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Abstract

In infectious disease epidemiology, it is useful to know how quickly genetic markers of pathogenic agents evolve while inside

hosts. We propose a modular framework with which these genotype change rates can be estimated. The estimation scheme requires a

model of the underlying process of genetic change, a detection scheme that filters this process into observable quantities, and a

monitoring scheme that describes the timing of observations. We study a linear ‘‘birth–shift–death’’ model for change in

transposable element genotypes, obtaining maximum-likelihood estimators for various detection and monitoring schemes. The

method is applied to serial genotypes of the transposon IS6110 in Mycobacterium tuberculosis. The estimated birth rate of 0.0161

(events per copy of the transposon per year) and death rate of 0.0108 are both significantly larger than the estimated shift rate of

0.0018. The sum of these estimates, which corresponds to a ‘‘half-life’’ of 2.4 years for a typical strain that has 10 copies of the

element, substantially exceeds a previous estimate of 0.0135 total changes per copy per year. We consider experimental design issues

that enable the precision of estimates to be improved. We also discuss extensions to other markers and implications for molecular

epidemiology.

r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Birth-and-death process; Insertion sequence; Mutation rate; Pathogen; Pulsed-field gel electrophoresis; Substitution rate; Transposition

1. Introduction

Mutation serves as the ultimate source of polymorph-
ism, and thus, the rate at which it occurs affects all
aspects of genetic variation. Rates of genetic change
have been studied in many systems. Because genetic
change processes occur on time scales that depend on
organismal generation times, and because generation
times vary greatly across organisms, diverse statistical
techniques are used for estimating change rates. For
each situation in which genetic change rates are desired,
the statistical approach must compensate for the fact
that the genetic history of a group of organisms cannot
usually be known completely. In humans or in macro-
scopic laboratory organisms, it may be possible to
restrict attention to a limited set of individuals, for
which genetic history is known over one or a few

generations. For example, mutation rates are sometimes
obtained by counting the number of mutations that have
occurred in simple pedigrees (Mukai and Cockerham,
1977; Heyer et al., 1997).

For genealogies that are too complex for direct
counting, a historical model together with a snapshot of
the genetic status of a population can be applied. This
approach is perhaps best represented by the Luria–
Delbrück method of bacterial mutation rate estimation,
which utilizes the variation in mutant frequency across
independent experimental runs of evolution (Luria and
Delbrück, 1943; Kepler and Oprea, 2001). If multiple runs
of evolution cannot be performed, the historical modeling
approach can employ coalescent models in place of the
Luria–Delbrück bifurcation scheme, obtaining rate esti-
mates with data from the unique realization of evolu-
tionary history (Rosenberg and Nordborg, 2002).

A third estimation method involves genotypic com-
parisons of individuals of two separate species, and
normalization of the number of interspecific genotypic
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differences using nucleotide evolution models, species
divergence dates from the fossil record, and generation
times (Kimura, 1983; Li, 1997). This strategy is most
appropriate when mutation occurs over time scales that
are large enough for within-species differences to be
small compared to between-species differences.

Here we consider a qualitatively different approach
for estimating rates of genetic change, suitable to
pathogens in host–pathogen systems. In this scheme,
serially sampled pathogens from many host individuals
are genotyped. Genetic change occurs in each host’s
pathogen population during periods between genotyp-
ing events. Because the complete history of the pathogen
population is not observed, a model of how this change
occurs is required in order to estimate change rates.

Traditional methods are difficult to apply in this
situation: first, the pathogen has a complex genealogy so
that mutations cannot be counted directly. Second,
because the rate of change of the pathogen within hosts

is of interest, methods that require laboratory cultures
are not suitable (moreover, culturing is difficult for some
species). Last, because markers may change rapidly with
respect to evolutionary time, the correlation of geno-
types in different species may quickly disappear,
rendering species comparison methods ineffective.

In any situation where populations of a species that
have short generation times live in a host that has a long
generation time, so that populations in different hosts
are isolated from each other, mutation rates might be
estimated from sequential genotype data. In principle,
we might similarly discuss other systems that have this
property. Here, we use the language of host–pathogen
interactions, because a primary application is to
bacterial and other pathogens in human and animal
hosts. As is described in Sections 9 and 10, the results
can be applied to molecular epidemiology, in which the
spatiotemporal pattern of pathogen genotypes among a
collection of patients is used to infer properties of an
epidemic.

We have previously (Tanaka and Rosenberg, 2001)
considered a special case, estimating genotype change
rates for transposons using pathogens sampled from
patients at two points in time. We developed a
maximum-likelihood estimator for a one-parameter
model, assuming that the rate at which a transposon
genotype changes was proportional to the number of
copies of the transposon initially present in the genome
of the pathogen. With genotypes of paired Mycobacter-

ium tuberculosis isolates taken from 56 patients, we
estimated the change rate of the transposon IS6110 to be
0.0135 changes per copy of the transposon per year (this
estimate corrects a numerical error in the fourth decimal
place), corresponding to a ‘‘half-life’’ of 5.1 years for a
typical 10-copy strain.

In this article, we develop maximum-likelihood
estimators of genetic change rates for a general class

of scenarios in which pathogen genotypes are monitored
over time. Serial samples have been previously used to
estimate genetic parameters, for example, with DNA
sequences from human immunodeficiency virus (Rodri-
go and Felsenstein, 1999; Fu, 2001; Drummond et al.,
2002) and from ancient penguin bones (Lambert et al.,
2002). Our work differs in that we consider different
markers, namely transposons, and because we assume
that pathogen populations are monomorphic. We
estimate rates of substitution of genotypes in absolute
time, rather than rates of mutations per cell division or
per generation; we discuss, however, the possibility of
equating these rates using the argument of Kimura
(1968). We treat the change in pathogen population
structure and size inside the host as a ‘‘black box.’’
Future work might model this within-host process
explicitly; the process will depend on the pathogen
under consideration.

For a given genetic marker in a specific organism,
our estimation procedure requires that several decisions
be made. First, an appropriate stochastic process
model that describes the biologic changes in the genetic
marker must be selected. Second, a detection scheme,
which describes how the experimentally detectable
quantities under the available technology relate to the
underlying process of genetic change, must be chosen.
Third, the investigator must decide on the frequency at
which observations are taken. Last, the size of the
sample must be selected. Investigators can often choose
technologies, monitoring frequencies, and sample
sizes in such a way as to reduce the variance of the
estimated rate.

In Sections 2–4, we describe components of the design
of rate estimation schemes. Sections 5 and 6 develop the
estimation framework in the case that the genetic
marker is a transposable element. In Sections 7–9, we
show applications to the estimation of change rates of
the element IS6110 in M. tuberculosis. Finally, we
discuss in Section 10 experimental design issues and
implications. Our presentation is meant to be modu-
lar, in that if any of the components are modified
(underlying process, detection scheme, and observation
frequency), the estimation procedure could be corre-
spondingly modified without much effort.

2. The process of genetic change: transposable elements

Transposable elements or transposons are sequences
that are capable of moving to new locations in a
genome. It is convenient to conceptualize three types of
changes that can be experienced by a given copy of a
transposon. (1) It can be duplicated, with the new copy
moving to a new genomic location; (2) it can be shifted
to a different position; or (3) it can be excised and lost
from the genome. We term these types of events births,
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shifts, and deaths, respectively (Fig. 1). Note that some
types of transposon might be able to experience only one
or two of these types of changes, as has been assumed in
some previous models (Sawyer and Hartl, 1986, for
example).

To model this ‘‘birth–shift–death’’ process, let KðtÞ be
the number of copies of a particular transposable
element that a specific cell has at time t: For simplicity,
we assume that copies of the transposon change
independently of each other. Instantaneous birth, shift
and death rates for the cell are then proportional to the
number of copies of the element, and consequently,
fKðtÞg is a linear birth–shift–death process in contin-
uous time. Owing to the fact that transposition need not
happen only during cell division, we assume that the
birth, shift, and death rates for a cell with a fixed
number of elements are constant over the lifetime of the
cell. This time-homogeneity assumption, which leads to
an exponentially distributed waiting time until the
occurrence of an event, ignores the possibility that
transposition rates might vary with transcription and
gene expression levels over the cell cycle. For mathe-
matical tractability, however, using homogeneous rates
is preferable to modeling the rates as functions of cell
cycle stages.

For a cell with a single element, we denote instanta-
neous birth, shift and death rates by l; g; and m;
respectively, and measure them in events per copy per

unit time. If the process lasts long enough, it is possible
that all copies of the transposon might be excised from
the genome. Here we assume nonextinction, or that at
least one copy of the transposon is always present.

