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1 Preparation of SNP data

1.1 Overview

The study design involved the high-resolution genotyping of a diverse sample of individuals at genome-wide
single-nucleotide polymorphisms (SNPs). The set of SNPs included SNPs spread across all autosomes, as well
as SNPs on the X chromosome, the pseudoautosomal region on the X and Y chromosomes, the nonrecombining
proportion of the Y chromosome, and the mitochondrion. The individuals genotyped were drawn from the
HGDP-CEPH Human Genome Diversity Cell Line Panel1,2 (the “HGDP-CEPH panel” henceforth), and were
augmented for some analyses with individuals taken from the International Haplotype Map Project3 (the
“HapMap”). Following a series of quality control steps (Figure S17), an initial design using 513 HGDP-CEPH
individuals was reduced to a final dataset of 485 individuals and 525,910 genome-wide SNPs.

1.2 Genotyping

We selected a geographically broad collection of 513 HGDP-CEPH samples from 29 populations for geno-
typing. DNA was derived from Epstein-Barr virus immortalized lymphocyte cell lines (LCL) maintained
as part of the HGDP-CEPH panel1. Genotyping was performed using Infinium HumanHap550 Genotyping
BeadChips (Illumina Inc., San Diego, CA). Samples were assayed along with ongoing experiments in batches
of 48. For each sample, 1µg of DNA was used as template and the experiments were performed following
manufacturer instructions. Our previous work has established that genetically, LCLs remain highly faithful
to the source tissue used for immortalization4.

Of the 513 samples, 316 were typed using HumanHap550 version 1 BeadChips and 197 were typed using
HumanHap550 version 3 BeadChips. Raw data from HumanHap550 version 1 and version 3 chips were
loaded as separate projects into Beadstudio version 3.1.4. Reclustering of SNP genotype calls was performed,
discarding all genotypes below a no-call threshold of 0.15. All samples within each BeadStudio project
(version 1 or version 3) were then reanalyzed using the newly derived genotype clusters.

1.3 Initial quality control

We generated a total of ∼275 million diploid genotypes in the 513 samples. After reclustering, 18 samples
with a call rate <95% were permanently excluded from further analysis. The genotype call rate threshold of
95% resulted in the removal of 13 samples typed on version 1 BeadChips and 5 samples typed on version 3
BeadChips. The number of unique SNPs in common between version 1 and version 3 BeadChips is 545,066.
To test genotype concordance across HumanHap550 version 1 and version 3 BeadChips, we genotyped both
BeadChip types in each of three replicate samples. Analysis of these replicates produced a mean genotype
concordance rate of 0.999938 (range 0.999909 to 0.999954); the average number of called genotypes across
replicates was 539,161 of 545,066 attempted (range 538,112 to 540,476), and the average number of discordant
calls was 33 (range 25 to 46).

A locus-specific genotype call rate threshold of 98% (after reclustering) resulted in the removal of 18,667 of
the 545,066 SNPs; thus 526,399 unique SNPs were successfully typed across 495 samples. The mean genotype
call rate across these samples was 99.75% after reclustering (range 96.24% to 99.95%; median 99.86%). Post-
reclustering call rates were extremely high in most individuals (Figures S18 and S19), exceeding 98% in all
except seven cases and exceeding 99% in all except 17 cases.

At this point, two HGDP-CEPH samples — a Palestinian and a Papuan — were discarded. On the basis
of a comparison of an initial version of our genotypes to data on 122 SNPs from Conrad et al.5, these samples
were suspected of having been mislabeled during the course of our project. Data preparation proceeded
using the remaining 493 HGDP-CEPH samples and 526,399 SNPs, incorporating genotypes of 112 HapMap
individuals previously genotyped by Illumina (using version 1 BeadChips).
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1.4 Individuals

HGDP-CEPH panel. To verify the identities of the 493 remaining HGDP-CEPH individuals, we first
verified that sex inferred on the basis of X-chromosomal heterozygosity and Y-chromosomal missing data
matched the sex previously reported for each individual1,6. All individuals previously reported as male had
at most 2.05% heterozygous SNPs on the X chromosome and at most 2 of 10 SNPs with missing data on the
Y chromosome, whereas all individuals previously reported as female had at least 11.74% heterozygous SNPs
on the X chromosome and at least 5 of 10 SNPs with missing data on the Y chromosome (at least 9 of 10 in
all except two cases).

We then compared genotypes at 122 autosomal SNPs that overlapped with the study of Conrad et al.5

Each of 1039 HGDP-CEPH individuals from the Conrad et al.5 dataset was compared with each of 493 HGDP-
CEPH individuals genotyped in the current study. Except for four individuals that were not genotyped by
Conrad et al.5 (Adygei 1383, Adygei 1384, Biaka Pygmy 980, Russian 890), for each individual typed in the
current study, the genotypes of the 122 SNPs obtained using Illumina BeadChips almost exactly matched
those associated by Conrad et al.5 with the same individual label (or its duplicate, in cases where only one
member of a duplicate pair was genotyped by Conrad et al.5). In some cases, up to 2 of the 122 SNPs had a
discrepancy in which one dataset produced a heterozygote and the other produced a homozygote. However,
other than known duplicates and pairs with the same individual label, no other pairs of individuals involving
genotypes from the Conrad et al.5 study and genotypes from the current study had more than 87% of SNPs
in which both alleles agreed. Because the only pairs of individuals with a high level of genotype concordance
between studies were those expected on the basis of identical individual labels, it was assumed that no new
sample labeling errors or sample duplicates occurred in any of the 493 HGDP-CEPH samples since the time
of the earlier Conrad et al.5 study.

HapMap. For all 112 HapMap individuals, sex information inferred on the basis of X-chromosomal heterozy-
gosity and Y-chromosomal missing data (using the same criteria as for the HGDP-CEPH samples) matched
the previously reported sex. The sample from the HapMap did not contain any two individuals found by
the HapMap Consortium3 in their Supplementary Table 15 to have an “unreported relationship,” although
it did contain two Japanese individuals inferred to have relatively high inbreeding coefficients. Included as
part of the HapMap sample were 28 parent/parent/offspring trios — 16 from the CEU sample, and 12 from
the YRI sample. For all pairs of individuals in the HapMap sample, computations of P0, P1, and P2 — the
fractions of autosomal SNPs with 0, 1, and 2 alleles shared identical in state — were used to verify that
relative pairs matched those expected3. This computation utilized 7734 SNPs on chromosome 21. For all
parent/parent/offspring trios previously reported, parent/offspring relationships were in fact inferred between
the offspring in each trio and each of the two parents (P0 < 0.0006 for each parent/offspring pair), and no
other parent/offspring relationships involving two HapMap samples were identified (P0 > 0.04 for all other
pairs). No two HapMap individuals were found to be sample duplicates (P2 < 0.73 for all pairs).

Final set of individuals. The sample of 493 HGDP-CEPH individuals included seven pairs of duplicate
samples; for each duplicate pair the individual not in the H1048 subset of the HGDP-CEPH panel6 was
excluded from the final set for data analysis (Druze 589, Bedouin 652, Melanesian 659, Melanesian 826,
Biaka Pygmy 981, Biaka Pygmy 1087, and Biaka Pygmy 1092). Biaka Pygmy 980 was also excluded due to a
previously reported labeling error6,7. The final set of individuals for data analysis included 485 HGDP-CEPH
and 112 HapMap individuals.

The set of 485 HGDP-CEPH individuals included 440 individuals from the H952 subset, which contains
no first- or second-degree relatives6. Among the relatives, four parent/parent/offspring trios were included:
Melanesian 655 (father), 656 (mother), and 657 (daughter); Melanesian 788 (father), 660 (mother), and 789
(son); Melanesian 788 (father), 660 (mother), and 824 (son); Pima 1037 (father), 1038 (mother), and 1039
(son). Analyses that excluded relatives were restricted to 84 HapMap individuals — excluding offspring from
trios — and 443 HGDP-CEPH individuals. The HGDP-CEPH set of “unrelated” individuals included the
440 individuals from the H952 set without close relatives6, together with Pima individuals 1046 and 1049 and
Maya 866. These three individuals were retained, as none of their close relatives were among the individuals
genotyped (or, in the case of Maya 866, the close relative that if genotyped would have led to her exclusion
was not genotyped). Sample sizes for the various populations are displayed in Table S5.

1.5 Populations

The populations studied are shown on the map in Figure S1 at the coordinates used in Rosenberg et al.8.
These coordinates (Table S6) match those of Cann et al.1, except that an averaging procedure was used for
populations given by Cann et al.1 with a range for the latitudes and longitudes, and an updated location
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was used for Mongola. Populations were classified by geographic region in the same manner as in previous
work with the same individuals7. For some analyses, the geographic regions of Europe, Middle East, and
Central/South Asia were grouped into a “Eurasia” region. “Africa” refers to Sub-Saharan Africa. The
HapMap Chinese (CHB) and Japanese (JPT) samples were included with East Asia; HapMap Yoruba (YRI)
individuals were included with Africa, and HapMap European Americans (CEU) were included with Europe.

1.6 SNPs

After the set of individuals was established, apparent heterozygotes among males for X-chromosomal loci
were recoded as missing data, as were heterozygotes at mitochondrial SNPs and non-missing Y-chromosomal
genotypes among females. Similar procedures to those of Conrad et al.5 were then applied to remove SNPs
with lower quality data. Separate quality checks were applied to the recoded dataset, and upon completion
of all checks, those SNPs that did not pass any one of the tests were excluded.

Monomorphic SNPs. In the final set of 597 individuals used in data analysis (485 HGDP-CEPH and 112
HapMap), 42 monomorphic SNPs were identified. The remaining SNPs included 48,723 AC, 214,444 AG,
214,751 CT, and 48,439 GT polymorphisms.

SNPs with missing data. Considering the set of 527 unrelated individuals (443 HGDP-CEPH and 84
HapMap), 161 SNPs with at least 10% missing data were identified. For autosomal, pseudoautosomal, and
mitochondrial SNPs, the fraction of missing data was calculated as the total fraction of individuals whose
genotypes were missing. For X-chromosomal loci, it was equal to (2f ′+m′)/(2f +m), where f , m, f ′, and m′

respectively denote the number of females considered (202), the number of males considered (325), the number
of females with missing genotypes, and the number of males with missing genotypes. For Y-chromosomal
SNPs, the missing data rate was calculated as the fraction of males whose genotypes were missing.

SNPs were also identified for which one or more populations had a sample size of fewer than 5 alleles in
the sample of 527 unrelated individuals. This criterion, which was not applied to the Y chromosome or the
mitochondrial genome, led to the identification of 135 SNPs — six autosomal and 129 X-chromosomal SNPs.

SNPs not in Hardy-Weinberg equilibrium. From the set of 527 unrelated individuals, two population
groupings with relatively low levels of population structure in previous work7 were constructed: a Middle
East group consisting of Bedouin, Druze, and Palestinian samples (107 individuals), and a sub-Saharan Africa
group consisting of the Bantu (Southern Africa), Bantu (Kenya), Mandenka, and Yoruba populations (63
individuals).

A chi-squared test of the null hypothesis of Hardy-Weinberg equilibrium was performed in each of these
population groups, taking into account the Yates continuity correction9. For X-chromosomal SNPs, males
were included in the tabulation of allele frequencies for the computation of expected genotype frequencies,
but they were ignored in the hypothesis test. Only SNPs with at least four copies of the minor allele in
both of the population groups were considered as possible candidates for exclusion. Among such SNPs, those
SNPs that had either or both of the following properties were identified: (1) the chi-squared test statistic
was greater than 19.51142 (P < 10−5 for a χ2

1 distribution) in either of the two population groups; (2) the
chi-squared test statistic was greater than 6.634897 (P < 10−2 for a χ2

1 distribution) in both of the population
groups (Figure S20). Using these criteria, 198 SNPs were identified.

SNPs discordant between duplicates. For each SNP, concordance of genotypes was evaluated between
the two individuals in each duplicate pair. For all SNPs, non-identical genotypes in which neither individual
had missing data were declared discordant. Two SNPs were identified in which two of the seven duplicate
pairs had discordant genotypes.

SNPs with Mendelian incompatibilities. For each of the 32 trios (4 HGDP-CEPH, 16 HapMap CEU,
and 12 HapMap YRI), SNPs were tested for Mendelian incompatibilities. A total of 26 SNPs with at least
three Mendelian incompatibilities among the 32 trios were identified.

