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Abstract—In the minimizing-deep-coalescences (MDC) approach for species tree inference, a tree that has the minimal deep

coalescence cost for reconciling a collection of gene trees is taken as an estimate of the species tree topology. The MDC method

possesses the desirable Pareto property, and in practice it is quite accurate and computationally efficient. Here, in order to better

understand the MDC method, we investigate some properties of the deep coalescence cost. We prove that the unit neighborhood of

either a rooted species tree or a rooted gene tree under the deep coalescence cost is exactly the same as the tree’s unit neighborhood

under the rooted nearest-neighbor interchange (NNI) distance. Next, for a fixed species tree, we obtain the maximum deep

coalescence cost across all gene trees as well as the number of gene trees that achieve the maximum cost. We also study

corresponding problems for a fixed gene tree.

Index Terms—Deep coalescence, gene tree reconcilation, incomplete lineage sorting, maximal subtrees, nearest-neighbor

interchange

Ç

1 INTRODUCTION

THE minimizing-deep-coalescences (MDC) approach is a
promising method for inferring species trees from a

collection of gene trees whose discordance is caused by
incomplete lineage sorting [1], [2], [3], [4], [5], [6]. In this
approach, the amount of discordance for a gene tree and
species tree is measured by the deep coalescence cost,
which is computed as the total across all edges of the
species tree of the number of “extra” lineages required to
reconcile the gene tree within the species tree [1]. For a
given collection of gene tree topologies, the MDC method
identifies a tree that produces the minimal sum of deep
coalescence costs over all of the input gene trees. This tree is
then used as an estimate of the species tree topology.

The MDC approach has demonstrated favorable perfor-
mance in several analyses with both empirical and
simulated data sets [2], [3]. Lin et al. showed that the
MDC criterion has the desirable Pareto property, meaning
that a cluster (i.e., the leaf set of a subtree) that appears in
every input gene tree must also appear in the MDC-optimal
tree [5]. However, we have recently found that under the
multispecies coalescent model [8], the MDC criterion is not
statistically consistent for asymmetric four-leaf species tree
topologies or for species tree topologies with at least five
leaves [9]. That is, for some sets of species tree branch
lengths, the MDC criterion does not identify the correct
species tree topology when gene trees are sampled with
probabilities taken directly from the model. It has also been
observed informally that the MDC criterion tends to

produce “balanced” species tree estimates, such as tree T ¼
ðða; bÞ; ðc; dÞÞ in Fig. 1, rather than unbalanced trees, such as
tree S ¼ ðd; ðb; ða; cÞÞÞ in Fig. 1 (M. DeGiorgio, J. Syring, A.J.
Eckert, A.I. Liston, R. Cronn, D.B. Neale, and N.A.
Rosenberg, unpublished data).

In this paper, to further investigate the behavior of the
MDC criterion, we study several of its mathematical
properties. After introducing notation in Section 2, we
describe in Section 3 the relationship between deep
coalescence cost and the key concept of maximal subtrees.
In Section 4, we determine a relationship between the deep
coalescence cost and the rooted nearest-neighbor inter-
change (NNI) distance [10], [11], [12], which provides
another measure of the amount of topological discordance
between two trees. The problem of identifying gene trees
that maximize the deep coalescence cost given a fixed
species tree, and the dual problem of identifying species
trees that maximize the deep coalescence cost given a gene
tree, are investigated in Section 5.

2 NOTATION

We consider binary, rooted trees that are leaf-labeled and

have at least two leaves. The set of all binary, rooted trees

whose leaves are labeled by elements of a label set X is

denoted by RðXÞ. For a tree T , let V ðT Þ and
�
V ðT Þ be the sets

of nodes and internal (i.e., nonleaf) nodes of T , respectively.

If an edge of T is incident to a leaf of T , it is called a pendant

edge; otherwise, it is an internal edge. The sets of edges and

internal edges of T are denoted, respectively, by EðT Þ and
�
EðT Þ. We denote by �ðT Þ the root of T .

For a node v of tree T , let T ðvÞ be the subtree of T induced

by v, that is, the subtree rooted at v consisting of v and all

proper descendants of v (node w is a proper descendant of v

if w 6¼ v and v lies on the path from �ðT Þ to w). The cluster

CT ðvÞ induced by v is defined as the set of leaves of T ðvÞ,
and we denote by nv the number of elements of CT ðvÞ.
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Edges of T are considered to be directed away from the
root of T . Edge e of T with endpoints u and v, where u is the
parent of v, is written as ðu; vÞ. We call u and v the tail and
head of e, respectively. Because a nonroot node v has only
one parent u, it uniquely determines edge e ¼ ðu; vÞ.
Therefore, for convenience we also refer to T ðvÞ, CT ðvÞ,
and nv as T ðeÞ, CT ðeÞ, and ne, respectively.

Several properties of binary, rooted trees will be used
throughout the paper. The number of trees in RðXÞ
is 1 � 3 � � � ð2jXj � 3Þ, where jXj is the number of elements
of X. A tree T 2 RðXÞ has jXj � 1 internal nodes and
jXj � 2 internal edges. Thus, jV ðT Þj ¼ 2jXj � 1 and
jEðT Þj ¼ 2jXj � 2.

3 DEEP COALESCENCE COST

We assume incomplete lineage sorting [1], [8], [13] is the
only process that can cause a gene tree to have a different
topology from a species tree. Consider a specific species tree
S and gene tree T , both binary and rooted, and with the
same set of leaves. The deep coalescence cost for the pair
consisting of T and S is computed as follows [1], [3]. Each
node v of T is mapped to the most recent node of S (i.e., the
farthest node from the root of S) whose descendant leaf set
contains the cluster CT ðvÞ induced by v. We denote by
MRCASðvÞ the node to which v is mapped, and call it the
most recent common ancestor (MRCA) of v in S. For an
edge e of S, denote by ce the number of internal nodes v of T
that are mapped to nodes of the subtree SðeÞ induced by e.
The number of extra lineages in e is defined as

xlðT; eÞ ¼ ne � ce � 1: ð1Þ

The deep coalescence cost for the pair consisting of T and S is
defined as the sum of xlðT; eÞ across all the edges of S, that is,

dcðT; SÞ ¼
X
e2EðSÞ

xlðT; eÞ: ð2Þ

Our definition of extra lineages arises from the way in
which gene tree T is reconciled within the edges of S
according to an MRCA mapping between T and S. For each
leaf x of T , we place a gene lineage in the pendant edge of S
incident to the leaf (of S) labeled by x. We then recursively
create a lineage for each internal node v of T by merging the
two lineages for the two children of v in the edge of S with
MRCASðvÞ as its head (or the edge above the root node �ðSÞ
if MRCASðvÞ ¼ �ðSÞ). The reconciliation of T within S can
also be viewed as the backward evolution of the lineages in
the pendant edges of S, with the MRCA mapping

specifying where in S coalescences occur. For an edge e of
S, if ce internal nodes of T are mapped to nodes of subtree
SðeÞ, then ce coalescences occur along edge e and its proper
descendant edges. Thus, the ne lineages in the pendant
edges of SðeÞ are merged into ne � ce lineages in edge e, and
we say that edge e has ne � ce � 1 extra lineages.

It can be verified from the reconciliation process above
that the edge above the root of S has exactly one lineage.
Thus, this edge has no extra lineages, and it need not be
included in dcðT; SÞ. Notice also that ce ¼ 0 for every
pendant edge of S, because no internal nodes of T can be
mapped to a leaf of S. The number of extra lineages in every
pendant edge is 1� 0� 1 ¼ 0, and we can rewrite dcðT; SÞ as

dcðT; SÞ ¼
X
e2 �EðSÞ

xlðT; eÞ: ð3Þ

Fig. 1 illustrates the reconciliation of a gene tree T within a
species tree S. Each of the two internal edges of S has one
extra lineage, whereas there are no extra lineages in any of
the pendant edges or in the edge above the root of S. Hence,
dcðT; SÞ ¼ 2.

Clearly, dcðT; SÞ ¼ dcðS; T Þ ¼ 0 if and only if T and S
have the same (labeled) topology. In general, however,
dcðT; SÞ 6¼ dcðS; T Þ. For example, if T ¼ ððða; bÞ; cÞ; dÞ and
S ¼ ððða; cÞ; dÞ; bÞ, then dcðT; SÞ ¼ 3 while dcðS; T Þ ¼ 2. It
is, therefore, important that in computing dcðT; SÞ, the
gene tree T is reconciled within the species tree S and not
vice versa.