The above assumptions are natural for a single cell.
Additionally, however, if all copy number variants are
selectively neutral, the rate at which neutral allelic
variants become fixed in the entire pathogen population
(the substitution rate) equals the neutral mutation rate,
independent of population size and structure (Kimura,
1968, 1983). Intuitively, the equality of substitution and
mutation rates follows from the fact that a potential
increase in substitution rate due to an increase in
mutation rate is exactly counteracted by a decrease in
the probability that any particular mutant will become
fixed in the population. Thus, if neutrality can be
assumed, with mutation rates linear in copy number, the
rate at which a k-copy strain within the host is replaced
equals the cellular mutation rate, or kðlþ gþ mÞ;
regardless of within-host population processes. Because
three types of mutation are possible—births, shifts, and
deaths—within-host substitution rates for strains result-
ing from births, shifts, and deaths, respectively, are kl;
kg; and km: If any transposon variants are selected or
linked to selected alleles, as is likely to occur, especially
in non-recombining pathogens, owing to pressures
induced by host immune systems or by drugs, explicit
modeling of within-host population genetics is necessary
to determine the relationship between the cellular birth–
shift–death process and the population-level process. As
a first approximation we assume neutrality.

To translate the cellular birth–shift–death process into
a population-level birth–shift–death process, we addi-
tionally assume that only one strain is present within
each host at appreciable frequency. This is justifiable, as
pathogen isolates from patients often show only a single
genotype. For example, in one study of 1277 M.

tuberculosis isolates (de Boer et al., 2000), 92.6% of
isolates typed for the transposon IS6110 were mono-
morphic. We also assume that sufficiently many patho-
gens are in each isolate that their genotype is
representative of that of the whole pathogen population.

Henceforth, we treat the substitution process of the
whole pathogen population as a linear birth–shift–death
process with substitution rates equal to the cellular
transposition rates. This step involves an additional
assumption, as the Kimura (1968) argument justifies
equating only the substitution and cellular transposition
rates, and not the substitution and cellular transposition
stochastic processes. Although the distribution of the
waiting time until substitution depends on within-host
mutation and population processes, and need not be
exponentially distributed even for simple neutral popu-
lation-genetic models of the pathogen (Kelly, 1979;
Watterson, 1982), as a first approximation we assume an
exponential waiting time, analogously to the corre-

Shift

Birth

Death

Fig. 1. Three types of transposition that can happen to a genome, here

represented by a circle. Birth—a copy of the transposon is added;

shift—a copy is moved to another location; death—a copy is lost.

Transposons are represented by rectangles.
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sponding assumption for the classical molecular sub-
stitution clock (Kimura, 1983, p. 69).

3. Detection schemes

The biological process of transposition is observed
through a genotyping technology. With the ideal
technology, births, shifts, and deaths are all detectable.
For example, if the genome of a cell could be sequenced
at two points closely separated in time, the times and
types of genetic changes would be immediately appar-
ent. Of course, simpler technologies can also produce
full knowledge of the genetic arrangement. We say that
such a technology has complete resolution (Fig. 2).

With some technologies, not all types of changes are
detectable. The genotyping procedure might only allow
determination of changes in copy number, or complex
genotypes might be summarized by recording copy
numbers. Under this scheme, births and deaths are
detectable. Because shifts change only positions of
copies, and not the number of copies, however, they
are not detected. This level of resolution could be
produced if the number of copies of the transposon

corresponds to a number of gel bands. For example,
suppose that a restriction site is located inside the
transposable element. Then the number of copies of the
element equals the number of bands that the restriction-
digested genome produces minus the corresponding
number of bands for a zero-copy strain. We denote the
situation in which the detectable quantity is the number
of copies of the transposon copy number resolution

(Fig. 2).
Other technologies that imperfectly view the trans-

position process might be imagined. We also consider
change resolution (Fig. 2), in which it is possible to detect
a modification in transposon genotype, but impossible
to determine the type of change that occurred. In this
scheme, births, deaths, and shifts are grouped as
changes. This situation might result from limited
record-keeping: for example, past studies might have
noted whether changes occurred in gel-banding patterns,
but might not have recorded details of the patterns.
Note that unlike copy number resolution, change
resolution detects shifts if they occur. Thus, detectable
events under change resolution are not necessarily
subsumed by those seen with copy number resolution.

4. Monitoring schemes

Genotypes are monitored over time, and we distin-
guish three classes of ‘‘monitoring schemes.’’ The
simplest is that in which the process is continuously

observed (Fig. 3): the exact state of the genotype
is known at all points in time. Although this scheme
is impractical, it provides results that help in the
consideration of more useful schemes. Also, as the
expense of genotyping decreases, it may be possible to
genotype often enough to approximate continuous
monitoring.

A second scheme is that in which the process is
frequently observed (Fig. 3). We define ‘‘frequently’’ to
mean that the process is observed sufficiently often that
the probability that more than one change could have
happened between observations is negligible. Thus, the
definition of ‘‘frequent’’ varies with the rate of the
process. This scheme is analogous to the parsimony
assumption of phylogenetics—if initial and final states
differ in only a single way, it is assumed that only one
change occurred. ‘‘Frequent monitoring’’ leads to a
straightforward estimation procedure, and we show in
Section 8 that the scheme applies to observed data.

We also consider the situation in which the process is
infrequently observed (Fig. 3). In this scheme, more than
one change might happen between two observations.
The frequent and infrequent schemes each have two
notable special cases. If all genotyping intervals have
equal lengths, then monitoring is equidistant. A second
special case is that in which the process is only observed

0 T

Underlying process

0 T

Complete resolution

0 T

Copy number resolution

0 T

Change resolution

Fig. 2. Detection schemes for a birth–shift–death process. Time

proceeds from 0 to T : During the time interval, births (arrows

pointing upward), shifts (circles), and deaths (arrows pointing down-

ward) occur. With complete resolution, all types of changes are

detectable. With copy number resolution, shifts are not detectable. With

change resolution, all three types of events are detected only as

‘‘changes’’ (crosses).
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twice—at a beginning and at an ending time point. Of
course, other schemes, such as those that treat observa-
tion times as random variables, can also be envisioned.
Those schemes are beyond the scope of this article.

5. Estimating the rate of change

Detection and monitoring designs can in principle be
combined with models of the underlying biological
process to obtain maximum-likelihood estimators of
parameters. Table 1 classifies and presents likelihood
functions for various schemes, some of which are
discussed below.

5.1. Estimation: continuous monitoring

Here we adapt previous work on estimation for a
continuously monitored linear birth–death process
(Darwin, 1956; Reynolds, 1973; Keiding, 1975) to our

situation of a linear ‘‘birth–shift–death’’ process. The
problem described in this section is case 1 in Table 1. We
derive the likelihood when only one host is being
studied, multiplying individual host likelihoods to
obtain the overall likelihood for many independent
hosts. If all hosts are observed continuously over the
same interval, it is equivalent to consider a single host
with initial copy number equal to the sum of the copy
numbers of all the hosts.

Let y denote the overall change rate, that is, the sum
of the birth rate ðlÞ; shift rate ðgÞ; and death rate
ðmÞ: y ¼ lþ gþ m: Recall that rates at which births,
shifts, and deaths occur are proportional to the number
of copies of the transposable element. For the birth–
shift–death process, if k copies are present in a strain,
the waiting time until a change occurs has an
exponential distribution with probability density
function

pðtÞ ¼ kye�kyt; t40: ð1Þ

For the three types of change—births, shifts, and
deaths—the waiting times until the first changes of
those types are also exponentially distributed, with
parameters kl; kg; and km; respectively. Using well-
known properties of exponentially distributed random
variables, regardless of the time of an event, the
probability that the event is a birth equals l=y:
Similarly, the probability is g=y that it is a shift and
m=y that it is a death.