Summary of excluded SNPs. Not taking into account the fact that some SNPs failed more than one
of the checks, the total number of SNPs identified by the various quality checks was 564 — 42 that were
monomorphic, 161 with a high overall missing data date, 135 with considerable missing data in at least one
population, 198 with Hardy-Weinberg disequilibrium, 2 with discordance between duplicates, and 26 with
Mendelian incompatibilities. Accounting for SNPs that failed more than one of the quality checks, 489 distinct
SNPs were identified and were discarded from the final dataset for analysis. Excluding these SNPs, the SNP
set for data analysis included 525,910 SNPs — 512,762 autosomal, 13,052 X-chromosomal, 9 Y-chromosomal,
15 pseudoautosomal, and 72 mitochondrial SNPs (Table S7).
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1.7 Missing data rate

Of the 2(597)(512, 762) = 612, 237, 828 autosomal genotypes possible in the full sample of 597 individuals,
the number of missing genotypes was 759,570. Similarly, the proportions of missing genotypes for the Y
chromosome, the pseudoautosomal region, and the mitochondrial genome were 48 of 3285, 92 of 17,910, and
1194 of 42,984 possible genotypes. Of the (365 + 2 × 232)(13, 052) = 10, 820, 108 X-chromosomal genotypes
possible, the number missing was 36,982. Combining all 525,910 SNPs, the missing data rate was

759, 570 + 48 + 92 + 1194 + 36, 982
612, 237, 828 + 3285 + 17, 910 + 42, 984 + 10, 820, 108

=
797, 886

623, 122, 115
≈ 0.13%.

Most individuals and SNPs had a very low missing data rate (Tables S8 and S9). None of the individuals
had more than 3.5% missing data, as determined using all 525,910 SNPs.

1.8 Genotyping error rate

A rate of genotype discrepancy was determined based on duplicate samples, using 513,008 autosomal SNPs
(prior to removal of 246 autosomal SNPs that failed quality checks). Considering autosomal SNPs for which
both individuals in a duplicate pair were genotyped, 174 discrepancies were observed in which one individual
was homozygous and the other was heterozygous, and 1 discrepancy was observed in which the two indi-
viduals were homozygous for different alleles. Therefore, the rate of discrepancies per diploid genotype was
175/3, 580, 862 ≈ 4.92× 10−5.

Comparing the genotypes at the overlapping 122 SNPs to the data from Conrad et al.5, there were 482
individuals who were genotyped in both studies (not counting seven cases in which one study contained the
duplicate cell line of an individual but not the identical cell line). Excluding comparisons in which one study
produced missing data, the rate of discrepancies between studies per diploid genotype was 54/57, 764 ≈
9.35× 10−4. This rate is somewhat higher than the discordance rate for duplicate cell lines genotyped in the
present study, but note that the Conrad et al.5 study used a different genotyping technology.

2 Population-genetic analysis of unphased SNP genotype data

2.1 Allele frequencies

For comparisons of SNP allele frequencies between geographic regions, we used the 443 unrelated HGDP-
CEPH individuals and the 512,762 autosomal SNPs. To produce bivariate graphs of allele frequencies in two
geographic regions (Figure S21A), we plotted the number of SNPs with minor allele frequency in each of a
series of bins. We employed a resampling procedure to adjust for sample size differences among geographic
regions. For each SNP, we sampled 40 alleles (with replacement) from each of the geographic regions. For a
given pair of regions, the minor allele was identified from the pooled sample of 80 alleles for the two regions. In
cases where both alleles had exactly 40 copies in the combined sample, the minor allele was chosen randomly.
The numbers of SNPs in each of the 41 × 42/2 = 861 possible bivariate frequency categories were then
tabulated. To obtain values proportional to SNP density per unit area, for triangular bins along the diagonal
(frequency sum of one for the two population groups), this number of SNPs was doubled to account for the
arbitrary decision about which allele was the minor allele and to account for the fact that the triangular bins
had only half the area of usual square bins. Univariate allele frequency spectra (Figure S21B) were based
on the same resamples as those used in producing the bivariate spectra. Correlation coefficients of allele
frequencies, obtained based on the values plotted but using both alleles at each SNP, are shown in Table S10.

2.2 Linkage disequilibrium

Linkage disequilibrium (LD) was measured for the unphased data using the HR2 statistic10, a measure
analogous to the r2 statistic for phased data that for a pair of SNPs considers a normalized squared difference
between the proportion of double homozygotes expected under linkage equilibrium and the proportion of
double homozygotes observed. For each population, we computed HR2 for all pairs of autosomal SNPs with
physical distance <70.5kb. We used a resampling procedure to adjust for possible influence of sample size
on homozygosity-based LD statistics11. For each pair of SNPs, a random set of five individuals was sampled
without replacement in each population, and the LD computation was performed using those five individuals
(ignoring missing data among the five individuals). Pairs of SNPs in which the five individuals chosen were
monomorphic at one or both SNPs were excluded from the computation. In the computations of HR2, the
homozygosity of a locus was obtained using all individuals who had genotypes present at the locus, while the
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double homozygosity for a pair of loci was obtained considering all individuals who had genotypes present
at both loci. As certain missing data configurations can produce HR2 > 1 with this approach, a small
proportion of values of HR2 that exceeded 1 were set to 1.

SNP pairs were placed in bins of size 250bp (including the lower endpoint in the bin). For each population,
starting at 500bp, the mean HR2 value in 1kb windows was computed every 250 base pairs. As an example,
the value plotted at 10kb in Figure 2b (and 2c) is the mean HR2 for all SNP pairs with physical distance in
[9500,10500). The standard error plotted in Figure 2c is obtained using this same collection of pairs of SNPs.

Regression of LD on geographic distance from East Africa was performed using mean HR2 values for
particular physical distance bins. Geographic distance was computed using the approach of Rosenberg et
al.8, starting from Addis Ababa (9◦N 38◦E) and traveling along the waypoint routes of Ramachandran et
al.12. Paths involving the Americas all passed through 64◦N 177◦E and 54◦N 130◦W, paths involving Oceania
passed through 11◦N 104◦E, and paths involving Africa (including the Mozabite population) passed through
30◦N 31◦E. Paths from Europe (excluding Adygei) to Africa, the Middle East (excluding Mozabites), or
Oceania also passed through 41◦N 28◦E.

2.3 Geographic distribution

We used the rarefaction approach to assess the distributions of alleles across geographic regions while adjusting
for differing sample sizes13. This method, which extends the rarefaction formula of Kalinowski14 for private
allelic richness, examines the mean number of alleles with each of a set of possible geographic distributions,
considering all possible subsamples with equal size g from each of the geographic regions. The analysis used
the 443 unrelated individuals and 512,509 autosomal SNPs, omitting those SNPs with >10% missing data in
any of the five major geographic regions. The omission of SNPs with >10% missing data made it possible to
consider larger values of the standardized sample size g. The proportions of SNPs with particular geographic
distributions were obtained by averaging estimates across loci at g = 35.

2.4 Structure

The Bayesian clustering software Structure15,16 was used to cluster individuals using their SNP genotypes.
Replicate Structure runs used a burn-in period of 20,000 iterations followed by 10,000 iterations from which
estimates were obtained. All runs were based on the admixture model, in which each individual is assumed
to have ancestry in multiple genetic clusters, using the F model of correlation in allele frequencies across
clusters. Graphs of Structure results were produced using Distruct17.

This analysis used the 443 HGDP-CEPH unrelated individuals, as well as subsets of this collection cor-
responding to individual geographic regions. Four SNP subsets were obtained, each containing ∼1% of the
autosomal SNPs. Chromosomes were placed in numerical order, and SNPs were ordered on each chromosome
using the build 36.2 human genome sequence (dbSNP build 127). With SNPs ordered from 1 to 512,762, the
four subsets consisted of SNPs in numbered positions 1 mod 100, 26 mod 100, 51 mod 100, and 76 mod 100.

For a given subset of individuals and value of K, the number of clusters considered, ten replicate analyses
with Structure were performed for each 1% collection of SNPs. The 40 replicates for each subset of individ-
uals and each K were then analyzed with CLUMPP18 to identify common modes among the replicates, using
a procedure similar to that of Wang et al.19. CLUMPP analysis proceeded using the LargeKGreedy algorithm
with 10,000 random permutations. A set of runs was classified as characterizing a single mode if all pairs in
the set had a symmetric similarity coefficient G′ > 0.9. Note that because of possible nontransitivity of the
criterion G′ > 0.9, it sometimes occurred that a run was considered part of two or more distinct modes.

For each mode identified, we ran CLUMPP a second time (using the LargeKGreedy algorithm and 10,000
random permutations), using only the replicates belonging to the mode. From this analysis, for each mode, we
obtained the mean across replicates of the cluster membership coefficients of each individual. For each subset
of individuals and each value of K, we identified the most frequently occurring mode, breaking ties using the
CLUMPP H ′ score. We also obtained mean log likelihood scores across replicates in the most frequent mode.
Further details regarding the Structure and CLUMPP analyses, including additional results and a description
of the basis for selecting some of these results for display in Figure 1c, are provided in Section 7.2.

2.5 Population tree

A neighbor-joining tree of populations20 was obtained based on pairwise allele-sharing distance among pop-
ulations. This analysis used 512,762 autosomal SNPs and the 443 unrelated individuals. Confidence values
were obtained using 1000 bootstrap resamples across loci. The computation of bootstrap distances was per-
formed using microsat21, and the tree was obtained using the neighbor, consense, and drawtree programs
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in the phylip package22. The production of the consensus tree used extended majority rule consensus (greedy
consensus23), as implemented in consense. External branches are drawn with equal lengths, and internal
branch lengths are proportional to bootstrap support.

2.6 Multidimensional scaling

A matrix of pairwise distances was constructed for the 443 unrelated HGDP-CEPH individuals, using the
512,762 autosomal SNPs. Between-individual distances were obtained using allele-sharing distance, P0+P1/2,
where Pk represents the proportion of loci at which the individuals shared exactly k alleles identical in
state. The overall distance between individuals was obtained as the average across loci. Classical metric
multidimensional scaling24,25 was applied to the individual distance matrix to provide a representation of the
matrix in two dimensions. The resulting coordinates were then rotated 225◦ to place the populations in an
approximate geographic orientation. This analysis utilized the cmdscale function in R25. Two goodness-of-fit
criteria for the proportion of the distance matrix explained by the MDS scaling are α1,2 and α2,2 (eqs. 14.4.7
and 14.4.8 of Mardia et al.24). For the plot shown for SNP data, α1,2 = 19.5% and α2,2 = 88.7%.

2.7 Genetic and geographic distance

We analyzed the relationship of genetic and geographic distance for pairs of populations. For the 512,762
autosomal SNPs, genetic distance was computed with FST , using eq. 5.3 of Weir9. Geographic distance
between populations used the same waypoint routes as were used in Section 2.2.

3 Preparation of haplotype data

3.1 Haplotype estimation with geographic region labels

Haplotypes and missing genotypes were estimated with fastPHASE26 version 1.3, ordering SNPs on each
chromosome according to positions from build 36.2 of the human genome sequence. As in Conrad et al.5, for
estimating haplotypes and missing genotypes, geographic region labels (Table S5) were applied during the
model fitting procedure to enhance accuracy (“population labels” in Scheet & Stephens26). The number of
haplotype clusters was set to 20, and we employed the default setting of 20 runs of the EM algorithm. This
analysis was used to generate a “best guess” estimate of the true underlying patterns of haplotype structure.

We included all 597 available individuals during haplotype estimation (485 HGDP-CEPH and 112 HapMap).
This combined sample included related individuals; however, during haplotype estimation and model fitting
(Section 4.3), we treated all individuals as unrelated. Haplotype phase was estimated for all autosomes as
well as for the pseudoautosomal region; for the X chromosome the haplotype estimation procedure treated
males as having known haplotype. As described below, we removed relatives from the phased haplotype data
to create a dataset of 527 unrelated individuals (443 HGDP-CEPH and 84 HapMap).

The “best guess” estimate of haplotype structure was used in the analyses of LD (Section 4.1) and of
haplotype length and frequency (Section 4.2), as well as in the plots of haplotype structure (Section 4.4).

3.2 Haplotype datasets for analysis of population structure

To generate haplotype datasets for analyses of population structure (geographic distribution of haplotypes,
Structure, population tree, and multidimensional scaling) we performed additional fastPHASE model fitting
without using the geographic labels. For these analyses, we wanted to make inferences regarding population
structure, rather than leverage a known or assumed structure for more accurate genotype estimation. As
above, we included all 597 available individuals for model fitting, only afterwards removing relatives. The
procedure for generating the haplotype datasets for population structure analyses is described in Section 4.3.

4 Population-genetic analysis of haplotype data

4.1 Linkage disequilibrium

LD was measured from the haplotype data using the r2 statistic27. This analysis used the autosomal haplotype
estimates, restricting attention to unrelated individuals. For each population, we computed r2 for all pairs of
autosomal SNPs with physical distance <70.5kb. Analogously to the computation of HR2 for the unphased
data, we used a resampling procedure to adjust for possible influence of sample size on r2. For each pair of
SNPs, a random set of ten haplotypes was chosen in each population, and the LD computation was performed
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using those ten haplotypes. Pairs of SNPs in which the ten haplotypes chosen were monomorphic at one or
both SNPs were excluded from the computation. SNP pairs were placed in overlapping bins in the same
manner as in the HR2 computations for unphased data, and the mean was taken for each bin. The decay of
mean r2 with physical distance is plotted in Figure S4. Regression of LD on geographic distance from East
Africa was performed using r2 values in the same manner as in the regressions involving HR2.

