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Supplementary Methods 27 
 28 

Variant calling and reference panel construction 29 
 At the time of the reference panel construction, an additional 99 tiger genome samples 30 
were publicly available and downloaded from NCBI. Reads were mapped to the GenTig1.0 31 
genome1 using BWA-MEM v0.7.172 and variant calling was subsequently performed by 32 
Gencove using the Genome Analysis Toolkit (GATK) v4.1.4.13 according to best practices. 33 
Initial variant calling was performed on all samples, excluding those sequenced at 0.25×, for a 34 
total of 177 individuals. 35 

We filtered for low-quality sites using BCFtools v1.164. We first restricted to biallelic 36 
sites using BCFtools view, with the flags ‘-m2, -M2, -v SNPs’. We next examined summary 37 
statistics (depth, allelic number) of the data using BCFtools query -f. To exclude low-quality 38 
sites, we filtered first based on site missingness, using AN > 317. We then restricted the data to 39 
only autosomes, and further filtered based on depth and quality using BCFtools view and 40 
included sites that had a quality score of at least 20, a minimum depth across individuals of 177× 41 
and a maximum depth across individuals of 3000× (the average depth across all individuals per 42 
biallelic SNP site was 1725×). We last used a mappability filter to remove sites with low 43 
mappability. We estimated mappability scores using Genmap v1.3.05. The reference file was first 44 
indexed using genmap index -F, and the mappability subsequently indexed using genmap map 45 
with flags ‘-K 30’, ‘-E 2’, and ‘-b’. The resulting bedgraph file of mappability scores was then 46 
filtered to exclude sites that had a mappability score <1 using filterGM.rb v0.3.2 (from 47 
RatesTools6, https://github.com/campanam/RatesTools/). These sites were then filtered from the 48 
VCF using VCFtools v0.1.157  ‘--exclude-bed’.  49 

In order to select individuals to build the reference panel and accurately split individuals 50 
into groups for kinship estimation, we conducted Principal Component Analysis (PCA) to ensure 51 
that all individuals in the unimputed dataset were clustering according to subspecies using 52 
PLINK v28 with flags ‘--bfile’, ‘--allow-extra-chr’, and ‘--pca 10’. Individuals were subsequently 53 
split into ancestry groups to form the reference panel, which included representatives from all six 54 
tiger subspecies. Further, we tested several methods for detecting relatedness using pedigreed 55 
individuals in the dataset, which were subsequently used to identify and remove duplicates. 56 
Additional information can be found in Supplementary Methods, Relatedness.  57 

Imputation and filtering  58 
 Using only the putative single subspecies ancestry individuals verified above, we 59 
developed a reference panel to impute variants for an additional 86 individuals (labeled as 60 
‘imputed’ in Supplementary Data 1) through the loimpute pipeline developed by Gencove and 61 
available at www.gencove.com9. The pipeline is based upon algorithms based on the copying 62 
model of Li and Stephens10. The 86 imputed individuals were composed primarily of individuals 63 
sequenced at ultra low-coverage (N = 75; 0.25×), but also included two individuals from a 64 
Canadian Zoo sequenced at ~3×, and an additional 9 samples that became publicly available 65 
after the initial variant calling had been performed (see Supplementary Data 1 for details). 66 
Because the Gencove imputation pipeline sets a maximum depth it will allow (6×), these 9 67 
individuals were downsampled prior to being imputed using the seqtk v1.322 68 
(https://github.com/lh3/seqtk) pipeline with the command seqtk sample ‘-s100’. We aimed for a 69 

https://paperpile.com/c/TtkBsY/UBwRS
https://paperpile.com/c/TtkBsY/6uvff
https://paperpile.com/c/TtkBsY/jTru6
https://paperpile.com/c/TtkBsY/GjQ8E
https://paperpile.com/c/TtkBsY/61Adl
https://paperpile.com/c/TtkBsY/sAnq
https://paperpile.com/c/TtkBsY/p4d8c
https://paperpile.com/c/TtkBsY/FO0C5
http://www.gencove.com/
https://paperpile.com/c/TtkBsY/HGhu6
https://paperpile.com/c/TtkBsY/LgzZC
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depth of approximately 5×. The final average coverage for these individuals can be found in 70 
Supplementary Data 1. 71 

We combined the files for imputed individuals with the unimputed individuals using 72 
BCFtools v1.164 merge. Because imputation emits a call for every site in the reference pipeline, 73 
we restricted the merged sites VCF to retain only the quality sites identified after initial variant 74 
calling and filtering using BCFtools view with flag ‘-R’. We further checked for imputation 75 
accuracy using concordance measures and examined the accuracy of ancestry and relatedness 76 
measures over a variety of coverages. Additional information can be found in Supplementary 77 
Notes. 78 

Mitochondrial haplotypes 79 
Whole genome sequence data was mapped to a tiger mitochondrial reference genome 80 

(MH124106.1) using BWA-MEM v0.7.172 and sorted using Samtools v1.811. Reads that mapped 81 
to the mitochondrial reference genome were extracted and converted to paired FASTQ files 82 
using the bamtofastq function in BEDTools v2.27.112. To remove reads that were likely from 83 
nuclear mitochondrial inserts (numts)13, we made a new reference file consisting of the 84 
mitochondrial reference genome and a numt reference (DQ151551.1). Paired FASTQ files were 85 
mapped to this new reference file, sorted, and consensus sequences generated using ANGSD 86 
v0.93114. 87 

