (3.1)

For quantity (2), we count nontrivial trees in T whose first subtree has rank f(t1) and 
whose second tree has rank less than f(t2). The number of such trees is

f(t2)−1∑
y2=1

y2∑
y3=1

1 =
f(t2)−1∑
y2=1

y2 = [f(t2) − 1]f(t2)
2 . (3.2)

Finally, for quantity (1), we count nontrivial trees in T with first subtree rank less than 
f(t1):

f(t1)−1∑
y1=1

y1∑
y2=1

y2∑
y3=1

1 =
f(t1)−1∑
y1=1

y1∑
y2=1

y2 =
f(t1)−1∑
y1=1

y1(y1 + 1)
2 = [f(t1) − 1]f(t1)[f(t1) + 1]

6 .

(3.3)

We sum eqs. (3.3), (3.2), and (3.1), plus 2, and we obtain the index for tree t:

f(t) = 1
6[f(t1) − 1]f(t1)[f(t1) + 1] + 1

2[f(t2) − 1]f(t2) + f(t3) + 1. (3.4)

As an example, consider tree t = (t1, t2, t3) with 
(
f(t1), f(t2), f(t3)

)
= (4, 3, 3). With 

eq. (3.4), we obtain f(t) = 1
6 (4 − 1)4(5) + 1

2 (3 − 1)3 + 3 + 1 = 17. Hence, the tree with 
subtree ranks (4, 3, 3) is the tree with rank 17.

Definition 3.1. The ranking f : T → Z+ for trifurcating unlabeled rooted trees is a 
function that satisfies

f(t) =

⎧⎨
⎩

1 if m(t) = 1
1[f(t1) − 1]f(t1)[f(t1) + 1] + 1[f(t2) − 1]f(t2) + f(t3) + 1 if m(t) > 1.
6 2
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Fig. 2. Trifurcating trees associated with specified ranks. For each rank v from 1 to 30, the ranks (
k1(v), k2(v), k3(v)

)
of its three subtrees appear, followed by the trifurcating tree associated with rank 

v. The ordered triple 
(
k1(v), k2(v), k3(v)

)
is obtained from Theorem 3.3, and the tree is obtained by recur-

sive application of Theorem 3.3.

For trifurcating trees with small ranks, Fig. 2 displays the trees along with their ranks 
and the ranks of their subtrees.

3.2. Bijectiveness of ranking scheme

That our ranking for trifurcating trees bijectively associates T with the natural num-
bers Z+ is clear by construction. As in the Colijn-Plazzotta ranking for bifurcating trees, 
underlying the construction is the idea that given a tree t, the integer assigned to t is 
obtained by counting trees whose ranks are less than those of t and adding 1 to yield 
the rank of t. Trees are ordered lexicographically, as illustrated in Fig. 2. Each positive 
integer is trivially assigned a rank (surjectivity). That two distinct trees t and t′ possess 
different ranks is likewise trivial, as one of the two trees must be enumerated among the 
trees with lower ranks than the other.

Nevertheless, an algebraic proof that our ranking for trifurcating trees bijectively 
associates T with the natural numbers Z+ is instructive. The proof illustrates the way in 
which the three subtree ranks are analogous to the elementary concept of “place value.” 
Each subtree entry is associated with a polynomial: cubic for the first, quadratic for the 
second, and linear for the third. As in “place value,” the contribution to the rank from 
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each of the latter two entries is bounded above by the increase in rank caused by the 
smallest possible increment to its predecessor.

Theorem 3.2. The function f : T → Z+ is a bijection.

Proof. To prove injectivity, first note that for the trivial tree, f
(
(1, 0, 0)

)
= 1, and for 

any tree t �= (1, 0, 0), f(t) > 1. Next, we must show that for two distinct nontrivial trees 
t = (t1, t2, t3) and y = (y1, y2, y3), f(t) �= f(y). We can separate the problem into three 
cases: (i) t1 = y1, t2 = y2, and t3 �= y3; (ii) t1 = y1 and t2 �= y2; (iii) t1 �= y1.

Case (i). Suppose t1 = y1 and t2 = y2; without loss of generality, assume f(t3) > f(y3). 
Then

f(t) − f(y) = f(t3) − f(y3) > 0,

so that f(t) �= f(y).

Case (ii). Suppose t1 = y1, and without loss of generality, assume f(t2) > f(y2). Then

f(t) − f(y) = [f(t2) − 1]f(t2)
2 − [f(y2) − 1]f(y2)

2 + f(t3) − f(y3).

Because f(t2) > f(y2) and both f(t2) and f(y2) are integers, f(t2) � f(y2) + 1, and

[f(t2) − 1]f(t2)
2 − [f(y2) − 1]f(y2)

2 � f(y2)[f(y2) + 1]
2 − [f(y2) − 1]f(y2)

2 = f(y2).

