
Chapter 12 – Gene Genealogies 
 
Noah A. Rosenberg 
 
Program in Molecular and Computational Biology. University of Southern California, Los Angeles, California 
90089-1113 USA. E-mail: noahr@usc.edu. Phone: 213-740-2416. Fax: 213-740-2437. 
 
January 2, 2005 
 
Introduction 
 
Genetic variation at a locus among extant individuals can be viewed as the result of mutations on 
a scaffold of genetic relationships – a gene genealogy. Because patterns of genetic variation 
contain much information about phenomena such as hybridization, migration, species 
divergence, and changes in population size, an understanding of gene genealogies is helpful for 
the application of genetic variation to inference about evolutionary processes. As we will see, 
gene genealogies, which underlie numerous statistical methods for population genetic analysis, 
are useful in diverse areas of genetics and evolutionary biology, ranging from phylogenetics to 
genetic mapping. 
 
The basic nature of the inheritance of genetic material is familiar: copies of corresponding 
stretches of the genome in different individuals are passed through a series of generations from 
some piece of DNA in a common ancestor of the individuals. The mutations that occur in 
transmission leave a pattern of similarities and differences in extant individuals that, albeit 
imperfectly, records the genealogical history in their DNA sequences.  All the processes that 
affect this history – for example, the size of the population to which the individuals belong, 
which influences the length of time to the common ancestor – affect the outcome in the DNA 
sequences, the data available to us today. Thus, to learn about how the population has evolved, 
we need to know how evolutionary processes affect genealogies, and in turn, how genealogies 
affect genetic data. 
 
In this chapter, I introduce gene genealogies, which describe relationships among copies of a 
locus in different individuals, through a discussion of their link to pedigrees, the structures that 
describe relationships among the individuals themselves. Two initial questions that might be 
asked about gene genealogies are: 
 
(1) What schemes can be used to categorize gene genealogies, and what are the categories? 
 
(2) What attributes do we expect gene genealogies to have in specific evolutionary scenarios? 
 
After considering these issues – classification of genealogies and properties of random 
genealogies – I discuss a variety of examples that illustrate the use of gene genealogies for 
interpreting patterns of genetic variation. 
 
Concepts 
 



Pedigrees and Gene Genealogies 
 
For haploid organisms, relationships of individuals and those of their genomes are equivalent: 
when a cell divides, the genomes of the offspring descend directly from the parental genome (but 
see Box 1). For diploids, however, the way in which genomes pass from parents to offspring is 
more complex. To understand the relationships between diploid genomes, rules that characterize 
the transmission process of genomes from parents to offspring – Mendel's laws of inheritance – 
can be used. 
 
Consider an individual, and choose one of its parents. The law of segregation states that for any 
(autosomal) locus in the genome, (1) the individual has a copy of the locus from the chosen 
parent, and (2) with probability 1/2 this copy is inherited from the parent's maternal copy, and 
with probability 1/2 it is inherited from the parent's paternal copy. For two loci, the law of 
independent assortment states that whether the copy inherited at the first locus derives from the 
chosen parent's maternal or paternal copy does not depend on which grandparent produced the 
copy at the second locus. Genetic linkage between some pairs of loci produces exceptions to this 
rule; in these cases, however, modifications can be made to accommodate dependence between 
loci. 
 
Suppose we are given a set of individuals S, whose biological relationships are represented by a 
pedigree (Figure 1i). Consider a locus randomly chosen from the genomes of the individuals.  If 
we use the law of segregation to trace copies of the locus through the pedigree, starting with the 
set S, it is likely that we will eventually reach a single copy from which all copies in S descend 
(Figure 1iii).a All individuals in the figure are biologically ancestral to the individuals in S – that 
is, ancestors in terms of the pedigree.  However, only a small fraction of the individuals in the 
pedigree, by being in lines of descent to S from the most recent common ancestor of the copies 
of the locus in S, are genetically ancestral at the locus. These genetic ancestors are the only 
individuals that affect the genotypic state at the locus for individuals in S. When we restrict our 
attention to these ancestors, we obtain the gene genealogy for the individuals at the locus. 
 
Using the law of independent assortment, the grandparent from whom the copy from the chosen 
parent descends at one locus is independent of the one from whom the corresponding copy 
descends at a second locus. Applying this rule as we trace through a given pedigree, gene 
genealogies of two unlinked loci are independent. Because most diploid genomes have many 
independent loci, and thus, many independent gene genealogies, for any set of individuals, many 
paths are followed by at least one locus. Consequently, a pedigree of a set of individuals can be 
viewed as describing their “average” gene genealogy: proceeding through a pedigree, each path 
has the same probability. On average, all paths of a given length (that is, of a fixed number of 
generations) are taken by equal numbers of loci. 
 
Examples considered by Wollenberg & Avise (1998), Derrida et al. (2000), and Rohde et al. 
(2004) make the relationship between pedigrees and gene genealogies apparent. The time until 
all humans share a common ancestor along the male or female line – that is, the time until the 
genetic ancestor for all human Y-chromosomes or mitochondrial genomes – has been estimated 
                                                 
a The exception in which a single copy is not necessarily reached is if life originated multiple times and the copies 
trace back to more than one of the original genomes. 



at tens to hundreds of thousands of years.  However, the most recent common ancestor (MRCA) 
in terms of the pedigree – the most recent individual to be part of the pedigree of all living 
humans – might have been surprisingly more recent, perhaps only 2,000-7,000 years ago (Rohde 
et al., 2004). In other words, across all loci in the genome, the common ancestor for the gene 
genealogy whose MRCA is smallest may have lived in historical times.b 
 
Terminology 
 
This chapter uses the following definitions, which are generally standard, except where noted. 
The tips of gene genealogies represent sampled lineages (Figure 2). In general, each line that 
connects a descendant to an ancestor is a lineage. Nodes, which represent the joining of lineages 
in common ancestors as time proceeds backwards from the present, are coalescences or 
coalescence events. Lengths of time that separate coalescences from each other or from sampled 
lineages are branch lengths. A branch that separates two coalescences is internal; one that 
separates a sampled lineage from a coalescence is external. A coalescence at which two external 
branches join is a cherry. The time to the most recent common ancestor (TMRCA) for a set of 
sampled lineages is the length of time from the present until the lineages first reach a common 
ancestor, their most recent common ancestor (MRCA). The TMRCA for a genealogy is often called 
the coalescence time, although coalescence times can also refer to lengths of time between 
successive coalescences. The root node represents the MRCA for all sampled lineages in a 
genealogy; the two branches connected to the root are basal. 
 
