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Insertion sequence (IS) elements are bacterial genes that are able to transpose to different locations in the genome. These
elements are often used in molecular epidemiology as genetic markers that track the spread of pathogens. Transposable
elements have frequently been described as “selfish DNA” because they facilitate their own transposition, causing
damage when they insert into coding regions, while contributing little if anything to the bacterial host. According to this
hypothesis, the expansion of copy number of insertion sequences is opposed by negative selection against high copy
numbers. From an alternative point of view, we might expect IS elements to intrinsically regulate transposition within
cells, thereby limiting damage to their bacterial host. Here, we report evidence that the copy number of 1S6//0 in
Mycobacterium tuberculosis is controlled by selection against the element. We first construct 12 different models of
marker change resulting from a combination of possible transposition functions and selective regimes. We then compute
the Akaike Information Criterion for each model to identify the models that best explain data consisting of serial isolates
of M. tuberculosis genotyped with IS6//0. We find that the best performing models all include selection against the
accumulation of copies. Specifically, our analysis points to the interaction of separate copies of the element causing lethal

effects. We discuss the implications of these findings for genome evolution and molecular epidemiology.

Introduction

Insertion sequence (IS) elements and other transpos-
able elements (TEs) are of great interest to evolutionary
biologists, geneticists, and molecular epidemiologists. The
view that TEs are selfish (Doolittle and Sapienza 1980;
Orgel and Crick 1980) has some support from studies that
compare distributions of TE copy number with dynamical
models in which TEs replicate within genomes and
engender a fitness cost to the host (Charlesworth and
Charlesworth 1983; Sawyer and Hartl 1986; Sawyer et al.
1987). The survival of TEs is better secured, however, if
the proliferation of TE copies is negatively regulated, or is
prevented from uncontrolled expansion, especially when
the copy numbers are high within genomes. In this article,
we will use the terms regulation to mean an intrinsic
mechanism modifying the transposition rate and control to
indicate any mechanism, including regulation and selec-
tion, that prevents copy numbers from undergoing un-
checked expansion. Sawyer et al. (1987) used observed
distributions of IS element copy numbers in Escherichia
coli to demonstrate that some families appear to be
regulated (IS2, 1S3, 1S4, IS30) while others do not (IS/,
IS5). These results, however, depend on the assumption
that the copy number distributions are at equilibrium,
which may not hold for all elements (Tanaka et al. 2000).

In fact, many mechanisms of regulation have been
described for various families of IS elements. One of the
better-characterized elements in prokaryotes is IS/0, in
which several different mechanisms have been found to
regulate transposition. These include the transcription of
an antisense RNA that blocks translation of the trans-
posase, dam-mediated methylation of the element, and the
action of host factors IHF and HU (Kleckner et al. 1996).
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IS3 and IS911 are of particular interest here because they
belong to the same group of IS elements as IS6/70 (Fayet
et al. 1990; McAdam et al. 1990). The IS3 transposase is
inhibited by proteins (OrfA and OrfB) that are alternatively
expressed through a single-base frameshift during trans-
lation of the IS3 message (Sekine, Eisaki, and Ohtsubo
1994). Similarly, it has been shown that IS9// produces
a repressor that competes with the transposase (Haren et al.
2000). Additionally, IS9// makes use of alternative
promoters (Pig;. and Pj,nc) to modulate transposition rates:
the stronger promoter (Pju,c) is formed only transiently
during transposition (Duval-Valentin et al. 2001). Taken
together, these studies highlight the great diversity of
mechanisms of regulation operating on IS elements. As it
is likely that additional mechanisms have yet to be dis-
covered, it is difficult to determine a priori which, if any,
regulation mechanisms exist for a given element.