Next, note that because t is not the trivial tree (1, 0, 0), f(t3) � 1. Because a tree is 
required to be in canonical form, f(y3) � f(y2). Hence f(t3) − f(y3) � 1 − f(y2). Then 
f(t) − f(y) � f(y2) +

(
1 − f(y2)

)
= 1, and f(t) �= f(y).

Case (iii). Suppose t1 �= y1. We can assume without loss of generality that f(t1) > f(y1). 
Then

f(t) − f(y) = [f(t1) − 1]f(t1)[f(t1) + 1]
6 − [f(y1) − 1]f(y1)[f(y1) + 1]

6

+ [f(t2) − 1]f(t2)
2 − [f(y2) − 1]f(y2)

2 + f(t3) − f(y3).

Because f(t1) > f(y1), and both f(t1) and f(y1) are integers, f(t1) � f(y1) + 1, and

[f(t1) − 1]f(t1)[f(t1) + 1]
6 − [f(y1) − 1]f(y1)[f(y1) + 1]

6

� f(y1)[f(y1) + 1][f(y1) + 2]
6 − [f(y1) − 1]f(y1)[f(y1) + 1]

6

= f(y1)[f(y1) + 1]
. (3.5)
2
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We also know that because f(y2) � f(y1),

[f(t2) − 1]f(t2)
2 − [f(y2) − 1]f(y2)

2 � 0 − [f(y1) − 1]f(y1)
2 . (3.6)

As in Case (ii), we have

f(t3) − f(y3) � 1 − f(y1). (3.7)

Combining inequalities (3.5), (3.6), and (3.7), we see that

f(t) − f(y) � f(y1)[f(y1) + 1]
2 − [f(y1) − 1]f(y1)

2 + 1 − f(y1) = 1,

and f(t) �= f(y).
With all three cases demonstrated, we conclude that if (t1, t2, t3) �= (y1, y2, y3), then 

f(t) �= f(y), so that f is injective.
For surjectivity, each positive integer v � 2 has a unique representation as a decom-

position

v = (k1 − 1)k1(k1 + 1)
6 + (k2 − 1)k2

2 + k3 + 1, (3.8)

with k1, k2, k3 positive integers and k1 � k2 � k3. To understand why such a decom-
position exists, note that as k3 ranges from 1 to k2, (k2 − 1)k2/2 + k3 ranges from 
(k2 − 1)k2/2 + 1 to k2(k2 + 1)/2, so that the ordered pairs (k2, k3) with k2 and k3 vari-
able, k1 � k2 � k3 � 1, enumerate all positive integers from 1 to k1(k1 + 1)/2.

Next, as k2 ranges from 1 to k1 and k3 ranges from 1 to k2, (k1 − 1)k1(k1 + 1)/6 +
(k2 − 1)k2/2 + k3 ranges from (k1 − 1)k1(k1 + 1)/6 + 1 to k1(k1 + 1)(k1 + 2)/6. Hence, 
the ordered pairs (k1, k2, k3) with c � k1 � k2 � k3 enumerate all positive integers from 
1 to c(c + 1)(c + 2)/6.

Noting that 1 is added in the decomposition in eq. (3.8), eq. (3.8) traverses all the 
positive integers greater than or equal to 2. �
3.3. The inverse function that recursively converts an integer to a tree

Theorem 3.3. The function f−1 : Z+ → T gives the three coordinates of the tree whose 
rank is v, and it satisfies

(a) f−1(1) is the tree with one leaf, and
(b) for v � 2, f−1(v) is the tree t ∈ T whose subtrees have the ranks:

k1(v) =
⌊

31/3 +
(
27v − 54 +

√
3(243v2 − 972v + 971)

)2/3
2/3
( √

2
)1/3

⌋
(3.9)
3 27v − 54 + 3(243v − 972v + 971)
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k2(v) =
⌊

1
6

(√
3
√

−4k3
1(v) + 4k1(v) + 24v − 45 + 3

)⌋
(3.10)

k3(v) = v − [k1(v) − 1]k1(v)[k1(v) + 1]
6 − [k2(v) − 1]k2(v)

2 − 1. (3.11)

Proof. For v � 2, we find the unique 
(
f(t1), f(t2), f(t3)

)
with f(t1) � f(t2) � f(t3) � 1

that solves

v = 1
6[f(t1) − 1]f(t1)[f(t1) + 1] + 1

2[f(t2) − 1]f(t2) + f(t3) + 1.

First, f(t1) is the largest integer satisfying

1
6 [f(t1) − 1]f(t1)[f(t1) + 1] + 2 � v.

Solving the inequality, the first subtree has rank as in eq. (3.9).
Next, f(t2) is the largest integer satisfying

1
2 [f(t2) − 1]f(t2) + 2 � v − 1

6 [k1(v) − 1]k1(v)[k1(v) + 1].