4.2 Joint distribution of haplotype length and frequency

Two haplotype properties that are inherently connected are the length of a haplotype and the frequency of
that haplotype. Long haplotypes tend to have lower frequencies than do short haplotypes. To assess both of
these properties simultaneously without applying predefined window sizes of haplotype lengths, we devised a
method that computes the length of every observed haplotype as well as its corresponding frequency.

For this analysis, we used the “best guess” phased data for 527 unrelated HGDP-CEPH and HapMap
individuals, analyzing the whole autosomal genome. Let the n SNPs of a given chromosome arm belong to the
set S, where si denotes SNP i (i = 1, ..., n) and pi denotes the position of SNP si. The set S is ordered so that
pi < pi+1 and so that each SNP has two possible states, “0” and “1”. For the set of SNPs {si, ..., sj} (with
i < j ≤ n), denote the set of possible haplotypes by hij . In this context a haplotype is defined as the series
of states (0 or 1) along a specific chromosome, for some SNPs si to sj . If two chromosomes have identical
states at all SNPs from si to sj , then the two chromosomes have identical haplotypes in [i, j]; otherwise, the
chromosomes have different haplotypes. The number of possible haplotypes for the SNP set si, ..., sj is 2j−i+1;
this number grows quickly as j − i + 1 increases, but in practice, the number of unique haplotypes that are
observed is relatively small. Denote the number of observed unique haplotypes for the set hij of haplotypes
by Kij . For the SNP set {si, ..., sj}, each observed unique haplotype is denoted hijk, where k = 1, ...,Kij .

Starting from the first SNP s1, we move to SNP s2, and we compute (and store) the length in base
pairs (`1,2 = p2 − p1 + 1) of the haplotypes in the set h1,2, and the frequencies of all haplotypes h1,2,k. We
then proceed to SNP s3, and compute the length and frequency for all haplotypes h1,3,k. This procedure is
repeated for all sets of haplotypes h1,j , j = 2, ..., n (in practice, we truncate the calculation when the set of
observed unique haplotypes has the same size as the number of sampled chromosomes — which occurs well
before the end of the chromosome). Thus, for i = 1, . . . , n − 1 and j = i + 1, . . . , n, we compute the length
and the frequency for each haplotype hijk, which gives us the joint distribution of haplotype lengths and
haplotype frequencies without using window sizes to define haplotype length.

We computed the joint haplotype length and frequency distribution for each of the 29 HGDP-CEPH
populations as well as for the 4 HapMap populations (Figure S5). To adjust for sample size differences across
populations, in each population for each set of haplotypes hij , we performed the analysis using 12 randomly
chosen chromosomes (sampled without replacement). For convenience, we ignored haplotypes of frequency 1
of 12, so that the normalization used in computing the fraction of haplotypes that lie in a given length and
frequency bin is based only on haplotypes of frequency at least 2 of 12.

4.3 A model for local clustering of haplotypes

Motivation. Here we introduce a novel model-based approach for describing and displaying haplotypic
variation within and among populations. Our approach, which is based on the model underlying fastPHASE26,
can be viewed as a summary of common haplotype frequencies in a sample.

In approaches to haplotype variation that consider windows of a given haplotype length (such as in Section
4.1), haplotypes are first estimated, then they are binned within windows of a given size, with the choice of
window size having a sizeable effect on the haplotype frequency spectrum. In such analyses, it is important to
investigate multiple haplotype lengths, as it may be difficult to determine the ideal window size for analysis.

An alternative approach for circumventing the issue of window size is to summarize variation using an
LD model that locally captures the natural extent of haplotypes26. Over short physical distances, haplotypes
sampled from a population of chromosomes can be clustered into groups of similar haplotypes; these “haplo-
type clusters” then summarize the overall variation in the population. Our approach enables the clustering
process to be applied to an entire chromosome by using a hidden Markov model for the underlying “haplo-
type cluster” memberships of individual haplotypes in the sample. The model has been used previously for
estimating haplotypes and missing genotypes, as implemented in the software package fastPHASE26.

Here we utilize the machinery of fastPHASE to obtain the frequencies of the latent haplotype clusters,
which are represented by their cluster centers. These centers, or “fuzzy haplotypes,” represent locally the
common haplotypes in a random sample of chromosomes from a population (or multiple populations). Use
of these model-based cluster frequencies allows marker-wise summaries of haplotype variation to be produced
in the form of the “frequency distribution” of haplotype clusters.
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The model. We recapitulate some notation from Scheet & Stephens26. We assume unphased individual
multilocus diploid genotypes g, observed at M SNP markers in n diploid individuals. We assume that there
are K haplotype clusters, which we estimate from the data. For convenience we set K equal to 20.

Let z·
im denote the unobserved pair of haplotype cluster memberships for individual i at SNP marker

m. Let pmk(i) denote the relative frequency of haplotype cluster k (1, . . . ,K), in individual i at marker
m (1, . . . ,M). To calculate pmk(i) we integrate over the possible pairs of cluster memberships, given the
observed data g and model parameters ν, as follows:

pmk(i) =

[∑K
k′=1 P

(
z·
im = {k, k′}|g, ν

)]
+ P

(
z·
im = {k, k}|g, ν

)
2

,

where P (z·
im|g, ν) is given by Scheet & Stephens26. The quantities pmk(i) for k = 1, ...,K can be viewed as

the relative cluster frequencies for a very small population of chromosomes (of size 2). The integration over
possible pairs of cluster memberships amounts to integrating over uncertainty in haplotypic phase.

Now suppose that instead of a homogeneous sample of diploid individuals, we sample individuals from S

predefined “populations.” We can calculate p
(s)
mk, the relative frequency of cluster k in population s (1, . . . , S),

by averaging pmk(i) over members of this population as follows:

p
(s)
mk =

1
ns

∑
i∈Is

pmk(i).

In this equation, Is is the subset of individuals who belong to population s, and ns is the number of elements
in Is (that is, the sample size for population s). Calculation of P

(
zi|g, ν

)
can be accomplished efficiently

with a dynamic programming algorithm, and the parameters ν are estimated via an EM algorithm26.
Once we have obtained the common haplotype frequencies {p(s)

mk} at a particular marker m, we can use
them to summarize the haplotype variation at that marker, within and among populations. Although we are
assessing haplotype variation, and we are therefore inherently modeling genetic variation at multiple SNPs
simultaneously, the information may be conveniently summarized pointwise at each marker, thus avoiding
the problem of choosing window sizes.

Sampling latent cluster memberships. Because the EM algorithm generally obtains local modes of the
likelihood P (g|ν), we run the EM algorithm T times, obtaining sets of parameter estimates (ν̂(1), . . . , ν̂(T )).
From each of these parameter sets, we can sample an instantiation from the conditional distribution of the
chromosome-wide list of cluster memberships z, given the estimated parameters and the observed genotype
data. An algorithm for sampling from P

(
z|g, ν

)
is given by Scheet & Stephens26.

For use in analyses of population structure, we generated a single sample of haplotype cluster memberships
from each of T = 10 model fittings (that is, ten independent runs of the EM algorithm). That is, we generated
ten datasets so that at each SNP position across the genome, each individual was given a pair of haplotype
cluster memberships, with each cluster membership equaling an integer ranging from 1 to 20. These datasets
were then analyzed in the same manner as one would analyze unphased multiallelic datasets. As noted above,
the ten model fittings were obtained by treating the sample of individuals as homogeneous, rather than by
using S = 7 populations characterized by the geographic regions in Table S5.

4.4 Haplotype cluster plots

Figures 3 and S6 each contain visualizations of the haplotype cluster frequencies {p(s)
mk} in the 527 unrelated

HGDP-CEPH and HapMap individuals, across different populations and geographic regions, for particular
regions of the genome. Each plot is based on one of the 20 parameter estimate sets used to obtain the
“best guess” haplotypes used in Sections 4.1 and 4.2. Within each box (corresponding to a population),
cluster frequencies in the population are arranged vertically at consecutive SNPs. Each SNP is indicated by a
horizontal position, and the 20 colors indicate the frequencies for 20 haplotype clusters. No attempt is made
to model the degree of similarity among the different haplotypes represented by different clusters; thus, no
meaning is intended by the similarity or dissimilarity of the colors referring to different haplotype clusters.

Although it is difficult to visually ascertain exact haplotype cluster frequencies at individual SNPs, the
gradual change in frequencies due to the gradual decay of LD allows the information at adjacent SNPs to
blend together smoothly. One natural summary of each haplotype cluster visualization, which is largely
continuous across each picture, is haplotype cluster homozygosity. We computed this homozygosity using the
haplotype cluster frequencies (treated as parametric frequencies), averaging across the ten haplotype cluster
datasets to obtain an overall estimate. For comparison, we also computed a standardized haplotype cluster
homozygosity for each population, subtracting the genome-wide mean haplotype cluster homozygosity and
then dividing by the standard deviation of haplotype cluster homozygosity across the genome (Figure S7).
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4.5 Geographic distribution

We used rarefaction13 on the ten imputations of the haplotype clusters, averaging results across imputations
to obtain the final estimates. This analysis was performed with the 443 unrelated HGDP-CEPH individuals
in the same manner as for the SNP data. As the haplotype datasets contain no missing data, analysis
of geographic distributions was performed at each autosomal locus, and results were averaged across loci.
Rarefaction corrects for sample size only after production of haplotype datasets; sample size may have a small
influence during dataset production, as larger samples contribute more information during model fitting.

4.6 Structure

Analysis of imputed haplotype clusters using Structure and CLUMPP with 443 unrelated HGDP-CEPH in-
dividuals proceeded in a similar manner to the analysis with unphased SNPs (using the G′ > 0.9 criterion).
Each of the ten imputations of cluster memberships (one from each of the ten model fittings described above)
was used in the Structure analysis. For each of the ten datasets, two subsets of the SNP data were obtained,
each containing ∼1% of the autosomal SNPs. SNPs were ordered on each chromosome using the build 36.2
human genome sequence, and separately on each chromosome, SNPs in numbered positions 1 mod 100 were
placed in one subset, and SNPs in positions 51 mod 100 were placed in a second subset. A total of 40
Structure runs were performed for each value of the model parameter specifying the number of clusters in
the Structure analysis — two replicates for each combination of one of the ten imputations and one of the
two 1% subsets of SNPs. CLUMPP analysis was performed on these 40 replicates, in the same manner as for
the SNP dataset. Details of the results are described in Section 7.2.

4.7 Population tree

A neighbor-joining tree of populations was obtained based on the haplotype cluster membership data in the
same manner as with the SNP data, using the 443 unrelated HGDP-CEPH individuals. This analysis was
restricted to every 10th SNP marker across the autosomes (on each chromosome, the SNPs chosen were
those in 1 mod 10 positions when enumerated according to the build 36.2 genome sequence, starting from 1).
Confidence values were obtained by combining 1000 bootstrap-resampled distance matrices — 100 resamples
for each of the same ten imputations used in the Structure analysis.

4.8 Multidimensional scaling

To generate a distance matrix for use in multidimensional scaling, we computed a “haplotype distance”
between all pairs of individuals. We define dh

m(i, j) as the haplotype distance between the haplotype cluster
probability vectors for individuals i and j at marker m, calculated in the following manner:

dh
m(i, j) =

√∑K

k=1
(pmk(i)− pmk(j))2.

Finally, we obtained a haplotype genetic distance between individuals by averaging over multiple SNP markers
and multiple model fittings.

Implicitly, pmk(i) is associated with a single model fit, or a single set of parameters ν. For producing the
plots in Figure 1d, we calculated an average haplotype distance between all pairs of individuals by averaging
dh

m(i, j) from every 10th SNP marker across the autosomes (on each chromosome, the SNPs chosen were
those in 1 mod 10 positions when enumerated according to the build 36.2 genome sequence, starting from
1) over ten sets of model parameters (estimated from the same ten independent model fittings used in the
Structure and population tree analyses). The final average haplotype distance was produced from

dh(i, j) =
1

10|M|

10∑
t=1

∑
m∈M

dh
m(i, j)t,

where M is the set containing every 10th autosomal SNP marker, |M| is the number of elements in this set,
and dh

m(i, j)t represents the haplotype distance calculated from EM run t (1, . . . , 10).
Multidimensional scaling was then applied to the distance matrix in the same manner as for the SNP

data. Goodness-of-fit statistics24 for the haplotype plot in Figure 1d were α1,2 = 19.5% and α2,2 = 80.2%.
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5 Preparation of CNV data

5.1 Detecting CNVs using PennCNV

We applied the PennCNV algorithm as an experimentally validated CNV detection approach28. PennCNV was
developed for the CNV analysis of genotyping intensity data on high-density SNP arrays (such as Illumina
HumanHap). PennCNV integrates multiple information sources, including the normalized total signal intensity
for each marker (the “Log R Ratio”), the allelic signal intensity ratio (the “B Allele Frequency”), the SNP
allele frequency, the physical distance between neighboring markers, and pedigree information when available.

