

POST-SILICON BUG LOCALIZATION IN PROCESSORS

TECHNICAL REPORT V2.0

iv

ABSTRACT

For complex integrated circuits, pre-silicon verification alone is inadequate in ensuring

that manufactured chips do not contain logic and electrical bugs. Post-silicon validation,

which operates samples of manufactured chips in application environments to validate

correct behaviors across specified operating conditions, is essential. According to

industry reports, post-silicon validation is becoming very expensive. A major bottleneck

in post-silicon validation is the bug localization step which involves identifying hardware

bug locations and short functional stimuli that can expose detected bugs. For example, it

may take several days to weeks to localize an electrical bug that may arise due to

incorrect interactions between a design and the operating conditions.

This report presents IFRA (Instruction Footprint Recording & Analysis), a new technique

for post-silicon bug localization in processors, which overcomes cost and scalability

challenges of existing techniques. During normal operation of a processor in a post-

silicon validation setup, special on-chip recorders collect information about flows of

instructions through the processor and what the instructions did as they passed through

various design blocks. Upon system failure, such as a crash, the recorded information is

scanned out and analyzed offline using special self-consistency-based analysis techniques

to localize hardware bugs. IFRA provides two major benefits over traditional techniques:

(1) it does not require bugs to be reproduced at the system-level and (2) it does not

require system-level simulation. Evaluation of IFRA on an open-source

microarchitectural simulator modeling Alpha 21264 demonstrates high bug localization

accuracy (96%) at low area overhead (1%).

Applying IFRA to new microarchitectures can be challenging because it requires some

degree of manual effort. This report presents a new BLoG (Bug Localization Graph)

technique which is a step towards automated application of IFRA. Evaluation of BLoG-

assisted IFRA on an industrial microarchitectural simulator modeling Intel® Core™ i7, a

state-of-the-art complex commercial processor, demonstrates its effectiveness (90% bug

localization accuracy) and practicality.