For a set of sampled lineages, a locus is a unit of DNA, ranging in size from a single base pair to 
a whole chromosome, in which no recombination has occurred in the genetic ancestors of the 
lineages since the time of their MRCA. In scenarios in which lineages derive from multiple 
populations, it often does not matter whether the populations are from the same species. Thus, 
except where otherwise specified, species is used to refer to the population of individuals who 
belong to a “species,” and is sometimes interchangeable with population. 
 
A genealogy or gene genealogy for n sampled lineages is a tree specified by the sequence of 
coalescences that reduce the n lineages to a MRCA, along with the coalescence times that 
separate these events. Two genealogies are identical if and only if they have the same sequence 
of coalescence events and the same coalescence times. A subgenealogy containing k of the n 
lineages includes the MRCA of these k lineages together with all parts of the genealogy that 
descend from this MRCA.  Although it is possible to consider genealogies in which coalescences 
involve more than two lineages, it is assumed in this chapter that exactly two lineages join in 
each coalescence. 
 
The major features of a genealogy can be captured in quantities that summarize its shape and size 
(Table 1). These quantities fall into three categories: (1) those that depend only on which 
lineages participate in coalescences, without regard to when coalescences occur; (2) those that 

                                                 
b Technically, there is no guarantee that any living person contains DNA descended from the pedigree MRCA 
studied by Rohde et al. (2004), as such segments of DNA may have disappeared over time through recombination. 
However, if the genome had infinitely many possible points at which recombination could occur, and if 
recombination only happened at each point at most once in evolutionary history, the pedigree MRCA would be the 
MRCA of the gene genealogy whose MRCA is smallest across all loci. 



depend only on the coalescence times, without regard to which lineages participate in 
coalescences; (3) those that depend on both the lineages involved in coalescences and on the 
coalescence times. 
 
Classification of Genealogies 
 
We frequently have occasion to compare two or more genealogies. For example, to search for 
signatures of events with genome-wide effects, such as population splits, we can compare 
genealogies for different loci in the same set of individuals. To determine if a particular sample 
is suitably representative of a population, we can compare genealogies for the same locus in 
several samples. 
 
We may be interested in whether or not two genealogies are identical; because identity of 
genealogies is rare, however, the equivalence or nonequivalence of attributes of the shapes of 
two genealogies – such as their labeled topologies – is more often of interest. Thus, it is useful to 
consider various ways in which shapes of genealogies can be classified; for convenience, each of 
several classification schemes is denoted here by a different letter. 
 
Labeled Histories and Labeled Topologies. The labeled history of a genealogy is its sequence 
of coalescence events (Figure 3). Two genealogies of n lineages have the same labeled history, 
or are H-equivalent, if they have the same coalescences in the same temporal order. The number 
of possible labeled histories for genealogies of n lineages is Hn=n!(n-1)!/2n-1 (Steel & McKenzie, 
2001). Each genealogy of n lineages has one of Hn possible labeled histories, and each labeled 
history is the labeled history of some genealogy. 
 
The genealogies in Figures 3i and 3ii have the same coalescence events, but in different 
sequences; therefore, they have different labeled histories. However, there is a sense in which 
these two genealogies are equivalent. The labeled topology of a genealogy is its unordered list of 
coalescence events.c Two genealogies of n lineages have the same labeled topology, or are T-
equivalent, if they have the same coalescences, but not necessarily in the same order. The 
number of possible labeled topologies for genealogies of n lineages is In=(2n-3)!/[2n-2(n-2)!] 
(Felsenstein, 2004, table 3.1). Each genealogy of n lineages has one of In possible labeled 
topologies, and each labeled topology is the labeled topology of some genealogy. 
 
Monophyly, Paraphyly, and Polyphyly. For genealogies whose sampled lineages derive from 
two species (or populations), (A,B), we may be interested in how the lineages from the two 
species are interleaved in the genealogy. For each species, the sampled lineages from that species 
have a monophyly status: they are either monophyletic – that is, they comprise all the sampled 
descendants of their MRCA – or they are not monophyletic. Lack of monophyly requires that 
lineages of the other species be descendants of this MRCA.  A genealogy of lineages from two 
species can be classified into one of four categories (Figure 4): 
 
C1. Monophyly of A and B, or reciprocal monophyly. The lineages of each species are separately 
monophyletic. 
                                                 
c It is also possible to consider the unlabeled topology (Felsenstein, 2004, p. 29) and unlabeled history (Tajima, 
1983, appendix 1) of a genealogy. 



 
C2. Paraphyly of B with respect to A . The lineages of species A are monophyletic, and the 
lineages of species B are not monophyletic. 
 
C3. Paraphyly of A with respect to B. The lineages of species B are monophyletic, and the 
lineages of species A are not monophyletic. 
 
C4. Polyphyly of A and B. Neither the lineages of species A nor the lineages of species B are 
monophyletic. 
 
Two genealogies of lineages from two species will be said to have the same phyletic status here 
if they classify into the same one of these four categories. 
 
Suppose now that sampled lineages derive from m species ( 2≥m ). For each species, the 
lineages of that species are either monophyletic or not monophyletic. The ordered list of m 
monophyly statuses for the species is the M-type of the genealogy. Two genealogies of lineages 
from two or more species are M-equivalent if and only if they have the same M-type. Each 
genealogy of lineages from m species has one of 2m possible M-types. 
 
For each pair of species, the phyletic status of the lineages from the two species can potentially 
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type of the genealogy. Two genealogies of lineages from two or more species are P-equivalent if 
and only if they have the same P-type. Note that for m=2, P-equivalence has the same meaning 
as M-equivalence. For m>2, however, each M-type is the M-type of some genealogy, but many 

of the )1(2 24 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

= mm
m

 possible P-types cannot be the P-type of any genealogy. For example, no 
genealogy for three species – A, B, and C – can have pairs (A,B) and (A,C) in category C2 while 
(B,C) is in C1. 
 