We used the previously validated default quality control criteria, excluding samples with a log R ratio
standard deviation of >0.28, a median B allele frequency of >0.55 or <0.45, or a B allele frequency drift of
>0.002 (for more details see Wang et al.28). As the PennCNV algorithm is more sensitive and specific to CNVs
covering greater numbers of SNPs in the HumanHap550 array28, use of a minimum number of SNPs in CNV
detection increases the reliability of CNV calls (with a consequent reduction in calls per individual). We set
10 SNPs as the minimum detection threshold in the algorithm (≥10). Using high-quality HapMap samples,
we have previously shown that a 10-SNP threshold (>10) results in ∼9% offspring CNV calls (excluding
immunoglobulin regions) not detected in parents; this value provides a combined false positive and false
negative rate measure for CNV calling accuracy28. As we describe below (Section 5.3), we further estimate
from concordance of replicates that the false positive rate for CNV detection is no more than 0.7%.

5.2 Data cleaning

Considering the the 485 HGDP-CEPH individuals used in the SNP analysis, 42 did not meet the quality
thresholds of PennCNV, leaving 443 individuals for CNV analysis. Previous work suggests that CNVs longer
than 1Mb are likely to be artifacts of the lymphoblastoid cell line creation process or subsequent transition
to clonality4. Thus, to be conservative, we removed all CNVs longer than 1Mb in size from further analysis
(26 autosomal CNV observations, 1 X-chromosomal CNV observation).

Of the remaining variants we removed 400 CNV observations that occurred in regions where V(D)J-type
recombination is known to occur (chr2p11 — 64 observations, chr14q11.2 — 7 observations, chr14q32.33 —
129 observations, chr22q11.22 — 200 observations). In total 427 CNV observations were removed. Analysis
of the remaining variants revealed 3552 CNVs at 1428 non-overlapping copy-number-variable loci. This
collection contained 3503 autosomal CNVs (1394 non-overlapping loci) and 49 X-chromosomal CNVs (34
non-overlapping loci).

Of the 443 individuals in whom CNVs were analyzed, 405 are contained in the subset of the unrelated
individuals used in the SNP analysis. We therefore constructed a CNV dataset consisting of 405 unrelated
individuals. Upon removing relatives, 92 autosomal and 3 X-chromosomal CNV loci are no longer polymor-
phic, leaving 1302 autosomal and 31 polymorphic X-chromosomal CNV loci for the subset of 405 individuals,
and 3024 autosomal and 45 X-chromosomal CNVs. Excluding loci with only one observation of a CNV, the
number of autosomal CNV loci is 396. Thus, the dataset used for CNV population-genetic analysis — which,
like the corresponding SNP and haplotype datasets does not include the X chromosome — consists of 405
individuals and 396 CNV loci (2118 CNVs; 1470 deletions at 262 loci and 648 duplications at 134 loci). For
use of this dataset in the population-genetic analysis, at each autosomal CNV locus (that is, at each genomic
region in which some individuals had a copy-number variant), genotypes were coded as homozygous 00 if
no CNV was observed, 01 if a heterozygous deletion or duplication was observed, and 11 if a homozygous
deletion or duplication was observed. Each genomic region in which both deletions and duplications were
observed was treated as two separate CNV loci.

5.3 False positives and false negatives

This section describes the basis for our estimate that the false positive rate for CNV detection is less than
0.7%. To investigate the fractions of false positive and false negative CNV calls for the 396 CNV loci in
the dataset used in the population-genetic analysis, we employed the strategy of relying on concordance
of replicates. This approach arises in various problems relating to categorical data analysis and medical
diagnostic testing29,30,31,32. Similarly to our setting, each of these contexts also contains situations in which
the false positive and false negative rates of tests are of interest, but in which the “truth” of individual
observations is viewed as unknown. In medical diagnostics, a typical situation involves repeated diagnostic
tests on the same individual when the true disease status of the individual is unknown; in psychological
statistics, multiple observers may assess the same subject for a condition when the truth about whether the
individual has the condition is unknown. In our case, two cell lines originating from the same individual are
assessed for CNVs when the true copy-number status is unknown.
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Variants of the replication-based strategy for estimating error rates have recently been devised in the
context of detection of CNVs33,34,35. The approach we use places bounds on the false positive and false
negative rates, taking into account the level of concordance of replicate observations together with the fractions
of assignments made in each of the possible observational classes. Following the notation of Pepe32, let Y be
the CNV status of a CNV call at a particular copy-number-variable locus. Thus, Y = 1 if an allele is called
as a duplication or deletion, whichever is relevant at the locus, and Y = 0 if the allele is called as not being
a duplication or deletion (for the remainder of the section we use the term “CNV” to refer to whichever type
of copy-number variant is relevant at a locus). Let D be the true CNV status — D = 1 if the true allele is
a CNV and D = 0 otherwise. Denote the (unknown) false positive rate — the fraction of non-CNV alleles
called as CNVs — by α = P[Y = 1|D = 0]. Denote the (unknown) false negative rate — the fraction of CNV
alleles not called as CNVs — by β = P[Y = 0|D = 1]. We have the following table:

D = 0 D = 1
Y = 0 1− α β
Y = 1 α 1− β

Let ρ = P[D = 1] denote the (unknown) probability that a CNV is truly present for a given allele. Denote
the probability that an allele is called as a CNV, P[Y = 1], by τ . Then

P[Y = 1] = P[Y = 1|D = 0]P[D = 0] + P[Y = 1|D = 1]P[D = 1]
τ = α(1− ρ) + (1− β)ρ. (1)

A second equation can be obtained using the concordance of replicates. Let Y1 and Y2 denote two separate
calls of the same allele — that is, calls in two replicate cell lines from the same individual. Denote

χ =
P[Y1 = 1 ∩ Y2 = 1]
P[Y1 = 1 ∪ Y2 = 1]

.

As genotyping of the two replicates proceeds independently, we assume conditional independence of the two
genotype calls given the true CNV status of the allele. Thus, the numerator of χ is

P[Y1 = 1 ∩ Y2 = 1] = P[Y1 = 1 ∩ Y2 = 1|D = 0]P[D = 0] + P[Y1 = 1 ∩ Y2 = 1|D = 1]P[D = 1]
= α2(1− ρ) + (1− β)2ρ.

Y1 and Y2 are identically distributed. Therefore, the denominator of χ is

P[Y1 = 1 ∪ Y2 = 1] = P[Y1 = 1 ∩ Y2 = 1] + 2P[Y1 = 1 ∩ Y2 = 0]
= α2(1− ρ) + (1− β)2ρ + 2P[Y1 = 1 ∩ Y2 = 0|D = 0]P[D = 0]

+2P[Y1 = 1 ∩ Y2 = 0|D = 1]P[D = 1]
= α2(1− ρ) + (1− β)2ρ + 2[α(1− α)(1− ρ) + β(1− β)ρ].

Simplifying the equation for the denominator, we obtain

χ =
α2(1− ρ) + (1− β)2ρ

(2α− α2)(1− ρ) + (1− β2)ρ
. (2)

We can solve equations 1 and 2 for α and β in terms of ρ, τ , and χ to obtain

α =
τ − ρτ + τχ− ρτχ−

√
ρτ(1− ρ)(1 + χ)(2χ− τ − τχ)

(1− ρ)(1 + χ)
(3)

β =
ρ− ρτ + ρχ− ρτχ−

√
ρτ(1− ρ)(1 + χ)(2χ− τ − τχ)

ρ(1 + χ)
. (4)

Note that in obtaining these values we take the negative root of a quadratic equation for α. The positive
root leads to the nonsensical result that the false positive rate increases with ρ and the false negative rate
decreases with ρ.

Equations 3 and 4 provide a basis for estimating the false positive and false negative rates as functions
of the unknown parameter ρ, as the quantities τ and χ can be estimated and the estimates τ̂ and χ̂ inserted
into eqs. 3 and 4. The false positive and false negative rates are estimated with respect to the particular
collection of 396 CNV loci in the study; thus, we are estimating the false positive and false negative rates for
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CNV calls at the particular collection of 405 individuals and 396 CNV loci. This is sensible, as our interest
is in the extent to which erroneous calls might affect population-genetic analysis of this dataset.

An estimate for τ is obtained as the fraction of possible genotypes at the 396 CNV loci called as CNVs:

τ̂ =
2118

2× 396× 405
=

353
53460

≈ 0.0066.

To estimate χ, concordance of CNV calls was evaluated for five pairs of duplicate samples for which CNV
data were obtained on both members of the pair. In each case, one member of the pair was included in the
collection of 405 individuals used in other CNV analyses, while the other was excluded from all other CNV
analyses. Concordance was evaluated with the same 396 CNV loci used in population-genetic analysis, as it
is for this collection of loci that error rates are of interest. Averaging across pairs, the fraction of CNVs called
in at least one member of a pair that were called in both members of the pair equaled χ̂ ≈ 0.89 (Table S11).

Inserting our estimates τ̂ and χ̂ into eqs. 3 and 4, we can plot estimates α̂ and β̂ as functions of the
unknown parameter ρ. Considering many loci, the value of ρ represents the true mean frequency of CNVs
across the loci under consideration. Although ρ is unknown, previous studies suggest that CNVs tend to
have quite low frequencies36,37. We consider values of ρ extending from 0 to ∼7.5τ̂ — that is, from a value
at which no CNVs exist to a value at which only a very small fraction of true CNVs are detected at the loci,
and the true frequency is 7.5 times the estimated value. Within this range, we find that the false positive
rate is easily bounded above by 0.7% (Figure S10A), while relatively little information is available about the
false negative rate due to the uncertainty in ρ (Figure S10B). Note further that under the assumption for any
useful test that the true positive rate 1− β is larger than the false positive rate α, a rearrangement of eq. 1
has the consequence that α < τ . Thus, the fraction of data points with D = 0 that are erroneously called as
CNVs is bounded above by the overall proportion of data points called as CNVs, or 0.66%. Over most of the
range of ρ values considered, the best estimate of the false positive rate is actually equal to 0.

A more conservative estimate of χ that separately averages the numerators (CNVs called in both members
of duplicate pairs) and denominators (CNVs called in at least one member of a duplicate pair) rather than
averaging the ratios gives greater weight to a single pair of individuals with a large number of CNVs, and
produces χ̂ ≈ 0.76. However, using this estimate in eqs. 3 and 4 leads to results nearly identical to those
obtained with the less conservative estimate of χ̂ ≈ 0.89 (Figure S11).

Thus, we have shown that the intuitive result that a concordance of CNV calls among duplicate samples
vastly exceeding the proportion of CNV calls in any single individual implies a low false positive rate, no
more than ∼0.66%. Because of the greater magnitude of the false negative rate compared to the false positive
rate, we can be reasonably certain that for the particular CNV loci in our study, the vast majority of errors
are false negatives. This result accords well both with the low false positive rates and higher false negative
rates estimated via concordance of replicates both by Wong et al.35 and by subsequent articles based on their
data33,34. It also matches closely with the validation performed by Wang et al.28 using the same PennCNV
algorithm employed for identifying CNVs in our study.

5.4 Summary of detected CNVs

We identified 2398 deletion CNVs in 426 individuals (2386 autosomal, 12 X-chromosomal), 2236 single-copy
deletions and 81 homozygous deletions; 1928 of these deletions (80.4%) occurred at previously reported CNV
loci. The deletions ranged from 2kb to 934kb in size (mean 82.7kb, median 58.5kb). The 2398 deletions
occurred in 863 non-overlapping CNV loci. The most common deletion was at a locus on chromosome 6,
occurring in 112 individuals, 22 of whom were homozygous; on average each deletion was observed 2.68 times
(median 1). Of the 2398 deletions, 1491 (62.2%) were within or across genes.

We identified 1154 duplication CNVs in 402 individuals (1117 autosomal, 37 X-chromosomal) 1084 single-
copy duplications and 35 double-copy duplications; 889 of these duplications (77.0%) occurred at previously
reported CNV loci. The duplications ranged from 5.6kb to 998kb in size (mean 130.4kb, median 81.1kb). The
1154 duplications occurred in 565 non-overlapping CNV loci. The most common duplication was at a locus
on chromosome 10, occurring in 36 individuals, 3 of whom were homozygous; on average each duplication
was observed 1.98 times (median 1). Of the 1154 duplications, 791 (68.5%) were within or across genes.

Considering all 1428 CNV loci, the total number of loci that had not been previously reported was 507
(495 autosomal, 12 X-chromosomal). Of the 1428 loci, 49 had at least one individual homozygous for the
CNV (47 autosomal, 2 X-chromosomal). In the final autosomal dataset used for population-genetic analysis,
which did not contain relatives, 44 CNV loci had this property. Considering all 3552 CNVs, five individuals
did not have any CNVs detected (Balochi 74, Balochi 78, Kalash 321, Yi 1183, Mongola 1230). A simple
Poisson calculation suggests that it is not entirely unexpected to observe five individuals without CNVs.
Most populations have on average 3-7 CNVs per individual, and the Poisson zero class for a distribution with
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mean 5 suggests that perhaps 2-3 individuals are expected to have no CNVs in a dataset of 400 individuals.
It is noteworthy, however, that one of the individuals with no CNVs was from the Kalash population, whose
individuals in general had high numbers of CNVs.