v

TABLE OF CONTENTS

List of tables…... vii

List of figures.. .. viii

Chapter 1. Introduction...1

1.1 Post-Silicon Validation Background..1

1.2 Bug Localization Background ...3

1.3 Contributions..4

1.4 Outline..5

Chapter 2. Post-Silicon Bug Localization in Processors Using IFRA6

2.1 Target Processor Model ...8

2.2 IFRA Hardware Support ..10

2.2.1 Instruction Footprint Recorder ..12

2.2.2 ID-assignment Unit ...14

2.2.3 Post-trigger Generator ...16

2.3 Post-analysis Techniques ...18

2.3.1 Formatting Scanned-out Footprints ..20

2.3.2 Footprint Linking ..22

2.3.2.1 Footprint Pointer ..24

2.3.2.2 <Location, Footprint> Pair ..25

2.3.2.3 Follow_link() Operator ..25

2.3.2.4 Footprint Pointer Comparison Operator ..26

2.3.3 High-level Analysis ..27

2.3.3.1 Data-dependency Analysis...28

2.3.3.2 Control-flow Analysis ..30

2.3.3.3 Data-transfer Analysis ...31

2.3.3.4 Instruction-flow Analysis...33

2.3.4 Low-level Analysis ...35

2.3.5 Bug-exposing Stimulus ...35

2.4 Results ..36

vi

2.5 Related Work ...39

2.6 Conclusions ..41

Chapter 3. Application of IFRA using BLoG ..42

3.1 BLoG Components ..44

3.1.1 BLoG Node Types ..44

3.1.2 BLoG Edge Attributes ..46

3.2 BLoG Construction ..48

3.3 BLoG Traversal ...50

3.3.1 Footprint-Propagation Rules ...53

3.3.2 Location-Propagation Rules..55

3.4 Evaluation on an Industrial Simulator ...68

3.4.1 Simulation Framework and Methodology ..69

3.4.2 Results ...72

3.5 Related Work ...74

3.6 Conclusions ..75

Chapter 4. Concluding Remarks ..76

References….. ...77

Appendix A: Footprint Linking Algorithm ...81

A.1 Assumptions on the Target Processor ...81

A.2 Distinguishing Footprints with Identical IDs ..82

A.3 Identification of Uncommitted Instructions ..85

A.3.1 Uncommitted Instructions in In-order Pipeline Stages85

A.3.2 Uncommitted Instructions in Out-of-order Pipeline Stages89

A.3.2.1 Identification of Younger-isolating Row ..91

A.3.2.2 Identification of Older-isolating Row ...91

Appendix B: Low-Level Analysis Decision Diagram for IFRA94

vii

LIST OF TABLES

Number Page

Table 1.1. Pre-silicon verification vs. post-silicon validation. ..1

Table 2.1. Auxiliary information for Alpha microarchitecture. ...13

Table 2.2. Failure scenarios and post-triggers. ..17

Table 2.3. Error injection bits. ...36

Table 2.4. IFRA bug localization summary. ..38

Table 2.5. IFRA vs. existing techniques. ...40

Table 3.1: Location-propagation rules for a Random-access type.65

Table 3.2. Auxiliary information for Intel Core i7 microarchitecture.68

Table 3.3: Error injection sites. ..70

Table 3.4. BLoG node type distribution for Intel Core i7. ..71

Table 3.5. BLoG-assisted IFRA bug localization summary. ...72

Table 3.6. Causes of complete miss. ..72

Table 3.7. Summary of manual effort reduced using BLoG..73

viii

LIST OF FIGURES

Number Page

Fig. 2.1. Post-silicon bug localization flow using IFRA. ..6

Fig. 2.2. Superscalar processor augmented with recording infrastructure.11

Fig. 2.3. Internal structure of a footprint recorder. ..12

Fig. 2.4. ID-assignment unit for a 2-way processor. ..15

Fig. 2.5. Post-analysis summary. ...19

Fig. 2.6. Aligning four unwrapped circular buffers for a 4-way pipeline stage.21

Fig. 2.7. Fetch-stage footprint vector augmented with instruction words.21

Fig. 2.8. Footprint linking, with a max number of 2 instructions in flight.23

Fig. 2.9. Flushed / flush-causing instructions in fetch stage footprint vector.23

Fig. 2.10. Footprint pointer and direction of pointer increment.24

Fig. 2.11. Footprints indicating cycles within a pipeline stage. ...25

Fig. 2.12. Data-dependency analysis example. ..29

Fig. 3.1. Bug localization flow using BLoG-assisted IFRA vs. original IFRA.43

Fig. 3.2. Eight BLoG node types. ...45

Fig. 3.3. Relationship between BLoG edge attributes. ..46

Fig. 3.4. Example <edge, edge dependency> pairs. ..47

Fig. 3.5. Example starting edge for a control-flow analysis inconsistency.50

Fig. 3.6. BLoG traversal flow chart. ..52

Fig. 3.7. Node traversal flow chart. ...52

Fig. 3.8. Location-propagation rules for a Select-type node..59

Fig. A.1. Example footprint vector with labels (n=8). ..85

CHAPTER 1. INTRODUCTION

1.1 POST-SILICON VALIDATION BACKGROUND

With increasing chip complexity and shortening time-to-market, chip developers are

facing progressively more difficult challenges in ensuring their chips to be free of

hardware bugs before shipment. Hardware bugs are detected either before chip

fabrication, during pre-silicon verification, or after fabrication, during post-silicon

validation. Pre-silicon verification [Clarke 99][Dill 98][Schelle 10] checks the design for

its correct functionality using simulation / emulation techniques or using formal methods.

Post-silicon validation involves operating manufactured chips in actual application

environments to check for their correct behaviors across specified operating conditions

(e.g., voltage, temperature and frequency).

Table 1.1 compares and contrasts the two phases of chip development. Accessing internal

signals of a physical chip is difficult as it is done indirectly through package pins or

through special-purpose built-in hardware (e.g., Boundary-scan JTAG interface [TI 97]).

Pre-silicon verification is free of this problem because any arbitrary signal can be probed

in a software environment. Fixing physical bug is expensive and can cost multiple

silicon re-spins, which involves redesigning the mask (costing $1 million for sub-90nm

technology [Ying 05]) to remanufacture the chip with corrections.

Table 1.1. Pre-silicon verification vs. post-silicon validation.

 Pre-silicon
Verification

Post-Silicon
Validation

Signal access (+) Easy (-) Limited

Bug fixes (+) Cheap (-) Expensive

Electrical bugs (-) Difficult to model (+) Already present

Problem detection speed (-) Slow (+) Fast

2

Although pre-silicon verification is essential, and has traditionally been the main tool for

detecting hardware bugs, post-silicon validation is becoming increasingly important for

the following three reasons:

1) With increasing chip complexity, several electrical interactions are becoming

significant, e.g., signal integrity, cross-talk and power-supply noise, temperature

effects, etc. Accurate modeling of all these physical effects is usually very

difficult during pre-silicon verification;

2) With increasing design complexity (e.g., prevalence of adaptive power

management), simulations and emulations are not fast enough (orders of

magnitude slower than physical chip [Krupnova 04]) to explore many possible

configurations and corner cases;

3) With increasing process variations, designing for the worst case leads to

unacceptable power and/or performance. Chips not designed for the worst case

must be validated after fabrication [Yerramilli 06].

According to recent industry reports, post-silicon validation is becoming significantly

expensive. Intel reported a headcount ratio of 3:1 for design vs. post-silicon validation

[Patra 07]. According to [Abramovici 06], post-silicon validation may consume 35% of

average chip development time. [Yeramilli 06] observes that post-silicon validation costs

are rising faster than the design costs.

Post-silicon validation involves four steps:

1) Bug detection: Detecting a problem by running a test, such as end-user

applications or functional tests, until a system failure (chip in a system returns a

fatal exception or stops functioning altogether).

2) Bug localization: Localizing the problem to a small region from the system failure,

e.g., a bug in an adder inside an ALU of a complex processor. The stimulus that

exposes the bug, e.g., the particular 10 lines of code from some application, is

also important.

3

3) Bug root-cause: Identifying the root cause of the problem. For example, an

electrical bug may be caused by power-supply noise slowing down a circuit path

resulting in an error at the adder output.