Consensus sequences for the mitochondrial reference genome were aligned in 88 
GeneiousPrime v.2020.1.1 with the published sequence data from Luo et al. 200415 (AY736559–89 
AY736808). Whole mitochondrial genome sequences were trimmed to the 10 gene regions 90 
(4,078bp) used in Luo et al. 200415. Any samples with more than four bp of missing data were 91 
removed from the alignment. We additionally screened for the presence of numt sequence 92 
contamination, by counting the number of SNPs compared to the most common haplotype in 93 
each sample in each gene. Samples that displayed more than twice as many SNPs in a gene than 94 
observed in any of the reference haplotypes were considered to have numt contamination in that 95 
gene and were subsequently removed. Haplotype networks were constructed using Median-96 
joining networks in PopArt16. Haplotype networks were also generated after removing only the 97 
genes (rather than individuals) with numt contamination to retain more samples in the dataset. 98 

Heterozygosity 99 
 We created equal sized groups of (N=10) individuals across all subspecies. Then we 100 
counted the total number of sites that were SNPs in the generic population and fixed in any wild 101 
subspecies. Next, we kept the same reference groups of wild tigers, and generated 10 replicate 102 
samples (with replacement) of the generic tigers to check whether these counts varied across 103 
individuals in the captive population.  104 

Heterozygosity was then calculated as the total number of heterozygous sites divided by 105 
the number of callable sites in the genome. Observed homozygous sites were counted in each 106 
subspecies using VCFtools using the ‘--het’ flag and exported into R, and heterozygous sites 107 
were calculated by subtracting the (O)HOM column from the NSITES column. The number of 108 
callable sites was determined as the total number of base pairs minus the sites with mappability 109 
scores < 1 (See Reference panel construction section for details) for autosomal scaffolds. We 110 
additionally tested to see if heterozygosity was correlated with missingness. Using VCFtools, we 111 
calculate the proportion of missing sites per individual using VCFtools ‘--missing-indv’.  112 
 113 

https://paperpile.com/c/TtkBsY/GjQ8E
https://paperpile.com/c/TtkBsY/6uvff
https://paperpile.com/c/TtkBsY/MV0v
https://paperpile.com/c/TtkBsY/3DmAF
https://paperpile.com/c/TtkBsY/4Prer
https://paperpile.com/c/TtkBsY/jHQEb
https://paperpile.com/c/TtkBsY/omDIA
https://paperpile.com/c/TtkBsY/omDIA
https://paperpile.com/c/TtkBsY/Ft9Bc
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Relatedness 114 
 Relatedness was estimated for all individuals using SNPRelate’s IBDMLE function (see 115 
Supplementary Notes) and validated using IBD sharing and pedigrees when available. The 116 
unrelated and unimputed individuals with greater than 5× coverage from each subspecies were 117 
identified and used for all analyses with ROH and IBD. We consider unrelated individuals as at 118 
most 3rd degree relatives. 119 

Local ancestry  120 
To investigate local ancestry, we used the set of phased reference files generated for the 121 

imputation pipeline (duplicate individuals were removed). To infer local ancestry across all 122 
captive individuals, we used the software RFMix v2.03-r017 and assumed a genetic map of 123 
100Mb/1cM. Because RFMix requires multiple individuals, we removed the single South China 124 
individual for local ancestry analysis. RFMix was run using default parameters and results 125 
plotted using ggplot2 v3.3.618. 126 

Runs of homozygosity (ROH) 127 
 Only unimputed, unrelated, individuals with greater than 5× coverage were used. We first 128 
converted the VCF files to PLINK format using plink v1.98 with the VCF files as input and the ‘-129 
-recode’, ‘--const-fid’, and the ‘--allow-extra-chr’ flags. Subsequently, we used the software 130 
GARLIC19 to detect ROH in each subspecies and the generic tigers. The error was set at 0.001, 131 
the window size at 700, and centromeres were set as 0,0 since no centromere information was 132 
available.  133 
 To ensure that ROH was not mistakenly called on regions with an excess of missing calls, 134 
each file was then intersected with a callable sites file (see Heterozygosity section for details). 135 
Only ROH larger than 100kb and containing callable sites within one standard deviation (0.066) 136 
of the mean coverage (0.655) were retained. ROH were divided into different size classes A 137 
(short), B (intermediate), and C (long) per subspecies. Binning is based on the use of a Gaussian 138 
mixture function that fits a model to the ROH length distribution within the group. Type A ROH 139 
are typically indicative of linkage-disequilibrium blocks. Type B ROH are informative about 140 
long-term small population sizes and cryptic relatedness. Lastly, the presence of Type C ROH 141 
indicates recent inbreeding in the population. FROH was computed as the total fraction of the 142 
genome within a type C ROH. The genome length used was the number of callable sites, which 143 
was 2,174,711,735 base pairs. 144 