Summaries are shown in Table S12 and Figures S12 and S13 of the number of CNVs identified in individual
populations, the frequency spectrum of CNVs in the full collection of 405 HGDP-CEPH individuals, and the
frequency spectrum of CNVs by geographic region. Figure S22 provides the distribution of CNVs by length.

5.5 Duplications on the X chromosome in males

In males, the non-pseudoautosomal part of the X chromosome is hemizygous and its SNPs are expected to
be genotyped by the HumanHap technology as homozygous. While occasional heterozygous genotypes occur
due to genotyping error, long stretches of male X chromosomes genotyped as having many heterozygous
SNP genotypes may result from the presence of duplications. Thus, as a second approach for identifying one
particular type of CNV, we used male X-chromosomal SNPs to search for duplications. This analysis used
data from an intermediate stage in the preparation of the final SNP genotypes, consisting of 493 HGDP-CEPH
individuals and 13,203 X-chromosomal SNPs prior to conversion of male heterozygotes to missing data.

We scanned the male X-chromosomal SNP genotypes, counting heterozygous SNPs in 10-SNP sliding
windows. We then examined the spatial distribution of heterozygous SNPs, searching for windows with at
least four heterozygous SNPs. This approach identified eight individuals each with a region of the genome in
which multiple neighboring windows had four or more heterozygous SNPs (Figures S8 and S9).

We compared our list of duplication variants identified from X-chromosomal heterozygosity to the CNV
calls based on intensity data. This comparison used the initial set of 443 individuals employed in CNV analysis.
Of the 8 duplications detected by X-chromosomal heterozygosity, 7 were also detected from intensities. The
eighth duplication occurred in an individual not included in the PennCNV analysis, Papuan 545, indicating that
all duplications detectable by X-chromosomal heterozygosity were identified by PennCNV. The total number
of X-chromosomal duplications detected by PennCNV from genotype intensity in males was 12 (of which 7
were also detected by X-chromosomal heterozygosity). Note that not all duplications observed from intensity
data are detectable using the X-chromosomal heterozygosity method, as duplications too short to produce
sufficient stretches of heterozygosity and duplications with genotypically identical copies would not be found.

6 Population-genetic analysis of CNV data

6.1 Geographic distribution

We applied the rarefaction approach13 to the CNV dataset in the same manner as for the SNP and haplotype
datasets. This analysis used the 405 unrelated individuals and the 396 non-singleton autosomal CNV loci.
Similarly to the analysis of the haplotype dataset, because the CNV dataset contains no missing data, analysis
of geographic distributions was performed by averaging across all 396 CNV loci.

6.2 Structure

Structure and CLUMPP analysis of the CNV data proceeded in a similar manner to the analysis of SNPs and
haplotypes. This analysis used the 405 unrelated individuals and the 396 non-singleton CNV loci. For each
value of K, 40 replicate Structure analyses were performed, and analysis with CLUMPP proceeded using the
output of these 40 replicates. Because modes with the CNV data were in many cases not clearly defined,
CLUMPP analysis with the CNV data utilized a lower cutoff of G′ > 0.8 for identification of modes compared
to the higher cutoff of 0.9 used for SNPs and haplotypes. Otherwise, CLUMPP analysis proceeded similarly to
the SNP and haplotype Structure analyses. Further details are provided in Section 7.2.

6.3 Population tree

A neighbor-joining tree of populations was obtained in the same manner as with the SNP data, using the 405
unrelated individuals in the CNV dataset and the 396 autosomal non-singleton CNV loci.

6.4 Multidimensional scaling

The mean allele-sharing distance across loci38,39, as computed using microsat21, was used as the basis
for multidimensional scaling with the CNV data. This analysis used the 405 unrelated individuals in the
CNV dataset and the 396 autosomal non-singleton CNV loci to generate a genetic distance matrix between
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populations. Multidimensional scaling proceeded in the same manner as with the SNP and haplotype datasets,
except that the rotation applied was of magnitude 315◦ and was followed by a reflection across the vertical
axis. The values of the goodness-of-fit statistics for the plot shown in Figure 1d were α1,2 = 33.0% and
α2,2 = 60.6%. This plot has three outlier populations removed. The plot that retains the outliers is shown
in Figure S14; this plot was rotated and reflected in the same manner as the plot without the outliers, and
it has α1,2 = 49.4% and α2,2 = 86.5%.

7 Additional analysis of multiple data types

7.1 Linkage disequilibrium

To compare the pattern of LD across populations observed using HR2 applied to the unphased SNP data
with the pattern obtained from r2 and the phased haplotype data, we ranked populations by LD in each of
the overlapping 1kb bins in which LD was plotted. We then computed the Spearman correlation of the two
lists of ranks, one for HR2 and one for r2 (Figure 2d). The two statistics show qualitatively the same pattern
of decay of LD (Figures 2b and S4). When mean values of r2 and HR2 at equivalent physical distance are
plotted, an approximately linear relationship is seen for mean r2 as a function of mean HR2 (Figure S23).

Regression coefficients for regression of LD on geographic distance from Africa were compared for regres-
sions that used HR2 applied to the unphased data and those that used r2 applied to the phased data. Values
of the coefficient of determination (R2) are shown in Table S13 for various choices of physical distance. Due to
the greater spread in values of r2 (Figure S4) compared to HR2 (Figure 2b), the regression coefficients with
r2 are greater than with HR2. For both statistics, although the declining LD with physical distance alters
the regression coefficients when physical distance changes, the similar values of R2 indicate that geographic
distance explains similar proportions of variation in LD at various choices of physical distance.

7.2 Structure

The Structure manual and past applications of Structure7,8 suggest that for large and complex datasets,
a sensible use of the method is to examine the behavior of Structure at several small values of K, and to
then identify additional substructure by applying Structure to subsets of individuals. This approach arises
from the fact that for datasets containing a large number of populations, Structure does not always dissect
population structure at finer-scale levels when the full data are used, and such substructure may appear
only in analyses of subsets of the data. The hierarchical approach to clustering with Structure has been
investigated previously7,40, and we adopted it for use in the current study. Because additional substructure
exists that is not detected when using Structure with the full dataset, no single value of K provides a full
description of the population structure. Therefore, for display in Figure 1c, we chose an approach in which
we showed the results on worldwide SNP, haplotype, and CNV datasets for the five smallest nontrivial values
of K. Within geographic regions, for which considerably less population structure exists and for which a
perspective of “inferring” K is more sensible, we then chose a single value of K for display in Figure 1c. This
value was chosen as the value whose most frequent mode had highest mean log likelihood, as described below.

Here we provide a more complete description of the Structure results, both those shown in Figure 1c as
well as those for values of K not included in Figure 1c. For the worldwide data, Figure S24 displays the most
frequently occurring modes for each K from 2 to 10. For each geographic region, Figure S2 displays each
value of K from 2 to a value chosen as the smallest value in {5, 8} that exceeded the number of predefined
populations in the geographic region. The plots in Figure 1c have been extracted from Figures S24 and S2.

For a given dataset and value of K, a clustering mode was chosen for display in Figure S24 or S2 using
the following approach. If a single mode appeared most often, then the CLUMPP average across replicates
producing that mode was displayed. If two or more modes were tied, then the CLUMPP average for the mode
with highest CLUMPP H ′ score was displayed. In the single instance for which no modes appeared in more
than one replicate (Europe, K = 5), the highest-likelihood replicate (among 40 total) was displayed.

The numbers of replicates producing the modes in Figure S24 are given in Table S14. For K = 2 and
K = 3, all three datasets had a single mode common to all 40 replicates. Modes appearing in at least 25% of
replicates appeared for SNPs with K ≤ 6, for CNVs with K ≤ 4, and for all K values for haplotypes. Thus,
it appears that one difference between the SNP-based and haplotype-based Structure analysis is a greater
degree of replicability when using haplotypes.

Within geographic regions, the frequencies of the modes in Figure S2 are given in Table S15. Similarly
to the results seen for the worldwide dataset, the most frequent mode appeared with high frequency for low
values of K, and with decreasing frequency for higher values. For each region, the most frequent mode for
the value of K selected for display in Figure 1c appeared in at least 25% of replicates.
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We noted above that a single value of K may not provide a fully informative summary of the Structure
results with a large and complex worldwide dataset. Figure S25 plots the log likelihoods for the various runs
as functions of the number of clusters K. Figure S26 plots the subset of points corresponding to the most
frequent mode. These figures illustrate a considerable degree of variation in log likelihood, both for individual
K values as well as across values of K. Considering only the most frequent mode, the mean log likelihood is
shown in Table S16. If highest mean log likelihood for the most frequent mode had been used as a criterion
for selecting a single value of K, then K = 6 would have been selected for SNPs and K = 5 would have been
selected for haplotypes. For CNVs, the likelihood plot does not have a clear peak, a situation described by
the Structure manual as a case in which it is sensible to focus on smaller values of K that capture “most”
of the structure in the data.

Similar likelihood plots for individual geographic regions appear in Figures S27 and S28, and the mean
log likelihoods for the most frequent mode are summarized in Table S17 for each geographic region. Table
S17 provides the basis for selecting the value of K for display in Figure 1c.

The collection of plots in Figure S24 illustrates that to a large extent, the SNP results match previous
inferences based on microsatellites7, except that the separations of Oceania, the Americas, and the Kalash
population occurred in a different sequence, and the yellow cluster was spread more broadly across Cen-
tral/South Asia rather than corresponding exclusively to the Kalash population. The main differences in
the haplotype analysis were a separation of African hunter-gatherers from other Africans, which occurred
at multiple values of K, rather than a separation of the Native Americans, which did not occur until quite
a high value of K. For some small values of K, the CNV plots are similar to the corresponding SNP and
haplotype plots with one fewer cluster; to some extent, with high values of K, the CNV plots identify the
clusters corresponding to African hunter-gatherers, Native Americans, and populations from Oceania.

In some geographic regions, additional substructure is found beyond that reported at the high-likelihood
value of K shown in Figure 1c. In Africa with K = 6, nearly all populations are somewhat separable, including
the Mandenka and Yoruba populations, who had clustered together in previous analysis7. In Europe with
K = 3, the three populations form distinct clusters; similarly, the four populations in Central/South Asia
form distinct clusters when K = 4.

7.3 Population tree

The CNV population tree contained a surprising grouping of the Kalash, Melanesian, and Papuan populations
(Figure 1b). These populations were also among the groups with the greatest numbers of CNVs (Figure 4b).

To understand how the large numbers of CNVs give rise to a Kalash-Melanesian-Papuan grouping, we can
consider the effect of the number of CNVs on the allele-sharing distance and the neighbor-joining algorithm.
The first observation we can make is that populations with large numbers of CNVs tend to have high allele-
sharing genetic distances with all other populations (Table S1). Recall that genotypes are coded as 00 if
no CNV was observed, 01 if a heterozygous deletion or duplication was observed, and 11 if a homozygous
deletion or duplication was observed. For two populations with few CNVs, nearly all genotypic comparisons
of one individual from one population and one individual from the other population involve two individuals
with genotype 00. Such comparisons of 00 genotypes produce zero genetic distance, and consequently, allele-
sharing genetic distances between pairs of populations with relatively few CNVs are quite small. However, if
at least one of the two populations has a large number of CNVs, then the number of comparisons involving a
01 genotype from that population and a 00 genotype from the other population will be higher, producing a
higher overall pairwise genetic distance. Thus, the greater numbers of CNVs in the Kalash, Melanesian, and
Papuan populations can explain why genetic distances involving these populations are relatively high.

We can now consider the effect of these high genetic distances on tree construction by using a simple
example that mimics the distance matrix in Table S1. Consider two types of populations, “A” populations
and “B” populations. Suppose there are nA populations of type A and nB populations of type B, with
nA > nB ≥ 2. Suppose further that the genetic distance between two A populations is dA, and the genetic
distance between a B population and any other population is dB , with dB > dA. This scenario approximates
the matrix in Table S1, with Kalash, Melanesian, and Papuan being of type B, and all other populations
being of type A. The fact that nearly all genetic distances to the Kalash, Melanesian, or Papuan populations
are greater than nearly all distances among other populations suggests that it is reasonable to approximate
that distances to the Kalash, Melanesian, and Papuan populations equal dB , while other distances equal dA.

What occurs during the first agglomerative step in tree construction using the neighbor-joining algorithm?
Three possibilities exist: either two A populations can group together, two B populations can group together,
or an A and a B populations can group together. Following the notation of Felsenstein41 (p. 167), for an A
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population, the normalized sum of the entries of its row of the symmetrized genetic distance matrix is

uA =
(nA − 1)dA + nBdB

nA + nB − 2
.

Similarly, the corresponding quantity for a B population is

uB =
(nA + nB − 1)dB

nA + nB − 2
.