Suppose that initial copy number is k0; that events
occur at times t1; t2;y; tn; that the type of change
represented by the ith event is Ci (where Ci can equal
birth; shift; or death), and that the number of elements
present immediately after the ith event is ki: Denote the
beginning of an interval over which the process is
observed by t0 and the end of the interval by tnþ1 (we
then allow C0 and Cnþ1 to take the value no change).
Observed data in this scheme consist of the ordered
triples Ei ¼ ðCi; ki; tiÞ; i ¼ 0; 1; 2;y; n þ 1:

For i ¼ 0;y; n � 1; the probability density for a birth
at time tiþ1 (that is, the likelihood of the parameters
given Eiþ1; with Eiþ1 ¼ ðbirth; ki þ 1; tiþ1Þ) is

Lðl; g; mjEiþ1Þ ¼ kile�kiyðtiþ1�tiÞ: ð2Þ

Corresponding expressions for shifts and deaths are
kig exp½�kiyðtiþ1 � tiÞ� and kim exp½�kiyðtiþ1 � tiÞ�; re-
spectively. The probability that no change occurs in the
last interval from tn to tnþ1 is exp½�knyðtnþ1 � tnÞ�:
Multiplying over independent intervals,

Lðl; g; mjE0;E1;y;Enþ1Þ
¼ lbgf mdk0k1k2ykn�1

� exp �y
Xn

i¼0

kiðtiþ1 � tiÞ
" #

; ð3Þ

0 T

Underlying process

0 T

Continuous monitoring

0 T

Frequent monitoring

0 T

Infrequent monitoring

Fig. 3. Monitoring schemes for a birth–shift–death process, for which

all types of events are detectable. Time proceeds from 0 to T : During

the time interval, births (arrows pointing upward), shifts (circles), and

deaths (arrows pointing downward) occur. A vertical line at a point in

time indicates that an observation is taken at that time point. With

continuous monitoring, the process is observed throughout the interval.

With frequent monitoring, observations are made often enough that at

most one change happens between observations. With infrequent

monitoring, observations are rare, and several genotypic changes can

occur between two observations. For frequent and infrequent

monitoring schemes, the case in which observations occur equidis-

tantly is shown.

N.A. Rosenberg et al. / Theoretical Population Biology 63 (2003) 347–363 351



T
a
b

le
1

L
ik

el
ih

o
o

d
fu

n
ct

io
n

s
a
n

d
m

a
x
im

u
m

-l
ik

el
ih

o
o

d
es

ti
m

a
to

rs
o

f
th

re
e

ty
p

es
o

f
tr

a
n

sp
o

si
ti

o
n

ra
te

s

C
a
se

U
n

d
er

ly
in

g

p
ro

ce
ss

L
ev

el
o

f

re
so

lu
ti

o
n

M
o

n
it

o
ri

n
g

sc
h

em
e

D
efi

n
it

io
n

o
f
y

L
ik

el
ih

o
o

d
M

a
x
im

u
m

-l
ik

el
ih

o
o

d

es
ti

m
a
to

rs

1
B

ir
th

–
sh

if
t–

d
ea

th
C

o
m

p
le

te
C

o
n

ti
n

u
o

u
s

l
þ
g
þ
m

lb
gf
md

k
0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# l
¼

b s;
# g
¼

f s;
#m
¼

d s

2
B

ir
th

–
sh

if
t–

d
ea

th
C

o
p

y
n

u
m

b
er

C
o

n
ti

n
u

o
u

s
l
þ
m

lb
md

k
0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# l
¼

b s;
#m
¼

d s

3
B

ir
th

–
sh

if
t–

d
ea

th
C

h
a
n

g
e

C
o

n
ti

n
u

o
u

s
l
þ
g
þ
m

yc
k

0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# y
¼

c s

4
B

ir
th

–
sh

if
t

C
o

m
p

le
te

C
o

n
ti

n
u

o
u

s
l
þ
g

lb
gf

k
0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# l
¼

b s;
# g
¼

f s

5
B

ir
th

–
d

ea
th

C
o

m
p

le
te

C
o

n
ti

n
u

o
u

s
l
þ
m

S
a
m

e
a
s

ca
se

2
S

a
m

e
a
s

ca
se

2

6
S

h
if

t–
d

ea
th

C
o

m
p

le
te

C
o

n
ti

n
u

o
u

s
g
þ
m

gf
md

k
0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# g
¼

f s;
#m
¼

d s

7
B

ir
th

C
o

m
p

le
te

C
o

n
ti

n
u

o
u

s
l

lb
k

0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

# l
¼

b s

8
S

h
if

t
C

o
m

p
le

te
C

o
n

ti
n

u
o

u
s

g
gf

k
f 0

ex
p
½�

yk
0
t�

# g
¼

f s

9
S

h
if

t
C

o
p

y
n

u
m

b
er

C
o

n
ti

n
u

o
u

s
g

N
o

d
et

ec
ta

b
le

ch
a
n

g
es

N
o

t
p

o
ss

ib
le

1
0

S
h

if
t

C
h

a
n

g
e

C
o

n
ti

n
u

o
u

s
g

S
a
m

e
a
s

ca
se

s
3

a
n

d
8

S
a
m

e
a
s

ca
se

s
3

a
n

d
8

1
1

D
ea

th
C

o
m

p
le

te
C

o
n

ti
n

u
o

u
s

m
md

k
0
k

1
k

2
y

k
n
�

1
ex

p
½�

y
P n i¼

0
k

iðt
iþ

1
�

t i
Þ�

#m
¼

d s

1
2

B
ir

th
–
sh

if
t–

d
ea

th
C

o
m

p
le

te
F

re
q

u
en

t
l
þ
g
þ
m

Q fi
:G

i¼
B
g
l yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

F
g
g yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

D
g
m yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
3

B
ir

th
–
sh

if
t–

d
ea

th
C

o
p

y
n

u
m

b
er

F
re

q
u

en
t

l
þ
m

Q fi
:G

i¼
B
g
l yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

D
g
m yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
4

B
ir

th
–
sh

if
t–

d
ea

th
C

h
a
n

g
e

F
re

q
u

en
t

l
þ
g
þ
m

Q fi
:G

i¼
C
gð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
5

B
ir

th
–
sh

if
t

C
o

m
p

le
te

F
re

q
u

en
t

l
þ
g

Q fi
:G

i¼
B
g
l yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

F
g
g yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
6

B
ir

th
–
d

ea
th

C
o

m
p

le
te

F
re

q
u

en
t

l
þ
m

S
a
m

e
a
s

ca
se

1
3

N
u

m
er

ic
a
l

1
7

S
h

if
t–

d
ea

th
C

o
m

p
le

te
F

re
q

u
en

t
g
þ
m

Q fi
:G

i¼
F
g
g yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

D
g
m yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
8

B
ir

th
C

o
m

p
le

te
F

re
q

u
en

t
l

Q fi
:G

i¼
B
g
l yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

1
9

S
h

if
t

C
o

m
p

le
te

F
re

q
u

en
t

g
Q fi

:G
i¼

F
g
g yð

1
�

e�
k

1
yu

i
ÞQ fi

:G
i¼

N
g

e�
k

1
yu

i
N

u
m

er
ic

a
l

2
0

S
h

if
t

C
o

p
y

n
u

m
b

er
F

re
q

u
en

t
g

N
o

d
et

ec
ta

b
le

ch
a
n

g
es

N
o

t
p

o
ss

ib
le

2
1

S
h

if
t

C
h

a
n

g
e

F
re

q
u

en
t

g
S

a
m

e
a
s

ca
se

s
1
4

a
n

d
1
9

N
u

m
er

ic
a
l

2
2

D
ea

th
C

o
m

p
le

te
F

re
q

u
en

t
m

Q fi
:G

i¼
D
g
m yð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

2
3

B
ir

th
–
sh

if
t–

d
ea

th
C

h
a
n

g
e

In
fr

eq
u

en
t

l
þ
g
þ
m

Q fi
:G

i¼
C
gð

1
�

e�
k

iy
u

i
ÞQ fi

:G
i¼

N
g

e�
k

iy
u

i
N

u
m

er
ic

a
l

2
4

B
ir

th
–
sh

if
t

C
h

a
n

g
e

In
fr

eq
u

en
t

l
þ
g

S
a
m

e
a
s

ca
se

2
3

N
u

m
er

ic
a
l

2
5

B
ir

th
–
d

ea
th

C
h

a
n

g
e

in
fr

eq
u

en
t

l
þ
m

S
a
m

e
a
s

ca
se

2
3

N
u

m
er

ic
a
l

2
6

S
h

if
t–

d
ea

th
C

h
a
n

g
e

In
fr

eq
u

en
t

g
þ
m

S
a
m

e
a
s

ca
se

2
3

N
u

m
er

ic
a
l

2
7

B
ir

th
C

h
a
n

g
e

In
fr

eq
u

en
t

l
S

a
m

e
a
s

ca
se

2
3

N
u

m
er

ic
a
l

2
8

S
h

if
t

C
o

m
p

le
te

In
fr

eq
u

en
t

g
Q fi

:G
i¼

F
g
g yð

1
�

e�
k

1
yu

i
ÞQ fi

:G
i¼

N
g

e�
k

1
yu

i
N

u
m

er
ic

a
l

2
9

S
h

if
t

C
o

p
y

n
u

m
b

er
In

fr
eq

u
en

t
g

N
o

d
et

ec
ta

b
le

ch
a
n

g
es

N
o

t
p

o
ss

ib
le

3
0

S
h

if
t

C
h

a
n

g
e

In
fr

eq
u

en
t

g
S

a
m

e
a
s

ca
se

s
2
3

a
n

d
2
8

N
u

m
er

ic
a
l

3
1

D
ea

th
C

h
a
n

g
e

In
fr

eq
u

en
t

m
S

a
m

e
a
s

ca
se

2
3

N
u

m
er

ic
a
l

B
ir

th
,
sh

if
t,

a
n

d
d

ea
th

ra
te

s
a
re

l;
g;