Identity-by-descent segments 145 
 Only unimputed, unrelated, individuals with greater than 5× coverage were used. 146 
Identity-by-descent (IBD) segments were called using TRUFFLEv1.3820 with parameters ‘“--147 
segments --missing 1 --maf 0 –nofiltering’ 20. The extra TRUFFLE parameters allow us to 148 
convert start and end positions from the output segment file back to positions in the original VCF 149 
file. After IBD segments were called, we intersected each segment with the total callable variant 150 
and invariant sites, to find the total fraction of the IBD segment that was covered. After 151 
converting positions back to the VCF coordinates, only segments greater than 2Mb and where 152 
the fraction of coverage by callable sites (count listed above) was within one standard deviation 153 
(0.032) of the mean coverage (0.660) were retained. IBD scores were computed for each 154 
subspecies and the generics using the same approach from Nakatsuka et al.21.  155 

https://paperpile.com/c/TtkBsY/WvFiV
https://paperpile.com/c/TtkBsY/Z9X9s
https://paperpile.com/c/TtkBsY/FO0C5
https://paperpile.com/c/TtkBsY/J8lwF
https://paperpile.com/c/TtkBsY/AwKVq
https://paperpile.com/c/TtkBsY/AwKVq
https://paperpile.com/c/TtkBsY/sYtlg
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Site frequency spectrum (SFS) and polarization 156 
First, all individual felid genomes were extracted from a 241-way mammalian 157 

alignment22. The Panthera pardus, Panthera onca, Felis catus (specifically, FelCat8), Felis 158 
nigripes, Puma concolor, and Acinonyx jubatus genomes were used as-is. We replaced the 159 
PanTig1.0 genome with the more contiguous GenTig1.0 genome. Additionally, we included lion 160 
(P. leo 23), snow leopard (P. uncia 24), and clouded leopard (Neofelis nebulosa, unpublished, 161 
courtesy G. Barsh, C. Kaelin) genomes. The whole-genome alignment was performed with 162 
Progressive Cactus25 , which takes a guide tree alongside whole genome sequences and 163 
reconstructs ancestral genome sequences for each node in the tree during the alignment process. 164 
The following cladogram was provided as the guide tree: 165 

(((Panthera_tigris:0.005, 166 
(((Panthera_pardus:0.005,Panthera_leo:0.005):0.005,Panthera_onca:0.005):0.005,Panthera_uncia167 
:0.005):0.005):0.005,Neofelis_nebulosa:0.005):0.005,(((Felis_catus:0.005,Felis_nigripes:0.005):168 
0.005,Puma_concolor:0.005):0.005,Acinonyx_jubatus:0.005):0.005).  169 

We leveraged the ancestral genome reconstruction for the common ancestor of the tiger 170 
and the (((Panthera_pardus,Panthera_leo),Panthera_onca),Panthera_uncia) clade to polarize each 171 
variant call. Therefore, the ancestral base was defined as the base in the common ancestor of 172 
tigers and other big cats. Progressive Cactus identifies the ancestral bases on the phylogenetic 173 
tree via maximum-likelihood assuming a Jukes-Cantor model of substitution. For sites where the 174 
tiger was homozygous, we used the Progressive Cactus allele as the ancestral allele. For sites 175 
where the tiger was heterozygous and one of the alleles matched the Progressive Cactus 176 
reference allele, we used that allele as the ancestral allele. If neither allele in the VCF matched, 177 
we removed the site.  178 

We used only unimputed, unrelated, individuals with greater than 5× coverage to create 179 
the SFS. We created two groups, one with N=10 unrelated individuals and second with N=6 180 
unrelated individuals, which are a subset of the N=10 group. We created the two groups to keep 181 
the Indochinese population which has a limited sample. Unfortunately, we were forced to drop 182 
the South China population since there is only a single unimputed sample. 183 

Putatively neutral and deleterious variation 184 
To assess load in each subspecies and in the generic tigers, we used only unimputed 185 

individuals with at least 5× coverage and kept individuals with less than 5% missing data. In 186 
order to polarize the data and annotate sites, we subset the tiger data to only include scaffolds 187 
that corresponded to autosomes from felCat826 (GCF_000181335.2). Coordinates were identified 188 
using liftOver27. Then we input remaining sites with the felCat8 coordinates into VEP28 v92 and 189 
annotated each site with an impact (“LOW”, “MEDIUM”, “HIGH”) and consequence. Next, we 190 
removed all intergenic sites, splice acceptors, splice donors, splice region annotations, and 191 
selected the most damaging impact for a given transcript. We coded each site as nonsynonymous 192 
(NS), synonymous (SYN), or loss of function (LOF). We classified the following annotations as 193 
loss of function:   194 
"Stop gained, splice region variant”, "stop lost”, “start lost”, “start lost, synonymous variant", 195 
"stop gained, start lost", “stop gained". Next, we added SIFT scores to each variant29. SIFT29 196 

https://paperpile.com/c/TtkBsY/E1Qyb
https://paperpile.com/c/TtkBsY/mUsfJ
https://paperpile.com/c/TtkBsY/RIrqo
https://paperpile.com/c/TtkBsY/NY3bU
https://paperpile.com/c/TtkBsY/Y0Mpf
https://paperpile.com/c/TtkBsY/E3b8x
https://paperpile.com/c/TtkBsY/sTBQ
https://paperpile.com/c/TtkBsY/lfY8Z
https://paperpile.com/c/TtkBsY/lfY8Z
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scores were added by downloading scores from felCat526 and lifting each position over to 197 
felCat826 coordinates. Information from VEP was combined with a SIFT score to find putatively 198 
neutral (SYN with SIFT score greater than 0.05) and putatively deleterious sites (NS or LOF 199 
with SIFT score less than 0.05).  200 