The pair of populations that are grouped together in the first agglomerative step of the neighbor-joining
algorithm is the pair (i, j) that minimizes Cij = Dij − ui − uj , where Dij represents the distance between
the populations. For a pair of A populations, we have DAA = dA; for a pair of B populations, DBB = dB ;
for an A population and a B population, DAB = dB . We therefore have

CAA =
(−nA + nB)dA − 2nBdB

nA + nB − 2

CBB =
(−nA − nB)dB

nA + nB − 2

CAB =
(−nA + 1)dA − (nB + 1)dB

nA + nB − 2
.

Using the inequalities nA > nB ≥ 2 and dB > dA, it can be shown that CBB < CAA < CAB . In particular,
because CBB is the smallest of the three values, the first two populations to be joined by neighbor-joining
will be two of the most divergent, distinctive populations from the B class. This grouping is a form of
“long-branch attraction” common to tree inference algorithms, in which taxa that are truly distant from each
other and from other taxa unexpectedly group together41; similar computations to the example above have
previously identified long-branch attraction with neighbor-joining42.

Table S2 describes the sequences of agglomeration of populations into the neighbor-joining trees for the
1000 bootstrap replicates that underlie the CNV tree in Figure 1b. We can observe that these sequences reflect
the predictions based on the example matrix. For most replicates, Kalash and Papuan — two groups from the
B class in the example — are the first two taxa to agglomerate; the next agglomeration usually combines the
Kalash-Papuan grouping with the Melanesian population (the last B population). Subsequently, as predicted
by the fact that CAA < CAB , pairs from the A class begin agglomerating before A and B populations group
together — first Pima and Maya in most replicates, often followed by Yoruba and Mandenka.

In conclusion, this analysis of genetic distance and the neighbor-joining algorithm shows that the clustering
of the Kalash, Melanesian, and Papuan populations is a consequence primarily of the high numbers of CNVs
detected in these populations, and should not be taken as evidence of a meaningful biological grouping.
Indeed the genetic distances of Kalash to Melanesian and Papuan lie in the range of the distances to other
populations (Table S1), and they do not suggest a noteworthy similarity of the Kalash population and the
populations from Oceania. Thus, the unusual features of the CNV neighbor-joining tree support the strategy
of relying on multiple statistical approaches in the investigation of population structure.

7.4 Multidimensional scaling

To investigate the results of multidimensional scaling within geographic regions, we analyzed submatrices of
the pairwise distance matrix, restricting attention to pairs of individuals from the same region (again rotating
coordinates by 225◦). These analyses were performed both for SNPs and for haplotypes (Figure S3).

As was true in the full worldwide analysis (Figure 1d), analyses based on SNP and haplotype datasets
produced highly concordant results. Both for SNPs and for haplotypes, for almost all populations, individuals
separated in the MDS plot from individuals belonging to other populations, often to a greater extent than
was observed for Structure in Figure S2. In the Middle East, the Bedouin, Druze, and Mozabite populations
were largely separable, but they overlapped to some extent with Palestinians. In East Asia, Mongola and
Daur were placed in partially overlapping regions of the plot. In general, however, because individual clusters
in the within-region MDS plots correspond largely to the individuals of distinct populations, the plots indicate
an ability to separate individuals even from closely related groups from the same geographic region.

7.5 Genetic and geographic distance

We analyzed the relationship of genetic and geographic distance for autosomal haplotypes and CNVs using
the same approach as was used for SNPs. Results for haplotypes were averaged across the ten haplotype
cluster datasets. The non-singleton autosomal CNV data were used (396 CNV loci, 405 individuals).
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Considering pairs of populations in which at least one of the populations was from Africa, a relatively
linear relationship of genetic and geographic distance was observed (Figure S29). A clear pattern of linear
increase of genetic with geographic distance was visible for SNP and haplotype datasets, and to a lesser
extent for CNVs. Although the qualitative patterns are somewhat similar, the difference in scale for the
three datasets is likely due to the combination of differences in allele frequency spectra for the three datasets
together with a dependence of FST values on the properties of allele frequency distributions12,43,44,45.

8 Comparative analysis of equal-sized SNP and CNV datasets

8.1 Reduced SNP datasets

A potential explanation for different population-genetic results obtained with the SNP and CNV datasets is
the differing size and information content of these datasets. To investigate whether results based on CNVs
were analogous to what would be obtained from SNP datasets of similar size and information content, we
constructed five subsets of the SNP dataset with the same size as the CNV dataset. For each SNP subset, we
considered the same 405 unrelated individuals that were included in the population-genetic analysis of CNVs,
and we selected 396 autosomal SNPs without replacement from the version of the full SNP dataset with all
missing genotypes imputed (the “best guess” estimate of Section 3.1). Autosomal SNPs were chosen so that
in the collection of 405 individuals, each SNP subset had the same frequency spectrum (Figure S30). This
frequency spectrum was matched as closely as possible to the frequency spectrum for non-singleton CNV loci
(Figure S12). Because fewer SNPs compared to CNV loci were studied in the 2/810 minor allele frequency
class, it was not possible to match frequency spectra exactly. All five SNP subsets contained the same 120
SNPs in the 2/810 class, supplemented by a number of additional SNPs from the 3/810 class so that the sum
of the numbers of loci in the 2/810 and 3/810 classes was the same for SNPs and CNVs.

8.2 Structure

We compared the population structure estimated using the SNP subsets to the corresponding population
structure estimates based on the CNV dataset. Population structure analysis for the SNP subsets proceeded
in a similar manner as for the CNV dataset. For each of the five SNP subsets, eight replicate runs of
Structure were performed using each choice of K from 2 to 8. The 40 runs with a given value of K were
then considered jointly when using CLUMPP18 to find the most replicable mode (G′ > 0.8 threshold). For each
K, this mode was chosen for display in Figure S15. The plots in Figure S15 show a considerably greater
degree of similarity to the plots of CNV population structure in Figure S24 than to the plots with the full
SNP dataset in Figure S24, suggesting that the differing size of the full SNP and CNV datasets is largely
responsible for the difference in SNP and CNV results in Figures S24 and 1c.

8.3 Population tree

We compared the CNV tree to corresponding trees based on the five subsets of the SNP dataset with the
same size as the CNV dataset. All five trees produced groupings that largely matched geographic regions,
and our comparison focused on groupings obtained within the regions (Tables S3 and S4). The CNV tree
produced groupings that overlapped with those obtained using the SNP datasets, but some disagreement was
apparent across the six trees. As the SNP analysis with the full collection of markers produced a tree with
very high bootstrap support (1000 of 1000 bootstraps on all except one branch), the uncertainty apparent
when using only 396 markers suggests that the difference of the CNV tree from the SNP tree based on the
full dataset may be attributable to the smaller size of the dataset rather than to intrinsic properties of CNVs.

8.4 Multidimensional scaling

We compared the CNV multidimensional scaling plot to corresponding plots based on the five subsets of the
SNP dataset with the same size as the CNV. MDS was applied to each SNP dataset in the same manner
as for the CNV data. Figure S16 shows the MDS plot based on the SNP dataset of the five for which two-
dimensional MDS produced the highest value of the two α statistics (α1,2 = 56.9% and α2,2 = 90.1%). We
produced a second plot of this dataset, with two outlier populations removed (α1,2 = 34.0%, α2,2 = 57.7%,
Figure S16B). The plots were rotated counterclockwise by 270◦ for part A and 90◦ for part B. Although some
geographic clustering is observed, likely as a result of the relatively small size of the SNP subsets, these plots
illustrate a considerable difference from the MDS plot produced with the full SNP data (Figure 1d).
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9 Supplementary tables and figures

Tables S1-S4 and Figures S1-S16 are cited from the main text and are numbered following the order of these
citations. Additional tables and figures not cited from the main text then follow, in order of citation in the
supplementary material above. The following lists give the locations where the supplementary tables and
figures are first mentioned.

Table Brief description Section Page
or where number

figure first for table
mentioned or figure

Tables cited in main text

Table S1 Allele-sharing distance matrix for CNV data 7.3 20
Table S2 Stages at which populations are agglomerated into the CNV tree 7.3 21
Table S3 Bootstrap support for CNV tree and reduced-data SNP trees (part I) 8.3 22
Table S4 Bootstrap support for CNV tree and reduced-data SNP trees (part II) 8.3 23

Tables cited only in supplement

Table S5 Individuals included in the study 1.4 24
Table S6 Coordinates used in geographic analyses 1.5 25
Table S7 Distribution of SNPs by chromosome 1.6 26
Table S8 Distribution of the missing data rate across individuals 1.7 27
Table S9 Distribution of the missing data rate across SNPs 1.7 27
Table S10 Correlation coefficients of SNP allele frequencies 2.1 28
Table S11 Concordance of CNV calls in duplicate samples 5.3 29
Table S12 Summary of CNVs detected 5.4 30
Table S13 Regression of linkage disequilibrium on distance from Africa 7.1 31
Table S14 Number of replicates in the most frequent clustering mode (worldwide) 7.2 32
Table S15 Number of replicates in the most frequent clustering mode (regions) 7.2 32
Table S16 Mean log likelihood for replicates in the most frequent mode (worldwide) 7.2 33
Table S17 Mean log likelihood for replicates in the most frequent mode (regions) 7.2 33

Figures cited in main text

Figure S1 Map of population locations 1.5 34
Figure S2 Inferred population structure within individual geographic regions 7.2 35
Figure S3 Multidimensional scaling within geographic regions 7.4 36
Figure S4 Linkage disequilibrium measured by r2 from phased haplotypes 4.1 37
Figure S5 Joint distribution of haplotype length and frequency 4.2 38
Figure S6 Haplotype cluster frequencies for a “typical” genomic region 4.4 39
Figure S7 Standardized homozygosity for two genomic regions 4.4 40
Figure S8 X-chromosomal heterozygosity and duplications in males 5.5 41
Figure S9 X-chromosomal heterozygosity and duplications in males (magnified) 5.5 42
Figure S10 CNV detection error rates (less conservative duplication concordance) 5.3 43
Figure S11 CNV detection error rates (more conservative duplication concordance) 5.3 44
Figure S12 Allele frequency spectrum for CNVs (worldwide) 5.4 45
Figure S13 Allele frequency spectra for CNVs (regions) 5.4 46
Figure S14 Multidimensional scaling for CNVs including outliers 6.4 47
Figure S15 Inferred structure for SNP datasets matched to the CNV data 8.2 48
Figure S16 Multidimensional scaling for SNP datasets matched to the CNV data 8.4 49

Figures cited only in supplement

Figure S17 Flow chart of genotyping and quality control 1.1 50
Figure S18 Quality control for HumanHap550 version 1 BeadChips 1.3 51
Figure S19 Quality control for HumanHap550 version 3 BeadChips 1.3 52
Figure S20 Hardy-Weinberg test statistics for SNPs 1.6 53
Figure S21 Allele frequency spectra for SNPs 2.1 54
Figure S22 Length distribution of CNVs 5.4 55
Figure S23 Comparison of LD based on phased and unphased data 7.1 56
Figure S24 Inferred population structure (worldwide) 7.2 57
Figure S25 Likelihood for Structure runs (worldwide) 7.2 58
Figure S26 Likelihood for Structure runs in the most frequent mode (worldwide) 7.2 59
Figure S27 Likelihood for Structure runs (regions) 7.2 60
Figure S28 Likelihood for Structure runs in the most frequent mode (regions) 7.2 61
Figure S29 Pairwise genetic distance as a function of geographic distance 7.5 62
Figure S30 Allele frequency spectra for SNP datasets matched to the CNV data 8.1 63
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CNV tree Reduced Reduced Reduced Reduced Reduced
SNP tree SNP tree SNP tree SNP tree SNP tree

1 2 3 4 5
Africa .....** 792 627 487 951 749

....**. 471

....*** 467

...*..* 333

...*.** 821 229

...**.. 455 511

...**** 595 700 792 181 840 206

..***** 684 356 520

.**.... 518 446 324

.****** 307 578 862 886 637
*.***** 691
******* 732 496 476 790 711 616

Eurasia ....|...|.**. 492 303
....|.**|.... 304
....|*..|..*. 629
....|**.|.... 883 978 826 1000 999
....|***|.... 1000 995 1000 986 971
....|***|...* 391
....|***|*... 437 528 344
....|***|*..* 144
..**|...|.... 306 262 404
.*.*|...|.... 390 441 348
.***|...|.... 327 280 215
.***|***|*..* 115
.***|***|**** 169
*...|***|.... 519
*.*.|...|.... 611
**..|...|.... 422 306
****|...|.... 264 539 274 239
****|.**|.... 271
****|.**|*... 256
****|***|.... 368
****|***|*... 554 264 700 903
****|***|*..* 602
****|***|*.*. 247
****|***|**.. 415 591 245
****|***|**.* 603
****|***|***. 672 334
****|***|**** 474 359