a
n

d
m;

re
sp

ec
ti

v
el

y
.
O

b
se

rv
ed

to
ta

l
n

u
m

b
er

s
o

f
b

ir
th

s,
sh

if
ts

,
d

ea
th

s,
a
n

d
to

ta
l
ch

a
n

g
es

a
re

b
;

f
;

d
;
a
n

d
c;

re
sp

ec
ti

v
el

y
,
a
n

d
th

e
to

ta
l
ti

m
e

ex
p

er
ie

n
ce

d
in

th
e

in
te

rv
a
l

is
s:

F
o

r
co

n
ti

n
u

o
u

s
m

o
n

it
o

ri
n

g
,
th

e
co

p
y

n
u

m
b

er
a
t

th
e

ti
m

e
t i

o
f

th
e

it
h

ev
en

t
b

ec
o

m
es

k
i
im

m
ed

ia
te

ly
a
ft

er
th

e
ev

en
t,

th
e

to
ta

l
le

n
g
th

o
f

th
e

ti
m

e
in

te
rv

a
l
is

t;
a
n

d
th

e
t i

a
re

m
ea

su
re

d
si

n
ce

ti
m

e
0
.
F

o
r

fr
eq

u
en

t
a
n

d
in

fr
eq

u
en

t
m

o
n

it
o

ri
n

g
k

i
is

th
e

co
p

y
n

u
m

b
er

a
t

th
e

st
a
rt

o
f

th
e

it
h

in
te

rv
a
l,

a
n

d
th

e
v
a
lu

es
o

f
u

i
d

en
o

te
ti

m
es

b
et

w
ee

n
ev

en
ts

.
T

h
e

sy
m

b
o

ls
B
;
F
;
D
;
C
;

a
n

d
N

re
fe

r
to

th
e

w
o

rd
s

b
ir

th
;

sh
if

t;
d

ea
th
;

ch
a

n
g

e;
a
n

d
n

o
ch

a
n

g
e;

re
sp

ec
ti

v
el

y
.

F
o

r
co

n
ti

n
u

o
u

s
m

o
n

it
o

ri
n

g
o

n
e

h
o

st
w

it
h

m
a
n

y
in

te
rv

a
ls

is
a
ss

u
m

ed
,

a
n

d
li
k

el
ih

o
o

d
s

fo
r

m
a
n

y
in

d
iv

id
u

a
ls

a
re

o
b

ta
in

ed
b

y
m

u
lt

ip
ly

in
g

a
cr

o
ss

in
d

ep
en

d
en

t
h

o
st

s;
fo

r
fr

eq
u

en
t

a
n

d
in

fr
eq

u
en

t
m

o
n

it
o

ri
n

g
th

e
li
k

el
ih

o
o

d
a
ss

u
m

es
m

u
lt

ip
le

in
te

rv
a
ls

,
w

h
ic

h
m

a
y

d
er

iv
e

fr
o

m
o

n
e

o
r

m
a
n

y
h

o
st

s.
F

o
r

co
m

p
le

te
n

es
s,

ca
se

3
is

sh
o

w
n

,
a
lt

h
o

u
g
h

it
is

p
er

h
a
p

s
n

o
t

se
n

si
b

le
,

a
s

d
is

ce
rn

in
g

k
i

fo
r

iX
1

re
q

u
ir

es
a

h
ig

h
er

le
v
el

o
f

re
so

lu
ti

o
n

;
a
ls

o
,

ca
se

s
9
,

2
0
,

a
n

d
2
9

a
re

a
b

st
ra

ct
sc

en
a
ri

o
s

th
a
t

d
o

n
o

t
a
ll
o

w
a
n

y
p

a
ra

m
et

er
s

to
b

e
es

ti
m

a
te

d
.

N.A. Rosenberg et al. / Theoretical Population Biology 63 (2003) 347–363352



where b; f ; and d denote the total numbers of births,
shifts, and deaths that occur, respectively.

The total time experienced by all copies during the
interval, or

Pn
i¼0 kiðtiþ1 � tiÞ; is denoted by s: Maximiz-

ing (3), we obtain the maximum-likelihood estimators

#l ¼ b

s
; #g ¼ f

s
; #m ¼ d

s
: ð4Þ

If independent hosts 1 to m are indexed by j and L is
computed using (3), the overall likelihood is

Ltotalðl; g; mjdataÞ ¼
Ym

j¼1

Lðl; g; mjdatajÞ: ð5Þ

The estimators in (4) still apply, except that b; f ; d; and s

now refer to total numbers of births, shifts, and deaths,
and the total time experienced by all copies in all hosts.

From this situation of an underlying linear birth–
shift–death process, completely detected and continu-
ously monitored, other cases can be studied (Table 1,
cases 2–11). For example, likelihoods can be derived for
situations in which the process includes only one or two
of the types of events (Keiding, 1974, 1975; Basawa and
Prakasa Rao, 1980), and likelihoods under change
resolution can be obtained from (3) by grouping all
changes into a single category.

5.2. Estimation: frequent monitoring

Because continuous monitoring would require an
organism to be connected to a ‘‘genotyping machine,’’ a
continuous sampling scheme cannot describe any
currently realistic observation system. If genotyping
occurs often compared to the rates of a process,
however, continuous monitoring is approximated by
assuming that changes occur exactly at the times of
observation.

Alternatively, we can take note that a change
occurred in the interval, and not associate that change
with a particular time point during the interval. This is
our approach when we say that a process is ‘‘frequently
monitored.’’ The problem considered in this section is
that of case 12 in Table 1, the estimation of the rates of a

frequently monitored linear birth–shift–death process
that is observed completely. Again, we assume a single
host, and the likelihood for many hosts is obtained by
taking the product of individual host likelihoods.

‘‘Frequent monitoring’’ assumes that at most one
event happens during an observation interval. Suppose
we observe a process m þ 1 times, with the m

intervals separating observations having lengths u1;
u2;y, um: For all values of j from 1 to m; let
GjAfbirth; shift; death; no changeg equal the type of
event that occurred during the jth interval. Observed
data under frequent monitoring consist of ordered
triples Ej ¼ ðGj; kj ; ujÞ; where kj is the copy number at
the start of the jth interval (j ranges from 1 to m).

The probability that an event occurs during a time
interval of length u is the cumulative density function
obtained by integrating (1): PðuÞ ¼

R u

0
kye�kyt dt ¼ 1 �

e�kyu: As before, given that an event has taken place, the
probability that it is a birth is l=y: For a shift, this
probability is g=y; and for a death, it is m=y:

We computed in (2) the density function of the time at
which a birth occurs. By integrating this density
function, we can compute the probability that a birth
occurs during an interval of length u: That is, if E equals
ðbirth; k; uÞ; the likelihood of the parameters is

Lðl; g; mjEÞ ¼
Z u

0

kle�kytdt ¼ l
y
ð1 � e�kyuÞ: ð6Þ

Similar expressions give the likelihoods if a shift or a
death occurs in the interval in place of a birth (Table 2).