Collapsed Genealogies. For 2≥m , the phylogeny of m species – the genealogy of the species – 
has one of Hm possible labeled histories, and one of Im labeled topologies. To ease comparison 
between gene genealogies and species phylogenies, it is convenient to classify genealogies of 
lineages from m species with the same classes as those used for the species phylogeny itself. 
 
The collapsing algorithm in Rosenberg (2002) gives a procedure for mapping a genealogy of n 
lineages from m species ( mn ≥ ) onto the set of Hm labeled histories or to the set of Im labeled 
topologies. This algorithm maps a gene genealogy from many species onto a collapsed 
genealogy obtained by considering only the most recent interspecific coalescence for each 
species (Figure 5). Taking into account the order of these coalescences, the genealogy is mapped 
to its collapsed labeled history or C-type.  Considering the coalescences but ignoring their order, 
the genealogy is mapped to its collapsed labeled topology or D-type. Two genealogies of 
lineages from two or more species are C-equivalent if and only if they have the same collapsed 
labeled histories, and D-equivalent if and only if they have the same collapsed labeled 
topologies.  For m=3, because each labeled topology is consistent with only one labeled history, 
D-equivalence has the same meaning as C-equivalence. Each of the Hm labeled histories for m 



lineages can be the collapsed labeled history for some genealogy of lineages from m species; 
similarly, each of the Im labeled topologies for m lineages can be the collapsed labeled topology 
for some genealogy. 
 
Random Genealogies 
 
For a given collection of assumptions about the evolutionary process in a set of species – a 
model – it is of interest to know the probability distribution for a random genealogy, or the 
genealogy of a random sample of lineages. Such a model can be used to predict patterns of 
genetic variation for a randomly chosen locus under a specific set of conditions. Although we 
would like to make predictions under any model, much can be learned using a relatively simple 
model with one population. 
 
The Coalescent Distribution  
 
Consider a random sample of n lineages from a haploid population of constant size N, with 
N>>n.  In each of a series of discrete generations, every lineage chooses a random parent from 
the previous generation. Under these assumptions, the same as those of the frequently-used 
Wright-Fisher model (Ewens, 2004), the probability distribution of the genealogy of n random 
lineages is closely approximated by the coalescent distribution, variously termed the coalescent, 
n-coalescent, neutral or standard coalescent, or Kingman's coalescent (Kingman, 1982; Hudson, 
1983; Tajima, 1983; Nordborg, 2001). 
 
Recall that a genealogy consists of two components: its sequence of coalescence events and its 
set of coalescence times. Under the coalescent, the coalescence times have exponential 
distributions, so that the time until n lineages reduce to n-1 has exponential distribution with 
mean 2/[n(n-1)] units of N generations.  The sequence of coalescence events has a uniform 
distribution over the set of labeled histories: at any point in time, each pair of lineages has the 
same probability of being the next pair to experience a coalescence. This uniform distribution, 
the Yule distribution (Aldous, 2001), assigns probability 1/Hn to each labeled history. Note that 
under the coalescent, the probability distribution of the labeled topology of a random genealogy 
is not uniform: the probability that a random genealogy has labeled topology t equals 
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which exactly i sampled lineages descend (Brown, 1994; Steel & McKenzie, 2001). Table 1 lists 
additional properties of genealogies under the coalescent. 
 
The utility of the coalescent derives from the fact that it describes the distribution of the 
genealogy of n lineages in diverse evolutionary models besides the Wright-Fisher model, such as 
scenarios with age structure, horizontal DNA transfer (Box 1), or separate sexes (Möhle, 2000; 
Nordborg & Krone, 2002). In each of these models, a parameter termed the coalescence effective 
size, or Ne, is required to transform the model into one for which the coalescent applies. In other 
words, for a given model, if it has a coalescence effective size, the probability distribution of a 
random genealogy under the model is obtained from the coalescent, substituting Ne for N. One 
useful case for which the coalescent distribution applies is that of diploidy: a diploid constant-
sized population with N/2 males and N/2 females has coalescence effective size 2N (Nordborg, 
2001). 



 
Many models, however, including some that include time-varying population size, do not have 
coalescence effective sizes. That is, for every value of N, the distributions of genealogies under 
these models differ from the coalescent distribution for population size N. Despite the lack of a 
coalescence effective size, the labeled history of the genealogy under such models can still have 
the Yule distribution. For example, although changes in population size affect coalescence times, 
they do not alter the fact that all pairs of lineages are equally likely to coalesce. 
 
Several strategies are available for determining the properties of models whose genealogies do 
not follow the coalescent distribution.  It is sometimes possible to directly calculate or at least 
approximate the distributions of random genealogies. Alternatively, it may be possible to obtain 
the distributions from modified versions of the coalescent. However, the most general strategy 
for studying genealogies under complex models is simulation from sampled lineages back in 
time to their MRCA (Hudson, 1990). In fact, because backward simulations can often be 
performed rapidly, they are useful even when the coalescent distribution does apply. Their 
efficiency results from the fact that simulation from a small sample backwards in time to a 
MRCA requires that only a small number of random variables be generated. The forward 
approach, which entails simulation of whole populations for a long enough period of time to 
erase the effects of initial conditions, followed by extraction of genealogies of random sets of 
lineages, wastes considerable effort simulating lineages that are not ancestral to samples. 
 
The coalescent distribution of genealogies is often taken as a “null” distribution, as it represents 
the behavior of a population under simple assumptions. To understand the impact of complex 
phenomena on genealogies, distributions of genealogies under various models can be compared 
to the coalescent qualitatively or quantitatively, using properties such as Tn or Ln from Table 1 
(Donnelly, 1996; Uyenoyama, 1997). For example, it is often noted that genealogies from 
exponentially growing populations are more “star-like” than are those from constant-sized 
populations (Slatkin & Hudson, 1991). In quantitative terms, this observation reflects the fact 
that random genealogies under exponential growth have elevated values of ratios such as Pn/Tn 
and Ln/(nTn) (Rosenberg & Hirsh, 2003). 
 