4) Bug fixing: Fixing or bypassing the problem by microcode patching [Chang 07]

[Goddard 95] [Sarangi 07][Wagner 06], circuit editing [Livengood 99], or, as a

last resort, re-spinning using a new mask.

Josephson [Josephson 06] points out that the second step, bug localization, dominates

post-silicon validation effort and costs. Hence, this report focuses on bug localization.

1.2 BUG LOCALIZATION BACKGROUND

The bottleneck in post-silicon validation can be further narrowed down by considering

the types of bugs being localized. There are two types of bugs that design and validation

engineers worry about:

1) Logic bugs (also called functional bugs): Bugs caused by design errors. While

many functional bugs get detected during pre-silicon verification, a small

percentage of them get exposed during post-silicon validation due to increasing

design complexity and design schedule constraints.

2) Electrical bugs (also called circuit marginalities): Bugs caused by the interactions

between the design and the electrical effects, such as cross-talk and power-supply

noise. Such bugs generally manifest themselves only under certain operating

conditions (temperature, voltage, frequency). Examples include setup and hold

time problems.

There are two major challenges faced by most bug localization techniques used today that

limit their scalability for future systems:

1) System-level failure reproduction: When a failure is detected while using a chip in

a system, most existing techniques require the failure to be reproducible. Failure

reproduction involves returning the chip to an error-free state, and re-executing

4

the failure-causing stimulus (including test segment, interrupts, and operating

conditions) to reproduce the same failure. Unfortunately, many electrical bugs are

hard to reproduce [Patra 07] due to presence of asynchronous I/Os, and multiple

clock domains. Techniques to make failures reproducible [Heath 04][Sarangi

06][Silas 03] are often intrusive to system operation, and may not expose bugs.

2) System-level simulation: Most existing techniques require golden responses, i.e.,

correct signal values for every clock cycle for the entire system (i.e., the chip and

all the peripheral devices on the board) to compare against the signal values

produced by the chip being validated. System-level simulation is generally 7-8

orders of magnitude slower than actual silicon [Bentley 01][Nakamura 04] and in

addition, expensive external logic analyzers are required to record all signals

values that enter and exit the processor through external pins [Silas 03].

Due to these factors, a logic bug typically takes hours to days to be localized vs. an

electrical bug that requires days to weeks and more expensive equipments [Josephson 01].

Hence, this report focuses on localization of electrical bugs.

1.3 CONTRIBUTIONS

The major contributions of this report are:

1) Bug localization technique overcoming existing challenges: This dissertation

presents IFRA (Instruction Footprint Recording and Analysis), which is a new

technique for localizing electrical bugs in processors without requiring system-

level failure reproduction and system-level simulation. During normal operation

of a processor in a post-silicon validation setup, special on-chip recorders collect

information about flows of instructions through the processor and what the

instructions did as they passed through various design blocks. Upon system

failure, the recorded information is scanned out and analyzed offline using special

self-consistency-based analysis techniques to localize hardware bugs. Evaluation

of IFRA on an open-source microarchitectural simulator modeling Alpha 21264

5

[Digital 99] demonstrates high bug localization accuracy (96%) at low area

overhead (1%).

2) Framework for implementing IFRA on different microarchitectures:

Applying IFRA to new microarchitectures can be challenging because it requires

some degree of manual effort. This report presents BLoG (Bug Localization

Graph), a new framework that enables systematic implementation of IFRA and

automatic execution of IFRA for different microarchitectures.

3) BLoG-assisted IFRA for a commercial Intel processor: We use the BLoG

framework to implement IFRA on an Intel® Core™ i7 processor [Casazza 09]

and demonstrate the effectiveness of BLoG-assisted IFRA using an industrial-

grade microarchitectural simulator extensively used during product development.

BLoG-assisted IFRA achieves high bug localization accuracy of over 90%.

1.4 OUTLINE

Chapter 2 describes hardware support required for IFRA and various analysis techniques

used to localize bugs from the recorded data. It also presents simulation results obtained

from an open-source microarchitectural simulator modeling Alpha 21264. Chapter 3

presents the BLoG framework and evaluation results of BLoG-assisted IFRA for a

commercial Intel processor, followed by conclusions in Chapter 4.

6

CHAPTER 2. POST-SILICON BUG LOCALIZATION IN

PROCESSORS USING IFRA

This chapter targets localization of electrical bugs in processors using a technique called

IFRA, an acronym for Instruction Footprint Recording and Analysis. We did not

investigate IFRA‟s applicability to logic bugs, because there is little consensus about

models of logic bugs [ITRS 07]. Fig. 2.1 shows a post-silicon bug localization flow using

IFRA. During chip design, a processor is augmented with low-cost hardware recorders

for recording instruction footprints. Instruction footprints (or simply, footprints) are

compact pieces of information describing the flows of instructions (i.e., where each

instruction was at various points in time), and what the instructions did as they passed

through various design blocks of the processor. During post-silicon bug detection,

instruction footprints are recorded in each recorder, concurrently with system operation,

to capture the last few thousand cycles of history before a failure appears.

Design

Phase

Post-Si

Validation
Failure

detected?