Solving, the second subtree has rank as in eq. (3.10). �
Using the inverse function f−1, Fig. 2 gives the trifurcating trees for ranks 1 to 30.

3.4. Number of leaves associated with the tree of a given integer

With the bijection between trifurcating trees and positive integers in Theorem 3.3, 
we quickly obtain a recursion for the number of leaves possessed by a trifurcating tree 
with specified rank.

Theorem 3.4. The function m : B → Z+ that gives the number of leaves in the tree 
f−1(v) with specified rank satisfies m

(
f−1(1)

)
= 1, and for v � 2,

m
(
f−1(v)

)
= m

(
f−1

(⌊
31/3 +

(
27v − 54 +

√
3(243v2 − 972v + 971)

)2/3
32/3
(
27v − 54 +

√
3(243v2 − 972v + 971)

)1/3
⌋))

+m

(
f−1
(⌊

1
6

(√
3
√
−4k3

1(v) + 4k1(v) + 24v − 45 + 3
)⌋))

+m

(
f−1
(
v − [k1(v) − 1]k1(v)[k1(v) + 1]

6 − [k2(v) − 1]k2(v)
2 − 1

))
.

Proof. The number of leaves in the tree of rank v � 2, or m
(
f−1(v)

)
, is the sum of 

the numbers of leaves in its first, second, and third subtrees, or m
(
k1(v)

)
+ m
(
k2(v)

)
+

m
(
k3(v)

)
. �
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4. k-furcating trees

The results for bifurcating and trifurcating trees generalize. Let Un be the set of k-
furcating unlabeled rooted trees with n leaves. For n = 1, Un has a single unlabeled 
tree with one leaf. Suppose each non-leaf node of a tree with n � k leaves has exactly k
descendants. Let U = ∪∞

n=1Un be the set of k-furcating unlabeled rooted trees, consid-
ering all possible numbers of leaves. Let U∗ = U \ U1. We describe a bijection between 
unlabeled k-furcating rooted trees and positive integers.

For a tree u ∈ U , m : U → Z+ yields the number of leaves of u, and s : U∗ →
U × U × · · · × U extracts a vector containing the immediate subtrees of the root of a 
tree. We abbreviate by u1, u2, . . . , uk the k coordinates of s(u). The case of k = 2 is the 
Colijn-Plazzotta ranking. The case of k = 3 is the case described in Section 3. We now 
consider arbitrary k � 2.

4.1. Ranking scheme

We seek to derive the rank of a tree u = (u1, u2, . . . , uk). We must sum k quantities: 
(1) the number of nontrivial trees in U whose first subtree has rank less than f(u1); 
(2) the number of nontrivial trees in U whose first subtree has rank f(u1) and whose 
second subtree has rank less than f(u2); . . . (k) the number of nontrivial trees whose 
first subtree has rank f(u1), whose second subtree has rank f(u2), . . ., whose (k− 1)-th 
subtree has rank f(uk−1), and whose kth subtree has rank less than f(uk). We assign to 
u the next available rank, equal to the sum of the quantities in (1), (2), . . ., (k) plus 2, 
accounting for the trivial tree with n = 1.

The number of trees whose first term is less than f(u1) is the number of trees satisfying 
f(u1) > f(u2) � f(u3) � . . . � f(uk). Coordinate f(u2) is strictly less than f(u1), f(u3)
can be at most f(u2), and so on. Because all coordinates take integer values, the desired 
number of trees is

f(u1)−1∑
y1=1

y1∑
y2=1

· · ·
yk−1∑
yk=1

1.

More generally, considering only the “end” of a vector of subtrees, from coordinate n � k

to coordinate k, the number of trees whose nth term is less than f(un) follows the same 
logic. We must consider all possible values (un, un+1, . . . , uk) with f(un+1) � f(un) − 1, 
f(un+2) � f(un+1), and so on, so that the desired number of trees is

f(un)−1∑
yn=1

yn∑
yn+1=1

· · ·
yk−1∑
yk=1

1.

From this expression, we devise a formula for the rank of a tree u.
We have the following lemma.
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Lemma 4.1. The number of nonincreasing sequences of positive integers (yn, yn+1, . . . , yk)
in which all entries are bounded above by yn−1 is

yn−1∑
yn=1

yn∑
yn+1=1

· · ·
yk−1∑
yk=1

1 =
(
yn−1 + k − n

k − n + 1

)
.

Proof. We proceed by induction, working from inner sums outward. For the inner sum, 
with n = k,

yk−1∑
yk=1

1 =
(
yk−1

1

)
.

Now assume that our statement holds for the sum indexed by yn+1. That is, assume that

yn∑
yn+1=1

yn+1∑
yn+2=1

· · ·
yk−1∑
yk=1

1 =
(
yn + k − n− 1

k − n

)
.