Although 1S61710 is widely used as a genetic marker
in the molecular epidemiology of tuberculosis, the details
of transposition in IS67/10 are poorly understood. How-
ever, some progress has been made by conducting manip-
ulative experiments of IS6/7/0 in the related species M.
smegmatis. We now know that particular insertions can
alter the expression of nearby genes (Safi et al. 2004), and
that transposition rates depend on the genetic background
and environmental factors: they are stimulated by the
presence of nearby promoters (Wall et al. 1999) and by
microaerobic exposure (Ghanekar et al. 1999).

In the epidemiological setting, it is important to know
the rate at which the marker changes in vivo in order to
make inferences about the speed of transmission of the
infectious agent (Yeh et al. 1998; de Boer et al. 1999;
Tanaka and Rosenberg 2001). It is also important to know
if the rate of change is a function of other factors (e.g.,
Eilers et al. 2004). In the case of insertion sequences, if
each copy of the element in a given genome acts in-
dependently, then the rate of change (the transposition
rate, or more precisely, the substitution rate for IS element
genotypic profiles) is a linear function of copy number
(Rosenberg, Tsolaki, and Tanaka 2003; Tanaka and
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FiG. 1.—Serial samples for 303 time intervals. We plot time intervals
against inital copy number for each pair of serial samples. Each pair of
samples is represented by a point. Filled squares: intervals involving
a change in genotype; open squares: no change in genotype.

Rosenberg 2001). Departures from independence will be
reflected in departures from linearity in this relationship.

We offer a novel approach to the detection of control
of IS elements, applicable to naturally occurring strains of
pathogens. We statistically quantify the copy number con-
trol of the insertion sequence IS6/10 in M. tuberculosis.
Our method is potentially applicable to other IS elements
and prokaryotes, although we have not found data sets of
the appropriate kind.

Methods
Data

The data set used here is the “Niemann+SF” data set
described in Rosenberg, Tsolaki, and Tanaka (2003), consist-
ing of 303 repeated isolates of tuberculosis from patients (see
also Niemann, Richter, and Rusch-Gerdes [1999]). The
isolates were typed using the standard protocol based on the
element IS6770 (van Embden et al. 1993). By keeping track
of genotypes of isolates from repeated visits by the same
patient, we have a record of changes in the fingerprint
over time. These serial isolates allow the quantification of
the rate of change of markers over time (we denote this pa-
rameter by 0). Our previous studies developed a maximum
likelihood method for estimating the rate at which finger-
prints change. Applying it to IS6/70 in M. tuberculosis, we
found this rate to be around 8 =0.0287 changes per element
per year (Rosenberg, Tsolaki, and Tanaka 2003).

In Figure 1, for the 303 serial isolates, we plot time
intervals between repeated visits as a function of copy
number. Serial samples that involve a change in the IS67/0
fingerprint are distinguished from those that do not involve
achange. It appears from this plot that strains of intermediate
copy number (say 7 to 17 copies) are less stable than strains
of low and high copy number. The apparent variation in
stability across copy number is likely due at least in part to
the heavier sampling of strains of intermediate copy num-

ber, as depicted in Figure 4b of Rosenberg, Tsolaki, and
Tanaka (2003). One of our goals is to explore this issue
quantitatively in order to resolve this ambiguity.

General Framework

Our general approach in assessing copy number
control is to construct many possible candidate models to
describe transposition over time. We will compare these
models by using statistical information theory to measure
the evidence supporting each model given the data set.
This approach was also used by Calabrese and Durrett
(2003) for the similar problem of investigating copy num-
bers for repeat motifs in microsatellite loci.

We start with a general model providing the prob-
ability of a fingerprint with a given copy number k chang-
ing within a patient in a given time period z. Let p be the
set of parameters of a particular model.