Record special info. in

recorders / Run tests

Insert recorders

inside chip design

Scan out recorder

contents

Post-analyze offline

Localized Bug: (location, stimulus)

Yes

No

Non-instrusive

No failure reproduction

Single test run sufficient

No system simulation

Self-consistency against

test program binary

Fig. 2.1. Post-silicon bug localization flow using IFRA.

7

Upon detection of a system failure, the recorded footprints are scanned out through a

Boundary-scan JTAG interface. IFRA uses special techniques (Sec.2.2) to ensure that a

single test run is sufficient in capturing all the necessary information. Hence, there is no

need to reproduce the failure for localization purposes.

Scanned-out footprints, together with the test program binary executed during post-

silicon bug detection, are post-processed off-line using special analysis techniques (Sec.

2.3). These techniques identify both location (e.g., the instruction queue control unit,

scheduler, forwarding path, and decoder) and clock cycle in which an electrical bug had

caused an error in a flip-flop in the design. The instruction sequence that exposes the bug

(i.e., the bug exposing stimulus) is then derived. The analysis techniques do not require

any system-level simulation because they rely on self-consistency-based checks that

inspect for the existence of contradictory events in scanned-out footprints with respect to

the test program binary.

Once a bug is localized using IFRA, existing circuit-level debug techniques [Caty

05][Josephson 06] may be used to quickly identify root causes of bugs. Hence, IFRA can

enable significant gains in productivity, cost, and time-to-market. One method of circuit-

level debugging is to derive thousands of structural test patterns from the bug exposing

stimulus and apply them to the microarchitectural blocks in close vicinity to the location

at which IFRA identified the bug (the localized block), while sweeping over voltage,

frequency and temperature ranges. Another method is to run the exposing stimulus while

directing observation (e.g., trace buffers [Abramovici 06]) and control mechanisms (e.g.,

clock manipulation [Josephson 06]) to the localized block or its neighboring

microarchitectural block(s).

Sec. 2.1 describes a processor model, which IFRA is going to target. Sec. 2.2 describes

hardware support required for IFRA, while Sec. 2.3 describes post-analysis performed on

the scanned-out footprint. Sec. 2.4 presents simulation results, followed by related work

in Sec. 2.5, and conclusions in Sec. 2.6.

8

2.1 TARGET PROCESSOR MODEL

There are three features and four assumptions on the processor model that IFRA is

targeting. The features demonstrate generality of IFRA, while the assumptions describe

traits of our particular model that are shared with modern superscalar processors [Shen

05].

Feature 1: Pipeline with out-of-order execution: There are four in-order (fetch,

decode, dispatch, commit) and two out-of-order pipeline stages (issue, execute).

Instructions enter the centralized issue queue in-order (a process called dispatch), but exit

the issue queue out-of-order (a process called issue). Instructions enter (during dispatch)

and exit (during commit) the ROB (reorder buffer) in order. The maximum number of

instructions-in-flight, n, equals the number of ROB entries in a superscalar processor. We

are targeting out-of-order processors, but for simpler in-order processors (e.g., ARMv6,

Intel Atom, SUN Niagara cores), the entire IFRA-based analysis can be significantly

simplified.

Feature 2: Multiple clock domains: For the execution stage, the granularity of

individual clock domains can be as fine as to include a single type of functional units, but

not finer. For example, if there are three ALUs and two load/store units, IFRA can

support two separate domains with one containing all the ALUs and the other containing

all the load/store units. For the rest of the pipeline stages, the granularity of individual

clock domains can be as fine as a single pipeline stage, but not finer.

Feature 3: Dynamic voltage and frequency scaling: Individual clock domains can

undergo independent dynamic voltage and frequency scaling.

Assumption 1: Branch misprediction handling: Mispredicted branch instructions are

detected by branch units in the execution stage and the corresponding pipeline flushes

(process of removing instructions in the middle of execution to enforce a change in

control flow) are initiated only after the branch instruction exits the execution stage.

9

Assumption 2: D-TLB miss handling: D-TLB misses behave similar to branch

mispredictions in that they both cause pipeline flushes. However, an instruction with a D-

TLB miss causes a pipeline flush only when the instruction reaches the head of the ROB

(i.e., it is the instruction‟s turn to commit).

Assumption 3: External interrupts and I-TLB miss handling: Both external interrupts

(an asynchronous signal indicating a need for a program flow change – e.g., process

context switch) and I-TLB misses are associated with the instruction at the tail of the

ROB at the time of occurrence. After the occurrence, the processor stops fetching new

instructions and allows the instructions that are already in the pipeline to commit.

Assumption 4: Fatal exception handling: Once an instruction with a fatal exception

reaches the head of the ROB, the processor is halted without any pipeline flushes.

Assumption 5: Test program binary: Binary is statically linked so their PCs (Program

Counter) can be inferred after system failure. Otherwise, we would increase total storage

from 60 Kbytes to 76 Kbytes to record instruction words in the recorders (more details in

Sec. 2.2.1)

10

2.2 IFRA HARDWARE SUPPORT

We use an Alpha 21264-like 4-way superscalar processor model [Digital 99] to explain

the IFRA recording infrastructure. The shaded parts in Fig. 2.2 indicate the three

hardware components of IFRA:

1) A set of distributed instruction footprint recorders (denoted by „R‟ in Fig. 2.2)

with dedicated storage. Each recorder is associated with a pipeline stage, and

collects instruction footprints corresponding to the associated stage.