Therefore,

yn−1∑
yn=1

yn∑
yn+1=1

· · ·
yk−1∑
yk=1

1 =
yn−1∑
yn=1

(
yn + k − n− 1

k − n

)
.

Using the standard combinatorial identity for positive integers m, n,

n∑
k=1

(
k + m− 1

m

)
=
(
n + m

m + 1

)
,

we see that, as desired,

yn−1∑
yn=1

(
yn + k − n− 1

k − n

)
=
(
yn−1 + k − n

k − n + 1

)
. �

Definition 4.2. Consider a k-furcating tree u = (u1, u2, . . . , uk). The ranking f : U → Z+

for k-furcating unlabeled rooted trees is a function that satisfies f(u) = 1 for the one-leaf 
tree with m(u) = 1, and for m(u) > 1,

f(u) = 1
k! [f(u1) − 1]f(u1)[f(u1) + 1] · · · [f(u1) + k − 2] + . . .

+ 1
2! [f(uk−1) − 1]f(uk−1) + f(uk) + 1 (4.1)

= 2 +
k∑(

f(ui) + k − i− 1
k − i + 1

)

i=1
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= 2 +
k∑

i=1

(
f(uk−i+1) + i− 2

i

)
. (4.2)

To obtain this definition, we have applied Lemma 4.1 term-wise to each of the k entries 
of the vector of subtrees associated with tree u. If f(uk) +1 is more instructively written 
[f(uk) − 1] + 2, then the term with index i in eq. (4.1) counts the number of trees with 
fixed rank in preceding positions and rank less than f(ui) in position i; we adjust the 
sum by +2 to assign the next available rank.

For k = 3, Definition 4.2 reduces to Definition 3.1; for k = 2, it reduces to Defini-
tion 2.1.

4.2. Bijectiveness of ranking scheme

As in the bifurcating and trifurcating cases, that Definition 4.2 bijectively relates mul-
tifurcating rooted trees and positive integers is clear from the construction. An algebraic 
argument demonstrating the bijection can make use of Macaulay’s binomial expansion 
theorem [10,12].

Theorem 4.3 (Macaulay’s binomial expansion theorem [10]). Each positive integer can 
be decomposed as a certain sum of binomial coefficients. In particular, let h and i be 
positive integers. Then h can be uniquely written in the form

h =
(
di
i

)
+
(
di−1

i− 1

)
+ . . . +

(
dj
j

)
, (4.3)

where dk takes integer values for all k and di > di−1 > . . . > dj � j � 1. The expression 
in eq. (4.3) is called the i-binomial expansion of the integer h.

We can make a slight adaptation of Macaulay’s binomial expansion theorem. By the 
theorem, for fixed i > 0, each integer h > 0 can be uniquely written in the form

h =
(
di
i

)
+
(
di−1

i− 1

)
+ . . . +

(
dj
j

)
, (4.4)

where dk takes integer values for all k and di > di−1 > . . . > dj−1 � j � 1, and dj � 0. 
We restate this adaptation as a corollary to Theorem 4.3.

Corollary 4.4. If the last entry in the decreasing sequence (di, di−1, . . . , dj) is permitted 
to equal 0, then the decomposition of h in the form of eq. (4.4) is still unique.

Proof. We take the i-binomial expansion of the integer h according to Theorem 4.3. If it 
does not contain a term 

(
dj

1
)
, then we append a term 

(0
1
)

to make a modified i-binomial 
expansion. �
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Theorem 4.5. The function f : U → Z+ described in Definition 4.2 is bijective.

Proof. Definition 4.2 associates the 1-leaf tree with f(u) = 1 and the k-furcating tree of 
k leaves with f(u) = 2. We wish to show that for all other k-furcating trees u, the value 
produced by Definition 4.2 for tree u is greater than or equal to 3 and is associated only 
with tree u (injectivity). We also wish to show that each positive integer greater than or 
equal to 3 is associated with a tree u (surjectivity).

For injectivity, in our Definition 4.2, for each i from 1 to k, let

di = f(uk−i+1) + i− 2.

Then eq. (4.2) can be rewritten

f(u) − 2 =
(
dk
k

)
+
(
dk−1

k − 1

)
+ . . . +

(
d1

1

)
. (4.5)

We have di+1 > di; we see this by noting that f(uk−(i+1)+1) � f(uk−i+1), so that

di+1 = f(uk−(i+1)+1) + (i + 1) − 2 > f(uk−i+1) + i− 2 = di.

We can now make use of the modification of Macaulay’s binomial expansion theorem in 
Corollary 4.4, applied with the integer f(u) −2 in the role of h and k in the role of i. The 
modified theorem states that f(u) − 2 has a unique modified k-binomial decomposition; 
as eq. (4.5) describes such a decomposition, that decomposition is unique.