Population Structure 
 
In models with subdivision of populations, by geography or by other variables, the coalescence 
sequence of a random genealogy does not follow the Yule distribution, as pairs of lineages from 
the same group are more likely to coalesce than are pairs from different groups. The distribution 
of the labeled history or labeled topology of a random genealogy may be of less interest, 
however, than such distributions as that of the M-type or the collapsed labeled topology. Under a 
given model, these distributions, only applicable for multiple populations (or species), can help 
in articulating the predictions that the model makes about the processes that it considers. 
 
Two Populations. For two populations, the probability distribution of the phyletic status of a 
random genealogy is of interest. Consider the island model: two haploid populations of size N 
with a fraction m of the lineages in each population switching populations each generation. With 
samples of size 2 from each population, for small Nm, the probabilities of scenarios C1, C2, C3, 
and C4 (Figure 4) approximately equal 1-14Nm/3, 5Nm/3, 5Nm/3, and 4Nm/3, respectively 



(Takahata & Slatkin, 1990). From these values, it is observed that as the migration rate decreases 
to zero, the probability of reciprocal monophyly increases to one. 
 
The distribution of phyletic status can also be obtained (for any sample sizes) in the two-
population divergence model, in which an ancestral population splits instantaneously into two 
descendant populations each of size N (Rosenberg, 2003), or (for small sample sizes) in a 
divergence model that allows descendant populations to be subdivided after divergence 
(Wakeley, 2000). In these cases, it is observed that at divergence, polyphyly is the most likely 
phyletic status, and as time progresses, reciprocal monophyly becomes most likely. In the two-
population divergence model, reciprocal monophyly has probability 0.99 by 6N generations after 
divergence. 
 
Although much is known about random genealogies under the island model (Takahata & Slatkin, 
1990; Nath & Griffiths, 1993), the two-population divergence model (Takahata & Nei, 1985; 
Rosenberg, 2003), and other two-population models (Wakeley, 2000; Teshima & Tajima, 2002), 
the distributions of attributes of genealogies (Table 1) are more difficult to compute with two 
populations than with one. However, as in one-population models, backward simulation has 
proven useful for exploring these distributions in two-population scenarios (Hudson, 1990; 
Rosenberg & Feldman, 2002). 
 
Three or More Populations. The probability distributions of C- or D-types for random 
genealogies, which are trivial for one or two populations, become interesting with three or more 
populations. Perhaps the most useful of these distributions is that of the collapsed labeled 
topology of a random genealogy. Suppose three populations descend from an ancestral 
population that split into two groups, one of which subsequently bifurcated again. Suppose also 
that the time between the bifurcations is t generations and that the population size between 
bifurcation events is constant at N haploid individuals. If one lineage is sampled from each 
population, the probability that the (collapsed) labeled topology of a random genealogy is the 
same as the labeled topology of the population phylogeny is 1-(2/3)e-t/N (Pamilo & Nei, 1988). 
Each of the other two possible collapsed labeled topologies has probability (1/3)e-t/N, so that as t 
increases to infinity, the probability of concordance of the labeled topologies of the gene 
genealogy and the phylogeny nears one.  A similar calculation for arbitrary sample sizes shows 
that the probability of topological concordance increases more quickly with t if larger samples 
are used (Rosenberg, 2002). 
 
As is true for the two-population case, probability distributions of complex aspects of 
genealogies in multi-population models remain elusive, except by simulation.  However, some 
progress has been made in various scenarios (Pamilo & Nei, 1988; Wakeley, 1998; Wilkinson-
Herbots, 1998). 
 
Case Studies 
 
Uses of Genealogies 
 
The usefulness of gene genealogies arises from the fact that genetic variation can be viewed as 
the result of mutations occurring along the branches of genealogies (Figure 6). Thus, patterns of 



genetic variation are affected by the attributes of the genealogies on which mutations have 
occurred. However, these genealogies are generally unknown. To address this issue, one of two 
main strategies can be adopted (Rosenberg & Nordborg, 2002; Hey & Machado, 2003): first, the 
genealogy can be estimated from the data, and the analysis based on the estimated genealogy. 
Alternatively, the coalescent and its extensions can be used to sample genealogies from a set of 
random genealogies consistent with the data, and the analysis averaged over these genealogies. 
The former approach has the limitation that basing the analysis on the estimated genealogy 
ignores uncertainty in the estimate.  The latter approach, while statistically rigorous, can 
potentially require intensive computations, so that sometimes, it can only be applied 
approximately. 
 
The fact that genealogies underlie patterns of variation has been useful for developing 
interpretations of particular observations in genetic data. Allowing for mutations, the coalescent 
model has been used to make various predictions about the distribution of allele frequencies 
expected across sites in a set of DNA sequences (Tajima, 1989; Fu & Li, 1993). For example, the 
comparatively “star-like” nature of genealogies in populations undergoing expansions in size, 
compared to those from constant-sized populations, is reflected in an excess number of mutations 
along external branches. The D and D* statistics of Fu & Li (1993), which are computed from 
DNA sequences sampled from a population, compare numbers of mutations along internal and 
external branches. Negative values of these statistics, reflecting an excess of external mutations, 
indicate that growth in size may have been important in the history of the population. 
 
A need to use gene genealogies arises in many contexts in diverse organisms (Avise, 2000; 
Donnelly & Tavaré, 1997; Li & Fu, 1999; Knowles & Maddison, 2002; Slatkin & Veuille, 
2002). Several examples are discussed below. 
 
Molecular Phylogenetics 
 
The inference of species genealogies (or phylogenies) from the distribution across species of a 
genetic character typically relies on the premise that if one lineage is sampled per species, then 
the genealogy for the character is identical to that of the species. If species are distantly related, 
this premise generally holds for the coalescence sequence of the gene genealogy, although the 
coalescence times of the gene genealogy are often considerably larger than those of the species 
genealogy (Figure 5). In this case, the problem of phylogenetic inference is to recover an 
underlying genealogy that has been obscured by the stochastic occurrence of mutations along its 
branches (Figure 6). 
 