By multiplying across independent intervals, with L

given in Table 2, we obtain the likelihood of the
parameters given the observations ðGj; kj ; ujÞ; j ¼
1; 2;y;m:

Ltotalðl; g; mÞ ¼
Ym

j¼1

Lðl; g; mjGj; kj; ujÞ: ð7Þ

It is straightforward to differentiate the logarithm of
likelihood (7), and to numerically find maximum-
likelihood estimates of the three parameters. The
component derivatives are shown in Table 2. For
one interval, the derivative @ ln L=@l is as follows; the

Table 2

Likelihood of the parameters given initial copy number k and a time interval of length u; and partial derivatives of components of the log-likelihood

Type of event ðGÞ Likelihood Lðl; g; mjG; k; uÞ @
@l ln½Lðl; g;mjG; k; uÞ� @

@g ln½Lðl; g;mjG; k; uÞ� @
@m ln½Lðl; g; mjG; k; uÞ�

Birth l
y ð1 � e�kyuÞ kue�kyu

1�e�kyu þ 1
l � 1

y
kue�kyu

1�e�kyu � 1
y

kue�kyu

1�e�kyu � 1
y

Shift g
y ð1 � e�kyuÞ kue�kyu

1�e�kyu � 1
y

kue�kyu

1�e�kyu þ 1
g � 1

y
kue�kyu

1�e�kyu � 1
y

Death m
y ð1 � e�kyuÞ kue�kyu

1�e�kyu � 1
y

kue�kyu

1�e�kyu � 1
y

kue�kyu

1�e�kyu þ 1
m � 1

y

No change e�kyu �ku �ku �ku
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overall derivative is obtained by summing across
intervals.

@

@l
ln Lðl; g; mjG; k; uÞ

¼ wðG ¼ birthÞ @

@l
ln Lðl; g; mjbirth; k; uÞ

þ wðG ¼ shiftÞ @

@l
ln Lðl; g; mjshift; k; uÞ

þ wðG ¼ deathÞ @

@l
ln Lðl; g; mjdeath; k; uÞ

þ wðG ¼ no changeÞ

� @

@l
ln Lðl; g;mjno change; k; uÞ; ð8Þ

where wðG ¼ gÞ ¼ 1 if G ¼ g; and is zero otherwise.
Derivatives with respect to g and m are analogous. As
before, this situation of an underlying linear birth–shift–
death process, completely detected and frequently
monitored, allows likelihoods to be derived for other
processes and detection schemes (Table 1, cases 12–22).

5.3. Estimation: infrequent monitoring

Under infrequent monitoring, many events might
occur between observations. For example, a change
from 4 to 5 copies can follow one of infinitely many
paths, such as 4-3-2-3-4-5 or 4-5-6-5. Except in special
cases (Kendall, 1949; Basawa and Prakasa Rao, 1980),
calculation of likelihood functions becomes more
difficult.

For many applications, infrequent monitoring may be
less applicable than other schemes. The amount of
genetic change might be small over the length of time for
which genotypes can be monitored, so that intervals
rarely contain multiple changes. Our earlier method
(Tanaka and Rosenberg, 2001) can be interpreted as the
case of change resolution and infrequent monitoring, for
any process that is linear in copy number (Table 1, case
23). The idea was that in an interval of length u; the
probability of no change is expð�kyuÞ; and the
probability of one or more changes is 1 � expð�kyuÞ:
Thus, the likelihood function is a product of expð�kyuÞ
and 1 � expð�kyuÞ terms, depending on whether or not
at least one change occurred in the interval.

The likelihood function in Tanaka and Rosenberg
(2001) can also be seen as the likelihood for a shift
process with complete resolution (where all changes are
counted as if they were shifts). For a shift-only process,
likelihoods for complete resolution and change resolu-
tion are equivalent (see Table 1). We will not consider
infrequent monitoring further; recently developed nu-
merical schemes (Golinelli, 2000) may in the future be
applied to inference in the full infrequently monitored
birth–shift–death process.

6. Variance of estimates

Variances of estimates are of interest partly because
they may depend on quantities that can be controlled
(for example, the length of time between observations,
the total number of observations). Thus, investigators
might select values of these quantities to reduce the
variances.

6.1. Variance: continuous monitoring

As was noted earlier, if all hosts have equal sampling
intervals, a large initial copy number is equivalent to a
large number of hosts, each with small copy number.
Thus, asymptotic results for a continuously monitored
birth–death process (Keiding, 1975), assuming a large
initial copy number in a single host, can be treated as
large-sample results. We follow previous work to obtain
the variances, incorporating the shift process.

For a single host with large copy number, the
approximate variance–covariance matrix is given by
the inverse of the expected information matrix I

(Elandt-Johnson, 1971, p. 306). This information matrix
for case 1 is obtained using derivatives of the likelihood
L in (3).

Iðl; g; mÞ ¼ �E

@2 ln L

@l2
@2 ln L
@l @g

@2 ln L
@l @m

@2 ln L
@g @l

@2 ln L
@g2

@2 ln L
@g @m

@2 ln L
@m @l

@2 ln L
@m @g

@2 ln L
@m2

0BBB@
1CCCA ð9Þ

¼

E½B�
l2 0 0

0 E½F �
g2 0

0 0 E½D�
m2

0BBB@
1CCCA: ð10Þ

Here, componentwise expectation is written with E in
front of the matrix. E½B�; E½F �; and E½D� denote expected
numbers of births, shifts and deaths that occur in an
interval of length t: If S is the total amount of time
experienced by all copies of the element, then E½B� ¼
lE½S�; E½F � ¼ gE½S�; and E½D� ¼ mE½S�: Because shifts do
not affect copy number, E½S� is the same as in the linear
birth–death process (Puri, 1968):

E½S� ¼ eðl�mÞt � 1

l� m
k0: ð11Þ

Inverting the matrix in (10) and noting that covariances
are zero, we can apply (11) and the estimators from (4)
to obtain variance estimates:

dVarVar

#l

#g

#m

0B@
1CA ¼

b

f

d

0B@
1CA b � d

k0s2½eðb�dÞt=s � 1�; ð12Þ

where the variance operator is applied componentwise;
b; f ; and d are the observed numbers of births, shifts,
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and deaths, respectively, and s is the total time
experienced by all copies of the element.

Because of the multiplicative nature of the likeli-
hood function across independent individuals, informa-
tion matrices are additive across hosts. Thus, the
variance–covariance matrix for the estimates is the
inverse of the sum across individuals of information
matrices. If Ij is the information matrix for the jth host,
then

dItotalItotalð#l; #g; #mÞ ¼
Xm

j¼1

bIjIjð#l; #g; #mÞ; ð13Þ

and the variance–covariance matrix is obtained by
inverting (13). Variances for cases 2–11 can be obtained
as special cases, or by analogous reasoning.

6.2. Variance: frequent monitoring

Unlike the continuous case, in the frequent case
(case 12) there is no simple way to treat many
individuals as a single individual with large copy
number. If individuals are observed many times, the
different intervals for a given host are independent
under the assumptions of the model. Thus, the
information matrix for many hosts is obtained as
the sum of the information matrices of the individuals,
or more simply, as the sum of the information matrices
for independent intervals.

Consider an individual of initial copy number k

observed for a single interval of length u; with event G

occurring during the interval. We require expectations
of second derivatives of the log-likelihood. For example,

� E
@2

@l @g
ln Lðl; g; mjG; k; uÞ

� �
¼ Pr ðbirth; k; uÞ @2

@l @g
ln Lðl; g; mjbirth; k; uÞ

þ Prðshift; k; uÞ @2

@l @g
ln Lðl; g;mjshift; k; uÞ

þ Prðdeath; k; uÞ @2

@l @g
ln Lðl; g; mjdeath; k; uÞ

þ Prðno change; k; uÞ

� @2

@l @g
ln Lðl; g; mjno change; k; uÞ: ð14Þ

The required probabilities are obtained from Table 2:
for example, Prðbirth; k; uÞ; or Lðl; g; mjbirth; k; uÞ;
equals ly�1ð1 � e�kyuÞ: The second derivatives
(Table 3) are computed from first derivatives in Table
2. Inserting quantities from Tables 2 and 3 into (14),

� E
@2

@l @g
ln Lðl; g; mjG; k; uÞ

� �
¼ ðkuÞ2

e�kyu

1 � e�kyu
� 1 � e�kyu

y2
: ð15Þ

Abbreviating the right-hand side of (15) by A; calculat-
ing the remaining derivatives, and using the same form
for the expected information matrix as in (9), we obtain

Iðl; g; mÞ ¼
A þ z=l A A

A A þ z=g A

A A A þ z=m

0B@
1CA; ð16Þ

where z ¼ ð1 � e�kyuÞ=y:
To estimate the variance–covariance matrix, the

maximum-likelihood estimates #l; #g; and #m obtained
from maximizing (7) are inserted into the estimated
information matrix for the data set (that is, the
following)

dItotalItotalð#l; #g; #mÞ ¼
Xm

j¼1

bIjIjð#l; #g; #mÞ: ð17Þ

Here m is the total number of intervals, and #Ij is the
estimated information for each interval, obtained
by inserting maximum-likelihood estimates into (16).
Finally, the estimated variance–covariance matrix isdItotalItotal

�1: Variances in cases 12–22 are analogously
obtained.