For surjectivity, each positive integer f(u) � 3 can be applied in eq. (4.5) to recover 
the associated 

(
f(u1), f(u2), . . . , f(uk)

)
. �

4.3. The inverse function that recursively converts an integer to a tree

We can apply the bijective representation of k-furcating trees with positive integers 
to identify the tree associated with a specific integer. With the exception of the 1-leaf 
tree, associated with the integer 1, a k-furcating tree has the form (u1, u2, . . . , uk).

The function f−1 : Z+ → U gives a tree; to obtain f−1(v) for a tree with rank v, we 
first compute the vector of ranks of the immediate subtrees of the root of the tree with 
rank v:
(a) f−1(1) is the tree with one leaf.
(b) For v � 2, f−1(v) is the tree u ∈ U whose subtrees have the ranks given by the 
algorithm below.

1. To find the first term, f(u1) is the largest integer satisfying

(
f(u1) + k − 2

)
+ 2 � v.
k
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Fig. 3. 4-furcating trees associated with specified ranks. For each rank v from 1 to 30, the ranks (
k1(v), k2(v), k3(v), k4(v)

)
of its four subtrees appear, followed by the 4-furcating tree associated with 

rank v. The ordered quadruple 
(
k1(v), k2(v), k3(v), k4(v)

)
is obtained from the algorithm in Section 4.3, 

and the tree is obtained by recursive application of the algorithm.

2. As in the 3-furcating case, we remove the contributions to the total rank of pre-
vious elements. Proceeding sequentially from j = 2 until j = k, the jth term in (
f(u1), f(u2), . . . , f(uk)

)
is obtained from terms 1 to j− 1 by computing the largest 

integer satisfying

(
f(uj) + k − j − 1

k − j + 1

)
+ 2 � v −

j−1∑
i=1

(
f(ui) + k − i− 1

k − i + 1

)
.

The algorithm gives the ranks of the k immediate subtrees of the root of the tree with 
rank v; to obtain the entire tree for rank v, we apply the algorithm recursively to ranks 
f(u1), f(u2), . . . , f(uk).

Note that in order to calculate the number of leaves associated with the tree of rank 
v, we recursively proceed by identifying the k subtrees of tree f−1(v), summing their 
numbers of leaves. In other words, the function m : U → Z+ that gives the number of 
leaves in the tree with specified rank v satisfies m

(
f−1(1)

)
= 1, and for v � 2,

m
(
f−1(v)

)
=

k∑
j=1

m
(
f−1(kj(v))),

with kj(v) representing the rank of the jth coordinate in the tree with rank v, as obtained 
when the algorithm proceeds through index j.

As an example, Fig. 3 gives the bijection for 4-furcating trees associated with ranks 1 
to 30.
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5. At-most-k-furcating trees

We next consider at-most-k-furcating trees, trees for which each non-leaf node pos-
sesses at most k descendants. Let An be the set of unlabeled rooted trees with n leaves, 
such that each non-leaf node possesses at most k descendants. Let A = ∪∞

n=1An be the 
set of all at-most-k-furcating unlabeled rooted trees. We include the single-leaf tree for 
n = 1, and write A∗ = A \A1.

For a tree a ∈ A, let m : A → Z+ denote the number of leaves of a. The function 
s : A∗ → A ×A × (A ∪∅) × . . .× (A ∪∅) contains the immediate subtrees of the root of a 
tree. Because trees in A are at-most k-furcating, each non-leaf node possesses at least two 
and at most k descendants. In a canonical ordering of the subtrees of a non-leaf node, 
we allow subtrees 3, 4, . . . , k to be empty—that is, we use the empty set to indicate 
non-existent subtrees if a node has fewer than k immediate subtrees. The number of 
descendant subtrees of the node is its number of nonempty subtrees.

Note that a bijection of at-most-k-furcating trees with positive integers was considered 
by Colijn & Plazzotta [1]. For Colijn & Plazzotta [1], however, an internal node was per-
mitted to possess exactly one descendant subtree, whereas we require non-leaf nodes to 
possess at least two descendant subtrees. We regard a node with exactly one descendant 
subtree as somewhat unnatural in biological settings, where such a node would often be 
identified with its unique child node. Disallowing this possibility in order to align with 
the more common biological scenario requires additional bookkeeping, but the bijective 
construction is similar to that of Colijn & Plazzotta [1].

We now describe the bijection between unlabeled at-most-k-furcating rooted trees 
and positive integers. Note that as before, the case of k = 2 is the Colijn-Plazzotta 
ranking; k = 3 is the smallest case for which the sets of strictly k-furcating trees and 
at-most-k-furcating trees differ.

5.1. Ranking scheme

Our goal is to obtain a rank f(a) for a tree a = (a1, a2, . . . , ak). We make use of a 
standard combinatorial identity. In particular, for integers m, n � 0

n∑
k=0

(
k + m

m

)
=
(
n + m + 1
m + 1

)
. (5.1)

We will also use the following lemma.