We assume that negative selection results from lethal
effects of transposition. We further assume that there is no
cost to simply carrying the element, so that a mutation will
be selectively neutral or advantageous in the cellular popu-
lation within the host, provided it survived the transposition
event. The negligible metabolic burden of carrying multiple
copies of the element justifies this assumption. Let the
probability that a mutant survives the effects of a trans-
position event be (k, p) and let the probability of a mutant
reaching fixation given that it survives transposition be u.
Then, if transposition follows a Poisson process with
transposition rate oL,(k, p) per genome, substitution follows
amarked Poisson process, and is therefore Poisson with rate
de(k, p)o(k, p)u. Note that both the transposition and
selection functions may depend on copy number k. Hence-
forth we omit the parameter # and let it be subsumed by
the transposition function so that the change rate (0, to
be described in more detail later) describes the overall
substitution process.

Analogously to the model of Rosenberg, Tsolaki, and
Tanaka (2003) with “change resolution” and “frequent
sampling,” the probability w of a change being observed
during time interval ¢ is

wlk,1,p) = 1 — e~ watbn), (1)

If o(k, p) = 1, then there is no selection against carrying
the insertion sequence element. If 6(k, p) =1 and a(k, p) =
0k, the transposition model is the same as the linear model
in Tanaka and Rosenberg (2001) and Rosenberg, Tsolaki,
and Tanaka (2003). We will explore particular forms of
these two functions in the next section.

Letting G; indicate whether the ith sample in the data
corresponds to a changed fingerprint, the likelihood of the
parameters given the data is

Lik(p)= [ wik t.p)

i:Gj=change

x J] -

i:Gj=no change

wiki,t,p))- (2)

This likelihood function is maximized to find estimates of
the parameters in each model. In addition, we compute the
Akaike Information Criterion (AIC) value, which is given
by AIC = —2In(Lik(p)) + 2n, where n is the number of
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FiG. 2.—The relationships among the various models. Arrows point to more general models; the model at the base of an arrow is nested in the
model at the tip. Models involving three parameters appear in the top row, those involving two parameters are in the middle row, and those involving
a single parameter are in the bottom row. The models are also labeled by numbers reflecting the transposition and selection components.

parameters in the model, and P is the set of maximum
likelihood estimates for the model (Burnham and Ander-
son 2002). These AIC values enable us to select among
competing candidate models. Lower values of AIC
indicate superior models.

Selecting from a Set of Models

We now consider different ways to construct the
transposition and selection functions and assess these
models. We begin with the transposition rate function,
o, (k, p). Transposition is a relatively rare stochastic event
depending on the amount of the transposase enzyme
available as well as the number of copies of the element.
For convenience, we distinguish the genomic transposition
rate—the overall rate of transposition per genome—ifrom
the per-copy rate a(k, p); the two rates are related by
o, (k, p) = ko(k, p). For brevity, we will drop the argu-
ments when discussing these functions.

Models of IS Element Change

We investigate four models of transposition. Each
model may include or exclude selection against the
element, and we explore two ways to model selection.
The combinations of the transposition and selection
models result in 4 X 3 = 12 different models of genetic
marker change. We describe below the components of all
of these models, and depict the relationships among all
twelve models in Figure 2.

First, consider the following models of transposition.

1. Independent. The first model is the same one we used
in previous papers (Tanaka and Rosenberg 2001;
Rosenberg, Tsolaki, and Tanaka 2003). It assumes that
each copy acts independently of others. Hence, o is set
to a constant value 0 events per copy per year and the
overall genomic transposition rate is o, = Ok.

2. Sharing. Suppose the transposase produced by each
copy is available to catalyze transposition of any of the

copies. If each copy produces 6 units of the enzyme
then o = 0k and, assuming mass action, the genomic
transposition rate is o, = k. The parameter © now has
units of events per pair of copies per year.

. Saturating. In this model the transposase is again

shared, but the amount present is a saturating function
of copy number, resulting from limited resources avail-
able to produce transposase and other proteins. In other
words, the amount of transposase in a given cell ap-
proaches some constant limiting value as copy number
increases, rather than increasing indefinitely. Taking the
same approach as that used to model Michaelis-Menten
kinetics, we let

oy 0k
T 14k

where r is a constant associated with this saturating
function. When r = 0O the model reduces to the
transposase sharing model. The parameter 0 is again
measured in events per pair of copies per year.