Table 3

Second partial derivatives of components of the log-likelihood

Type of event ðGÞ @2

@l2 ln½Lðl; g; mjG; k; uÞ� @2

@g2 ln½Lðl; g;mjG; k; uÞ� @2

@m2 ln½Lðl; g;mjG; k; uÞ� @2

@l @g ln½Lðl; g; mjG; k; uÞ�

Birth �ðkuÞ2e�kyu

ð1�e�kyuÞ2
� 1

l2 þ 1
y2

�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2

Shift �ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
� 1

g2 þ 1
y2

�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2

Death �ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2
�ðkuÞ2e�kyu

ð1�e�kyuÞ2
� 1

m2 þ 1
y2

�ðkuÞ2e�kyu

ð1�e�kyuÞ2
þ 1

y2

No change 0 0 0 0

ð@2=@l @mÞ ln½Lðl; g;mjG; k; uÞ� and ð@2=@g @mÞ ln½Lðl; g; mjG; k; uÞ� both have the same values as ð@2=@l @gÞ ln½Lðl; g;mjG; k; uÞ�:
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Unlike the continuous case, in which observations
used for inferences of each of the parameters do not
depend on the other parameters, covariances in the
frequent case are nonzero. As soon as one event occurs
in an interval, other events are precluded. Thus,
parameter estimates should be negatively correlated
with each other.

7. IS6110 data

We consider two data sets, ‘‘Niemann’’ and ‘‘SF,’’ as
well as the combined data ‘‘Niemann+SF’’ (Table 4).
Both data sets include serial genotypes of the transposon
IS6110 in M. tuberculosis, a frequently used marker in
tuberculosis molecular epidemiology.

The ‘‘Niemann’’ data set (Niemann et al., 1999)
includes 56 time intervals from patients in Germany.
For each interval, genotyping occurred both at its

beginning and at its end. Each interval corresponds to a
different patient, each of whom was infected with
multiple-drug resistant M. tuberculosis. Initial IS6110

copy numbers range from 3 to 17. Interval lengths range
from 1 to 772 days, and 34 of 56 intervals were longer
than 100 days. Histograms of the initial copy number
distribution and the time interval distribution are shown
in Fig. 1 of Niemann et al. (1999). In five of 56 intervals,
changes were observed. Four patients gained one copy
of IS6110, and one patient lost a copy. It is unclear
whether Niemann et al. found shifts and did not report
them, searched for shifts and did not find them, or
simply did not assay for shifts.

The ‘‘SF’’ data set (Fig. 4) derives from a database of
IS6110 genotypes of M. tuberculosis patients from San
Francisco. New genotypes are continually added to the
database, maintained by the laboratory of Peter Small,
and findings are periodically reported (Small et al., 1994;
Yeh et al., 1998; Jasmer et al., 1999; Rhee et al., 1999).

Table 4

Summary statistics for three data sets

Niemann SF Niemann+SF

Number of intervals 56 247 303

Number of intervals with births 4 14 18

Number of intervals with shifts 0 2 2

Number of intervals with deaths 1 11 12

Number of intervals with no change 51 220 271

Number of patients 56 204 260

Mean initial copy number 10.77 10.01 10.15

Standard deviation of initial copy number distribution 3.06 5.36 5.02

Mean interval length (days) 237 115 137

Standard deviation of interval length distribution (days) 227 144 168

Total length of all time intervals (days) 13,250 28,274 41,524
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Fig. 4. Observations in the SF data set. (A) Distribution of observations as a function of the length of the sampling interval. One hundred and twenty

one intervals of length 50 days or less are not shown; of these, 111 showed no change, six included births, and four included deaths. (B) Distribution

of observations as a function of initial copy number. The patterns are the same for both plots: shaded—deaths; dot-dashed—shifts; zigzag—births;

empty boxes—no change.
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As of April 2001, the database included genotypes for
320 independent time intervals from 260 patients.
Because the time of genotyping was recorded by date
and not by time of day, we discarded intervals for which
the start and end were on the same day, leaving 291
intervals for 237 patients. During 44 of these intervals, a
‘‘complex’’ change occurred, involving multiple copies
of the element. Many of these changes are likely
attributable to reinfection, that is, replacement of an
individual’s strain with a newly contracted alternate
strain; others might represent within-host polymorph-
isms. We discarded these intervals, only considering the
247 intervals of paired isolates from 204 patients in
which initial and final genotypes were identical or
differed only by a single birth, shift, or death. Intervals
were distributed among patients as follows: 172 patients
were typed over one interval, 26 over two intervals, four
over three intervals, and one patient for each of five and
six intervals.

The combined ‘‘Niemann+SF’’ data set includes
303 intervals. Owing to ambiguity about shifts in
the Niemann data, inferences about shifts for the
combined data should be interpreted cautiously. The
individuals in the Niemann data had drug resistance,
while the SF patients included a mixture of drug-
resistant and drug-susceptible cases. However, Niemann
et al. (1999) did not observe differences in copy number
distribution or change rates that related to drug
resistance.

8. Simulations

For the data in Section 7, sampling generally occurs
often enough that each interval contains no more than
one genotype change. Of the patients in the Niemann
data set that experienced change, all had either one more
or one less transposon copy (Table 4), suggesting that no
patient experienced more than one change in copy
number over the sampling interval. Thus, for the marker
IS6110, it seems acceptable to assume that at most one
event occurs during an interval, and to use the ‘‘frequent
monitoring’’ theory of Sections 5.2 and 6.2.

We tested this argument by simulating birth–shift–
death processes, using various distributions for initial
copy numbers and sampling intervals, with a range of
birth, shift, and death rates, and a range of sample sizes.
In each simulation, for each individual, initial copy
number and sampling interval were simulated indepen-
dently. Events were simulated according to the linear
birth–shift–death process in Section 2. Times at which
events occurred and the types of these events were
recorded.

For each simulated data set, maximum-likelihood
parameter estimates were obtained under the assump-
tion of continuous monitoring (5), and under the

assumption of frequent monitoring (7). An underlying
linear birth–shift–death process was assumed, so that
likelihoods were computed using cases 1 and 12 in
Table 1. Under continuous monitoring, exact times and
types of events were taken into account to compute the
estimates. With frequent monitoring, only the types of
events were used; in case more than one event occurred
during the sampling interval, events subsequent to
the first were ignored when estimates were obtained. If
the copy number for an individual reached zero, the
individual was not allowed to undergo additional
genotype changes.

Initial copy number and sampling interval distribu-
tions were taken from the Niemann+SF data set. For
change rates that might be expected, we found that the
frequent monitoring assumption was quite reasonable.

Fig. 5A shows that the birth rate estimator under
continuous monitoring (4) is very accurate. Because
events are rare enough that relatively few individuals
experience multiple changes, the maximum-likelihood
estimator under the frequent monitoring assumption
also performs well (Fig. 5B). The continuous monitoring
estimator is slightly more accurate, and has smaller
variance, than the frequent monitoring estimator. Both
estimators have larger variances as change rates
increase.

Similarly, Fig. 6A and B demonstrate that both
estimators are fairly accurate for small sample sizes.
As with Fig. 5, comparison of Fig. 6A and B indicates
that the continuous monitoring estimator gives values
that are both closer to the true value and more precise
than those produced by the frequent monitoring
estimator. Lastly, Fig. 7A and B demonstrate that for
time intervals that might be characteristic of epidemio-
logical studies, estimates under frequent monitoring are
close to the true value, and have reasonably small
variance.

Thus, for analysis of the IS6110 data, it seems
acceptable to assume that the birth–shift–death process
is monitored frequently. However, this assumption will
not apply to markers with rates and sampling intervals
large enough that multiple events happen per interval.

9. Estimation of change rate of IS6110

For these three data sets, we estimated rates assuming
frequent monitoring (Table 5). The likelihood we
maximized was (7), employing case 12 in Table 1 (case
13 for the Niemann data, which had no shifts). We also
computed standard normal 95% confidence intervals for
each parameter, treating estimates of the different
parameters as independent (Table 5). To obtain
confidence intervals, variances were computed by
inverting the matrix in (17), employing likelihood
functions from Table 1 in calculating the information
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matrix. The resulting confidence set is a cube; because

estimates are only weakly dependent, however, this set is
only slightly conservative. To compute the overall
change rate and its confidence intervals, we used the
one-parameter model of case 14.