In other words, the total number of sites that were annotated was 50,060 and we retained 201 
individuals with less than 2,500 sites annotated as missing. Then, we scaled the number of sites 202 
for all individuals. We scaled sites per individual by subtracting the total number of variant sites 203 
across all individuals from missing sites to get the total number of called sites. Next, we divided 204 
each count by the number of callable sites for that individual. Lastly, we multiplied the 205 
proportion by the average number of callable sites across all subspecies.   206 
 207 

  208 

https://paperpile.com/c/TtkBsY/Y0Mpf
https://paperpile.com/c/TtkBsY/Y0Mpf
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Supplementary Notes 209 
 210 

Population structure and global ancestry  211 
To examine variation across wild and captive tigers we ran a final PCA analysis (N = 255) with 212 
duplicates removed and individuals placed in correct ancestry groups (Supplementary Fig. 1). 213 
Supplementary Fig. 1 shows the top 3 PCs across these groups, and we can see clear clustering 214 
of wild tigers and the captive tigers. We can also see that the captive tigers are dispersed across 215 
PC space and that each subspecies forms its own unique cluster. 216 

  217 
 218 

 219 

Supplementary Fig. 1 Top 3 PCs for final set of individuals, not including duplicates and with 220 
misidentified individuals reassigned to the correct population. 221 

  222 
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Mitochondrial Diversity   223 
We generated mitochondrial consensus sequences by mapping to a tiger mitochondrial reference 224 
genome (See Supplementary Methods). We restricted our analyses to 10 genes contained in Luo 225 
et al. 200415. Contamination was only observed in two genes. Specifically, ten samples had numt 226 
contamination in Gene 1 (AMU11, PAWS5, ISE14, EFRC46, AMU4, EFRC1, ISE3, PAWS4, 227 
ISE12, EFRC11) and one sample had numt contamination in Gene 2 (ISE13). 228 

A median joining haplotype network was constructed for the dataset after removing all samples 229 
with numt contamination in any gene (Supplementary Fig. 2) using PopArt16. A haplotype 230 
network was also constructed after trimming Gene 1 from the dataset and removing the one 231 
sample with numt contamination on Gene 2 (Supplementary Fig. 3). Lastly, we generated a 232 
haplotype network after trimming Gene 1 and 2 from the dataset and retaining all samples 233 
(Supplementary Fig. 4). 234 

 235 

 236 

Supplementary Fig. 2 Median haplotype joining networks for all samples after numt 237 
contamination removal in any gene. 238 

https://paperpile.com/c/TtkBsY/omDIA
https://paperpile.com/c/TtkBsY/Ft9Bc
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 239 

Supplementary Fig. 3 Median joining haplotype network based on 3,605bp of mitochondrial 240 
sequence for 273 samples, including 25 reference haplotypes from Luo et al. 2004. Each hatch 241 
mark represents a nucleotide change.  242 



 10 

 243 

Supplementary Fig. 4 Median joining haplotype network based on 3,255bp of mitochondrial 244 
sequence for 274 samples, including 25 reference haplotypes from Luo et al. 2004. Gene 1 and 245 
Gene 2 sequence data are not included. Eleven samples that were removed in the haplotype map 246 
shown in Fig. 1 due to numt contamination of Gene 1 or Gene 2 are included in this network. 247 
The haplotypes represented in these eleven samples are indicated with a bold dotted outline.  248 

249 
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Comparing local ancestry segments  250 
In order to investigate local ancestry, we used the set of phased reference files generated for the 251 
imputation pipeline. Only individuals that were not duplicates were retained. Overall, the captive 252 
tigers contained primarily Amur ancestry, followed by Bengal ancestry, Sumatran ancestry, 253 
Malayan ancestry, and the least of the genomes came from Indochinese ancestry (Supplementary 254 
Fig. 5). Amur ancestry tracts also had the longest mean length (Amur 9,835,847bp; Bengal 255 
5,843,489bp; Indochinese 2,095,711bp; Malayan 2,997,425bp; Sumatran 4,715,953bp). Only 34 256 
local ancestry segments across any individual were longer than the median autosomal 257 
chromosome size (124,427,884), indicating that few tracts (if any) likely comprised entire 258 
chromosomes. Of course, since the reference genome used here contains gaps and since the real 259 
recombination map for tigers is unknown, these ancestry tracts are only approximate. Our ability 260 
to accurately detect local ancestry will improve with better reference genomes and larger 261 
reference databases. 262 

 263 

Supplementary Fig. 5 Boxplot of ancestry tract sizes per species across all unimputed, phased 264 
individuals. 265 

We next re-ran PCA (see Supplementary Methods for parameters) using only captive tigers. To 266 
determine whether the generic tigers showed signs of structure, we used PCA and Identity-by-267 
state (IBS) clustering. We restricted to unimputed generic individuals only and ran PCA analyses 268 
in PLINK as previously described. We performed hierarchical clustering on the shared identity-269 
by-state (IBS) loci between individuals to assess structure as well. The IBS matrix was made 270 
using the SNPRelate30 function ‘snpgdsIBS’ in R and hierarchical clustering was conducted with 271 
SNPRelate as well by calling the function ‘snpgdsHCluster’. Results from PCA and hierarchical 272 

https://paperpile.com/c/TtkBsY/boLAh
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clustering largely agree with each other. Using PCA, we did not observe any obvious structure 273 
(Supplementary Fig. 6A & 6B) and that nebulous clusters form in line with the top ancestry 274 
component of any individual. Hierarchical clustering supported the generics being classified as a 275 
single group as well (Supplementary Fig. 6C). Therefore, we can conclude that the structure of 276 
the generic population mimics the historical admixture from its founding and there are no distinct 277 
clusters formed by the various breeding facilities the tigers were taken from. Most likely, 278 
individuals are traded between facilities/locations often enough that the tigers form one, well-279 
mixed population. For main figures, the outlier individual (EFRCT18) was removed. The outlier 280 
individual in the PCA that was removed (Supplementary Fig. 6 A, B) was found to have a unique 281 
ancestry signature in the population, having greater than 10% ancestry of all subspecies except 282 
South China, which was unique among individuals. 283 