. Homeostatic. Suppose that there is perfect homeostasis

with respect to transposition such that the genomic
transposition rate is unaffected by copy number: o, = 0.
This implies that the concentration of transposase de-
creases with the reciprocal of copy number (o= 0/k). The
parameter 0 is then measured in units of events per year.

We now turn to the models of selection.

. No selection. All strains are assigned equal fitness,

regardless of their copy numbers. The absence of
selection is established by setting s = 0 in either of the
next two models, so that o = 1.

. Disruptive Insertion. If the fitness of the bacterial host

is reduced by a factor 1 — s per copy of the element,
then the selection function is

o= (1 —s)k.

We note that this function can alternatively be inter-
preted as a reduction in the transposition rate due to
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Table 1
Comparison of Models by Means of the Akaike Information
Criterion (AIC)

Number
Model (label®) of parameters AIC Weights”
Sharing + Copy Interaction (2.3) 2 220.65 0.4452
Saturating + Copy Interaction (3.3) 3 222.66 0.1634
Sharing + Disruptive Insertion (2.2) 2 222.84 0.1491
Independent + Copy Interaction (1.3) 2 223.18 0.1256
Saturating + Disruptive Insertion (3.2) 3 224.84 0.0548
Independent + Disruptive Insertion (1.2) 2 225.65 0.0366
Homeostatic (4.1) 1 228.10 0.0107
Homeostatic + Copy Interaction (4.3) 2 229.28 0.0060
Homeostatic + Disruptive Insertion (4.2) 2 230.07 0.0040
Independent (1.1) 1 230.38 0.0034
Saturating (3.1) 2 232.38 0.0013
Sharing (2.1) 1 241.58 0.0000

% The models are labeled with numbers corresponding to the model
components. See Figure 2.

® Akaike weights are computed using W; = exp(—A;/Z)/Z}i] exp(—A;/2)
where A; is the difference between the ith AIC and the lowest AIC value, and
the sum in the denominator is over all models being considered. This quantity
can be interpreted as the weight of evidence in favor of each model within the
set of considered models (Burnham and Anderson 2002).

a mechanism intrinsic to the element (or bacterial host)
that senses the copy number of the genome. However,
from a mechanistic point of view, this model is more
appropriately viewed as corresponding to the deleteri-
ous effects of insertion.

3. Copy Interaction. We examine the possibility that
separate copies of the element interact to lower fitness.
This may be the result of separate copies interacting to
produce lethal genomic rearrangements (Langley et al.
1988; Gray, Tanaka, and Sved 1996). Here, we model
this scenario as follows:

o= (1 . s)k(k—l)/z'

Each pair of copies can produce the deleterious outcome.

The various combinations of the models will also be
labeled according to the numbering of the components
given above. For example, the model involving sharing of
transposase with copy interaction is labeled 2.3.

Model Selection and Statistics

As described earlier in the General Framework sec-
tion, we use the various models established in the previous
section to find the likelihood values given by equation (2).
These likelihoods are then used to derive the AIC values
for the different models. Table 1 shows the results of our
model-selection analysis; using the estimates for the three
best and two worst models, we plot the transposition
function w in Figure 3. The model in which transposase is
shared by all copies of the element in the genome, com-
bined with negative selection against the element via copy
interaction, best explains the data, with an Akaike weight
of around 45%. Note that the top six models, with a total
weight of ~97%, all include selection in some form.
Although the best two models produce very similar results,
as shown in Figure 3, Sharing + Copy Interaction has the
lower AIC value because of its ability to explain the data
more parsimoniously (with one less parameter).