Because sampling intervals were measured in days
(Fig. 4), estimates were obtained first in events per
transposon copy per day. If replacement of the
dominant strain within a patient occurs exclusively
through genetic drift, then as discussed in Section 2,

estimates of birth, shift, and death rates for IS6110 are

in fact estimates of corresponding rates at the cellular
level. Converting our Niemann+SF estimates from
events per element per day to events per element per
generation, using the 1 day generation time of M.

tuberculosis, cellular birth, shift, and death rates are
4:42 � 10�5; 4:91 � 10�6; and 2:94 � 10�5; respectively
(top of Table 5). These per-generation estimates should
be regarded with caution, as they depend heavily on the
assumption of selective neutrality.
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Fig. 5. Mean estimated birth rates as a function of true birth rate in replicate simulations. (A) Rate estimated assuming continuous monitoring. (B)

Rate estimated assuming frequent monitoring. Each point is based on 1000 replicate simulations using a sample of size 150. Initial copy numbers and

sampling intervals were simulated based on the empirical distributions in the Niemann+SF data set. Sampling intervals were simulated

independently of initial copy numbers. Birth, shift, and death rates were assumed equal. Error bars denote standard deviations of the distribution of

1000 estimates.
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Fig. 6. Mean estimated birth rates as a function of sample size in replicate simulations. (A) Rate estimated assuming continuous monitoring. (B)

Rate estimated assuming frequent monitoring. Each point is based on 1000 replicate simulations using birth, shift, and death rates equal to 0.01

events per copy per year. Initial copy numbers and sampling intervals were simulated based on the empirical distributions in the Niemann+SF data

set. Sampling intervals were simulated independently of initial copy numbers. Error bars denote standard deviations of the distribution of 1000

estimates.
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The conversion of 1 year per 365.25 days enables
conversion into units of events per copy per year for
rates of genotype change (middle of Table 5). Finally, if
viewed as the decay of a configuration of elements in the
genome, estimates can be converted into ‘‘half-life’’
units (de Boer et al., 1999). Because we assume
exponential waiting times until ‘‘decay,’’ the conversion
is straightforward. For an exponential process with rate
s; the half-life is

t1=2 ¼ s�1 ln 2: ð18Þ

Under the linear birth–shift–death process, waiting
times until births, shifts, and deaths are exponentially
distributed, as is the waiting time until the first event
of any type. For a k-copy strain the half-life of a pattern
by the birth process, for example, is obtained by
inserting k #l in place of s in (18). Because ‘‘decay’’
by shift or death may precede the first decay by the
birth process, the half-life for decay by any of the
individual processes is more difficult to interpret
than the half-life for the overall process. This overall
half-life is obtained by inserting the overall estimated
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Fig. 7. Mean estimated birth rates as a function of sampling interval in replicate simulations. (A) Rate estimated assuming continuous monitoring.

(B) Rate estimated assuming frequent monitoring. Each point is based on 1000 replicate simulations using birth, shift, and death rates equal to 0.01

events per copy per year. Initial copy numbers were simulated based on the empirical distribution in the Niemann+SF data set. The sample size was

fixed at 150. Error bars denote standard deviations of the distribution of 1000 estimates.

Table 5

Estimated birth, shift, and death rates

Niemann SF Niemann þ SF

Events per copy per generation

Birth rate 2:95 � 10�5 ð6:13 � 10�7; 5:84 � 10�5Þ 5:14 � 10�5 ð2:34 � 10�5; 7:94 � 10�5Þ 4:42 � 10�5 ð2:31 � 10�5; 6:52 � 10�5Þ
Shift rate — 7:34 � 10�6 ½0; 1:79 � 10�5Þ 4:91 � 10�6 ½0; 1:19 � 10�5Þ
Death rate 7:38 � 10�6 ½0; 2:18 � 10�5Þ 4:04 � 10�5 ð1:56 � 10�5; 6:52 � 10�5Þ 2:94 � 10�5 ð1:23 � 10�5; 4:66 � 10�5Þ
Overall rate 3:69 � 10�5 ð4:57 � 10�6; 6:92 � 10�5Þ 9:91 � 10�5 ð6:01 � 10�5; 1:38 � 10�4Þ 7:85 � 10�5 ð5:03 � 10�5; 1:07 � 10�4Þ

Events per copy per year

Birth rate 0.0108 ð2:239 � 10�4; 0:0213Þ 0.0188 (0.0085, 0.0290) 0.0161 ð8:40 � 10�3; 0:0238Þ
Shift rate — 2:68 � 10�3 ½0; 6:54 � 10�3Þ 1:79 � 10�3 ½0; 4:35 � 10�3Þ
Death rate 2:70 � 10�3 ½0; 7:97 � 10�3Þ 0.0147 ð5:68 � 10�3; 0:0238Þ 0.0108 ð4:47 � 10�3; 0:0170Þ
Overall rate 0.0135 ð1:67 � 10�3; 0:0252Þ 0.0362 ð0:0219; 0:0504Þ 0.0287 ð0:0184; 0:0390Þ

Half-life of one-copy strain in years (divide by k for k-copy strain)

Birth process 64.3 (32.5, 3095.4) 36.9 (23.9, 81.2) 43.0 (29.1, 82.2)

Shift process — 258.6 ð106:1;NÞ 386.8 ð159:3;NÞ
Death process 257.1 ð87:0;NÞ 47.0 ð29:1; 122:0Þ 64.5 ð40:7; 154:9Þ
Overall process 51.4 (27.4, 415.4) 19.2 (13.7, 31.6) 24.2 (17.8, 37.7)

95% confidence intervals around estimates are shown in parentheses. Negative numbers were rounded to zero. Confidence limits for half-life units

were obtained by transforming corresponding limits for the other units according to (18). In the Niemann data set, no shifts were observed and the

shift rate was not estimated.
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rate kð#lþ #gþ #mÞ in place of s in (18). The Nie-
mann+SF half-life estimate of 24.2 years for a one-
copy strain corresponds to 2.4 years when divided by a
typical copy number of 10.

The estimated shift rate was significantly smaller than
both the birth rate and the death rate (95% confidence
intervals did not overlap). In both the Niemann and SF
data sets, the estimated birth rate was larger than the
estimated death rate, though not significantly. The
estimated overall change rate for the Niemann data set
was 0.0135, as was obtained previously (Tanaka and
Rosenberg, 2001). The overall change rate was higher
for the SF data, equaling 0.0362, and it was 0.0287 for
the combined data. This rate would have been even
larger had ‘‘complex changes’’ been included; in addi-
tion to birth, shift, and death parameters, the overall
rate would then have included a component for a rate of
complex changes.

10. Discussion

10.1. Markers for molecular epidemiology

Pathogen genotypes at marker loci and their frequen-
cies assist in studying transmission processes and
biological causes of disease. Of crucial importance to
inference of epidemiologic relationships from genetic
relationships is knowledge of rates of genetic change of
the pathogen (Yeh et al., 1998; Tanaka and Rosenberg,
2001, for example). A marker that changes rapidly
compared to the time scale of an epidemic will obscure
links in transmission chains, producing divergent
genotypes among causally related cases. On the other
hand, a slowly changing marker may provide little
information about recent transmission, as marker
genotypes may be similar solely because of distant
common ancestry.

Various epidemiological settings might apply the
following protocol: (a) determine the time scale on
which a phenomenon of interest is occurring; (b)
select genetic markers whose mutation rates are
appropriate to the time scale of the phenomenon; (c)
genotype individuals; (d) make inferences about the
phenomenon.

The presence of step (b) makes it useful to accurately
estimate the rate of change. As the relationship between
the time scales of epidemiological phenomena and the
informativeness of markers has been little explored, it
will be important to quantitatively determine how
change rates affect epidemiological inference. An
approach to this problem might consider the proportion
of correct inferences made about epidemiological
clusters based on clustering of similar genotypes,
assuming both an epidemic transmission model and a
genetic change model.

10.2. Optimum experimental design

Because it is desirable to maximize precision estimates
of genotype change rates, investigators may make
several decisions in advance that will lead to reduced
variance in estimates. These include (a) increasing the
number of time points at which pathogens are isolated
from each individual during a fixed time interval; (b)
optimally selecting lengths of the intervals between these
time points; (c) increasing the sample size; (d) using only
individuals whose pathogens initially have a high copy
number.

As is suggested in (a), it is more informative to
observe pathogen genotypes for each individual at more
than two points in time. One way to view this increase is
that the monitoring scheme more closely approximates
continuous monitoring scheme as the number of
intervals is increased. In simulations, however, precision
was only slightly improved when the exact timing of
events was known (Figs. 5A, 6A and 7A), compared to
when it was only known that an event had occurred
inside the interval (Figs. 5B, 6B and 7B). Thus,
subdividing a fixed time interval is not likely to greatly
increase precision. Note that if a fixed time interval is
subdivided, the optimal division depends on change
rates, and is not in general the one that produces
subintervals of equal size (Becker and Kersting, 1983,
for example). For example, if the birth rate exceeds the
death rate, then more changes occur later in the interval
and the optimal division uses smaller subintervals later
in the fixed interval.