Lemma 5.1. The number of non-increasing sequences of nonnegative integers (yn, yn+1,

. . . , yk) in which all entries are bounded above by yn−1 is

yn−1∑ yn∑
· · ·

yk−1∑
1 =
(
yn−1 + k − n + 1

k − n + 1

)
.

yn=0 yn+1=0 yk=0
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Proof. We proceed by induction, working from the innermost sum outward. First, con-
sider the innermost sum, with n = k:

yk−1∑
yk=0

1 =
(
yk−1 + 1

1

)
.

Now assume that our statement holds for the sum indexed by yn+1. That is, assume that

yn∑
yn+1=0

yn+1∑
yn+2=0

· · ·
yk−1∑
yk=0

1 =
(
yn + k − n

k − n

)
.

Therefore,

yn−1∑
yn=0

yn∑
yn+1=0

· · ·
yk−1∑
yk=0

1 =
yn−1∑
yn=0

(
yn + k − n

k − n

)
.

Using the combinatorial identity in eq. (5.1),

yn−1∑
yn=0

(
yn + k − n

k − n

)
=
(
yn−1 + k − n + 1

k − n + 1

)
,

as desired. �
As in Section 4.2, to find the rank of a, we must sum (1) the number of nontrivial 

trees in A whose first subtree has rank less than f(a1); (2) the number of nontrivial 
trees in A whose first subtree has rank f(a1) and whose second subtree has rank less 
than f(a2); (3) the number of nontrivial trees in A whose first subtree has rank f(a1), 
second subtree has rank f(a2), and third subtree has rank less than f(a3). Here, unlike 
in the strictly k-furcating case, we allow the third subtree to be empty. Continuing with 
subsequent subtrees, the last item in the sum is the number of nontrivial trees in A
whose first subtree has rank f(a1), second subtree has rank f(a2), . . . , (possibly empty) 
(k− 1)th subtree has rank f(ak−1) and (possibly empty) kth subtree has rank less than 
f(ak). We assign a the next available rank, which, accounting for the trivial tree with 
n = 1, is 2 more than the quantities we have summed. The required sum is

f(a1)−1∑
y1=1

y1∑
y2=1

y2∑
y3=0

· · ·
yk−1∑
yk=0

1.

Note that the two outermost sums begin from 1, as these terms correspond to nonempty 
subtrees; the remaining k − 2 indices are permitted to equal 0.

Using eq. (5.1) and Lemma 5.1, the number of trees with second subtree rank less 
than a fixed second term f(a2) is given by
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f(a2)−1∑
y2=1

y2∑
y3=0

· · ·
yk−1∑
yk=0

1 =
f(a2)−1∑
y2=1

(
y2 + k − 2

k − 2

)

=

⎛
⎝f(a2)−1∑

y2=0

(
y2 + k − 2

k − 2

)⎞⎠−
(
k − 2
k − 2

)

=
(
f(a2) − 1 + k − 1

k − 1

)
− 1. (5.2)

Next, to find the number of trees with rank less than the first term f(a1), we have

f(a1)−1∑
y1=1

((
y1 + k − 1

k − 1

)
− 1
)

= − [f(a1) − 1] +
f(a1)−1∑
y1=1

(
y1 + k − 1

k − 1

)

= − [f(a1) − 1] +
(
f(a1) + k − 1

k

)
− 1. (5.3)

Finally, for a general fixed term f(an), we have, analogously to the k-furcating case, the 
number of trees with nth subtree rank less than the fixed term f(an) is given by

f(an)−1∑
yn=0

yn∑
yn+1=0

· · ·
yk−1∑
yk=0

1 =
(
f(an) + k − n

k − n + 1

)
. (5.4)

Eqs. (5.2), (5.3) and (5.4) yield our desired ranking, as described in the following defini-
tion.

Definition 5.2. Consider an at-most-k-furcating tree a = (a1, a2, . . . , ak). The ranking 
f : A → Z+ for at-most-k-furcating unlabeled rooted trees is a function that satisfies 
f(a) = 1 for the one-leaf tree with m(a) = 1, and, for m(a) > 1,

f(a) = − f(a1) +
(
f(a1) + k − 1

k

)
+
(
f(a2) + k − 2

k − 1

)
− 1

+
[ k−2∑

i=1

(
f(ak−i+1) + i− 1

i

)]
+ 2

= − f(a1) + 1 +
k∑

i=1

(
f(ak−i+1) + i− 1

i

)
. (5.5)

Here, we have applied eq. (5.1) to each of the k entries of the vector of subtrees for 
tree a. For k = 2, Definition 5.2 reduces to Definition 2.1.
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5.2. Bijectiveness of ranking scheme

As in the case of strictly k-furcating trees, the construction that gives rise to Def-
inition 5.2 provides a bijective ranking scheme between at-most-k-furcating trees and 
positive integers. We state the result for completeness but omit a detailed algebraic 
argument.