As we have seen, however, especially for closely related species, this basic premise may fail to 
hold. First, the lineages of one or more of the species may not be monophyletic, so that the 
choice of lineage affects the shape of the genealogy. Second, the gene genealogy often may have 
a different labeled topology from that of the species genealogy, so that the choice of locus affects 
the shape of the genealogy. When these scenarios have nontrivial probabilities, careful 
consideration of gene genealogies is important to phylogenetic inference. Generally, the 
solutions to the nonmonophyly and discordance problems involve use of many lineages per 
species and many independent genealogies, respectively. 
 



A study by Wilson et al. (2003) addresses the problem of nonmonophyly of lineages for a set of 
13 human populations. Assuming that the evolution of the populations followed a bifurcating 
tree, Wilson et al. aimed to estimate the genealogy of the populations. They genotyped 121 
individuals for seven linked markers on the Y chromosome. They scanned the space of 
genealogies of 13 populations, for each population genealogy using the coalescent distribution to 
simulate gene genealogies of 121 lineages. Their numerical procedure, a Bayesian Markov chain 
Monte Carlo approach, guaranteed that the possible population genealogies and gene genealogies 
were visited during the scanning process with frequencies proportional to their likelihoods. Of 
the population genealogies visited by their population growth model, 91% included a 
monophyletic grouping of the 3 African populations. Such a grouping only has probability 1/132 
for random labeled histories sampled from the Yule distribution. Thus, the analysis was quite 
confident in the monophyly of these populations. 
 
Discordance between gene and species genealogies is considered in a study of a human, a gorilla, 
and a chimpanzee. Chen & Li (2001) used genetic data in a study of the classic “trichotomy 
problem,” that of deciding which pair of species, among humans, gorillas, and chimpanzees, has 
the closest relationship. The divergence of the three species occurred during a short enough 
period of time that genealogies vary by locus. Unlike in the case of separate groups within the 
human population, however, the splits among these species occurred long enough ago that 
nonmonophyly is unlikely for genealogies representing only one of them; thus, attention can be 
restricted to one lineage per species. Of the gene genealogies estimated by Chen and Li – one for 
each of 53 non-coding regions – the majority (31/53) showed that the human and chimpanzee 
had the most similar DNA sequences, favoring a grouping of humans and chimpanzees. By 
computing a multinomial likelihood to measure the weight of the evidence, Chen and Li 
concluded that their data provided strong very strong support for the human-chimpanzee 
grouping. 
 
Demographic History  
 
Gene genealogies are frequently applied to the reconstruction of population histories from DNA 
sequences. The inference of population and species phylogenies is one example of this kind of 
application. A second is the quantitative estimation of parameters of population history, such as 
times of divergence or migration rates. 
 
Morrell et al. (2003) sequenced nine loci in 25 individuals representing three populations of wild 
barley: two low-elevation groups from east and west of the Zagros mountains in southwest Asia, 
and one group from the mountainous region itself. They were interested in the amount of 
migration among the three populations. Using a procedure that searches the space of possible 
migration rates and gene genealogies, sampling regions of this space in proportion to their 
likelihoods of explaining the data, they estimated that ~1-2 migrants move from each population 
to each of the other two populations in every generation. Morrell et al. suggest that this 
observation could be a consequence of dispersal via seeds embedded in the fur of migratory 
animals, or of deliberate dispersal by ancient hunter-gatherer peoples. 
 
Selected Genes and Speciation Genes  
 



One of the aims of genome-wide studies is to identify loci that have been strongly affected by 
natural selection. Demographic phenomena, such as admixture and migration, affect individuals, 
and are reflected in patterns of genetic variability across whole genomes. Natural selection, 
however, is localized to particular regions of the genome. Thus, selected loci can potentially be 
identified through their deviations from genome-wide averages. One way in which such 
deviations can be identified is through anomalous properties of gene genealogies. 
 
Using 10-20 individuals per species and a popular genealogical estimation method – the 
neighbor-joining algorithm – Machado & Hey (2003) inferred the genealogies for 16 regions in 
the genomes of three Drosophila species. Genealogies for regions on chromosomes X and 2 
came closer to achieving monophyletic concordance – in which lineages from each species were 
monophyletic and the collapsed labeled topology matched the labeled topology of the species 
phylogeny – than did genealogies for regions on other chromosomes. Interestingly, laboratory 
studies have assigned to chromosomes X and 2 the highest densities of hybrid-sterility genes in 
the genome. Machado and Hey suggest a view in which genotypes on chromosomes X and 2 
diverged earlier in speciation than did those of other chromosomes, as it was possible to produce 
hybrids with differing genotypes on other chromosomes long after hybrids with incompatible 
types on chromosomes X and 2 were no longer viable. 
 
Experimental Design  
 
Experimental studies of genetic variation require choices about sample sizes, numbers of 
markers, and statistical methods. Random genealogies can assist in deciding how to optimize 
studies to obtain maximal information about quantities of interest with minimal effort. 
 
Pluzhnikov & Donnelly (1996) considered various ways of estimating the population mutation 
parameter θ, which measures the level of genetic diversity in a set of DNA sequences. Because 
longer branches in genealogies provide more opportunities for mutations to occur, the 
information that a data set contains about mutation parameters increases with the branch lengths 
of underlying genealogies. To improve the precision in an estimate of θ obtained from a set of 
DNA sequences, data can be added either by sampling new individuals for the same sequenced 
region or by increasing the length of the region. Because individual DNA sequences are 
correlated in that they result from the same genealogies, the addition of individuals provides new 
information about θ only if the new individuals represent parts of genealogies that have not yet 
been sampled.  Lengthening the sequence provides additional loci at which recombination could 
have occurred. Because recombination causes neighboring loci to have different (though 
correlated) genealogies, additional sequence provides new information if recombination did 
indeed occur. Pluzhnikov and Donnelly used random genealogies to derive expressions for the 
variance of estimates of θ as a function of sample size and sequence length. They determined 
what allocation of resources to sample size and sequence length led to the smallest variance in 
the estimate of θ. For various values of θ and recombination rates, they found that samples of 
fairly small size (~3-10) were optimal, with most of the effort devoted to increasing the lengths 
of sequences from these individuals. Their optimal schemes can be used for future studies that 
aim to estimate θ. 
 