 284 

 285 

Supplementary Fig. 6 A) Principal component analysis (PCA) of autosomal sites for generic 286 
tiger colored by their top ancestry component. B) PCA of autosomal sites colored by their 287 
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birthplace of origin. C) clustering based on identity-by-state (IBS) sharing between generic 288 
individuals. Individuals are labeled with their corrected subspecies designation.  289 
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Quantifying allelic diversity  290 
We used the program ADZE v1.031 to investigate how diversity was distributed across 291 

the various tiger groups. Using only unimputed, high-coverage individuals (>5x), we calculated 292 
both private allelic diversity and allelic richness. We did not include the South China tiger in 293 
these calculations, since we only had a single individual in the unimputed dataset. Due to the 294 
limited sample size of the Indochinese subspecies (N = 6), and since ADZE requires a holdout of 295 
two for the private variation analyses, we also ran the same analyses without the Indochinese 296 
tigers.   297 

Analyses of allelic richness revealed that the Bengal tiger subspecies had the highest 298 
amount of allelic diversity (Supplementary Fig. 7 & 8), followed by the Generic and Malayan 299 
tigers. Sumatran and Amur tigers had less diversity overall. Indochinese tigers appear to have a 300 
comparable diversity to the Bengal tigers, but because of the reduced sample size, it is unclear 301 
whether additional individuals would place them above or below the Bengal tiger group. 302 
Analyses of the private allelic diversity showed that despite having high amounts of diversity, 303 
the generic tigers contain very few private alleles compared to most other subspecies, reflecting 304 
the admixture in their genomes (Supplementary Fig. 7 & 8). The Amur tiger subspecies had the 305 
fewest private alleles, and the low allelic richness and lack of private variation in this group 306 
suggests a history of severe bottlenecking. Bengal tigers had by far the most amount of private 307 
variation. Despite these results, it is clear from the plots that more samples from each group 308 
would benefit our understanding of the shared variation and history of these groups. 309 

https://paperpile.com/c/TtkBsY/YjANM
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 310 

Supplementary Fig. 7 (Top panel) ADZE analyses showing the mean allelic richness per group 311 
as sample size increases. (Bottom panel) ADZE analyses showing the mean number of private 312 
alleles per locus per group as sample size increases. This figure includes the Indochinese. 313 

  314 
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 315 

Supplementary Fig. 8 (Top panel) ADZE analyses showing the mean allelic richness per group 316 
as sample size increases. (Bottom panel) ADZE analyses showing the mean number of private 317 
alleles per locus per group as sample size increases. Comparable to Supplementary Fig. 7, but 318 
here we have dropped the Indochinese to increase sample size. 319 

 320 

Pairwise sharing of IBD segments  321 
IBD segments were identified separately for each subspecies using TRUFFLE v1.38 20, on only 322 
unimputed and unrelated individuals that had greater than 5× coverage. Since we only used the 323 
unimputed individuals, we were once again forced to drop the South China subspecies from this 324 
analysis. The pairwise sharing between each pair of unrelated individuals is displayed in 325 
Supplementary Fig. 9. IBD scores and fold enrichment of wild subspecies relative to the generic 326 
population can be seen in Supplementary Fig. 10. 327 

 328 

https://paperpile.com/c/TtkBsY/AwKVq


 17 

 329 

Supplementary Fig. 9 IBD sharing between pairs of unimputed samples in each subspecies. We 330 
observed increased sharing in the Amur and Bengal subspecies relative to Indochinese, Malayan, 331 
and Sumatran subspecies. 332 

 333 

Supplementary Fig. 10 IBD for each subspecies of wild tiger and captive tigers. A) The IBD 334 
score is the amount of pairwise sharing between unrelated individuals. We can see that the 335 
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largest IBD score is seen in the Amur subspecies followed by the Bengals then captives. B) Fold-336 
enrichment of IBD in each subspecies relative to captive population. We see a large enrichment 337 
of IBD in the Amur and Bengal subspecies relative to the captives. Conversely, we see 338 
depletions of IBD sharing in the Sumatran, Malayan, and Indochinese subspecies relative to the 339 
captive population.  340 
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Site frequency spectrum 341 
Site frequency spectra (SFS) were generated using only unrelated and unimputed samples 342 

with greater than 5× coverage. Since we only used the unimputed individuals, we were forced to 343 
drop the South China subspecies from this analysis. We chose two groups of samples, which 344 
included ten and six unrelated individuals from each subspecies. We chose these numbers so that 345 
we could include the Indochinese subspecies in our analyses. The six unrelated individuals are a 346 
subset of the ten unrelated individuals. Supplementary Fig. 11 contains all four SFS for wild and 347 
captive tigers. Generic tigers have the largest fraction of singleton variants followed by the 348 
Bengal tigers. The Sumatran tigers have the largest fraction of high frequency derived sites 349 
followed by the Amur tigers. 350 