We note that while the definition of the number of extra
lineages by (1) arises naturally from the reconciliation of a
gene tree T within a species tree S as described in [1], Zhang
provided a different definition for this quantity [6], [7].
According to this definition, the nodes of T are mapped to
the nodes of S by the MRCA mapping that we have
described. An edge e of S has ke � 1 extra lineages if for
exactly ke edges ðu; vÞ of T , edge e lies on the path from
MRCASðuÞ to MRCASðvÞ. We will see in the next section that
Zhang’s definition and the definition in (1) are equivalent.

3.1 Maximal Subtrees and the Number of Extra
Lineages

Let T be a binary, rooted tree on X and let A be a nonempty
subset of X. We say that a subtree T ðvÞ induced by a node v
of T is A-maximal if

1. the leaf set CT ðvÞ of T ðvÞ is a subset of A, and
2. for any subtree t of T of which T ðvÞ is a proper

subtree, the leaf set of t is not a subset of A.

The concept of A-maximality is important throughout
the article, and we describe it in detail. As an example, we
compute subtrees of tree T in Fig. 1 that are A-maximal,
where A ¼ fa; b; cg. Cherry ða; bÞ is an A-maximal subtree of
T because fa; bg � A and the leaf set of T—the only subtree
of T of which ða; bÞ is a proper subtree—is not a subset of A.
Similarly, leaf c is also an A-maximal subtree of T . None of
the other subtrees of T is A-maximal.

We provide a simpler criterion for determining whether
a subtree of T is A-maximal. Clearly, T is the only X-
maximal subtree of T . Suppose that A is a proper,
nonempty subset of X, and let T ðvÞ be an A-maximal
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Fig. 1. Reconciling gene tree T within species tree S. In the figure,
MRCA mappings between leaves of T and leaves of S are omitted, and
for clearer illustration of the reconciliation process, the MRCAs of the
internal nodes of T are placed along the edges of S and along the
artificial edge above the root of S rather than at the internal nodes of S.



subtree of T . Because CT ðvÞ � A, CT ðvÞ is also a proper
subset of X and hence, v is a nonroot node of T . Let u be the
parent of v. As T ðvÞ is a proper subtree of T ðuÞ, the leaf set
of T ðuÞ (i.e., CT ðuÞ) is not a subset of A by condition 2.
Conversely, suppose that CT ðvÞ � A and CT ðuÞ 6� A. Let t
be a subtree of T that contains T ðvÞ as a proper subtree.
Then t is induced either by u or by a proper ancestor of u. It
follows that the leaf set of t contains CT ðuÞ, implying that
the leaf set of t is not a subset of A. By the two conditions
above, T ðvÞ is A-maximal. Therefore, we can say that T ðvÞ,
where v is a nonroot node of T , is A-maximal if and only if

1. the cluster CT ðvÞ induced by v is a subset of A, and
2. the cluster CT ðuÞ induced by the parent u of v is not a

subset of A.

Consider a given species tree S and gene tree T . For an
edge e of S, let ke be the number of CSðeÞ-maximal subtrees
of T . Than and Nakhleh proved that [3]

xlðT; eÞ ¼ ke � 1: ð4Þ

Equation (4) agrees with Zhang’s definition of extra
lineages [6], [7]. If edge e of S lies on the path from
MRCASðuÞ to MRCASðvÞ, where ðu; vÞ is an edge of T , then
MRCASðvÞ is a descendant of the head of e and MRCASðuÞ
is an ancestor of the tail of e. This means that T ðvÞ is a
maximal subtree of T with respect to CSðeÞ. Conversely, if
T ðvÞ is a CSðeÞ-maximal subtree of T , then by definition,
CT ðvÞ � CSðeÞ and CT ðuÞ 6� CSðeÞ. Hence, MRCASðvÞ is a
descendant of the head of e, while MRCASðuÞ is an
ancestor of the tail of e. Thus, each CSðeÞ-maximal subtree
of T corresponds to exactly one edge ðu; vÞ of T for which
edge e lies on the path from MRCASðuÞ to MRCASðvÞ. That
is, the number of extra lineages in edge e by Zhang’s
definition is also ke � 1.

As an illustration of (4), consider the shaded edge e of the
species tree S in Fig. 1. Edge e induces cluster CSðeÞ ¼
fa; b; cg, and as noted earlier, only leaf c and cherry ða; bÞ of
T are CSðeÞ-maximal. Equation (4) gives xlðT; eÞ ¼ 2 �
1 ¼ 1, which agrees with the illustration in Fig. 1 that edge
e has one extra lineage.

Equation (4) eliminates the need for the MRCA mapping
between the nodes of T and the nodes of S in computing
dcðT; SÞ. It also shows that the number of extra lineages in
species tree edge e depends only on the cluster CSðeÞ (and
the gene tree), and not on the labeled topology of the
subtree SðeÞ. In other words, we can associate with each
A � X the cost xlðT;AÞ. This result is the basis for a
dynamic programming algorithm for identifying a species
tree with the minimum deep coalescence cost for a
collection of gene trees [3].

4 DEEP COALESCENCE COST AND ROOTED-NNI
DISTANCE

In this section, we look at some relationships between the
deep coalescence cost and the rooted-NNI distance. A single
rooted-NNI move, when applied to a subtree t ¼
ððA;BÞ; CÞ of a tree T , transforms T into a new tree with
the subtree t substituted by either t0 ¼ ðA; ðB;CÞÞ or t00 ¼
ðB; ðA;CÞÞ (Fig. 2); here, letters A, B, and C denote subtrees
of T . For two trees T and S in RðXÞ, the rooted-NNI

distance between T and S, denoted henceforth dnniðT; SÞ, is
the minimum number of rooted-NNI moves required to
convert T into S. The rooted-NNI distance is a distance
metric on the set RðXÞ [12] (see also [10]).

Theorem 1. Let T and S be two binary, rooted trees on X. Then,
dcðT; SÞ ¼ 1 if and only if dnniðT; SÞ ¼ 1.

Proof. Suppose that dnniðT; SÞ ¼ 1. Then T and S must
have at least three leaves. We can assume that T has a
subtree t ¼ ððA;BÞ; CÞ, where A, B, and C represent
subtrees, and that S is obtained from T by substituting t
with t0 ¼ ðA; ðB;CÞÞ. Let � be the edge of S that induces
subtree ðB;CÞ (Fig. 2). It is easy to see that B and C are
the only subtrees of gene tree T that are CSð�Þ-maximal.
By (4), xlðT; �Þ ¼ 1. Further, it can be checked that for
any edge e of S other than �, there is a unique edge in
T that induces the same cluster as CSðeÞ. It follows that
there is only one CSðeÞ-maximal subtree of T . By (4)
again, xlðT; eÞ ¼ 0. Thus, we have dcðT; SÞ ¼ xlðT; �Þ þP

e6¼� xlðT; eÞ ¼ 1.

For the converse, suppose that dcðT; SÞ ¼ 1. Trees T
and S are not identical, for otherwise dcðT; SÞ ¼ 0. Let �
be an (internal) edge of S such that CSð�Þ is not an
induced cluster of T . Then there must be at least two
subtrees of T that are CSð�Þ-maximal, and hence
xlðT; �Þ � 1 by (4). Because dcðT; SÞ ¼ 1, CSð�Þ is the
only cluster of S that is not a cluster of T (and
xlðT; �Þ ¼ 1). This in turn implies that T also has only
one cluster, say, CT ð�Þ induced by edge �, that is not a
cluster of S (note that S and T induce the same number
of clusters, as they have the same number of edges).
Contracting either edge � in S or edge � in T results in
the same tree, which we denote by R. Let w be the only
ternary node of R, and let A, B, and C be the three
subtrees of R attached to w. To obtain S and T , these
subtrees must be regrouped in two different ways.
Without loss of generality, we can assume that A and
B are grouped as siblings in T , whereas B and C are
grouped as siblings in S (Fig. 2). Clearly, one rooted-NNI
move is required to transform T to S and vice versa, and
dnniðT; SÞ ¼ 1. tu

For each internal edge of a tree T 2 RðXÞ, we can obtain
from T two different trees by one rooted-NNI move. The
number of internal edges of T is jXj � 2, and hence, there
are 2ðjXj � 2Þ trees S with dnniðT; SÞ ¼ 1 [10], [11]. Note also
that the rooted-NNI distance is symmetric, as it is a metric
on the set RðXÞ. We have the following corollaries.
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Fig. 2. A rooted nearest-neighbor interchange move. The tree t0 ¼
ðA; ðB;CÞÞ (right) can be obtained from the tree t ¼ ððA;BÞ; CÞ (left) by
one rooted-NNI move. The subtree B is pruned from t then reattached to
t as a sibling of C. An alternative rooted-NNI move, in which A is cut
instead of B and rejoined to t as a sibling of C, creates another tree
t00 ¼ ðB; ðA;CÞÞ.