0.6

0.4

0.3

Transposition probability

0.1

0 &ee 1 1 1 1
0 5 10 15 20 25

Number of copies

FiG. 3.—The probability of transposition w(k, ¢, p) in a time period of
t = 1 year, evaluated at the estimated values of the parameters, for the
three best and two worst models. (2.3) Sharing + Copy Interaction (thin
solid curve); (3.3) Saturating + Copy Interaction (thin dashed curve);
(2.2) Sharing + Disruptive Insertion (thick solid curve); (3.1) Saturating
(thin dotted curve); (2.1) Sharing (thick dashed curve). Note that curves
2.3 and 3.3 lie very close to each other.

Estimation of parameters

For the chosen model (Sharing + Copy Interaction),
which carries the greatest weight of evidence among the
models, the parameter estimates are: 8 =0.0119 per pair of
copies per year and § = 0.0231 per pair of copies. To
estimate the uncertainty in these estimates, a standard
method is to obtain a variance-covariance matrix by
inverting the Fisher information matrix, evaluated at the
estimates (see Appendix A for details). With this method,
the approximate 95% confidence intervals for the estimates
are: (0.00761, 0.0162) for 6 and (0.0186, 0.0276) for §.

Hypothesis testing

Hypotheses regarding whether one of a pair of
models has a “significantly better” fit than the other can
readily be tested. Because there is some nesting of the
models (as shown in Figure 2), we can use likelihood ratio
tests (LRTs) to compare certain pairs of models. The test
statistic values for LRTs can be extracted from the AIC
values in Table 1. Table 2 shows the results of all 13 tests.
All but four tests gave rise to significant refinements to the
simpler model.

Discussion
Evidence for Selection Against IS67/170

We have identified a single model, Sharing + Copy
Interaction, which outperforms the others in the set of
models we examined. Although the evidence in support
of this particular model is high, it is not necessarily the
“correct model” but one which best explains the data
among the set of models. The Saturating and Homeostasis
models describe different ways in which the element is



Table 2
Comparison of Models Using Likelihood Ratio Tests
Models (labels) df* LRT®  p Value
Independent vs Independent + Disruptive

Insertion (1.1, 1.2) 1 6.73 0.0095
Independent vs Independent + Copy

Interaction (1.1, 1.3) 1 9.20 0.0024
Sharing vs Saturating (2.1, 3.1) 1 11.20 0.00082
Sharing vs Sharing + Disruptive

Insertion (2.1, 2.2) 1 2074 <107
Sharing vs Sharing + Copy Interaction

(2.1,2.3) 1 2293 <107
Sharing vs Saturating + Disruptive

Insertion (2.1, 3.2) 2 2074 <107
Sharing vs Saturating + Copy Interaction

(2.1,3.3) 2 2293 <107
Saturating vs Saturating + Disruptive

Insertion (3.1, 3.2) 1 9.54 0.0020
Saturating vs Saturating + Copy

Interaction (3.1, 3.3) 1 11.73 0.00062
Sharing + Disruptive Insertion vs

Saturating + Disruptive Insertion

223.2) 1 0.00 1
Sharing + Copy Interaction vs Saturating

+ Copy Interaction (2.3, 3.3) 1 0.00 1
Homeostatic vs Homeostatic +

Disruptive Insertion (4.1, 4.2) 1 0.03 0.86
Homeostatic vs Homeostatic + Copy

Interaction (4.1, 4.3) 1 0.83 0.36

* Degrees of freedom.

® The likelihood ratio test statistic, given by LRT = —2[In(Lik(p,)/Lik(p»))],
where P, is the vector of maximum likelihood estimates under the more specific
model, and P, is the corresponding vector for the general model (with more pa-
rameters than the former). This test statistic is distributed approximately as xﬁ
with degrees of freedom n, which is given by the difference in the number of pa-
rameters between the two models.

intrinsically regulated. Neither of these models, however,
is as strongly supported by the data as the case in which
the element drives its own proliferation by sharing the
transposase molecules produced, with only selection
against expansion holding copy number down. Interest-
ingly, this supports the idea that transposable elements are
“selfish” in that they spread in genomes despite the
deleterious side-effects associated with this spread. We
stress that we have not ruled out molecular mechanisms
that regulate the spread of copies; if those mechanisms are
present, their effects are not strong enough to be detected
by the models we have considered.