A related use of gene genealogies for experimental design is in evaluating statistical methods. 
Ramos-Onsins & Rozas (2002) were interested in identifying tests useful for detecting 
population growth. Using extensions of the coalescent for population growth models, they 
simulated genealogies, on which they simulated mutations in order to obtain simulated data sets 
of DNA sequences. For each simulated data set, they applied 17 tests, observing that their own 
R2 test and Fu's FS test most frequently rejected the null hypothesis that the sequences were 
drawn from a constant population size model when indeed they were sampled from a growing 
population. Thus, investigators who wish to detect growth may be more successful if one of 
these two tests rather than one of the other 15 methods studied is used. 
 
Genetics of Complex Traits 
 
Many traits, including various human diseases, result from the interactions of multiple genetic 
factors. By searching for alleles that are found more frequently among individuals who have a 
trait than among those who do not, a genome can be narrowed to a small set of alleles that can be 
more directly tested for possible effects on the trait. These alleles must have originated as 
mutations in ancestors of the extant individuals who possess them. Thus, considering the 
genealogies on which these mutations occurred can help to make predictions about properties of 
trait loci; these predictions, in turn, can be used to design streamlined strategies to map the loci. 
 
Using a random genealogy model, Pritchard (2001) studied the fraction of the individuals with a 
disease who possess the disease-susceptibility allele of highest frequency. In the model, 
mutations could occur from “normal” to “susceptibility” alleles and vice versa. Susceptibility 
alleles conferred elevated disease risks and selective disadvantages to their possessors. For 
various assumptions about mutation rates, selection coefficients, and human demographic 
history, random genealogies were simulated backwards to a MRCA, which was assumed to be a 
normal allele. For each mutation on the genealogy that changed a normal to a susceptibility 
allele, the number of descendants of that mutation in a sample was tabulated. The mutation rate 
from normal to susceptibility alleles was observed to be the most important determinant of the 
fraction of diseased individuals who possessed the most frequent allele. Except at very small 
values of this rate, only a small fraction of the diseased individuals descended from the highest-
frequency mutation. Pritchard concluded that mapping strategies will be most effective if they 
account for the possibility that disease-susceptibility genes might have many low-frequency 
mutations, each of which is found in only a small proportion of diseased individuals. 
 
Future directions 
 
The use of gene genealogies has led to new ways of conceptualizing genetic variation.  By 
viewing genetic variation as the result of mutations on branches of genealogies, it becomes 
possible to reason about the signatures of evolutionary phenomena in data by thinking about how 
these phenomena affect genealogies. The coalescent enables quantification of the resulting 
intuitions, and new insights about evolutionary processes continue to follow from the 
incorporation of new phenomena into genealogical models. Statistical approaches based on gene 
genealogies continue to find new applications, of which the examples above give only a short 
introduction. 
 



By considering many possible random genealogies that could underlie the pattern of variation at 
a locus, and by treating independent loci as replicates of the evolutionary process, methods based 
on genealogies can enable estimation of population history parameters and measurement of the 
uncertainty in the estimates. Because many uses of gene genealogies cannot yet be incorporated 
in methods that both quantify uncertainty in estimates and evaluate relative support for 
alternative models (Knowles & Maddison, 2002), however, a major challenge is to develop 
methods applicable to the complex scenarios that are typically of interest. This endeavor requires 
computational improvements: while the simulation of random genealogies and data sets can 
usually be performed quickly, simulation of random genealogies from the conditional 
distribution of the genealogy given a specific data set is generally slow (Stephens, 2001). Use of 
approximate numerical techniques may lead to greater computational tractability (Hudson, 2001; 
Beaumont et al., 2002). Such tools will be especially useful for forthcoming genome-wide data 
on genetic variation. 
 
Computational infeasibility is a particular problem in regions with large amounts of 
recombination. Such regions produce a sequence of correlated genealogies, which can be 
simulated using an adaptation of the coalescent (Nordborg, 2001); however, most existing 
statistical tools apply only to individual regions with little or no recombination, or to unlinked 
collections of several such regions. Construction of computationally desirable models of 
genealogies that are not based on the coalescent may help to deal with this problem (Li & 
Stephens, 2003). Indeed, the development of models of gene genealogies and the statistical 
methods to which they give rise offers many new challenges for the genomic era. 
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Box 1. Horizontal Inheritance 
 
Individuals of some organisms can inherit DNA from individuals other than their parents.  This is particularly true 
for certain haploids, who can replace DNA that they “vertically” inherit from parents with DNA “horizontally” 
inherited from other individuals of the same species, individuals of other species, or the surrounding environment 
(Bushman, 2002). Such organisms have two types of coalescence, vertical and horizontal. 
 
Because of horizontal inheritance, genealogies in many haploid species might not follow the pattern of bifurcation of 
genomes expected for haploids.  With horizontal transfer, haploid genealogies contain many of the complexities 
seen in gene genealogies of diploids. Just as recombination enables different parts of the genomes of diploids to 
have distinct genealogies, horizontal DNA transfer leads to differing genealogies for different parts of a haploid 
genome. Analogously, as migration in diploids can lead different multi-population genealogies to have different 
collapsed labeled topologies, horizontal inheritance among individuals from different species can cause such 
discordances in haploid genealogies. 
 
Recall that in diploids, discordance of collapsed labeled topologies does not require migration among populations. 
Similarly, in haploids, such discordance can arise even if no horizontal transfers occur between individuals of 
different species. In other words, discordance of collapsed labeled topologies for genealogies for several regions of a 
genome can result from horizontal transfer between species or within species. At the same time, however, horizontal 
transfers between or within species need not lead to discordance. 
 