Corollary. Let T and S be two binary, rooted tree on X. Then
dcðT; SÞ ¼ 1 if and only if dcðS; T Þ ¼ 1.

Corollary. Let T be a binary, rooted tree on X. Then the number
o f t r e e s S 2 RðXÞ with dcðT; SÞ ¼ dcðS; T Þ ¼ 1 i s
2ðjXj � 2Þ.

By Theorem 1, if dnniðT; SÞ ¼ 2, then dcðT; SÞ � 2, and if

dcðT; SÞ ¼ 2, then dnniðT; SÞ � 2. It is, therefore, tempting to

conjecture that dcðT; SÞ � dnniðT; SÞ or dnniðT; SÞ � dcðT; SÞ,
but neither inequality holds in general. Consider two trees,

T ¼ ðða; bÞ; ðc; dÞÞ and S ¼ ðða; cÞ; ðb; dÞÞ. We have dcðT; SÞ ¼
2, while at least three rooted-NNI moves are needed to

convert T into S. On the other hand, for the pair of trees

T 0 ¼ ðc; ða; ðb; dÞÞÞ and S0 ¼ ðd; ðb; ðc; aÞÞÞ, we have dcðT 0;
S0Þ ¼ 3, while dnniðT 0; S0Þ ¼ 2. However, the next result

demonstrates that a weaker relationship between the deep

coalescence cost and the rooted-NNI distance does exist.

Theorem 2. Let S and S0 be two binary, rooted species on X.
Assume that dnniðS; S0Þ ¼ 1. Then for any gene tree
T 2 RðXÞ,

jdcðT; SÞ � dcðT; S0Þj � jXj � 2: ð5Þ

Proof. Because dnniðS; S0Þ ¼ 1, we can assume that S0 is
obtained from S by substituting a subtree ððA;BÞ; CÞ of S
with ðA; ðB;CÞÞ, where A, B, and C represent subtrees of
S (see Fig. 2, considering t and t0 as subtrees of S and S0,
respectively). Hence, every cluster induced by S appears
in S0, except for the cluster induced by edge � in S.
Conversely, every cluster induced by S0 also appears in
S, except for the cluster induced by edge � in S0.
Applying (1) and (2), we have

jdcðT; SÞ � dcðT; S0Þj ¼ jxlðT; �Þ � xlðT; �Þj
� maxfxlðT; �Þ; xlðT; �Þg;

where the last inequality follows from the fact that both
xlðT; �Þ and xlðT; �Þ are nonnegative. The number of
lineages in edge � is at most the total number of leaves in
A and B, which is at most jXj � 1 because subtree C has
at least one leaf. Similarly, the number of lineages in edge
� is at most jXj � 1. Therefore, jdcðT; SÞ � dcðT; S0Þj �
jXj � 2. tu

Theorem 3. Let T and T 0 be two binary, rooted gene trees on X.
Assume that dnniðT; T 0Þ ¼ 1. For any species tree S 2 RðXÞ,

jdcðT; SÞ � dcðT 0; SÞj � jXj � 2: ð6Þ

Proof. We have

jdcðT; SÞ � dcðT 0; SÞj ¼ j
X
e2 �EðSÞ

xlðT; eÞ �
X
e2 �EðSÞ

xlðT 0; eÞj

�
X
e2 �EðSÞ

jxlðT; eÞ � xlðT 0; eÞj

¼
X
e2 �EðSÞ

jce � c0ej; ðby ð1ÞÞ

where ce and c0e, respectively, denote the numbers of

internal nodes of T and T 0 whose MRCAs in S are nodes

of the subtree SðeÞ induced by e. Because j �EðSÞj ¼
jXj � 2, it is sufficient to show that for each internal edge

e of S,

jce � c0ej � 1:

Because dnniðT; T 0Þ ¼ 1, we can assume that T 0 is

obtained from T by substituting a subtree ððA;BÞ; CÞ of

T with ðA; ðB;CÞÞ, where A, B, and C represent subtrees

(Fig. 2). Let v be the node of T that induces the subtree

ðA;BÞ, and let v0 be the node of T 0 that induces ðB;CÞ.
Except for clusters CT ðvÞ of T and CT 0 ðv0Þ of T 0, every

cluster of T is a cluster of T 0 and vice versa. Thus, for

every node u of T other than v, there exists a unique

node u0 6¼ v0 in T 0 such that both u and u0 induce the

same cluster. This implies that MRCASðuÞ ¼ MRCASðu0Þ
if u 6¼ v and u0 6¼ v0, and only MRCASðvÞ and MRCASðv0Þ
can differ. As a consequence, the value of ce � c0e
depends only on whether MRCASðvÞ and MRCASðv0Þ
are nodes of SðeÞ. Therefore,

1. If both MRCASðvÞ and MRCASðv0Þ are nodes of
SðeÞ, or if neither is a node of SðeÞ, then ce ¼ c0e.

2. If MRCASðvÞ is a node of SðeÞ, but MRCASðv0Þ is
not, then ce ¼ c0e þ 1.

3. If MRCASðv0Þ is a node of SðeÞ, but MRCASðvÞ is
not, then c0e ¼ ce þ 1.

The desired claim holds in all three cases. tu
It can be seen that the upper bound in Theorem 2 is tight.

Consider an n-leaf caterpillar species tree S ¼
ð. . . ðð1; 2Þ; 3Þ; . . . ; nÞ, and let S0 be a species tree obtained
from S by applying one rooted-NNI move that makes leaves
n� 1 and n siblings (i.e., S0 ¼ ðð. . . ðð1; 2Þ; 3Þ; . . . ; n� 2Þ;
ðn� 1; nÞÞ). Let T1 ¼ ð. . . ðððn� 1; nÞ; 1Þ; 2Þ; . . . ; n� 2Þ. By
direct calculation, we have dcðT1; SÞ ¼ ðn� 2Þðn� 1Þ=2
a n d dcðT1; S

0Þ ¼ ðn� 3Þðn� 2Þ=2. H e n c e , dcðT1; SÞ �
dcðT1; S

0Þ ¼ n� 2.
As for Theorem 3, consider caterpillar gene trees

T2 ¼ ð. . . ðð1; nÞ; 2Þ; . . . ; n� 1Þ and T 02 ¼ ð. . . ððð1; 2Þ; nÞ; 3Þ;
. . . ; n� 1Þ that are one rooted-NNI move apart. Again
by direct computation, we have dcðT2; SÞ ¼ ðn� 2Þðn�
1Þ=2 and dcðT 02; SÞ ¼ ðn� 3Þðn� 2Þ=2. Hence, dcðT2; SÞ �
dcðT 02; SÞ ¼ n� 2, and the bound in Theorem 3 is also
tight.

5 TREES WITH MAXIMUM DEEP COALESCENCE

COST

In this section, we solve the following problem: given a

fixed species tree S (or a fixed gene tree T ), which gene trees

(or species trees) have the maximum deep coalescence cost?

5.1 Fixed Species Trees

We first consider the case in which we are given a fixed

species tree S 2 RðXÞ, jXj ¼ n � 2. We derive an upper

bound for dcðT; SÞ over all gene trees T 2 RðXÞ. We also

derive a formula for the number of gene trees T with

dcðT; SÞ equal to that upper bound.
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5.1.1 Upper Bound of dcðT ; SÞ
From (1) and (2), dcðT; SÞ is bounded above by msðSÞ ¼P

e2EðSÞðne � 1Þ ¼ �ð2n� 2Þ þ
P

e2EðSÞ ne. We now con-
struct a tree T � with dcðT �; SÞ ¼ msðSÞ. Let x be a leaf in
one subtree of the root of S, and let y be a leaf in the other
subtree of the root. Let T � be a caterpillar tree on X whose
only cherry is ðx; yÞ, and let v be the node of T � that
induces this cherry (Fig. 3). Because leaves x and y of the
species tree S appear in different subtrees of the root of S,
MRCASðvÞ is the root of S. It follows that the MRCA of any
internal node of T � in S is also the root of S. Consequently,
for each edge e of S, ce ¼ 0. By (1), xlðT �; eÞ ¼ ne � 1, and
by (2), dcðT �; SÞ ¼ msðSÞ. We have proven

Lemma 4. For a given species tree S 2 RðXÞ, the deep

coalescence cost for reconciling a gene tree T 2 RðXÞ is

bounded above by

msðSÞ ¼ �ð2n� 2Þ þ
X
e2EðSÞ

ne: ð7Þ

The depth of a node v in a tree S, denoted henceforth by
‘ðvÞ, is defined as the number of edges in the (unique) path
from the root of S to v. The external path length of S, eplðSÞ,
is defined as the sum

P
x2X ‘ðxÞ.