Table S3: Bootstrap support for within-region groupings in Africa and Eurasia, for the CNV tree in Figure
1b and for five SNP trees constructed with datasets of the same size as the CNV dataset. The total number of
bootstrap replicates was 1000 for each tree. A sequence of dots and asterisks indicates a particular grouping.
The meaning of positions in the sequence follows the order of populations within geographic regions in
Figure 1c. Africa — San, Mbuti Pygmy, Biaka Pygmy, Bantu (Kenya), Bantu (Southern Africa), Yoruba,
Mandenka; Eurasia — Mozabite, Bedouin, Palestinian, Druze, Basque, Russian, Adygei, Balochi, Kalash,
Burusho, Uygur. Thus, for example, in Africa, .....** corresponds to a grouping of Yoruba and Mandenka.
The Middle East, Europe, and Central/South Asia are separated into lists of symbols for each subregion.
The table illustrates that the population tree based on the CNV dataset has a similar degree of uncertainty
to trees based on SNP datasets of the same size.
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CNV tree Reduced Reduced Reduced Reduced Reduced
SNP tree SNP tree SNP tree SNP tree SNP tree

1 2 3 4 5
East Asia ....** 502

...*.* 226

...**. 367 291 427

...*** 534 183

..*.*. 447

.*...* 339 368

.*.*.. 498

.**... 390 425

.**..* 223 204

.***** 309 180 82
*....* 223 206
**...* 123
**.*.* 147
***... 209
****** 184 384

Oceania ** 572 647 625 404
America .** 277 368

*.* 685 396 745
**. 885
*** 490 620 134 684 685

Table S4: Bootstrap support for within-region groupings in East Asia, Oceania, and the Americas, for the
CNV tree in Figure 1b and for five SNP trees constructed with datasets of the same size as the CNV
dataset. The total number of bootstrap replicates was 1000 for each tree. A sequence of dots and asterisks
indicates a particular grouping. The meaning of positions in the sequence follows the order of populations
within geographic regions in Figure 1c. East Asia — Yakut, Mongola, Daur, Yi, Cambodian, Lahu; Oceania
— Melanesian, Papuan; America — Pima, Maya, Colombian. Thus, for example, in East Asia, ....**
corresponds to a grouping of Cambodian and Lahu. The table illustrates that the population tree based on
the CNV dataset has a similar degree of uncertainty to trees based on SNP datasets of the same size.
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Geographic Population Number of Number Number of Number
region distinct of males distinct of males

individuals included unrelated included
typed among individuals among

distinct distinct
individuals unrelated

typed individuals
AFRICA San 7 7 6 6

Mbuti Pygmy 15 13 13 11
Biaka Pygmy 32 30 23 23
Bantu (Southern Africa) 8 8 8 8
Bantu (Kenya) 12 11 11 10
Yoruba 25 13 22 12
YRI HapMap 36 22 24 12
Mandenka 24 16 22 15

MIDDLE EAST Mozabite 30 20 29 20
Bedouin 47 28 45 27
Palestinian 26 6 24 6
Druze 43 13 38 11

EUROPE Basque 13 9 13 9
CEU HapMap 48 23 32 16
Russian 13 10 13 10
Adygei 14 6 14 6

C/S ASIA Balochi 15 15 15 15
Kalash 18 14 16 12
Burusho 7 6 7 6
Uygur 10 8 10 8

EAST ASIA Yakut 15 12 15 12
Daur 10 7 10 7
Mongola 9 7 9 7
JPT HapMap 16 7 16 7
CHB HapMap 12 4 12 4
Yi 10 9 10 9
Lahu 8 7 8 7
Cambodian 10 6 10 6

OCEANIA Melanesian 17 6 11 4
Papuan 16 12 16 12

AMERICA Pima 11 6 8 4
Maya 13 2 10 1
Colombian 7 2 7 2

Table S5: Individuals included in the study. Individuals with a relationship more distant than second-degree
(avuncular, half sib, or grandparent/grandchild) were treated as unrelated. YRI, CEU, JPT, and CHB
respectively refer to Yoruba, European American, Japanese, and Chinese samples from the HapMap.
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Geographic Population Latitude Longitude
region
AFRICA San -21 20

Mbuti Pygmy 1 29
Biaka Pygmy 4 17
Bantu (Southern Africa) -25.56926433 24.25
Bantu (Kenya) -3 37
Yoruba 7.995094727 5
Mandenka 12 -12

MIDDLE EAST Mozabite 32 3
Bedouin 31 35
Palestinian 32 35
Druze 32 35

EUROPE Basque 43 0
Russian 61 40
Adygei 44 39

C/S ASIA Balochi 30.49871492 66.5
Kalash 35.99366014 71.5
Burusho 36.49838568 74
Uygur 44 81

EAST ASIA Yakut 62.98287845 129.5
Daur 48.49753416 124
Mongola 45 111
Yi 28 103
Lahu 22 100
Cambodian 12 105

OCEANIA Melanesian -6 155
Papuan -4 143

AMERICA Pima 29 -108
Maya 19 -91
Colombian 3 -68

Table S6: Coordinates used in geographic analyses. Latitudes in the northern hemisphere are listed with
positive values, as are longitudes in the eastern hemisphere.
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Chromosome Number of Number of Number of
SNPs SNPs SNPs

genotyped discarded included
in quality in final

checks data analysis
1 39,676 21 39,655
2 42,605 17 42,588
3 35,409 10 35,399
4 31,319 19 31,300
5 32,493 14 32,479
6 34,250 18 34,232
7 28,064 14 28,050
8 29,901 19 29,882
9 25,150 7 25,143
10 27,392 7 27,385
11 25,625 19 25,606
12 25,332 12 25,320
13 19,517 15 19,502
14 17,338 11 17,327
15 15,680 5 15,675
16 15,977 10 15,967
17 13,570 9 13,561
18 15,882 4 15,878
19 8,858 1 8,857
20 13,466 3 13,463
21 7,734 4 7,730
22 7,770 7 7,763
Autosomal total 513,008 246 512,762
X 13,203 151 13,052
Y 10 1 9
XY 15 0 15
M 163 91 72
Total 526,399 489 525,910

Table S7: Distribution of SNPs by chromosome. XY refers to the pseudoautosomal region on the X and Y
chromosomes, and M refers to the mitochondrial genome.
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Missing Number of
data individuals
rate (%)
< 0.5 574
[0.5, 1) 9
[1, 1.5) 4
[1.5, 2) 2
[2, 2.5) 1
[2.5, 3) 6
[3, 3.5) 1

Table S8: Distribution of the missing data rate across 597 HGDP-CEPH and HapMap individuals, computed
from the final set of 525,910 SNPs, and binned in intervals of 0.5%.

Missing Number of
data SNPs
rate (%)
< 1 514,665
[1, 2) 10,160
[2, 3) 779
[3, 4) 157
[4, 5) 65
[5, 6) 30
[6, 7) 31
[7, 8) 10
[8, 9) 11
[9, 10) 2

Table S9: Distribution of the missing data rate across 525,910 SNPs, computed from the final set of 597
HGDP-CEPH and HapMap individuals, and binned in intervals of 1%.
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Africa Middle East Europe C/S Asia East Asia Oceania
Middle East 0.770
Europe 0.706 0.962
C/S Asia 0.731 0.947 0.949
East Asia 0.686 0.833 0.841 0.891
Oceania 0.647 0.755 0.751 0.792 0.809
America 0.623 0.772 0.788 0.822 0.858 0.719

Table S10: Pearson correlation coefficients of allele frequencies for 512,762 autosomal SNPs. This analysis
uses both alleles at each locus and is based on 443 unrelated HGDP-CEPH individuals. The table reflects
the correlations of allele frequencies visible in Figure S21.
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Population Pair of Number of CNVs Number of CNVs Fraction of CNVs
individuals called in at least called in called in

one member of pair both members of pair both members of pair

Bedouin 650, 652 3 3 1.000
Biaka Pygmy 452, 1087 6 6 1.000
Biaka Pygmy 457, 1092 4 3 0.750
Biaka Pygmy 472, 981 5 5 1.000
Melanesian 657, 826 49 34 0.694

Table S11: Concordance of CNV calls in five pairs of duplicate samples for which CNV data were obtained in
both members of the pair. The computation is based on the 396 autosomal CNV loci used in the population-
genetic analysis. The average concordance across pairs is 871/980 ≈ 0.89. Pooling the five pairs, the estimated
concordance is 51/67 ≈ 0.76.
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Geographic Population Number of Number Number Number Number Number Number

region individuals of of of of of of
in CNV observed observed observed CNV CNV new

dataset CNVs deletions duplications loci loci CNV

with in loci
CNVs DBGV

AFRICA San 7 38 22 16 33 27 6

Mbuti Pygmy 14 101 49 52 70 49 21

Biaka Pygmy 31 214 107 107 112 88 24
Bantu (Kenya) 12 99 79 20 71 55 16

Bantu (S. Africa) 7 42 25 17 36 30 6

Yoruba 25 147 85 62 79 68 11
Mandenka 24 148 98 50 96 68 28

MIDDLE Mozabite 29 159 88 71 80 68 12

EAST Bedouin 43 247 147 100 131 103 28
Palestinian 25 182 126 56 121 90 31
Druze 40 262 143 119 126 91 35

EUROPE Basque 11 80 28 52 57 41 16
Russian 13 153 117 36 110 73 37
Adygei 13 80 61 19 63 42 21

C/S ASIA Balochi 14 70 39 31 55 47 8

Kalash 13 278 258 20 147 108 39
Burusho 6 42 18 24 39 32 7

Uygur 9 39 15 24 33 23 10

EAST Yakut 12 86 58 28 71 47 24

ASIA Mongola 9 53 27 26 45 36 9
Daur 10 60 38 22 56 38 18

Yi 9 36 21 15 34 22 12

Cambodian 10 44 18 26 41 28 13
Lahu 8 38 19 19 28 20 8

OCEANIA Melanesian 11 332 289 43 178 132 46
Papuan 12 246 200 46 163 121 42

AMERICA Pima 8 70 55 15 52 26 26
Maya 11 169 148 21 138 79 59
Colombian 7 37 20 17 28 21 7

Table S12: Summary of CNVs detected in 443 HGDP-CEPH individuals from 29 populations. The table
is based on a total of 3552 CNVs at 1428 copy-number-variable loci, and it forms the basis for Figure 4b.
DBGV refers to the Database of Genomic Variants46,47; “new” CNV loci are those not previously reported
in DBGV version hg18.v3.
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HR2 r2

Physical Intercept Slope R2 Intercept Slope R2

distance (kb) (×10−1) (×10−6 km) (×10−1) (×10−6 km)
5 3.065 9.080 0.8381 2.800 11.97 0.8261
10 2.882 7.950 0.8327 2.434 11.28 0.8195
15 2.772 7.184 0.8264 2.192 10.75 0.8247
20 2.700 6.460 0.8347 2.019 10.02 0.8207
25 2.645 5.820 0.8315 1.887 9.432 0.8189
30 2.612 5.255 0.8147 1.798 8.837 0.8148
35 2.589 4.899 0.8382 1.724 8.364 0.8195
40 2.559 4.415 0.8277 1.657 7.837 0.8165
45 2.543 4.152 0.8198 1.602 7.307 0.8172
50 2.524 3.866 0.8092 1.556 7.051 0.8196

Table S13: Linear regression of linkage disequilibrium on geographic distance from East Africa. LD is
measured using HR2 applied to unphased data or using r2 applied to phased data, and distance to East
Africa is measured from Addis Ababa using waypoint routes. The table indicates that geographic distance
explains variation in LD to a similar extent for HR2 with unphased data and for r2 with phased data, and
that in the range shown the physical distance at which LD is measured has only a relatively slight impact on
the fraction of variation explained.
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Number of replicates
in most frequent mode

K SNPs Haplotypes CNVs
2 40 40 40
3 40 40 40
4 38 23 37
5 16 36 6
6 16 29 3
7 9 20 2
8 6 17 2
9 3 12 2
10 4 22 2

Table S14: Number of replicates appearing in the most frequent Structure clustering mode, for the worldwide
SNP, haplotype, and CNV datasets (relative to a maximum of 40). Ties for the most frequent mode were
broken using the CLUMPP H ′ score18 for replicates in the mode.

Number of replicates in most frequent mode
K Africa Middle Europe C/S East Oceania America

East Asia Asia
2 39 40 23 40 39 40 33
3 19 27 24 19 15 34 32
4 11 10 2 4 20 37 16
5 8 6 1 2 14 31 15
6 3 7
7 2 12
8 9 10

Table S15: Number of replicates appearing in the most frequent Structure clustering mode, for individual
geographic regions (relative to a maximum of 40). Ties for the most frequent mode were broken using the
CLUMPP H ′ score18 for replicates in the mode.
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Mean log likelihood for replicates
in most frequent mode

K SNPs Haplotypes CNVs
2 -2218914 -10834453 -11074.20
3 -2166724 -10534972 -11037.02
4 -2142764 -10499423 -11163.83
5 -2136825 -10404686 -12997.67
6 -2123684 -10436284 -10534.03
7 -2154336 -10428550 -10230.50
8 -2605349 -10985902 -10197.75
9 -2137650 -10673840 -10271.60
10 -2129510 -10542288 -10017.55

Table S16: Mean log likelihood for replicates appearing in the most frequent Structure clustering mode, for
the worldwide SNP, haplotype, and CNV datasets.