2) An ID assignment unit for assigning and appending an ID to each instruction that

enters the processor.

3) A post-trigger generator for pausing or stopping recording.

When an instruction, with an ID appended, flows through a pipeline stage, it generates an

instruction footprint corresponding to that pipeline stage which is stored in the recorder

associated with that pipeline stage. An instruction footprint consists of:

1) The ID corresponding to the instruction.

2) Auxiliary information corresponding to the pipeline stage that tells us what the

instruction did in the microarchitectural blocks contained in that pipeline stage.

Even if a processor were bug-free, there may be bugs inside IFRA hardware. Electrical

bugs affecting only IFRA hardware structures may result in two outcomes:

1) False post-trigger activation; or

2) Errors in the recorded data but not in the pipeline.

Because the recording operation and the post-trigger generation are performed by

independent hardware, errors affecting only one of the two do not cause false positives

(i.e., a false indication of a bug in a bug-free processor). For the first case, the scanned-

out footprints will indicate that the post-trigger was not supposed to activate. For the

second case, since erroneous recorded data alone can never generate a post-trigger, the

recorded data will be overwritten unnoticed.

11

Fig. 2.2. Superscalar processor augmented with recording infrastructure.

ID Assignment

Unit

Issue Queue

Branch PredictorI-TLBI-Cache

Fetch Queue

Decoders

Reg Alias Table

Reg Free List

Dependency Checker

Phys. Reg File

ALU MUL Branch LSU

Reorder Buffer Reg Alias Table

FETCH

DECODE

DISPATCH

ISSUE

EXECUTE

COMMIT

Post-

Trigger

Generator

R

Instruction Flow

Instruction Footprint Flow

Key

Instruction Footrprint RecorderPost-Trigger Control

RRR

RR R R

RR R R

RR R R

RR R R

Scan chain

R

Instruction Footprint scan

out path after system failure

12

2.2.1 INSTRUCTION FOOTPRINT RECORDER

As shown in Fig. 2.3, each recorder consists of a circular buffer and simple control logic.

Each pair of Instruction ID and auxiliary information enters and fills up the circular

buffer during test run and is scanned out after a system failure. The control circuitry is

responsible for four tasks:

1) Compacting idle cycles;

2) Controlling circular buffer operations;

3) Starting/resuming and stopping/pausing recording according to the post-trigger

signal;

4) Serializing buffer contents when they are scanned out.

Buffer tail

Buffer head

Circular

buffer

Instruction footprint

(ID + auxiliary info) signals

Footprints scanned out after system failure

Post-trigger

signal
Simple control circuit

Fig. 2.3. Internal structure of a footprint recorder.

Table 2.1 shows the auxiliary information collected in each pipeline stage. Decoded bits

corresponding to an instruction, collected at the decode stage, tell us which functional

unit the instruction is going to use (2 bits), whether it uses a destination register (1 bit),

and/or a second operand register (1 bit). The 2-bit and 3-bit residues are obtained by

performing mod-3 and mod-7 operations on the original values, respectively. The

commit-stage recorder, rather than having a circular buffer, has one register that records

the ID of the youngest committed instruction along with any fatal exceptions it caused.

13

Table 2.1. Auxiliary information for Alpha microarchitecture.

Pipeline stage

Auxiliary information
Number

of
recorders

Entries
per

Recorder Description
Bits
per

entry

Fetch Program counter 32 4 1,024

Decode Decoded bits 4 4 1,024

Dispatch
2-bit residue of register

name
6 4 1,024

Issue 3-bit residue of operands 6 4 1,024

ALU, MUL 3-bit residue of result 3 4 1,024

Branch None 0 2 1,024

LSU
3-bit residue of result;

memory address
35 2 1,024

Commit Fatal exceptions 4 1 1

Total storage required for all recorders:
(Each entry has an additional 8-bit ID (Sec. 2.2.2))

60 Kbytes

Synthesis results (using Synopsys Design Compiler with a TSMC 0.13µ library) show

that the area impact of the IFRA hardware infrastructure is 1% on the Illinois Verilog

Model [Wang 04], assuming a 2MByte on-chip cache, which is typical for current

desktop/server processors. This overhead is largely dominated by the circular buffers

present in the recorders. Wires connecting the recorders (shown in Fig 2.2) operate at

slow speed, and a large portion of this routing reuses existing on-chip scan chains that are

present for manufacturing testing. If on-chip trace buffers [Abramovici 06] already exist

for validation purposes, they can be reused to reduce the area impact. Alternatively, a part

of data cache may also be used [Agarwal 86] to reduce the area impact of IFRA.

14

2.2.2 ID-ASSIGNMENT UNIT

There must be a method of identifying which set of the recorded data, stored across

multiple recorders, belong to a particular instruction that was in-flight in the processor.

Each footprint can be tagged with an identifier, or an ID, but the choice of the ID

assignment scheme is important.

Many possible simplistic ID assignment schemes exist, each with their own limitations.