Lemma 5. Let S be a tree in RðXÞ, where jXj ¼ n. Then

X
e2EðSÞ

ne ¼ eplðSÞ � nðnþ 1Þ
2

� 1; ð8Þ

with equality if and only if S is a caterpillar tree.

Proof. The first part of the lemma follows by noting that

each leaf x appears in exactly ‘ðxÞ proper subtrees of S,

and hence it contributes exactly ‘ðxÞ to the sumP
e2EðSÞ ne (e.g., [14], [15]). The second part was proven

by Klein and Wood [16] (see also [17, Section 2.3.4.5]).tu

The following theorem is a direct consequence of
Lemmas 4 and 5.

Theorem 6. For any pair consisting of a species tree S and a gene

tree T in RðXÞ, jXj ¼ n,

dcðT; SÞ � msðSÞ �
ðn� 2Þðn� 1Þ

2
: ð9Þ

5.1.2 Number of Gene Trees with Maximum Deep

Coalescence Cost

When S is not a caterpillar tree, gene trees T need not be
caterpillar trees to have dcðT; SÞ ¼ msðSÞ in (7). For

example, the gene tree obtained from T � in Fig. 3 by pruning
leaf a and reattaching it to T � as a sibling of leaf c also has
deep coalescence cost msðSÞ ¼ dcðT �; SÞ ¼ 4. We establish
conditions for gene trees T to have dcðT; SÞ ¼ msðSÞ and
derive a formula for the number of these gene trees.

Denote by S‘ and Sr the two subtrees of the root of S. A
cherry of T is called a left-right cherry with respect to S if it
has one leaf each from S‘ and Sr.

Lemma 7. Let S 2 RðXÞ be a given species tree. Then a gene tree
T 2 RðXÞ has dcðT; SÞ ¼ msðSÞ if and only if every cherry of
T is a left-right cherry with respect to S.

Proof. For the necessary condition, suppose otherwise that
T has a cherry whose leaves are both from S‘ (the case
in which they are from Sr is similar). Let v be the node
that induces this cherry. Then MRCASðvÞ is some node
of S‘, and hence is a proper descendant of the root of S.
Let � be the edge of S whose head is MRCASðvÞ. By the
definition of c�, we have c� � 1. From (1), xlðT; �Þ ¼
n� � c� � 1 < n� � 1, and it follows that dcðT; SÞ ¼P

e2EðSÞ xlðT; eÞ < msðSÞ.
For the converse, if every cherry of T is left-right with

respect to S, then MRCASðvÞ is the root of S for every
internal node v of T . Thus, ce ¼ 0 for each edge of S, and
by (2), dcðT; SÞ ¼ msðSÞ. tu

Lemma 8. Let k and n� k be the numbers of leaves in S‘ and Sr,

respectively. Then a gene tree T 2 RðXÞ that has dcðT; SÞ ¼
msðSÞ cannot have more than minfk; n� kg cherries.

Proof. By Lemma 7, each cherry of T is a left-right cherry
with respect to S. Because S‘ has k leaves and Sr has
n� k leaves, at most minfk; n� kg left-right cherries can
be formed. tu

Lemmas 7 and 8 reduce the problem of counting
the number of gene trees T with dcðT; SÞ ¼ msðSÞ to the
problem of counting for each i ¼ 1; . . . ;minfk; n� kg the
number of gene trees that have i cherries, each of which is
left-right with respect to S. We count these gene trees by
using a bijection of [18] between binary, rooted trees and
perfect matchings.

A perfect matching on 2n� 2 points is simply a set of n� 1

unordered pairs of these points. For ease of description of
the bijection, assume that the leaves of a tree T are labeled
by integers 1; 2; . . . ; n. The internal nodes of T , excluding
the root, are assigned integers nþ 1; . . . ; 2n� 2 by repeating
the following procedure.

1. Consider the set U of unlabeled internal nodes both
of whose children have already been labeled.

2. Find among the children of the elements of U node w
that has the smallest label. Let v be the parent of w.

3. Label v with the next available integer.

For each internal node of T , including the root, we form
an unordered pair of the labels of its two children. The set of
all these pairs is the perfect matching for T (Fig. 4).

Diaconis and Holmes proved that each binary, rooted
tree with leaves labeled by integers 1; 2; . . . ; n corresponds
to exactly one perfect matching on points 1; 2; . . . ; 2n� 2
according to the procedure above [18]. In fact, the number
of perfect matchings on 2n� 2 points is
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Fig. 3. An example of the maximum deep coalescence cost for a fixed
species tree. Given the species tree S (right), the deep coalescence cost
for reconciling the gene tree T � (left) achieves the maximum deep
coalescence cost dcðT �; SÞ ¼ 4 over all gene trees.



1

ðn� 1Þ!
2n� 2

2

� �
2n� 4

2

� �
� � � 2

2

� �
¼ ð2n� 3Þ!!;

which is also the number of binary, rooted trees withn leaves.

Lemma 9. Let the numbers of leaves in S‘ and Sr be k and n� k,

respectively. The number of trees T that have i cherries, each of

which is left-right with respect to S, is

ðn� 2Þ!i
2i�1

k

i

� �
n� k
i

� �
: ð10Þ

Proof. We use the tree-matching bijection to construct trees

T with i left-right cherries with respect to S. Noting that

in the bijection, points 1; 2; . . . ; n are assigned to the

leaves of T , we divide the set of points 1; 2; . . . ; 2n� 2 into

three subsets.

1. P‘ is the set of k points corresponding to the
leaves in S‘.

2. Pr is the set of n� k points corresponding to the
leaves in Sr.

3. Q is the set of the n� 2 remaining points:
nþ 1; . . . ; 2n� 2.

A tree T is built in three steps. First, we create i left-
right cherries by pairing i points from P‘ with i points
from Pr. There are ðkiÞ i-subsets of P‘ and ðn�ki Þ i-subsets
of Pr. For a fixed i-subset of P‘ and a fixed i-subset of Pr,
there are i! possible pairings: the first element from the
subset of P‘ pairs with one of i choices from the subset of
Pr, the second element pairs with one of i� 1 choices,
and so on. Thus, the number of possible sets of i left-
right cherries is

i!
k

i

� �
n� k
i

� �
:

After this pairing, k� i and n� k� i points remain in
P‘ and Pr, respectively. These ðk� iÞ þ ðn� k� iÞ ¼
n� 2i points must be paired with n� 2i points in Q,
because we require that T has exactly i cherries. Using
the same argument as in the preceding paragraph, the
number of pairings in this step is

ðn� 2iÞ! n� 2i

n� 2i

� �
n� 2

n� 2i

� �
¼ ðn� 2Þ!
ð2i� 2Þ! :

In the third and final step, ðn� 2Þ � ðn� 2iÞ ¼ 2i� 2
points in Q are paired. Any pairing of these points is
allowed, as these points correspond to internal nodes of
tree T . The number of different pairings is ð2i� 3Þ!!, the

number of binary, rooted trees with i leaves (by the tree-
matching bijection).

The total number of trees that have i left-right cherries
with respect to S is

i!
k

i

� �
n� k
i

� �
� ðn� 2Þ!
ð2i� 2Þ! � ð2i� 3Þ!!

¼ i! k

i

� �
n� k
i

� �
� ðn� 2Þ!
ð2i� 2Þ! �

ð2i� 2Þ!
2i�1ði� 1Þ!