Mean log likelihood for replicates in most frequent mode
K Africa Middle Europe C/S East Oceania America

East Asia Asia
2 -484660.9 -681107.9 -201262.9 -240451.7 -285320.0 -104755.5 -106636.2
3 -479091.7 -684091.8 -201813.5 -240042.6 -291057.2 -105559.5 -281717.5
4 -494108.2 -683420.9 -201785.5 -240308.0 -296049.0 -107332.2 -117576.8
5 -493140.8 -685805.3 no mode -269941.8 -286742.2 -109007.6 -155811.1
6 -510799.9 -296119.6
7 -792167.5 -286533.2
8 -2177801 -285659.2

Table S17: Mean log likelihood for replicates appearing in the most frequent Structure clustering mode, for
individual geographic regions. For Europe with K = 5 no mode contained at least two replicates.
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Figure S1: Map of the geographic locations of HGDP-CEPH populations included in the study. Geographic
coordinates used for the populations are provided in Table S6.
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Figure S2: Population structure within geographic regions, inferred from the SNP dataset for various choices
of the number of clusters, K. The plots in Figure 1c for individual geographic regions were extracted from
this figure on the basis of the maximal mean log likelihood for replicates appearing in the most frequently
observed mode (Table S17). If K∗ is the number of predefined populations in a geographic region, K proceeds
from 2 to at least K∗ + 1.
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Figure S5: Joint distribution of haplotype length and frequency. The x-axis represents haplotype frequency,
indicated by number of chromosomes observed for a given haplotype in a sample of 12 chromosomes (trun-
cated at one chromosome). The y-axis represents haplotype length, and the z-axis represents the density of
haplotypes of a specific length and frequency. A heat map of the density is shown on a logarithmic scale below
each histogram. The figure illustrates that in Africa, short low-frequency haplotypes are common, while long
high-frequency haplotypes are almost absent. Populations from Europe, the Middle East, and Central/South
Asia have fewer short low-frequency haplotypes and more long high-frequency haplotypes. This trend of
increasing occurrence of long high-frequency haplotypes continues into East Asia, and finally, into Oceania
and America.
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Figure S6: Haplotype cluster frequencies for a “typical” genomic region of 150 SNPs (from chromosome 17),
and haplotype cluster homozygosity across the region for each population. Reduced haplotype diversity in
Oceania and the Americas is consistent with founder effects via migration from East Asia — in the left part
of the region, it is possible that via separate founder effects the orange cluster common in East Asia rose to a
high frequency in Oceania, while the blue-green cluster rose to a high frequency in the Americas. This figure
illustrates several frequently-observed features of such plots. Africa exhibits great diversity, with common
haplotype clusters rare or absent elsewhere. A sampling of haplotype clusters moving outward from Africa
towards Oceania and the Americas is also a typical pattern. Finally, haplotypic similarity of populations
from the same geographic region is also evident.
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genomic region of 150 SNPs shown in Figure S6. For each population, standardized homozygosity is obtained
pointwise by subtracting the mean haplotype cluster homozygosity in the population across the genome
and dividing by the standard deviation. The mean and standard deviation are obtained by using all ten
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Figure S8: Identification of duplications using scans of X-chromosomal heterozygosity in males. The plot
shows the number of heterozygous SNPs in sliding windows that contain 10 SNPs. Only windows of the
(non-pseudoautosomal) X chromosome in which at least one SNP is heterozygous are shown, for only the
nine males who had at least one window with at least three heterozygous SNPs. As duplications can lead to
extended stretches of consecutive heterozygous genotypes along male X chromosomes, the high peaks around
a single position in each of the top eight plots indicate the likely presence of duplications. By contrast, the
plot for Bantu (Southern Africa) 993 displays no clear peaks. The higher overall level of heterozygosity in
this individual is more likely to be due to genotyping error: individual 993 has genotyping call rate 0.9818
(after reclustering), compared with values ≥ 0.9977 for each of the other eight males shown. Due to poorer
data quality, individual 993 is among the individuals not considered in the PennCNV analysis.
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and consequently, the duplication in this individual was not detectable by PennCNV. All other duplications
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Figure S10: Estimated false positive and false negative rates as functions of the unknown true mean frequency
of copy-number variants across 396 CNV loci. The plots are based on equations 3 and 4, with an estimated
concordance of duplicates equal to 871/980 ≈ 0.89, the average concordance across duplicate pairs. (A)
False positive rate. (B) False negative rate. The figure shows a low false positive rate for CNV calls and a
comparatively higher false negative rate.

43www.nature.com/nature 43



A

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 0.01 0.02 0.03 0.04 0.05

E
st

im
at

ed
 fa

ls
e 

po
si

tiv
e 

ra
te

True mean frequency
of copy number variants at 396 CNV loci

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.01 0.02 0.03 0.04 0.05

E
st

im
at

ed
 fa

ls
e 

ne
ga

tiv
e 

ra
te

True mean frequency
of copy number variants at 396 CNV loci

Figure S11: Estimated false positive and false negative rates as functions of the unknown true mean frequency
of copy-number variants across 396 CNV loci. The plots are based on equations 3 and 4, with an estimated
concordance of duplicates equal to 51/67 ≈ 0.76, a value estimated by pooling duplicate pairs. (A) False
positive rate. (B) False negative rate. The figure shows a low false positive rate for CNV calls and a
comparatively higher false negative rate.
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Figure S12: Allele frequency spectrum for the copy-number variants at 1302 autosomal CNV loci in 405
unrelated individuals from 29 populations. The 1/810 frequency class is not plotted and contains 906 loci.
The figure illustrates that most CNVs were observed to be rare.
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Figure S13: Allele frequency spectra for the copy-number variants at 1302 autosomal CNV loci, considering
unrelated individuals in 7 geographic regions. To adjust for sample size differences among regions, we used
a resampling procedure. The alleles of each individual were partitioned into two “pseudo-genomes,” each
containing one allele at each CNV locus. Next, for each CNV locus, 38 haploid pseudo-genomes were randomly
drawn (without replacement) from each geographic region and the frequency of each CNV was calculated.
An average frequency for each CNV was then computed across 1000 sets of pseudo-genomes (with the sets
independently chosen for different CNV loci). Using this average frequency, loci were classified into one of
39 allele frequency bins: [0, 1/38], (1/38, 2/38], ..., (36/38, 37/38], (37/38, 1]. After averaging, the numbers
of CNV loci in the [0, 1/38] bin were as follows: Africa — 1281, Middle East — 1285, Europe — 1266,
Central/South Asia — 1259, East Asia — 1288, Oceania — 1086, and America — 1270.
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Figure S14: Multidimensional scaling representation of the genetic distance matrix for the CNV dataset.
Three outliers removed from the matrix for the CNV plot in Figure 1d (Kalash, Melanesian, and Papuan)
are retained in the analysis that underlies this plot. The geographic clustering visible in Figure 1d is less
visible in this plot, with the outliers included.
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Figure S15: Population structure inferred from SNP sets of the same size and frequency spectrum as the
CNV dataset, for various choices of the number of clusters, K. The figure shows that the level of “noise” in
population structure plots based on the reduced SNP datasets is comparable to the corresponding level in
plots based on the CNV dataset (Figures 1c and S24).
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Figure S16: Multidimensional scaling representations of genetic distance matrices for individual geographic
regions, based on a reduced SNP dataset of the same size and frequency spectrum as the CNV dataset. (A)
All populations. (B) Two outliers removed (Basque and Russian). The figure shows that the level of “noise”
in multidimensional scaling plots based on the SNP dataset is comparable to the corresponding level in plots
based on the CNV dataset (Figures 1d and S14).
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Figure S18: Quality control plot for 303 individuals genotyped on HumanHap550 version 1 BeadChips. The
303 individuals plotted are those with a genotype call rate >95% after genotype reclustering. Each background
color represents the individuals from a single population, and within each population, individuals are sorted
by HGDP-CEPH identification number. Black diamonds indicate call rates, blue diamonds indicate the 50%
GC score (median GenCall score across SNPs), red diamonds indicate the 10% GC score (tenth percentile of
the ranked GenCall scores), green diamonds indicate the minor allele frequency, turquoise diamonds indicate
the frequency of B/B calls, gray diamonds indicate the frequency of A/A calls, and orange diamonds indicate
the frequency of A/B calls. For a given individual and SNP, the GenCall score is a measure of data quality
that takes into account the fit of the individual genotype to defined genotype clusters. Scores above 0.7
indicate high-quality genotypes and scores below 0.2 indicate low-quality genotypes. We used a GenCall
threshold of 0.15 in measuring the call rate.
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Figure S19: Quality control plot for 192 individuals genotyped on HumanHap550 version 3 BeadChips. The
192 individuals plotted are those with a genotype call rate >95% after genotype reclustering. Each background
color represents the individuals from a single population, and within each population, individuals are sorted
by HGDP-CEPH identification number. Black diamonds indicate call rates, blue diamonds indicate the 50%
GC score (median GenCall score across SNPs), red diamonds indicate the 10% GC score (tenth percentile of
the ranked GenCall scores), green diamonds indicate the minor allele frequency, turquoise diamonds indicate
the frequency of B/B calls, gray diamonds indicate the frequency of A/A calls, and orange diamonds indicate
the frequency of A/B calls. For a given individual and SNP, the GenCall score is a measure of data quality
that takes into account the fit of the individual genotype to defined genotype clusters. Scores above 0.7
indicate high-quality genotypes and scores below 0.2 indicate low-quality genotypes. We used a GenCall
threshold of 0.15 in measuring the call rate. In the quality control plots, the minor allele at a locus is defined
with respect to the BeadStudio project, and may differ between version 1 and version 3 BeadStudio projects.
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Figure S21: Allele frequency spectra for SNP loci. (A) Allele frequency in pairs of geographic regions. The
minor allele for a pair of regions is defined as the allele whose average frequency in the two regions is at most
1/2, choosing arbitrarily in case of ties. From dark blue to red, colors indicate the number of SNPs in a bin:
[1,125], [126,350], [351,550], [551,800], >800. A high degree of correlation is visible, particularly among the
Middle East, Europe, and Central/South Asia. Relatively few SNPs are discordant in minor allele frequency.
(B) Allele frequency spectra in specific regions. The zero class has 53,972 SNPs in Africa, 64,766 in East
Asia, 125,733 in Oceania, and 111,671 in America. Eurasian-centered SNP ascertainment bias is visible, in
that the Middle East, Europe, and Central/South Asia have fewer low-frequency variants and do not have
monotonically decreasing distributions.
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Figure S24: Population structure inferred from SNPs, haplotypes, and CNVs for various choices of the number
of clusters, K. The plots with K ≤ 6 are copied in Figure 1c. The Bedouin and two Mozabites with high
estimated membership in the cluster corresponding to Africans in SNP and haplotype analyses are the same
individuals seen to lie on the path connecting Africans to the remaining individuals from the Middle East
in the multidimensional scaling analysis (Figure 1d). Two populations with a considerable degree of mixed
membership between the clusters corresponding to Eurasia and East Asia — Burusho and Uygur — are also
the two populations most intermediate in the MDS analysis between Europe and East Asia.
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Figure S25: Log likelihood as a function of the number of clusters, based on Structure runs applied to the
full worldwide dataset. Likelihoods for all 40 replicates at a given K are shown. The plots on the right side
are magnified versions of the plots on the left.
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Figure S26: Log likelihood as a function of the number of clusters, based on Structure runs applied to the
full worldwide dataset. Likelihoods are shown only for Structure runs in the most frequent mode. The plots
on the right side are magnified versions of the plots on the left.
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Figure S27: Log likelihood as a function of the number of clusters, based on Structure runs applied to
individual geographic regions. Likelihoods for all 40 replicates at a given K are shown. The plots on the
right side are magnified versions of the plots on the left.
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Figure S28: Log likelihood as a function of the number of clusters, based on Structure runs applied to
individual geographic regions. Likelihoods are shown only for Structure runs in the most frequent mode.
The plots on the right side are magnified versions of the plots on the left. For Europe with K = 5, there was
no mode, and the point plotted corresponds to the single highest-likelihood run.
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Figure S29: FST between pairs of populations, plotted as a function of geographic distance between the
populations. Only population pairs that contain at least one African population are shown. (A) SNPs.
The Pearson correlation between FST and geographic distance is 0.74 and the regression line is FST =
(9.057 × 10−6)D + 0.045, where D represents distance in kilometers. R2 = 0.54. (B) Haplotypes. The
Pearson correlation is 0.74, the regression line is FST = (6.220× 10−6)D + 0.029, and R2 = 0.54. (C) CNVs.
The Pearson correlation is 0.49, the regression line is FST = (2.494 × 10−6)D + 0.023, and R2 = 0.24. The
plots indicate a reasonably close relationship between genetic distance and geographic distance for SNPs and
haplotypes, and a weaker relationships for CNVs. The SNP plot is copied in Figure 2a.
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Figure S30: Allele frequency spectrum for each of five sets of 396 non-singleton SNPs in 405 unrelated indi-
viduals from 29 populations. The frequency spectrum is matched as closely as possible to the corresponding
frequency spectrum of CNV loci in Figure S12.
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