For example, a scheme can assign consecutive numbers in a circular fashion to each

incoming instruction. However, if IDs are too short (e.g., 8-bit IDs if there can be only

256 instructions in a processor at any point in time), then complex recorders are required

that are capable of removing footprints in the event of a pipeline flush. Having wider IDs

will solve this problem, but will suffer from large storage requirement (e.g., 40-bit ID

will increase the storage requirement to 160Kbytes from 60Kbytes). Another option that

does not require complex recorders would be to use global timestamps in addition to the

short IDs, but this scheme also suffers from large storage requirements. The schemes that

do not require complex recorders suffer even more in the presence of multiple clock

domains with voltage and frequency scaling (DVFS).

Using PC values as IDs does not work for processors supporting out-of-order execution.

Programs with loops may produce multiple instances of the same instruction with the

same PC value. These multiple instances may execute out of program order.

Our special ID assignment scheme, described below, uses log24n bits, where n is the

maximum number of instructions in a processor at any one time (e.g., n = 64 for Alpha

21264).The first two rules assign consecutive numbers in a circular fashion to incoming

instructions while the third rule allows the scheme to work (proof in Appendix A) under

all the aforementioned circumstances: i.e., for processors supporting out-of-order

execution, pipeline flushes, multiple clock domains and DVFS. Instruction IDs are

assigned to individual instructions as they exit the fetch stage and enter the decode stage

15

(Fig. 2.4). Since multiple instructions may exit the fetch stage in parallel at any given

clock cycle, multiple IDs are assigned in parallel.

REG

Flush-causing ID from

execution/commit stage

Decode Stage+2n+1

+1

Counter
...

ID1

Recorder1REG
REG

REG REG

Aux. Info1 Instr2

REG REG

Counter
ID2

Recorder2 REG

Instr1 Aux. Info2

Execution/Commit Stage

ID-Assignment Unit

...

...

Fetch Stage

Fig. 2.4. ID-assignment unit for a 2-way processor.

Instruction ID Assignment Scheme used by IFRA:

Rule 1: The first p instructions that exit the fetch stage in parallel are assigned IDs, 0,

1, 2, ,.. , p-1.

Rule 2: Let ID X be the last ID that was assigned. If there are q instructions that exit

the fetch stage in the current cycle in parallel, then q IDs, X+1 (mod 4n), X+2 (mod

4n), …, X+q (mod 4n) are assigned to the q instructions.

Rule 3: If an instruction with ID Y causes a pipeline flush, then the ID X in Rule 2 is

overwritten with the value of Y+2n (mod 4n). As a result, ID of Y+2n+1 (mod 4n) is

assigned to the first instruction that is fetched after the flush.

There exists sufficient time between instantiations of Rules 3 and 2 to overwrite the ID X

with Y+2n (mod 4n) before newly fetched instructions arrive at the ID assignment unit.

This is because it takes several cycles (e.g., Alpha 21264 has 3 pipeline stages within the

fetch stage) for the instructions to propagate from the beginning to the end of the fetch

stage.

16

2.2.3 POST-TRIGGER GENERATOR

Suppose that a test program has been executing for billions of cycles and an electrical

bug is exercised after 5 billion cycles from start. Moreover, suppose that the electrical

bug causes a system crash after another 1 billion cycles. With limited storage, we are

only interested in capturing the information around the time when the electrical bug is

exercised. Hence, five billions of cycles worth of information before the bug occurrence

may not be necessary. On the other hand, if we stop recording only after the system

crashes, all the useful recorded information will be overwritten. Thus, we must

incorporate mechanisms, referred to as post-triggers, for reducing error detection latency,

the length of time between the appearance of an error caused by a bug and system failure.

Post-triggers targeting five different failure scenarios are listed in Table 2.2. A hard post-

trigger fires when there is an evident sign of failure, and causes the processor operation

to terminate. Classical hardware error detection techniques such as parity bits for arrays

(e.g., register file, ROB, register free list, and various queues) and residue codes for

arithmetic units in ALUs and address calculators exist in several commercial processors

[Ando 03][Sanda 08]. Fatal exceptions, such as unimplemented instruction exceptions,

arithmetic exceptions and alignment exceptions are already present in most processors.

However, hard post-triggers mechanisms alone are not sufficient, e.g., two tricky

scenarios described in the last 2 rows of Table 2.2. These two failure scenarios may be

detected several millions of cycles after an error occurs, causing useful recorded

information to be overwritten even with the existing error detection mechanisms. Hence,

we introduce the notion of soft post-triggers. A soft post-trigger fires when there is an

early symptom of a possible failure. It causes the recording in all recorders to pause, but

allows the processor to keep running. If a hard post-trigger for the failure corresponding

to the symptom occurs within a pre-specified amount of time, the processor stops. If a

hard post-trigger does not fire within the specified time, the recording resumes assuming

that the symptom was false.

17

For deadlocks, a soft post trigger event fires when no instruction retires within the time

required to perform two memory loads. The corresponding hard post trigger event is two

additional seconds of no retirement [Mahmood 88].