¼ ðn� 2Þ!i
2i�1

k

i

� �
n� k
i

� �
:

ut

Theorem 10. Let the numbers of leaves in S‘ and Sr be k and
n� k, respectively. For a fixed species tree S 2 RðXÞ, the
number of gene trees T 2 RðXÞ with dcðT; SÞ ¼ msðSÞ is

’sðSÞ ¼ 2ðn� 2Þ!
Xmin k;n�kf g

i¼1

i2�i
k

i

� �
n� k
i

� �
: ð11Þ

Proof. The theorem follows immediately from Lemmas 7, 8,
and 9. tu

To illustrate the theorem, we count the number of trees T
with dcðT; SÞ ¼ msðSÞ ¼ 4 for the species tree S in Fig. 3.
Because T has five leaves, we need to consider only two
cases: T has one cherry (i.e., it is a caterpillar tree) and T has
two cherries. In the first case, one leaf of the cherry is from
fa; xg, and the other is from fb; c; yg. Hence, six different
cherries can be formed. For a fixed one of these cherries,
say, ðx; yÞ, the remaining leaves of a caterpillar tree T can be
assigned labels a, b, and c in 3! ¼ 6 ways. The number of
trees in the first case is therefore 6 � 6 ¼ 36.

For the second case, T has two cherries, one containing a
and the other containing x (by Lemma 7). Six possible sets
of two such cherries exist. For a fixed set of two cherries,
say, fða; bÞ; ðx; yÞg, we can arrange the two cherries and leaf
c in three different ways to construct T . Thus, the number of
trees in this case is 6 � 3 ¼ 18. The total number of trees with
dcðT; SÞ ¼ 4 is 36þ 18 ¼ 54. Simple calculation verifies that
(11) also gives this number.

Let S be a fixed species tree on X, and let S0 be another
species tree that has the same shape (i.e., unlabeled
topology) as S. There exists a permutation � on X such
that S0 is obtained from S by relabeling each leaf x of S with
�ðxÞ. Suppose that T is a gene tree that has dcðT; SÞ ¼ msðSÞ.
Let T 0 be a tree obtained from T by relabeling the leaves of T
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Fig. 4. A correspondence between a binary, rooted tree, and a perfect matching. The tree has leaves labeled by 1; 2; . . . ; 7 (left), and the perfect
matching (right) is on points 1; 2; . . . ; 12. The internal nodes of the tree are labeled according to the procedure described in the text. The matching is
formed by pairing the two children of each internal node of the tree.



according to permutation �. It can be seen that dcðT 0; S0Þ ¼
dcðT; SÞ [9]. Thus, the maximum cost msðSÞ and function

’sðSÞ depend only on the shape of S, not on the leaf labels of

S. This observation can be verified from (7) and (11).

5.1.3 Properties of msðSÞ and ’sðSÞ for Small Trees

In this section, we examine the properties of msðSÞ and
’sðSÞ in relation to the Furnas rank of S [20], denoted
henceforth as rankF ðSÞ. Tree shapes with the same number
of leaves are assigned consecutive positive integers, starting
from 1. The procedure for assigning ranks to tree shapes is

recursive. There is only one tree shape with one leaf, and it

has rank 1. For a tree shape S with at least two leaves, we

designate S‘ and Sr as the left and right subtrees of the root

of S such that S‘ has fewer leaves than Sr, or rankF ðS‘Þ �
rankF ðSrÞ in the case that S‘ and Sr have the same number

of leaves. For two tree shapes S and S0, if S‘ has fewer

leaves than S0‘, then rankF ðSÞ < rankF ðS0Þ. If S‘ and S0‘ have

the same number of leaves and rankF ðS‘Þ < rankF ðS0‘Þ, then

rankF ðSÞ < rankF ðS0Þ. Otherwise, S‘ and S0‘ have the same

shape, and rankF ðSÞ < rankF ðS0Þ if rankF ðSrÞ < rankF ðS0rÞ.
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TABLE 1
The Maximum Deep Coalescence Cost, msðSÞ, and the Number of Gene Trees with Maximum Cost, ’sðSÞ,

for an Arbitrarily Chosen Labeling of Fixed Species Tree Shapes with 1 � n � 9 Leaves

For each species tree shape S, quantities appear as an ordered pair ðmsðSÞ; ’sðSÞÞ. Species tree shapes are ordered according to their Furnas
ranks.

Fig. 5. Plots of msðSÞ, the maximum deep coalescence cost for fixed S, and ’sðSÞ, the number of gene trees T with dcðT; SÞ ¼ msðSÞ, for all
46 species tree shapes with nine leaves. The species tree shapes are ordered according to their Furnas ranks.



Caterpillar trees always have rank 1, and “most-
balanced” trees—those in which for every internal node,
the numbers of leaves in its left and right subtrees differ by
at most one—have the largest ranks. In general, trees with
higher rankF are more balanced than trees with smaller
rankF (e.g., [20]).

The maximum cost msðSÞ and the number ’sðSÞ of gene
trees that achieve this maximum appear in Table 1 for every
species tree shape with nine or fewer leaves. Examining the
relationship between msðSÞ and rankF for trees in the table,
we see that trees with higher rankF generally have lower
msðSÞ (Fig. 5a). However, the relationship between msðSÞ
and rankF ðSÞ is not completely monotonic, as shown in
Fig. 5 and Table 1. Consider tree shapes with nine leaves, for
example. Tree shape 23 has msðSÞ ¼ 17, and tree shape 24
has msðSÞ ¼ 22. Note that the right and left subtrees of
shape 23 are a perfect balanced eight-leaf tree and a single-
leaf tree, whereas the corresponding subtrees of shape 24 are
a seven-leaf caterpillar and a cherry. From (7), we can see
that the caterpillar subtree of shape 24 accounts for the
increase in the maximum deep coalescence cost over that of
shape 23.

As for ’sðSÞ, Fig. 5b suggests that for nine taxa, it is
monotonically nondecreasing with rankF ðSÞ. It can be
proven that this monotonicity holds in general.

Proposition 11. For two species tree shapesS andS0 with the same
number of leaves, ’sðSÞ � ’sðS0Þ if rankF ðSÞ < rankF ðS0Þ.

Proof. By our designation, the left subtree S‘ of each tree
shape S has at most bn=2c leaves. Further, rankF ðSÞ <
rankF ðS0Þ implies that the number of leaves in S‘ is at
most the number of leaves in S0‘. From (11), ’sðSÞ ¼
’sðS0Þ if S‘ and S0‘ have the same number of leaves.
Hence, it only remains to show that if S‘ has fewer leaves
than S0‘, then ’sðSÞ < ’sðS0Þ. We have

k
i

� �
n�k
i

� �
k�1
i

� �
n�kþ1

i

� � ¼ k

k� i
n� k� iþ 1

n� kþ 1

¼ kðn� kþ 1Þ � ki
kðn� kþ 1Þ � ðn� kþ 1Þi ;

which is greater than 1 if k � bn=2c. Consequently, if
2 � k � bn=2c, then

Xk
i¼1

i2�i
k

i

� �
n� k
i

� �
>
Xk�1

i¼1

i2�i
k

i

� �
n� k
i

� �

>
Xk�1

i¼1

i2�i
k� 1

i

� �
n� kþ 1

i

� �
:

Our claim that ’sðSÞ < ’sðS0Þ if S‘ has fewer leaves than
S0‘ now follows from (11). tu

5.2 Fixed Gene Trees

Suppose now that we are given a fixed gene tree T 2 RðXÞ,
jXj ¼ n � 2. In this section, we obtain several properties of
species trees S with maximum dcðT; SÞ over all species trees
in RðXÞ. Although the problem of identifying all species
trees S with maximum dcðT; SÞ for a given gene tree T
remains open for the general case, we solve it for certain
classes of cases. Further, we prove some lemmas that apply
in the general case.

As in the previous section, we denote by S‘ and Sr the

left and right subtrees of the root of S, and we refer to the

sets of leaves of S‘ and Sr as X‘ and Xr.

Lemma 12. Let i be the number of cherries of T . Let S 2 RðXÞ be

a species tree with k leaves in S‘ and n� k leaves in Sr, where

k � i and n� k � i. Then

dcðT; SÞ � �ðT Þ ¼ nðn� 1Þ
2

� iðn� iÞ; ð12Þ

with equality if and only if

1. Each cherry of T is left-right with respect to S.
2. Both S‘ and Sr are caterpillar trees, and either k ¼ i or

n� k ¼ i (or both).