Notably, the best six models in Table 1 all involve
negative selection against the element. Even if copy
interaction is not the actual cause of selection, it is likely
that some form of negative selection is acting on the
element. It is also interesting that the best two models both
involve transposase sharing. This supports the hypothesis
that separate copies of the element do not operate
independently. In agreement with the findings of van der
Spuy et al. (2003), the current evidence suggests that the
linear model of transposition (Independent) should be
replaced for IS6/10; our analysis offers some alternatives.

Transposition Rate as a Function of Copy Number

This study concerns transposition rates as functions of
copy number, a topic of relevance to molecular epidemi-
ology and molecular evolution. However, the body of
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research on molecular mechanisms regulating transposi-
tion rate does not often consider the effect of other copies.
If the molecular mechanisms are to be effective in
regulating the expansion of insertion sequences, they
should preferentially lower transposition rates in high-
copy strains. If molecular mechanisms simply slow down
the transposition rate regardless of copy number, the
uncontrolled proliferation of copies may be temporarily
retarded, but in the long run, the copy numbers may
increase to extreme levels.

It is also important to consider transposition rates
changing as a function of genetic and environmental
factors. For instance, there may be location effects—rates
may depend on insertion position in the genome; trans-
position may occur as a “stress response.” Another way to
put this is that there could be heterogeneities in the rate
over space and time. It is possible that the isolates of
intermediate copy number in our sample represent a set of
strains that are predisposed to change.

The examination of the mobility of IS elements as
a function of copy number raises the question of what
will happen to the population of insertion sequences in
a species in the long term. Will IS6/70 go extinct in the
long term or will it persist? The persistence of IS6/70 may
be allowed by a balance between element replication and
negative selection against copies, as suggested by our anal-
ysis. There may be occasional beneficial effects produced
by the element. Although the element probably does not
move between bacterial cells at a pace rapid enough to es-
cape its destructive effects, the long-term rate of (possibly
trans-specific) horizontal transfer may be sufficient to
ensure survival (Bergstrom, Lipsitch, and Levin 2000).
The extinction of IS67//0 is also a possible long-term
outcome. There is no a priori reason to expect a family of
IS elements to evolve strategies to create “safe” equilib-
rium distributions of copy number. The peaked distribu-
tions of IS61710 copy number suggest that the dynamics of
the element are out of equilibrium, which may reflect
a transient presence of the element in M. tuberculosis
(Tanaka et al. 2000).

It is not known whether elements other than IS6710
follow the same process of copy number control suggested
by our analysis, but the analysis could easily be adapted
for other data sets. It should be possible to design
experiments using well-characterised elements and host
species (e.g., IS3 or IS0 in E. coli) to study a range of
alternative models as done here.

Genomic Conflict: Something to Fight About?

Two main alternative views exist about the relation-
ship between IS elements (and other mobile genes) and
the rest of the genome, which can be discussed in terms
of the metaphor of genomic conflict. First, insertion
sequences might be selfish, implying that they replicate
within genomes despite causing deleterious effects in the
host genome. According to this metaphor, it is in the evo-
lutionary interest of the insertion sequence to increase its
replication rate, whereas in contrast, the genome should
do the opposite—namely, down-regulate the rate of trans-
position. A second and opposing view is that the genome
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is a well-coordinated system that has resolved most con-
flicts or inefficiencies. That is, insertion sequences have
a role in the genome to produce beneficial effects aligned
with the interests of the rest of the genome.