  351 

 352 

Supplementary Fig. 11 Folded and unfolded site frequency spectra for N=10 and N=6 353 
individuals. The top panel is the unfolded SFS, and the bottom panel is the folded SFS. Variants 354 
were polarized using the Progressive CACTUS ancestral base.  355 

 356 

 357 
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Computing Genetic Load 358 
We annotated sites in our VCF with VEP and SIFT annotations (see Supplementary Methods). 359 
We used only unimputed individuals with coverage greater than 5×. Since we also had the 360 
ancestral allele from Progressive Cactus (see SFS section), we used multiple approaches to count 361 
deleterious variants in the genome of each unimputed individual: 1) tabulating homozygous 362 
derived genotypes (counting homozygotes); 2) counting the total number of homozygous and 363 
heterozygous derived genotypes (counting variants); and 3) summing twice the number of 364 
homozygous derived genotypes plus heterozygous genotypes (counting alleles). If deleterious 365 
alleles act recessively, then counting derived homozygotes is most relevant to disease.  If 366 
deleterious alleles are recessive, counting derived homozygotes is most relevant, and counting 367 
alleles is most relevant when deleterious alleles have additive effects on fitness 32,33. The 368 
deleterious and neutral variation contained in Fig. 4 in the main text and Supplementary Figs. 12 369 
& 13 mirror each other except that Supplementary Fig. 12 contains all counting methods and 370 
Supplementary Fig. 13 contains outlier individuals (GEN1 and BEN_NE2). Additionally, we re-371 
did counts with synonymous (SYN) and nonsynonymous (NS) variation. We saw the same 372 
pattern except that there are more variants that are annotated as either SYN or NS than putatively 373 
neutral or putatively deleterious. Lastly, we found that individuals with the most putatively 374 
deleterious derived homozygotes also tend to have the largest inbreeding coefficients, quantified 375 
with either FSNP or FROH (Supplementary Fig. 14). 376 

 377 

 378 

Supplementary Fig. 12 (Top row): Neutral variation in each tiger subspecies and generic tigers 379 
using different models. (Bottom row): Deleterious variation in each tiger subspecies and generic 380 
tigers using different models. Count homozygotes represents only homozygous deleterious 381 
variation; count variants represents both deleterious homozygotes and heterozygotes equally 382 
(both count for one deleterious variant); and count alleles weights homozygotes as two and 383 
heterozygotes as one. 384 

https://paperpile.com/c/TtkBsY/ht2CO+L0dc4
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 385 
Interestingly, there were two individuals, one each in the generic and Bengal populations, which 386 
were outliers in terms of both the counting variants and alleles analyses (Supplementary Fig. 13). 387 
Neither of these individuals were outliers in any other analysis we conducted, despite having an 388 
almost 3-fold enrichment of heterozygous sites that were annotated. The enrichment of 389 
heterozygous sites was validated via examination of the read counts for the reference and 390 
alternative alleles in these individuals. We believe our results capture one of the pitfalls of 391 
applying annotations from one species (cat) to another (tiger), in which subsets of sites in the 392 
genome are annotated and not necessarily representative of the full spectra of possible mutations, 393 
due to mismatches that occur during liftOver, causing some sites to be lost. Our results should 394 
caution other researchers who are attempting similar analyses. 395 
 396 
 397 

 398 

Supplementary Fig. 13 Neutral versus deleterious counts of homozygotes, variants, and alleles. 399 
The inset zooms in on the non-outlier portion of the graph. Outlier individuals are GEN1 and 400 
BEN_NE2. Count homozygotes represents only homozygous deleterious variation; count 401 
variants represents both deleterious homozygotes and heterozygotes equally (both count for one 402 
deleterious variant); and count alleles weights homozygotes as two and heterozygotes as one. 403 

 404 
 405 
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406 
Supplementary Fig. S14: Pearson correlation between FSNP (x-axis) and FROH (y-axis) for each 407 
subspecies. Individuals are labelled with the number of putatively deleterious derived 408 
homozygotes in their genome.  409 

 410 

Quantifying the enrichment of nonsynonymous and deleterious variation within ROH 411 
We tested whether there is an enrichment of nonsynonymous or putatively deleterious 412 

mutations in ROH over non-ROH regions for the three different ways of counting variation. To 413 
account for differences in neutral variation, we standardized by synonymous or putatively neutral 414 
variation. Then, we calculated the ratio of nonsynonymous over synonymous variation in ROH 415 
regions divided by the ratio of nonsynonymous over synonymous variation outside of ROH. We 416 
computed significance by generating a contingency table and running fisher.test() in R 417 
(Supporting Dataset 2). We repeated the analysis for putatively deleterious and putatively neutral 418 
variation within and outside of ROH. 419 
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 420 

Supplementary Fig. S15: Odds ratio of variation falling within or outside of an ROH (x-axis) 421 
and Subspecies of interest and counting method (y-axis). If the p-value (Supporting Dataset 2) is 422 
significant the dot is filled in red. The left column is nonsynonymous variation relative to 423 
synonymous and the right column is putatively deleterious relative to putatively neutral. Generic 424 
tigers are a clear standout in the case of nonsynonymous variation. However, all populations are 425 
similar in the case of putatively deleterious variation.  426 