Proof. By Lemma 4, dcðT; SÞ � msðSÞ. Hence, in order to

prove (12), it suffices to prove that msðSÞ � nðn� 1Þ=2 �
iðn� iÞ. From (7), we have

msðSÞ ¼ �ð2n� 2Þ þ
X
e2EðSÞ

ne

¼ �ð2n� 2Þ þ kþ
X

e2EðS‘Þ
ne

0
@

1
A

þ n� kþ
X

e2EðSrÞ
ne

0
@

1
A

¼ �ðn� 2Þ þ
X

e2EðS‘Þ
ne þ

X
e2EðSrÞ

ne

� �ðn� 2Þ þ kðkþ 1Þ
2

� 1

� �

þ ðn� kÞðn� kþ 1Þ
2

� 1

� �
ðby Lemma 5Þ

¼ nðn� 1Þ
2

� kðn� kÞ � nðn� 1Þ
2

� iðn� iÞ;

where the last inequality follows from the fact that the

function �zðn� zÞ is a parabola that faces upward and

has line of symmetry z ¼ n=2.
In order to have equality in (12), we must have

1. dcðT; SÞ ¼ msðSÞ.
2. msðSÞ ¼ nðn� 1Þ=2� iðn� iÞ.
From the derivation, msðSÞ ¼ nðn� 1Þ=2� iðn� iÞ if

and only if both S‘ and Sr are caterpillars, and either
k ¼ i or n� k ¼ i (so that �kðn� kÞ is maximum). By
Lemma 7, dcðT; SÞ ¼ msðSÞ if and only if each cherry of
T is left-right with respect to S. tu

Denote by mtðT Þ the maximum of dcðT; SÞ across all

species trees with the same set of leaves as T , and denote by

’tðT Þ the number of species trees S that have dcðT; SÞ ¼
mtðT Þ.
Corollary. Let T be a given caterpillar gene tree in RðXÞ, where

jXj ¼ n � 2. Then mtðT Þ ¼ �ðT Þ ¼ ðn� 1Þðn� 2Þ=2, and

’tðT Þ ¼ ðn� 1Þ!.
Proof. By Theorem 6, ðn� 1Þðn� 2Þ=2 is an upper bound of

dcðT; SÞ for any species tree S 2 RðXÞ. Thus, we need

only show that there are ðn� 1Þ! species trees S that have
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dcðT; SÞ ¼ ðn� 1Þðn� 2Þ=2. Let ðx; yÞ be the only cherry
of T . The equality conditions in Lemma 12 imply that a
species tree S has this maximum deep coalescence cost if
and only if

1. S is a caterpillar tree.
2. The left subtree S‘ is either leaf x or leaf y.

If jXj ¼ n ¼ 2, thenRðXÞ has just one tree. Hence, there
is only one species tree S, and dcðT; SÞ ¼ 0. Suppose that
jXj ¼ n � 3. Then we reserve either x or y to label the only
leaf of S‘, and assign the remaining n� 1 labels to the
leaves of Sr. Because Sr is also a caterpillar tree, there are
ðn� 1Þ!=2 possible labelings of Sr ([22, Corollary 2.4.3]).
Thus, the total number of species trees with dcðT; SÞ ¼
ðn� 1Þðn� 2Þ=2 is 2	 ðn� 1Þ!=2 ¼ ðn� 1Þ!. tu

Given a caterpillar gene tree T , the corollary gives a
complete set of species trees S with maximum dcðT; SÞ.
For a general gene tree T , obtaining such a complete set is
an open problem. However, Lemma 12 implies that mtðT Þ
is at least �ðT Þ. Table 2 lists the values of mtðT Þ and ’tðT Þ
for all gene tree shapes with up to nine leaves. For gene
tree shapes with nine leaves, mtðT Þ and ’tðT Þ are also
plotted in Fig. 6. Unlike the situation with msðSÞ, in which
msðSÞ generally decreases as rankF ðSÞ increases, many
oscillations occur in mtðT Þ (Fig. 6a). Further, mtðT Þ has
relatively little variation across gene tree shapes. For
example, the minimum and maximum of mtðT Þ among all
46 gene tree shapes with nine leaves are 21 and 28,
whereas in the case of msðSÞ, the corresponding minimum
and maximum are 13 and 28. To compare mtðT Þ with the
lower bound �ðT Þ, Fig. 6a contains a plot of �ðT Þ. From
the figure, we observe that for trees with nine leaves,
�ðT Þ < �ðT 0Þ implies mtðT Þ � mtðT 0Þ. In fact, it can be
verified from Table 2 that the relationship holds for any

gene tree shape with up to nine leaves. We conjecture that

it is true for arbitrary gene tree shapes: assume that T has

i cherries and T 0 has i0 cherries. Then �ðT Þ < �ðT 0Þ implies

that i > i0, that is, T has more cherries than T 0. The
lineages in a species tree S have fewer chances to coalesce

in internal branches of S to form the cherries of T 0 than to

form the cherries of T . Consequently, we expect that more

extra lineages are required for reconciling T 0 than for

reconciling T .
The plot of ’tðT Þ in Fig. 6b contrasts sharply with the

plot of ’sðSÞ in Fig. 5b. We proved in Section 5.1.3 that

’sðSÞ increases as rankF ðSÞ increases. In particular, ’sðSÞ
has the smallest value (40,320) when S is a caterpillar tree,

and the largest value (567,000) when S is the most-balanced
tree. By contrast, ’tðT Þ attains its largest value (40,320)

when T is a caterpillar. Further, this largest value of ’tðT Þ is

equal to the smallest value of ’sðSÞ. Most trees have

’tðT Þ < 15;000; only trees 1, 2, 6, 21, and 23 have

’tðT Þ > 15;000. The smallest value of ’tðT Þ is 2,880,

considerably smaller than the smallest value of ’sðSÞ, and

it is achieved by four trees: 20, 33, 37, and 38.
We now prove two results that hold for any fixed gene

tree T and provide insight into the features of species trees

with maximum dcðT; SÞ. We assume in the rest of this

section that the gene tree T has at least two cherries, for
otherwise T is a caterpillar and is covered by the previous

corollary. We say that a species tree S is T -improvable if

there exist two sibling nodes q1 and q2 in S such that

fa1; b1g � CSðq1Þ and fa2; b2g � CSðq2Þ, where ða1; b1Þ and

ða2; b2Þ are two cherries of T (Fig. 7).

Lemma 13. If S is T -improvable, then dcðT; SÞ cannot be

maximum over all species trees with the same set of leaves as S

and T .
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TABLE 2
The Maximum Deep Coalescence Cost, mtðT Þ, and the Number of Species Trees with Maximum Cost,

’tðT Þ, for an Arbitrarily Chosen Labeling of Fixed Gene Tree Shapes with 1 � n � 9 Leaves

For each gene tree shape T , quantities appear as an ordered pair ðmtðT Þ; ’tðT ÞÞ. Gene tree shapes are ordered according to their Furnas ranks.



To prove the lemma, we explicitly construct a species tree

S0 6¼ S with dcðT; S0Þ > dcðT; SÞ. By assumption, S has two

sibling nodes q1 and q2 such that CSðq1Þ contains both leaves

of cherry ða1; b1Þ of T , and CSðq2Þ contains both leaves of

another cherry ða2; b2Þ of T . Let S0 be the tree obtained from

S by swapping leaves a1 and a2 (Fig. 7). Two claims are

needed for showing that dcðT; S0Þ > dcðT; SÞ.
Claim 1. For each node r of S, there exists a unique node r0

of S0 such that exactly one of the following two cases occurs:

1) CSðrÞ ¼ CS0 ðr0Þ; 2) jCSðrÞj ¼ jCS0 ðr0Þj and ðCSðrÞ n
CS0 ðr0ÞÞ [ ðCS0 ðr0Þ n CSðrÞÞ ¼ fa1; a2g.

Proof. The claim is a direct consequence of the construction

of S0 from S. tu
Claim 2. Let r be a node of S, and let t be a maximal subtree of T

with respect to cluster CSðrÞ of S. If t contains neither leaf a1

nor a2, then t is also maximal with respect to cluster CS0 ðr0Þ of

S0, where r0 is the unique node of S0 corresponding to r as

determined in Claim 1.

Proof. Consider the following cases.

1. Cluster CSðrÞ contains either both a1 and a2, or
neither of them. By Claim 1, CS0 ðr0Þ ¼ CSðrÞ. In
this case, any subtree of T maximal with respect
to CSðrÞ is clearly maximal with respect to CS0 ðr0Þ.