In bacterial studies, it is of interest to identify which genes have and have not been transferred across species, and 
for those that have been transferred, to identify the donor species (Eisen, 2000; Koonin, 2003). Because any shape 
for a haploid genealogy can be produced by many different combinations of horizontal transfers within and between 
species, it is important to quantitatively evaluate the relative support for different scenarios. Such an endeavor might 
be advanced by connecting horizontal transfer models to the coalescent. 
 
A Horizontal Transfer Model 
 
Consider a random sample of n individuals from a haploid population of constant size N in a closed environment, 
with N>>n. Suppose that the individuals have independently and identically distributed lifespans that follow 
exponential distributions with mean 1 generation. When an individual dies, another individual randomly chosen 
from the population duplicates to replace it. These are the basic assumptions of the Moran model, a frequently-used 
neutral model in population genetics (Ewens, 2004). 
 
Looking backwards in time from the sample of n individuals, the waiting time until one of the individuals arose 
from its parent is exponentially distributed with mean 1/n generations. The probability that this origin is a (vertical) 
coalescence is the probability that the parent is ancestral to the other n-1 sampled individuals, or (n-1)/(N-1). Using 
basic properties of exponential random variables, the time until a vertical coalescence is exponentially distributed 
with mean (N-1)/[n(n-1)] generations. Genealogies in this model follow the coalescent distribution with coalescence 
effective size (N-1)/2. 
 
Now suppose that for each individual, the waiting time until its DNA at a locus of interest is replaced by DNA 
horizontally transferred from another individual in the population is exponentially distributed with mean 1/λ 
generations. Such transfers could potentially occur by conjugation, transduction, or transformation, procedures in 
which DNA is transferred between cells via plasmids, viruses, or the extracellular environment, respectively 
(Bushman, 2002). 
 
Assuming that horizontal transfers in different individuals are independent, the waiting time (backwards in time) 
until one of the lineages experiences a horizontal transfer event (as the recipient of DNA) is exponentially 
distributed with mean 1/(nλ) generations. If the individual that donates DNA during this transfer is an ancestor to 
one of the other n-1 sampled lineages, an event that has probability (n-1)/(N-1), horizontal coalescence occurs. If 
this donor is not an ancestor to the n-1 lineages, no coalescence takes place. As before, using the properties of 
exponential random variables, the time until a horizontal coalescence is exponentially distributed with mean (N-
1)/[λn(n-1)] generations. 



 
Considering the vertical and horizontal processes simultaneously, the time until a coalescence of either type has 
exponential distribution with mean (N-1)/[(1+λ)n(n-1)] generations. This distribution has the same form as in 
models that only include vertical coalescence. In other words, the waiting times in this model follow the coalescent 
distribution with coalescence effective size (N-1)/[2(1+λ)]. 
 
Implications of the Model 
 
In comparison with a model that includes vertical coalescence only, the horizontal transfer model has shorter waiting 
times until coalescence, so that lineages find a MRCA more rapidly. This is sensible, as horizontal inheritance 
enables genes to diffuse rapidly through a population. The amount by which horizontal transfer speeds up 
coalescence depends on λ, which measures the mean number of horizontal transfers experienced by a random 
individual at the locus of interest during a lifetime of average length. If λ is very small – that is, if most cells die 
before experiencing any transfers, the presence of horizontal transfer has little effect on genealogies, and most 
coalescences are vertical. 
 
The horizontal transfer model has a coalescence effective size, so that the coalescent distribution applies to its 
genealogies. Thus, in the same way used for models without horizontal transfer, it can potentially be generalized to 
allow multiple genes, populations, or species. This could enable methods originally designed for such problems as 
the estimation of migration rates (Beerli & Felsenstein, 2001; Nielsen & Wakeley, 2001) to be applied to estimation 
of horizontal transfer rates within and among species, and to probabilistic determination of the sources of observed 
apparent transfers. 
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Figure Legends 
 
Figure 1. Pedigrees and gene genealogies. (i) The pedigree for a set of six individuals from the current generation.  
Empty squares and circles represent males and females, respectively.  (ii) Application of the law of segregation to a 
randomly chosen locus, conditional on the pedigree. This diagram shows the transmission paths of a particular locus 
through the pedigree.  Shaded squares and circles respectively represent paternal and maternal copies of a locus. (iii) 
Genealogy of the copies of the locus present in the most recent generation of individuals, showing only the 
transmissions that contribute to the current generation. (iv) Abstracted genealogy obtained by rearranging the order 
of the copies. Time proceeds downwards (in this figure and in subsequent figures). 
 
Figure 2. A genealogy for seven sampled lineages.  Cherries are marked with open circles.  Each lineage is separated 
from the root by exactly three branches, except for lineage 5, which is separated by only two branches.  The two 
subgenealogies that coalesce at the root have four and three lineages (lineages 1, 2, 3, and 4 in the subgenealogy on 
the left, and lineages 5, 6, and 7 in the one on the right).  Wn is the length of time during which the sampled lineages 

have exactly n ancestors. TMRCA for the lineages is represented by the height of the genealogy, ∑ =
=

7

2n nn WT . The 

total length of all branches in the genealogy is ∑ =
=

7

2n nn nWL . This length is the sum of En, the sum of the 

lengths of the external branches (marked E), and In, the sum of the lengths of the internal branches (marked I). Basal 
branches are marked B. 
 
Figure 3. Labeled histories and labeled topologies for example genealogies. The sequences of coalescence events 
are: (i) (1,3), (2,5), ((2,5),4), ((1,3),((2,5),4)); (ii) (2,5), (1,3), ((2,5),4), ((1,3),((2,5),4)); (iii) (2,5), ((2,5),4), (1,3), 
((1,3),((2,5),4)); (iv) (1,4), (2,3), ((2,3),5), ((1,4),((2,3),5)). The genealogies in (i), (ii), and (iii) have the same 
coalescence events and therefore have the same labeled topology, ((1,3),((2,5),4)). Because the order of the 
coalescences differs for (i), (ii), and (iii), however, these genealogies have different labeled histories. Although its 
coalescence times equal those of (i), the genealogy in (iv) has different coalescences from those of (i), (ii), and (iii); 
thus, it differs from the other genealogies both in labeled history and in labeled topology. 
 