Theorem 5.3. The function f : A → Z+ as defined in Definition 5.2 is a bijection.

5.3. The inverse function that recursively converts an integer to a tree

As in the strictly k-furcating case, we can obtain the at-most-k-furcating tree associ-
ated with a specified integer. An at-most-k-furcating tree has the form (a1, a2, . . . , ak), 
with terms after a2 possibly empty. The function f−1 : Z+ → T gives the tree whose 
rank is v:
(a) f−1(1) is the tree with one leaf, and
(b) for v � 2, f−1(v) is the tree t ∈ T whose subtrees have the ranks given by the 
algorithm below.

1. To find the first term, f(a1) is the largest integer satisfying

−f(a1) + 1 +
(
f(a1) + k − 1

k

)
� v.

2. Proceeding sequentially from j = 2 until j = k, the jth term in 
(
f(a1), f(a2), . . . ,

f(ak)
)

is obtained from terms 1 to j − 1 by computing the largest integer satisfying

(
f(aj) + k − j

k − j + 1

)
+ 1 � v + f(a1) −

j−1∑
i=1

(
f(ai) + k − i

k − i + 1

)
.

After step 2, all k coordinates are obtained for the rank v. Note that step 2 can 
recover values of 0 for coordinates after the first two. We then have that the function 
m : A → Z+ that gives the number of leaves in the tree with specified rank satisfies 
m
(
f−1(1)

)
= 1, and for v � 2,

m
(
f−1(v)

)
=

k∑
j=1

m
(
f−1(kj(v))),

with kj(v) representing the rank of the jth coordinate in the tree with rank v, as obtained 
when the algorithm proceeds through index j.

Fig. 4 provides the bijection for at-most-trifurcating trees associated with ranks 1 to 
30, and Fig. 3 gives the corresponding bijection for at-most-4-furcating trees.
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Fig. 4. At-most-trifurcating trees associated with specified ranks. For each rank v from 1 to 30, the ranks (
k1(v), k2(v), k3(v)

)
of its three subtrees appear, followed by the trifurcating tree associated with rank 

v. The ordered triple 
(
k1(v), k2(v), k3(v)

)
is obtained from the algorithm in Section 5.3, and the tree is 

obtained by recursive application of the algorithm.

5.4. Special case: at-most-trifurcating trees

As an example of an at-most-k-furcating ranking, we consider at-most-trifurcating
trees, in which internal nodes are permitted to bifurcate or trifurcate. An becomes the 
set of at-most-trifurcating unlabeled rooted trees with n leaves. For n = 1, An contains 
the unlabeled tree with one leaf. For n = 2, An contains the unique unlabeled tree with 
two leaves. We consider k = 3 in Definition 5.2.

Definition 5.4. The ranking f : A → Z+ for at-most-trifurcating unlabeled rooted trees 
is a function that satisfies

f(a) =
{

1 if m(a) = 1
1
6 [f(a1) − 1]f(a1)[f(a1) + 4] + 1

2f(a2)[f(a2) + 1] + f(a3) + 1 if m(a) > 1.
(5.6)
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Theorem 5.5. The function f−1 : Z+ → A gives the three coordinates of the tree whose 
rank is v, and it satisfies

(a) f−1(1) is the tree with one leaf, and
(b) for v � 2, f−1(v) is the tree t ∈ T whose subtrees have the ranks:

k1(v) =
⌊

7 3
√

3 +
(
27v − 81 +

√
3(243v2 − 1458v + 1844)

)2/3
32/3
(
27v − 81 +

√
3(243v2 − 1458v + 1844)

)1/3 − 1
⌋

(5.7)

k2(v) =
⌊

1
6

(√
3
√

−4k1(v)3 − 12k1(v)2 + 16k1(v) + 24v − 21 − 3
)⌋

(5.8)

k3(v) = v − [k1(v) − 1]k1(v)[k1(v) + 4]
6 − k2(v)[k2(v) + 1]

2 − 1. (5.9)

Proof. Given v � 2, we seek to find the unique 
(
f(a1), f(a2), f(a3)

)
with f(a1) �

f(a2) � f(a3), f(a1) � 1, f(a2) � 1, and f(a3) � 0, that solves

v = 1
6[f(a1) − 1]f(a1)[f(a1) + 4] + 1

2f(a2)[f(a2) + 1] + f(a3) + 1.

The solution for f(a1) in eq. (5.7) is obtained by solving the inequality

1
6 [f(a1) − 1]f(a1)[f(a1) + 4] + 2 � v.

Next, the equation for f(a2) in eq. (5.8) is obtained by solving

1
2f(a2)[f(a2) + 1] + 1 � v − 1

6 [k1(v) − 1]k1(v)[k1(v) + 4].