2. Cluster CSðrÞ contains a1 but not a2. Assume that t
is induced by a node v of T (i.e., t ¼ T ðvÞ), and let u
be the parent of v. We will show that CT ðvÞ �
CS0 ðr0Þ and CT ðuÞ 6� CS0 ðr0Þ, implying that t is
maximal with respect to CS0 ðr0Þ. Because t isCSðrÞ-
maximal, CT ðvÞ � CSðrÞ. Along with CS0 ðr0Þ ¼
ðCSðrÞ n fa1gÞ [ fa2g (Claim 1) and the assump-
tion that t does not contain a1, this implies
CT ðvÞ � CS0 ðr0Þ.

Assume for a contradiction that CT ðuÞ �
CS0 ðr0Þ. The maximality of t with respect to
CSðrÞ implies that CT ðuÞ 6� CSðrÞ. Let x be an
element of CT ðuÞ that is not contained in CSðrÞ. If
x 6¼ a2, then x is also not contained in CS0 ðu0Þ ¼
ðCSðrÞ n fa1gÞ [ fa2g, implying that CT ðuÞ 6�
CS0 ðr0Þ. Thus, x ¼ a2 is the only element of
CT ðuÞ that is not in CSðrÞ. Because ða2; b2Þ is a
cherry of T , leaf b2 must be in CT ðuÞ, and
therefore, b2 is in CSðrÞ. However, CSðrÞ now
contains both leaves a1 (by assumption) and b2,
which, respectively, are descendants of sibling
nodes q1 and q2. It follows that r is an ancestor of
the parent of q1 and q2. This in turn implies that
a2 2 CSðrÞ, as fa2; b2g � CSðq2Þ, contradicting the
assumption that CSðrÞ does not contain a2.

3. Cluster CSðrÞ contains a2 but not a1. This case is
similar to the preceding case. tu
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Fig. 6. Plots of mtðT Þ, the maximum deep coalescence cost for fixed T , and ’tðT Þ, the number of species trees S with dcðT; SÞ ¼ mtðT Þ, for all
46 gene tree shapes with nine leaves. The values of �ðT Þ as lower bounds of mtðT Þ are also plotted. The gene tree shapes are ordered according to
their Furnas ranks.

Fig. 7. Illustration for the proof of Lemma 13. In the figure, the gene tree T has two cherries ða1; b1Þ and ða2; b2Þ. In the T -improvable species tree S, a1

and b1 are descendant leaves of q1, whereas a2 and b2 are descendant leaves of q2. The species tree S0 is created from S by swapping leaf a1 with
leaf a2. We have dcðT; S0Þ ¼ 7 > dcðT; SÞ ¼ 5.



Proof of Lemma 13. For each node r of S, let r0 be the unique
node ofS0 determined in Claim 1. Further, let eand e0 be the
edges of S and S0 that have r and r0 as their heads,
respectively. We now show case by case that xlðT; eÞ �
xlðT; e0Þ, depending on the position of r relative to the
position of node p, the parent of q1 and q2.

1. Node r is an ancestor of p. Then CSðrÞ contains
CSðpÞ, which contains both a1 and a2. By Claim 1,
CS0 ðr0Þ ¼ CSðrÞ, and therefore, any CSðrÞ-maximal
subtree of T is also maximal with respect to CS0 ðr0Þ
and vice versa. By (4), xlðT; eÞ ¼ xlðT; e0Þ.

2. Node r is neither an ancestor nor a descendant of
p. Then CSðrÞ contains neither a1 nor a2, and by
Claim 1, CS0 ðr0Þ ¼ CSðrÞ. As in the preceding case,
we have xlðT; eÞ ¼ xlðT; e0Þ.

3. Node r is a proper descendant of p. Without loss of
generality, we can assume that r is q1 or a proper
descendant of q1. Consider the following subcases.

a. a1 62 CSðrÞ (e.g., r is leaf b1 in Fig. 7). Clearly,
a2 62 CSðrÞ, as r is a descendant of q1. By
Claim 1, CS0 ðr0Þ ¼ CSðrÞ, and hence xlðT; eÞ ¼
xlðT; e0Þ.

b. a1 2 CSðrÞ but b1 62 CSðrÞ (e.g., r is the node
of S in Fig. 7 that induces cherry ðg; a1Þ).
Then fa1; b1g 6� CSðrÞ, and by definition, leaf
a1 is maximal with respect to CSðrÞ. We
have a2 2 CS0 ðr0Þ ¼ ðCSðrÞ n fa1gÞ [ fa2g, and
fa2; b2g 6� CS0 ðr0Þ (because b2 62 CSðrÞ). Thus,
leaf a2 is a maximal subtree with respect to
CS0 ðr0Þ. Let t be a CSðrÞ-maximal subtree of
T other than leaf a1. Because a2 62 CSðrÞ, t
does not contain a2. By Claim 2, t is also
maximal with respect to CS0 ðr0Þ. It follows
that xlðT; eÞ � xlðT; e0Þ.

c. Both a1 and b1 are contained in CSðrÞ (e.g., r is
node q1 in Fig. 7). Then T has a CSðrÞ-
maximal subtree s that contains cherry
ða1; b1Þ of T . Because CS0 ðr0Þ ¼ ðCSðrÞ n
fa1gÞ [ fa2g, we have fa1; b1g 6� CS0 ðr0Þ. Con-
sequently, s cannot be a CS0 ðr0Þ-maximal
subtree, and leaves a2 and b1 are now
CS0 ðr0Þ-maximal subtrees. Let t be a CSðrÞ-
maximal subtree of T other than s. Clearly t
does not contain a2 (as a2 62 CSðrÞ), and by
Claim 2, t is maximal with respect to CS0 ðr0Þ.
Thus, the set of CS0 ðr0Þ-maximal subtrees
contains every CSðrÞ-maximal subtree, except
s. Further, this set has at least two new
subtrees: leaves a2 and b1. By (4), xlðT; e0Þ �
xlðT; eÞ þ 1.

We have proven that xlðT; eÞ � xlðT; e0Þ for every
pair of corresponding edges e of S and e0 of S0. We
now show that a pair of edges � and �0 that falls under
case 3c indeed exists. Clearly a1 and b1 are in CSðq1Þ.
Hence, for edges � ¼ ðp; q1Þ and �0 ¼ ðp0; q01Þ, we have
xlðT; �0Þ > xlðT; �Þ. tu

The following proposition shows that a species tree that
maximizes the cost dcðT; SÞ for a fixed gene tree T has a
certain structure.

Proposition 14. Let S� be a species tree such that dcðT; S�Þ is
maximum over all species trees in RðXÞ. Then

1. S� is not T -improvable.
2. For any two sibling nodes q1 and q2, at least one of

S�ðq1Þ and S�ðq2Þ is a caterpillar tree.

Proof. Lemma 13 implies the first claim. Then by the
definition of a T -improvable tree, at least one of the pair of
subtrees S�ðq1Þ and S�ðq2Þ does not contain both leaves of
any cherry of T . Assume S�ðq1Þ to be that subtree. By (2),

dcðT; S�Þ ¼
X

e2EðS�Þ
xlðT; eÞ

¼
X

e2EðS�ðq1ÞÞ
xlðT; eÞ

þ
X

e 62EðS�ðq1ÞÞ
xlðT; eÞ:

ð13Þ

If e 62 EðS�ðq1ÞÞ, then either CS� ðeÞ 
 CS� ðq1Þ or CS� ðeÞ \
CS� ðq1Þ ¼ ;. For such an edge e, xlðT; eÞ, which can be
computed by (4), does not depend on how the leaves of
S�ðq1Þ are arranged. It follows that because dcðT; S�Þ is
maximum, the first sum of the right-hand side of (13)
must be maximum.