Concordance and accuracy of imputation pipeline 427 
To examine the accuracy and utility of our imputation pipeline, we investigated the 428 

concordance of variant calls across different depths. Additionally, a primarily purpose of 429 
building the imputation pipeline was to inform questions of ancestry and identify individuals in 430 
low-coverage and/or unknown samples, so we also investigated the accuracy of these measures 431 
across different depths. 432 
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 433 

Supplementary Fig. S16: Non-reference discordance rate across various samples. Samples 434 
which are included in the reference set are denoted by *. 435 

We examined individuals from both the imputed and unimputed sample set, focusing on 436 
unimputed samples. We also tested two additional individuals from Khan et al. 2021 and Zhang 437 
et al. 2022. Ideally, we would not test the imputation pipeline with individuals from within the 438 
reference set, however, we included some of these individuals for two reasons: 1) to ensure that 439 
imputation was occurring accurately (imputation should be most accurate in individuals from 440 
within the reference set) and 2) there are not additional individuals from some of these ancestries 441 
sequenced that were not included in the reference set. For each of these individuals, we down-442 
sampled reads using seqtk subseq to approximately 2×, 1×, 0.5×, and 0.25×. We did not test 443 
coverages higher than 5× since several of the samples were not sequenced up to this coverage 444 
(Supplementary Dataset 1, Supplementary Fig. S16). We then input these down sampled files 445 
into the Gencove pipeline for imputation. The resulting VCFs were restricted to the high-quality 446 
sites identified in Supplementary section 1.2.2 using BCFtools view -R. We then compared the 447 
calls from each of these to the calls in the original reference file using vcf-compare from 448 
VCFtools with the flag ‘-g’, which in addition to comparing which sites are present, compares 449 
the actual genotype calls. As expected, we found that with increasing depth, the non-reference 450 
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discordance rate (NDR) decreased (Supplementary Fig. S16). In general, NDR remained below 451 
30% even at the lowest depth (0.25×, 4.09-7.66%; Supporting Dataset 3). There is a clear 452 
relationship between coverage and imputation accuracy, where samples which are sequenced at 453 
lower coverages are imputed with less accuracy, but samples with less overall coverage during 454 
full variant calling also likely contain more spurious/inaccurate calls than those with higher 455 
coverage. For imputed individuals that were not included in the reference panel, we found that, 456 
compared to the raw GATK calls, imputation performed comparatively with higher coverage 457 
individuals, but the NDR increased much more drastically with decreasing coverage (0.25×; 458 
14.12-28.79%. Naturally, this demonstrates that reference panels are drastically improved with 459 
more representative individuals with higher coverages.  460 

 To quantitatively compare the ancestry calls with down-sampled and imputed data, we 461 
created a distribution of each ancestry category (Amur, Bengal, Indochinese, Malayan, South 462 
China, and Sumatran) composed of the assigned ancestry proportion from each of the nine tested 463 
individuals. For full ancestry runs (all raw data for an individual was used to generate variant 464 
calls), individuals with single ancestry (e.g. MAL1, SUM1 individuals) were not included in the 465 
supervised groups (i.e. they were allowed to be assigned freely during the supervised admixture 466 
run). We then tested whether there was a significant difference in the distributions of assigned 467 
ancestry calls between the down-sampled data relative to the ancestry inferred without 468 
imputation or down-sampling using a Kolmogorov–Smirnov test with the ks.test() function in R. 469 

 Despite the variation in NDR across imputed and unimputed samples during the 470 
imputation pipeline, the predicted ancestry of down sampled individuals remained highly 471 
accurate across coverages (Supplementary Fig. S17) and showed very little discrepancy in 472 
ancestry proportions compared to the full calls. We observed some minor ancestry differences 473 
for individuals with Malayan, Bengal, and Indochinese ancestry, which is unsurprising given 474 
their close evolutionary relationships (Supplementary Fig. S1; Liu et al. 2018, Armstrong et al. 475 
2021). However, importantly, these varying ancestry signals due to shared evolutionary history 476 
are clear to differentiate from true ‘Generic’ tigers, as that the minor ancestry component or ship 477 
represents less than 10% of the overall ancestry and there are not more than two ancestry 478 
components present (see e.g. MAL1, SRR15369216; Supplementary Fig. S17). Statistically, we 479 
found no significant differences in the ancestry calls when comparing the full results to the 480 
downsampled iterations (Supplementary Dataset 4). Overall, these results indicate that the 481 
imputation panel can accurately assign relative ancestry components even at ultra-low (0.25×) 482 
coverages.  483 
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 484 

Supplementary Fig. S17: Relative ancestry components during imputation across various 485 
coverage thresholds across nine individuals with different ancestries. Individuals in the reference 486 
set are indicated with a *. 487 

 We also tested relatedness estimate accuracy for a subset of samples (two imputed, two 488 
unimputed) by examining the similarity of individuals detected as related or identical. To 489 
summarize these results, we tabulated only relatedness values over 0.177 (~second-degree 490 
relatives) for the individual in question. We found that of the four individuals tested, all samples 491 
were able to be identified as the same sample irrespective of depth (Supporting Dataset 5). In 492 
addition, all first-degree relatives detected in the original dataset were able to be identified, 493 
irrespective of depth (Supporting Dataset 5). Though it is outside the scope of this study, the 494 
accuracy of these results for first-degree relatedness are encouraging, but should be assessed 495 
more carefully using sample sets with known relatives. 496 