Segmentation faults (or segfaults) require OS handling and, hence, may take several

millions of cycles to resolve. Null-pointer dereferences are detected by adding simple

hardware to detect whether the memory address equals zero in the Load/Store unit. For

other illegal memory accesses, a TLB-miss signal is used as a soft post-trigger. If a

segfault is not declared by the OS while servicing the TLB-miss, the recording is

resumed on TLB-refill. On the other hand, if a segfault is returned, then a hard post-

trigger is activated. The pause in the recording may create a period of time that acts as a

blind spot during post-silicon validation. In order to cover such blind spots, a separate set

of functional tests specifically targeting TLB servicing must be designed to identify bugs

that may appear during TLB-misses. While running such tests, soft-triggers targeting

segfault must be disabled so that recorders do not pause during the TLB servicing.

Silent data corruption and live-locks are not covered by the current set of post-triggers.

Use of a wider variety of post-triggers based on hardware assertions [Abramovici

06][Bayazit 05], software assertions, and symptoms [Wang 04] is a topic of future

research.

Table 2.2. Failure scenarios and post-triggers.

Failure Scenario
Post-triggers

Soft Hard

Array error - Parity check

Arithmetic error - Residue check

Fatal exceptions - In-built exceptions

Deadlock Short (2 mem loads)
instruction retirement gap

Long (2 secs) instruction
retirement gap

Segfault TLB-miss + TLB-refill

(for both data and
instruction TLBs)

Segfault from OS,

Address equals 0

18

2.3 POST-ANALYSIS TECHNIQUES

Once recorder contents are scanned out and formatted (Sec. 2.3.1) appropriately,

footprints belonging to the same instruction (but in multiple recorders) are identified and

linked together using a technique called footprint linking (Sec. 2.3.2) as shown in Fig. 2.5.

The linked footprints are also mapped to the corresponding instruction in the test program

binary using the PC values stored in the fetch-stage recorder. After which, two sets of

self-consistency-based checks are run, inspecting for the existence of contradictory

events in linked footprints with respect to the test program binary. A set of

microarchitecture-independent checks, referred to as high-level analysis (Sec. 2.3.3),

finds the first sign of an inconsistency in program execution. The information on the

discovered inconsistency is passed along to the next step in the form of a <location,

footprint> pair (Sec. 2.3.2.2). Starting from the inconsistency, the next step runs a set of

microarchitecture-dependent checks, referred to as low-level analysis (Sec. 2.3.4),

identifying a set bug candidates, which are also in the form of <location, footprint> pairs.

From the bug candidates, corresponding exposing stimuli are derived (Sec. 2.3.5). The

low-level analysis asks a series of microarchitecture-specific questions according to a

manually-generated decision diagram. A technique for minimizing the manual effort is

presented later in Chapter 3.

The post-analysis techniques rely on the concept of self-consistency. While such checks

are extensively used in fault-tolerant computing for error detection [Austin 99][Lu

82][Oh 02][Siewiorek 98], we use them for bug localization. Such application is possible

because, unlike fault-tolerant computing, the checks are performed off-line enabling

deeper analysis for localization purposes.

19

 Fig. 2.5. Post-analysis summary.

20

2.3.1 FORMATTING SCANNED-OUT FOOTPRINTS

After scanning out footprints from individual recorders, the following six steps format the

set of footprints before linking:

1) Unwrap circular buffers: The footprints scanned out from each circular buffer

are unwrapped so that the youngest entry appears at the bottom and the oldest

entry appears at the top (Fig. 2.6).

2) Expand idle cycles: While recording footprints, consecutive idle cycles are

compacted to occupy a single entry. The compacted entries are expanded back so

that each entry corresponds to a clock cycle.

3) Align circular buffers: The unwrapped circular buffers associated with each

pipeline stage are collected and juxtaposed so that the youngest entries are aligned

(Fig. 2.6). Due to the 2
nd

 feature of our processor model (Sec. 2.1), each row in

the juxtaposed buffers corresponds to the same clock cycle.

4) Discard incomplete rows: For a given pipeline stage, some recorders record

longer history than others because they encounter more idle cycles. For simplicity

of analysis, incomplete rows are discarded (Fig. 2.6). The resulting matrix of

footprints is referred to as footprint matrix.

5) Convert to footprint vector: Footprint matrices associated with in-order pipeline

stages are converted into footprint vectors, where (i,j)
th

 entry of the matrix

corresponds to (wi+j)
th

 entry of the vector, for a w-way stage. Footprint matrices

associated with out-of-order pipeline stages are retained.

6) Augment fetch-stage footprint vector: Footprint vector associated with the

fetch-stage is augmented with an additional auxiliary information field to contain

instruction words (Fig. 2.7). Since PC is stored in the fetch-stage recorder (Table

2.1), instruction word corresponding to each PC can be obtained from the test

program binary.

21

Oldest entry

Youngest

Way-1

Discarded

incomplete rows

Oldest entry

Youngest

Way-2

Oldest entry

Youngest

Way-3

Oldest entry

Youngest

Way-4

Fig. 2.6. Aligning four unwrapped circular buffers for a 4-way pipeline stage.

Fig. 2.7. Fetch-stage footprint vector augmented with instruction words.