For any internal node v of T , MRCASðvÞ cannot be a
node of S�ðq1Þ because S�ðq1Þ does not contain both
leaves of any cherry of T . Hence, for e 2 EðS�ðq1ÞÞ,
xlðT; eÞ ¼ ne � 1 by (1). Let k be the number of
descendant leaves of q1. Then S�ðq1Þ has 2k� 2 edges,
and so by Lemma 5, we have

X
e2EðS�ðq1ÞÞ

xlðT; eÞ ¼
X

e2EðS�ðq1ÞÞ
ðne � 1Þ ¼ �ð2k� 2Þ

þ
X

e2EðS�ðq1ÞÞ
ne � �ð2k� 2Þ

þ kðkþ 1Þ
2

� 1

� �
;

with equality in the last equation if and only if S�ðq1Þ is a
caterpillar tree. The second claim of the proposition now
follows. tu

6 DISCUSSION

In this paper, we have studied several properties of the
deep coalescence cost. We proved in Section 4 that
dcðT; SÞ ¼ 1 if and only if dnniðT; SÞ ¼ 1. We also proved
that a single rooted-NNI move, applied to either a species
tree or a gene tree with n leaves, can change the deep
coalescence cost by at most n� 2. This result can be useful
for branch-and-bound heuristics that search for optimal
species trees according to deep coalescence cost by walking
through the tree space using rooted-NNI moves. In general,
the results in Section 4 can also provide a series of
mathematical checks that can assist in verifying the
accuracy of deep coalescence algorithms.

The majority of the paper dealt with the problem of
determining the maximum deep coalescence cost for either
a fixed species tree or a fixed gene tree. As shown in
Section 5.1, the maximum deep coalescence cost for a fixed
species tree, msðSÞ, is largest for caterpillar trees, and it
generally decreases as the balance of the tree increases. To
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a certain extent, this result implies that a balanced species
tree needs, on average, a smaller cost to reconcile a gene
tree than does a less balanced species tree. We have
obtained a formula for the average of dcðT; SÞ across all
gene trees for a fixed species tree S, and the plot of the
average cost exhibits the same trend observed in the plot of
msðSÞ in Fig. 5a (C.V. Than and N.A. Rosenberg, unpub-
lished data). Thus, our results on msðSÞ provide an
explanation for the tendency of the MDC criterion to infer
balanced species trees.

We have completely solved the problem of computing
msðSÞ and ’sðSÞ, the number of gene trees with the
maximum deep coalescence cost msðSÞ (Section 5.1).
However, the dual problem of computing the maximum
deep coalescence cost mtðT Þ for a fixed gene tree remains
open. We were able to determine mtðT Þ for caterpillar trees,
but we do not have a formula for mtðT Þ in the general case.
We have obtained a lower bound for mtðT Þ (Lemma 12),
and we have shown some features of species trees S with
dcðT; SÞ equal to mtðT Þ (Lemma 13 and Proposition 14).

The present MDC criterion weights the deep coalescence
cost dcðT; SÞ equally for every gene tree T . This means that
every gene tree T contributes equally to the total deep
coalescence cost, regardless of mtðT Þ. Suppose that for two
particular input gene trees T1 and T2, dcðT1; SÞ ¼ mtðT1Þ and
dcðT2; SÞ is equal to, say, half of mtðT2Þ. Then the choice of S
for reconciling T1 seems worse than the choice of S for
reconciling T2, even if mtðT2Þ is considerably greater than
mtðT1Þ. The standard MDC criterion does not consider the
relationship between a deep coalescence cost and the
maximum possible deep coalescence cost for a given input
gene tree. We can introduce a normalization by penalizing
dcðT; SÞ according to mtðT Þ. That is, instead of computing a
species tree S with the minimal total cost

P
T2G dcðT; SÞ for

a given collection G of input gene trees, we could compute a
species tree S0 with the minimal sum of normalized costs,P

T2G dcðT; S0Þ=mtðT Þ. Such a modified MDC approach
could potentially improve upon the inconsistency observed
for the standard MDC approach.

ACKNOWLEDGMENTS

Support was provided by the Burroughs Wellcome Fund
and by US National Science Foundation (NSF) grant DBI-
1146722.

REFERENCES

[1] W.P. Maddison, “Gene Trees in Species Trees,” Systematic Biology,
vol. 46, pp. 523-536, 1997.

[2] W.P. Maddison and L.L. Knowles, “Inferring Phylogeny Despite
Incomplete Lineage Sorting,” Systematic Biology, vol. 55, pp. 21-30,
2006.

[3] C. Than and L. Nakhleh, “Species Tree Inference by
Minimizing Deep Coalescences,” PLoS Computational Biology,
vol. 5, article e1000501, 2009.

[4] M.S. Bansal, J.G. Burleigh, and O. Eulenstein, “Efficient Genome-
Scale Phylogenetic Analysis under the Duplication-Loss and Deep
Coalescence Cost Models,” BMC Bioinformatics, vol. 11, article S42,
2010.

[5] H.T. Lin, J.G. Burleigh, and O. Eulenstein, “The Deep Coalescence
Consensus Tree Problem is Pareto on Clusters,” Proc. Seventh Int’l
Symp. Bioinformatics Research and Applications, Lecture Notes in
Computer Science, vol. 6674, pp. 172-183, 2011.

[6] L. Zhang, “From Gene Trees to Species Trees II: Species Tree
Inference by Minimizing Deep Coalescence Events,” IEEE/ACM
Trans. Computational Biology and Bioinformatics, vol. 8, no. 6,
pp. 1685-1691, Nov./Dec. 2011.

[7] T. Wu and L. Zhang, “Structural Properties of the Reconciliation
Space and Their Applications in Enumerating Nearly-Optimal
Reconcilations between a Gene Tree and a Species Tree,” BMC
Bioinformatics, vol. 12, article S7, 2012.

[8] J.H. Degnan and N.A. Rosenberg, “Gene Tree Discordance,
Phylogenetic Inference and the Multispecies Coalescent,” Trends
in Ecology and Evolution, vol. 24, pp. 332-340, 2009.

[9] C.V. Than and N.A. Rosenberg, “Consistency Properties of
Species Tree Inference by Minimizing Deep Coalescences,”
J. Computational Biology, vol. 18, pp. 1-15, 2011.

[10] D.F. Robinson, “Comparison of Labeled Trees with Valency
Three,” J. Combinatorial Theory, vol. 11, pp. 105-119, 1971.

[11] B. Allen and M. Steel, “Subtree Transfer Operations and Their
Induced Metrics On Evolutionary Trees,” Annals of Combinatorics,
vol. 5, pp. 1-13, 2001.

[12] F.A. Matsen, “A Geometric Approach to Tree Shape Statistics,”
Systematic Biology, vol. 55, pp. 652-661, 2006.

[13] R. Nichols, “Gene Trees and Species Trees Are Not the Same,”
Trends in Ecology and Evolution, vol. 16, pp. 358-364, 2001.

[14] J.S. Rogers, “Central Moments and Probability Distributions of
three Measures of Phylogenetic Tree Imbalance,” Systematic
Biology, vol. 45, pp. 99-110, 1996.

[15] M.G.B. Blum and O. Francois, “Minimal Clade Size and External
Branch Length under the Neutral Coalescent,” Advances in Applied
Probability, vol. 37, pp. 647-662, 2005.

[16] R. Klein and D. Wood, “On the Path Length of Binary Trees,”
J. Assoc. Computing Machinery, vol. 36, pp. 280-289, 1989.

[17] D.E. Knuth, The Art of Computer Programming: Fundamental
Algorithms, third ed., vol. 1, Addison-Wesley, 1997.

[18] P.W. Diaconis and S.P. Holmes, “Matchings and Phylogenetic
Trees,” Proc. Nat’l Academy of Sciences USA, vol. 95, pp. 14600-
14602, 1998.

[19] G.W. Furnas, “The Generation of Random, Binary Unordered
Trees,” J. Classification, vol. 1, pp. 187-233, 1984.

[20] M. Kirkpatrick and M. Slatkin, “Searching for Evolutionary
Patterns in the Shape of a Phylogenetic Tree,” Evolution, vol. 47,
pp. 1171-1181, 1993.

[21] C. Semple and M. Steel, Phylogenetics, Oxford Lecture Series in
Mathematics and Its Applications, vol. 24, Oxford Univ. Press,
2003.

Cuong V. Than received the PhD degree in
computer science from Rice University in 2009.
He was at the University of Michigan from 2009
to 2011 for postdoctoral training, and he is
currently a postdoctoral researcher at Stanford
University under the supervision of Professor
Noah Rosenberg. His main research interests
include phylogenetics.

Noah A. Rosenberg received the PhD
degree in biological sciences from Stanford
University in 2001 and completed postdoctoral
training at the University of Southern Califor-
nia. From 2005 to 2011, he served as a
faculty member at the University of Michigan,
and he is now associate professor in the
Department of Biology at Stanford University.
His research interest focuses on human
evolutionary genetics, population-genetic theo-

ry, and mathematical phylogenetics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

72 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 1, JANUARY/FEBRUARY 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