Ancestry verification and duplicate removal 497 
 To verify the ancestry of the tigers, we first used PCA. PCA first confirmed that the 498 
designated subspecies in the unimputed dataset all formed unique clusters (Supplementary Fig. 499 
18). Although we only had a single individual from South China, we still observed this 500 
individual to be separate from all the other clusters in PCA space across all principal components 501 
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that we examined (Supplementary Fig. 18). Further, this individual has previously been 502 
confirmed as having a distinct mitochondrial genome34. The South China tiger lineage is 503 
functionally extinct, and the remaining captive population was founded from just six individuals 504 
in the 1950s and 1960s. Previous studies have suggested that the lineage was mixed with at least 505 
the Indochinese and possibly the Amur subspecies35,36. Given this information and the fact that 506 
new studies with additional South China individuals have confirmed their uniqueness and 507 
mitochondrial placement37, we opted to use this individual in the reference set, despite its 508 
potential admixture. With so few individuals, we felt that this reference individual was 509 
representative of the extant South China population and further sequences can be added to the 510 
reference database when they are available.  511 

 512 

Supplementary Fig. 18: PCA of all unimputed individuals.   513 

PCA revealed a number of individuals that were likely misidentified from the imputed sample set 514 
(Supplementary Fig. 19). As a result, we relabeled the population assignment of six individuals 515 
to ‘generic’ after verifying that they were admixed (see below). Five individuals (SRR7651464, 516 
SRR7651465, SRR7651466, SRR7651467, SRR7651470) were originally labeled as Amur and 517 
one individual (SRR836354) that was originally labeled as a Bengal tiger (Supplementary Fig. 518 
S19 & S20).  519 

https://paperpile.com/c/TtkBsY/wiUi
https://paperpile.com/c/TtkBsY/DFF6+jW1W
https://paperpile.com/c/TtkBsY/9kid
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 520 

Supplementary Fig. 19: PCA of all individuals (unimputed and imputed) prior to duplicate 521 
removal or ancestry correction. 522 

To investigate ancestry fractions across all individuals, we used the program ADMIXTURE 523 
v1.3.02338.  All individuals of verified single subspecies ancestry (see above) in the unimputed 524 
dataset were used as reference individuals according to their assigned subspecies. Tigers in the 525 
imputed dataset and individuals of unknown ancestry in the unimputed dataset were then 526 
evaluated using a supervised analysis, with otherwise standard parameters (Supplementary Fig. 527 
19).  528 

https://paperpile.com/c/TtkBsY/FWW8
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 529 

Supplementary Fig. 20.  Admixture plot of all individuals (unimputed and imputed) prior to 530 
duplicate removal. Imputed individuals are denoted in red. 531 

Based on results in Section 1.2.4, we next ran VCFtools7 and SNPRelate30 to profile relatedness. 532 
IBDMLE within SNPRelate did slightly better overall than VCFtools, but this was not consistent 533 
across populations (Supplementary Fig. 21A). VCFtools and IBDMLE identified three and two 534 
pairs of individuals that were potential duplicates, respectively, one of which overlapped 535 
(SRR7651464, SRR7651466). Upon further investigation, we found that the second individual 536 
identified by IBDMLE was indeed a duplicate due to two different spellings of the sample 537 
(EFRCT6, Sampson; EFRCT8, Samson), but that the additional two individuals identified by 538 
VCFtools had no other evidence of being duplicates. As a result, we only identified duplicated 539 
individuals using IBDMLE scores (SRR7651466 and ERCT8 were removed). 540 

 541 

Supplementary Fig. 21. A) Correlations of pedigree relatedness to kinship as estimated by 542 
VCFtools relatedness and SNPRelate IBDMLE including low coverage samples. B) Distribution 543 
of estimated kinship using IBDMLE. Lines represent first degree (yellow), second degree (light 544 

https://paperpile.com/c/TtkBsY/p4d8c
https://paperpile.com/c/TtkBsY/boLAh
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blue) and third degree (maroon) relative lines. Dotted lines represent the geometric mean for 545 
each estimate. 546 

Heterozygosity and missing data 547 
We investigated the heterozygosity of the various populations using VCFtools ‘--het’. 548 
Heterozygosity was calculated by dividing the observed heterozygosity (OHOM) from the output 549 
with the number of callable sites. The number of callable sites was calculated by subtracting the 550 
number of sites filtered for mappability from the total number of autosomal sites. 551 

Since we observed clustering of imputed heterozygosity values (Supplementary Fig. 22), we 552 
concluded that these values were not reliable. We additionally tested to see if heterozygosity was 553 
correlated to the percentage of missing sites. Using VCFtools, we calculate the proportion of 554 
missing sites per individual using VCFtools ‘--missing-indv’.  555 

 556 

 557 

Supplementary Fig. 22. Observed heterozygosity as calculated by VCFtools for all samples 558 
without duplicates. 559 
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 560 

Supplementary Fig. 23. Scatter plot showing the correlation of observed heterozygosity to the 561 
proportion of missing data per individual. 562 

We found that heterozygosity appeared to be correlated with missingness (Supplementary Fig. 563 
23), where data with more missing sites had lower observed heterozygosity. We thus decided to 564 
remove individuals with more than 20% of data missing to calculate the observed heterozygosity 565 
for each group, to conserve as many data points as possible, but also exclude as many outliers as 566 
possible.  567 

 568 

  569 
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