Finally, the inverse function for the third coordinate is given by eq. (5.9). �
6. Discussion

We have devised ranking systems for multifurcating unlabeled trees, considering trees 
for which each internal node contains a fixed number of child nodes k as well as trees for 
which each internal node contains at most k child nodes. The general rankings extend 
a ranking for bifurcating trees, relying on lexicographic orders for subtrees, an analogy 
between subtree ranks and “place value,” and Macaulay’s binomial expansion. The main 
results are summarized in Table 1.

For the k-furcating trees with k � 3, as the rank v increases, in comparison with the 
bifurcating case (k = 2), we observe faster growth in the number of leaves of k-furcating 
trees associated with rank v (Figs. 1–3). Because each internal node necessarily has k
descendants, relatively few multifurcating trees possess small numbers of leaves. Thus, 
the number of leaves of k-furcating trees increases quickly with v. This effect is magnified 
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Table 1
Summary of main results.

Description Result Equation
Trifurcating tree rank f(x1, x2, x3) = 1

6
(
x1 − 1

)
x1
(
x1 + 1

)
+ 1

2
(
x2 − 1

)
x2 + x3 + 1 (3.4)

k-furcating tree rank f(x1, x2, . . . , xk) = 2 +
∑k

i=1
(xk−i+1+i−2

i

)
(4.2)

At-most-trifurcating 
tree rank

f(x1, x2, x3) = 1
6 (x1 − 1)x1(x1 + 4) + 1

2x2(x2 + 1) + x3 + 1 (5.6)

At-most-k-furcating 
tree rank

f(x1, x2, . . . , xk) = −x1 + 1 +
∑k

i=1
(xk−i+1+i−1

i

)
(5.5)

Fig. 5. At-most-4-furcating trees associated with specified ranks. For each rank v from 1 to 30, the ranks (
k1(v), k2(v), k3(v), k4(v)

)
of its four subtrees appear, followed by the 4-furcating tree associated with rank 

v. The ordered quadruple 
(
k1(v), k2(v), k3(v), k4(v)

)
is obtained from the algorithm in Section 5.3, and the 

tree is obtained by recursive application of the algorithm.

as k increases, so that for large k, the number of leaves in the tree with rank v is generally 
larger than for small k.

For the at-most-k-furcating trees with k � 3, the growth in the number of leaves is 
not as fast as for k-furcating trees (Figs. 1, 4, and 5). We can explain this observation 
by noting that for at-most-k-furcating trees, the flexibility in the number of child nodes 
that could descend from an internal node increases the number of possible trees for a 
given number of leaves, in comparison with the k-furcating case. As k increases for at-
most-k-furcating trees, more possible trees with a given number of leaves exist in the 
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lexicographical ordering, so that the trees in a lexicographical ordering associated with 
a lower k value are contained in the ordering for a higher k value. Hence, as k increases, 
the number of leaves in the tree with fixed rank v tends to decrease.

The rankings for multifurcating unlabeled trees have potential uses in phylogenetic 
studies. In the analysis of phylogenetic trees, particularly in the context of the dynam-
ics of pathogen sequences during epidemics, the unlabeled shape of a tree can provide 
insight about features of an evolutionary process [1,5]. For rapidly spreading epidemics, 
a pathogen sequence in one infected individual can branch into multiple sequences in 
multiple subsequently infected individuals before mutations begin to accumulate in the 
subsequent sequences. Hence, phylogenetic trees during epidemics often appear to possess 
a multifurcating structure. The ranking schemes for multifurcating trees can potentially 
be used in statistics that are informative about the epidemic process; as is the case for bi-
furcating trees, they may be possible to use in “tree balance” concepts for multifurcating 
trees [3].

We note that our conceptualization of multifurcating trees differs from some that 
have been previously considered. Colijn & Plazzotta [1] discussed an extension of their 
enumeration from bifurcating to at-most-k-furcating trees, permitting internal nodes 
with only a single immediate subtree. Although it is sensible to consider an internal 
node with exactly one subtree when that node and its immediate descendant represent 
known fossil species or pathogen sequences in a known epidemic transmission chain, 
our assumption that internal nodes possess at least two descendant subtrees reflects a 
more typical phylogenetic scenario. In another enumeration, Felsenstein [2, p. 33] fixed 
the number of leaves at n and counted multifurcating trees with at most n leaves; this 
calculation corresponds to the enumeration of at-most-n-furcating trees with at most n
leaves. However, in our ranking, many trees with more than n leaves would be assigned 
ranks smaller than the total number of at-most-n-furcating trees with at most n leaves—
so that Felsenstein’s set of trees does not correspond to a set of trees tabulated by any of 
our schemes. As mathematical phylogenetic analysis continues to examine multifurcating 
trees from the rapidly diversifying sequences that arise during the spread of pathogenic 
organisms, it will be of interest to clarify which definitions for sets of multifurcating trees 
give rise to the greatest potential for meaningful biological interpretation.
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