Although the results of this study favor the first view,
the two views are not mutually exclusive. The evolution of
mechanisms that regulate copy number effectively would
benefit both host and element in the case of organisms that
undergo little genetic exchange, such as M. tuberculosis.
Furthermore, it is likely that insertion sequences, like all
mutation rate modifiers, produce both beneficial and dele-
terious effects as they undergo transposition (Chao et al.
1983). In the context of pathogenic bacteria, an important
example of the adaptive role of insertion sequences is their
complicity in the acquisition of antibiotic resistance genes
and virulence factors. As the workings of bacterial ge-
nomes are unraveled, we will need to assess the role of IS
elements: how they affect genome organization and give
rise to genetic innovation.

Molecular Epidemiology and IS Elements

Insertion sequences have been widely exploited for
genotyping bacterial pathogens, many of which have little
variation at individual nucleotides. The mycobacterial
insertion sequence IS67 10 exhibits great variability in both
copy number and genomic location (Hermans et al. 1990;
McAdam et al. 1990; Stanley and Saunders 1996), making
it a valuable tool for studying tuberculosis. IS6710-based
genotyping is the most widely used marker for molecular
epidemiologic studies that have provided fundamental
insights into the contemporary transmission and patho-
genesis of tuberculosis (Small et al. 1994).

In order to use any genetic marker rationally,
however, we must know something about its underlying
biology. For example, if a marker changes very slowly,
clusters of identical genotypes overestimate the severity of
disease transmission, whereas if it evolves very fast,
clusters will differentiate quickly and an outbreak may be
underestimated.

In the analysis of clusters of IS6//0-based geno-
types, it is important to recognise that strains with dif-
ferent copy numbers evolve at different rates. This study
demonstrates statistically that strains with intermediate
copy numbers (7-17) are substantially less stable than
strains of low and high copy numbers. Thus, for inter-
mediate copy numbers, more permissive definitions of
clusters might be used.

Insertion Sequences and Error Catastrophe

We tentatively raise an intriguing medical implication
following from an understanding of IS element control.
Our analysis demonstrates the presence of negative
selection against IS6/70 increasing with copy number. If
it is possible to increase the rate of transposition, sufficient
damage may be caused to the genome to lead to the demise
of the bacterial host. Hence, it may be possible to develop
a drug treatment that targets IS6110 by interfering with its
regulation within M. tuberculosis. One advantage of such
a drug for tuberculosis would be its specificity to bacterial

transposition. A potential difficulty, as with many antibac-
terials, is the probable evolution of resistance.

Although a treatment of this kind is not likely to be
soon attainable, there is a precedent for this idea in anti-
viral therapy. Ribavirin works by elevating the mutation
rate beyond the “catastrophe threshold” such that the viral
population is no longer viable (Crotty et al. 2000). Also
related is the phenomenon of hybrid dysgenesis in
Drosophila caused by P elements (Kidwell, Kidwell, and
Sved 1977), in which the removal of transposase re-
pression leads to elevated transposition rates and conse-
quently to deleterious effects to the genome.
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Appendix A: Standard Errors

Here, we outline how standard errors are computed for the
general model. The Fisher information matrix is additive
when the data points are independent from each other. We
shall thus begin with the information from each sampled
interval. First, define /; = In(Lik,(p)), which is the log-
likelihood for the ith interval, where p is the vector of
parameters. In other words,

In(w;)

| if G; = change
l; = In(Lik;(p)) = { In(1 —w;) g

if G; = no change,
where w; = w(k;, t;, p).

The (a, b)th element of the information matrix
for the single observation is given by

0%l; } 3)
p.ops|’

where E[+] represents the expectation and p; is the jth
parameter. Defining B; = o (k;, p)o(k;, p)t, equation (3)
simplifies to

tor= (5e) Gt = @
(M) o

The Fisher information matrix I is computed by
constructing the matrix with elements (a, b) given by the
sum over all data points:

Ly =) Ll (6)

The variance-covariance matrix is the inverse of this
matrix, which can readily be evaluated numerically.

m=—4
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