Figure 4. The four phyletic statuses possible for a genealogy of lineages sampled from two species. Thick lines 
represent the divergence of an ancestral species into two descendant species, A and B. Thin lines represent the 
genealogy of the sampled lineages from the two species. C1–monophyly of A and B. C2–paraphyly of B with respect 
to A. C3–paraphyly of A with respect to B. C4–polyphyly of A and B. 
 
Figure 5. Classification of a genealogy of lineages from four species. Shaded circles indicate interspecific 
coalescence events used in determining the collapsed genealogy. Note that coalescences of lineages from two 
species occur prior to species divergence. The genealogy can be classified as follows. M-type: A – monophyletic, B 
– not monophyletic, C – not monophyletic, D – not monophyletic. P-type: (A,B)–C2, (A,C)–C2, (A,D)–C1, (B,C)–
C4, (B,D)–C3, (C,D)–C4. C-type: the collapsed labeled history of the genealogy is the sequence (C,D), (A,B), 
((A,B),(C,D)). D-type: the collapsed labeled topology of the genealogy is ((A,B),(C,D)). The collapsed labeled 
topology of the genealogy and the labeled topology of the species phylogeny match, but the collapsed labeled 
history of the genealogy and the labeled history of the species phylogeny differ. 
 
Figure 6. Mutations on genealogies. Suppose the genealogy in Figure 2 describes a locus with three nucleotides, and 
that the MRCA has genotype AGC. Mutations on the genealogy lead to the genotypes shown for the sampled 
lineages. Because mutations can be viewed as random events that occur along the branches of a genealogy, random 
samples of genotypes can be obtained by placing random mutations on simulated random genealogies. Mutations 
may obscure the underlying relationships of the lineages: although lineages 1 and 2 are closely related, they differ in 
genotype; at the same time, 1 and 5 are distantly related, but are identical in genotype. 
 
Figure A (inside Box 1). Genealogies for two loci.  Each locus, one with a darkly drawn and the other with a lightly 
drawn genealogy, is sampled in a set of four individuals. Vertical and horizontal coalescences are marked with 
shaded and empty squares, respectively. Because horizontal transfer of DNA from one individual to another usually 
involves pieces of DNA that are small relative to the genome size, it is unlikely that two loci, unless separated by a 
short distance, would experience horizontal coalescence in the same individual. Because of horizontal inheritance, 



the two genealogies have different labeled topologies: ((1,2),(3,4)) and (((1,2),3),4) for the dark and light 
genealogies, respectively. 
 
Figure B (inside Box 1). Genealogies with discordant collapsed labeled topologies caused by horizontal transfer 
among individuals of (i) different species, and (ii) the same species; genealogies with concordant collapsed labeled 
topologies despite horizontal transfer among individuals of (iii) different species, and (iv) the same species. The 
thick lines represent the species phylogeny; shaded circles depict interspecific coalescences used in determining 
collapsed genealogies. A “species” is interpreted to be a group of individuals, each of which has the property that 
most of its genome coalesces with other individuals in the group, horizontally or vertically, more recently than it 
does with individuals not in the group. Speciodendric loci are those loci whose collapsed labeled topologies match 
that of the species phylogeny. 



Tables 
 
Table 1. Attributes of a genealogy with n lineages ( 2≥n ). 
 
Symbol Description of attribute Expected value over random 

genealogies generated by 
the coalescent distribution * 

Reference 

Attributes that depend only on the coalescence sequence of the genealogy 
Cn the number of cherries ( 3≥n ) n/3 McKenzie & Steel (2000) 
Xn,1 the number of branches that separate a 

randomly chosen lineage from the root ∑ =

n

i
i

2
/12  Steel & McKenzie (2001) 

Xn,2 the number of branches that separate the 
MRCA of two randomly chosen lineages 
from the root 

( )∑ =− −−
n

in in
21

2 /121  ** Steel & McKenzie (2001) 

Yn the number of branches that separate two 
randomly chosen lineages from each other ( ) 4/1

21
44 −∑ =−

+ n

in
n i  Steel & McKenzie (2001) 

{l, n-l} numbers of lineages in the two 
subgenealogies that coalesce at the root 

*** Tajima (1983), Slowinski 
& Guyer (1989) 

Attributes that depend only on the coalescence times of the genealogy 
Wn,k the length of time it takes for n lineages to 

coalesce to k lineages ( nk ≤≤1 ) **** 
2(n-k)/(nk) Tajima (1983) 

Tn the time to the most recent common 
ancestor 

2(n-1)/n Tajima (1983), Tavaré et 
al. (1997) 

Ln the total length of time in all branches ∑ −

=

1

1
/12 n

i
i  Hudson (1990), Tavaré et 

al. (1997) 
Attributes that depend on both the coalescence sequence and the coalescence times of the genealogy 

En the total length of time in external branches 2 Fu & Li (1993), Durrett 
(2002) 

In the total length of time in internal branches ∑ −

=

1

2
/12 n

i
i  Fu & Li (1993), Durrett 

(2002) 
Pn the average coalescence time for two 

randomly chosen lineages 
1 Tajima (1983), Durrett 

(2002) 
Bn the average length of time in a basal branch ( )∑ −

=
+

1

2
2/1/12 n

i
in  Uyenoyama (1997) 

 
* For genealogies generated by the coalescent distribution, coalescence sequences follow the Yule distribution. 
Therefore, the expected values for attributes that depend only on the coalescence sequence do not utilize the 
exponential distribution of coalescence times under the coalescent. For attributes that depend on the coalescence 
times, times are measured in units of N generations, where N is the population size. 
 
** For each k, with nk ≤≤1 , we can consider Xn,k, the number of branches that separate the MRCA of k randomly 
chosen lineages from the root. Under the coalescent, P[Xn,k=0]=(k-1)(n+1)/[(k+1)(n-1)] (Saunders et al., 1984; Steel 
& McKenzie, 2001). 
 
*** For each l, with ⎣ ⎦21 nl ≤≤ , {l, n-l} has probability 2/(n-1), with the exception that if n is even, {n/2, n/2} has 
probability 1/(n-1). 
 
**** The special case Wn,n-1 is often abbreviated to Wn. 
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