As was studied by Tanaka and Rosenberg (2001), the
optimal choice of interval lengths (b) is a concern if
change resolution and infrequent monitoring are used. If
the interval is long, then all individuals will change
during the interval, and it will not be possible to
estimate the rate. If the interval is small, then no
individuals will change and the estimate will be zero.
Thus, an optimal intermediate length must exist. For
frequent monitoring, however, intervals are by defini-
tion short enough that at most one event usually occurs
per interval. The variance minimization approach in
Tanaka and Rosenberg (2001) is thus inappropriate in
the frequent case.

Increasing the sample size (c) decreases the variance in
the usual manner, assuming that there are identical
distributions of copy number and sampling intervals for
newly sampled and previously sampled individuals. As
subdividing intervals is inefficient and optimal interval
choice might require impractically large sampling
intervals, this option might be the simplest way to
increase the precision of estimates. Fig. 6 shows how the
estimates become more precise as sample size is
increased, so that precision might be chosen in advance
and an appropriate sample size obtained by comparison
with these or similar graphs.
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If high-copy strains do indeed change more rapidly
than low-copy strains, high-copy strains provide more
information about unknown rates during a fixed length
of time. Thus, it may be useful to genotype initial
samples soon after they have been obtained, rather than
waiting until the end of the sampling interval to
genotype initial and final samples together. Hosts with
low-copy strains might be eliminated early in studies,
and sampling intervals might be chosen to be shorter for
high-copy strains. Of course, these decisions are not
recommended when the goal is to study population
dynamics of the marker (Tanaka et al., 2000, for
example) rather than to estimate rates: if high copy
numbers are preferentially included, samples will no
longer be random.

Precision in the estimates must be balanced by
additional costs of genotyping more individuals, geno-
typing the same individuals at additional time points,
and the additional time it will take before an estimate
can be obtained. Simulations such as those in Section 8
enable precision of estimates to be predicted in advance
of studies, so that the desired precision can be taken into
account when designing a study. For optimal design,
because there are multiple parameters, the criterion of
obtaining the minimum variance estimator as in Tanaka
and Rosenberg (2001) must be generalized to minimiz-
ing a function of the variances and covariances of the
estimates of the parameters (Atkinson and Donev,
1992). Caution is warranted in choosing optimal designs
based on the linear birth–shift–death process model, a
model that might be superseded upon direct tests of its
accuracy.

It is often of interest to have a rough estimate of
genotype change rates before performing a longer study.
As we have seen, actual rates of the process affect the
way in which those very rates should be estimated. Thus,
it is useful to obtain preliminary estimates. For this
purpose, with similar markers to IS6110, Figs. 5–7
suggest that reasonable precision can be obtained using
at least 100 intervals of at least 60–90 days. This type of
pilot study will be unreliable in case the assumption of
time-homogeneity of the process is violated. The degree
to which time-homogeneity holds will depend on the
within-host process; thus, testing for time-homogeneity
of the change rate should provide insight into temporal
variation in selection inside the host environment.

In general, we find it acceptable to assume frequent
monitoring. If many intervals are sampled for each host,
it is reasonable to assume that the change happened at
the sampling point and to use continuous monitoring.

10.3. Other types of markers

The modularity of our approach enables applications
to other types of markers. In place of the linear birth–
shift–death process model for transposons, appropriate

genotype evolution models might be inserted for
markers of interest. For DNA sequences, nucleotide
substitution models might be used (Jukes and Cantor,
1969; Li, 1997, for example). The probability of an
observed DNA sequence at time t given the initial DNA
sequence and the sampling interval is then easily
computed.

A more closely related application is to pulsed-field
gel electrophoresis (PFGE) markers. In PFGE, the
pathogen genome is digested with a restriction enzyme,
and the pathogen’s genotype is the resulting pattern of
genomic fragment lengths on a gel (Tenover et al., 1995).
The underlying processes that cause genotype profiles to
change are mutations that produce a new restriction site,
and a consequent new band on the gel (births); random
insertions and deletions that do not affect restriction
sites, consequently changing the size and hence position
of a single band (shifts); and mutations that excise
restriction sites or change them so that they are no
longer restriction sites (deaths). The production rate of
restriction sites should be a genomic constant, indepen-
dent of the number of existing sites. Similarly, as shifts
occur any time a major insertion or deletion happens
anywhere in the genome, the shift rate should also be a
genomic constant. The death rate, however, should be
linear in the number of restriction sites, as sites decay
independently. Thus, a reasonable model for PFGE is a
linear death process with constant birth and shift rates.

The same detection schemes as those described in
Section 3 apply. Complete resolution provides the whole
band pattern, including births (one band is replaced by
two bands representing smaller fragments), shifts (one
band is moved), and deaths (two bands are replaced by
one band representing a larger fragment). For PFGE,
the estimation theory here could be adapted by
replacing the linear birth–shift–death process model
with a linear death process model including constant
births and shifts. If deaths only are considered, models
here and in Tanaka and Rosenberg (2001) directly apply
to PFGE.

10.4. IS6110 and M. tuberculosis

We have assumed that each element has the same rate
of change. If we were to consider the positions of the
elements, it could be tested if certain regions of the M.

tuberculosis genome enable more rapid transposition
than other regions. Unlike many other transposons,
IS6110 does not include a promoter region and must
be located near transcription initiation sites in the
genome in order to transpose. Thus, the transposition
rate of a given copy surely depends on its proximity to
promoters.

Even if transposition rates across the genome are
homogeneous, a nonlinear model might more accurately
describe the process, so that change rates are not linear
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in copy number. Under such a model, the birth, shift
and death rates would be the corresponding rates for
strains with exactly a single copy of the element, and
additional parameters would describe departures from
the independent action of separate copies of the
transposon.

The SF data produce change rate estimates rates that
are higher than those based on Niemann et al. (1999).
One possible cause of this discrepancy might be
inhomogeneity of the process in time. The Niemann
data set generally has long intervals and the SF data set
has many short intervals in which changes are observed.
The Niemann data set may represent populations at a
later stage of infection, during which changes might
occur more slowly (Warren et al., 2002). Alternatively,
there could be strain heterogeneity (van Soolingen et al.,
1999; Tanaka et al., 2000): the strains of the Niemann
data set may have less active transposases compared to
the SF strains. Systematic biases in laboratory proce-
dures may also be responsible, or changes in genotyping
procedures that have occurred over time. Comparisons
of transposition rates as a function of neutral mutation
rates in different strains (or whether strains are
‘‘mutators’’), geographic origins of strains, positions of
elements, genetic susceptibilities of patients, and clinical
variables such as whether patients also have AIDS may
be of interest.

Given the high change rates inferred for IS6110

compared to previous studies (de Boer et al., 1999;
Tanaka and Rosenberg, 2001; Warren et al., 2002),
researchers who use IS6110 genotypes to classify
individuals into epidemiological clusters should be
careful not to underestimate the composition of these
groups. In some cases, transmission among patients may
take long enough that the marker will have changed in
the intervening period, so that M. tuberculosis patients
with similar but nonidentical IS6110 patterns may be
causally connected.

Finally, we have ignored complex changes because of
uncertainty about their meaning. This has allowed us to
ignore within-host polymorphism and to justify the
equality of cellular transposition rates and substitution
rates within hosts. If complex changes could be
distinguished into within-host polymorphisms, reinfec-
tion with alternate strains, and coinfection with multiple
strains of different origins, a more sophisticated
coalescent-based model that accounted for within-host
polymorphism would be more appropriate. Such a
model would better accommodate the selective sweeps
that likely occur within hosts, and that have been
ignored here by assuming all variants are neutral.

10.5. Conclusions

We have proposed a general framework for estima-
tion of genotype change rates in pathogens, and we have

developed the method for transposable element mar-
kers. Using serial samples, we have estimated the birth,
shift, and death rates for IS6110 in M. tuberculosis, and
we have discussed how better estimates of the para-
meters might be obtained. Extensions to other markers,
including pulsed-field gel electrophoresis, are also
possible. Future work might test for nonlinearity of
change rates as functions of copy number, study
heterogeneity of change rates in time, and identify
determinants of variation of estimated rates across
data sets.
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