22

2.3.2 FOOTPRINT LINKING

Fig. 2.8 shows part of a test program binary and the contents of three (out of many)

recorders, right after they are scanned out. As explained in Sec. 2.2.2, since we use short

instruction IDs (8-bits for Alpha 21264-like processor), we end up having multiple

footprints having the same ID in the same recorder and /or multiple recorders. For

example, in Fig. 2.8, ID 0 appears in three entries of the fetch-stage footprint vector, in

two entries of the issue-stage footprint matrix (with a single column), and in three entries

of the ALU footprint matrix (with a single column).

Footprint linking analyzes ID sequence to identify which of these ID 0s belongs to the

same instruction. The ID assignment scheme presented in Sec. 2.2.2 enforces the

following properties on the ID sequence (proof in Appendix A):

Property 1) All flushed instructions are uniquely identified by using Rule 3 of the ID

assignment scheme;

Property 2) If instruction A was fetched before instruction B, and they both have the

same ID, then A will always exit any pipeline stage (and leave its footprint in the

corresponding recorder) before B does for that same pipeline stage.

In Fig. 2.8, using the first property, all flushed instructions with ID 0s are identified and

discarded. Fig. 2.9 shows how the identification is done for the fetch-stage footprint

vector. The example corresponds to a processor with n, the maximum number of in-flight

instructions, equal to 2. The fetch stage processes instructions in program order. The first

step is to identify breaks in consecutive IDs, e.g., there is a break between the second

youngest ID 0 and ID 4. The gap immediately indicates that the ID 4 belongs to a newly-

fetched instruction after a pipeline flush. Subtracting 2n + 1 from ID 4 identifies the ID of

a flush-causing instruction. All IDs between the flush-causing (ID 7) and the newly-

fetched (ID 4) correspond to flushed instructions. Similar analysis is done for all other

breaks in the consecutive assignment to identify IDs corresponding to flush-causing,

flushed, committed and uncommitted instructions. For pipeline stages that process

23

instructions out of program order (e.g., issue- and execution-stages), identification of

flushed instructions is more complex (full details in the Appendix A).

After the flushed instructions are identified and discarded, using the second property, the

youngest instances of ID 0 across all vectors/matrices are linked together, followed by

linking of the second youngest instances of ID 0, and so on.

 Fig. 2.8. Footprint linking, with a max number of 2 instructions in flight.

 Fig. 2.9. Flushed / flush-causing instructions in fetch stage footprint vector.

24

Linked footprints provide the following information for each instruction that was in-flight

in the processor:

1) Whether it was committed or uncommitted;

2) Whether it was flush-causing, flushed or neither;

3) The cycle when the instruction went through a particular pipeline stage relative to

the cycle when the recording was stopped / paused for that stage;

4) The operation the instruction was performing at a particular pipeline stage.

2.3.2.1 Footprint Pointer

We define footprint pointer. A footprint pointer for a footprint vector/matrix points to a

vector/matrix entry that contains a single footprint. When incrementing a pointer for a

footprint matrix, the pointer accesses the matrix in row-major order (i.e., left to right in a

row and then from oldest to youngest row) as shown in Fig. 2.10.

Fig. 2.10. Footprint pointer and direction of pointer increment.

A footprint pointer indicates a cycle within a pipeline stage, relative to the cycle when the

post-trigger was recieved. For example, consider the fetch-stage footprint vector shown

in Fig. 2.11. Compacted consecutive idle cycles are expanded back, as described in Sec.

2.3.1 and the youngest footprint is the one recorded just before receiving a post-trigger.

Since each entry corresponds to a cycle within a pipeline stage, the difference from the

tail pointer indicates the relative cycle from the cycle when the recording was stopped for

that pipeline stage, as shown in the figure. If a single clock domain is used for the entire

processor, as opposed to having a separate clock domain for each pipeline stages, then the

footprint pointer would indicate a global cycle within the processor instead.

25

 Fig. 2.11. Footprints indicating cycles within a pipeline stage.

2.3.2.2 <Location, Footprint> Pair

We define <location, footprint> pair. The location element of the pair indicates a design

block containing an erroneous flip-flop affected by an electrical bug. The footprint

element of the pair is a footprint pointer that indicates a cycle within a pipeline stage

when the erroneous behavior occurred.

2.3.2.3 Follow_link() Operator

We define a new operator, follow_link(). It takes three inputs – source footprint pointer,

source footprint vector, destination footprint vector – and returns a destination footprint

pointer. While the source pointer points into the source footprint vector entry that

contains a footprint belonging to a particular instruction, the operator returns a pointer

into the destination footprint vector entry that contains the footprint belonging to the

same instruction. A similar operator can be defined for footprint matrices, and we will be

overloading the operator to include all combinations of footprint vector and matrices as

source and destination.

26

2.3.2.4 Footprint Pointer Comparison Operator

We define a comparison operator for two footprint pointers, P1 and P2, pointing at two

different footprint vector/matrices. Denote the footprint vector/matrix pointed by P1 and

P2 as F1 and F2. The comparison P1 > P2 then becomes follow_link (P1, F1, fetch-

stage) > follow_link(P2, F2, fetch-stage). The > operator can be replaced with any other

relational operators (=, ≠, <, ≥, ≤,). For two footprint pointers pointing at the same

footprint vector, perform numerical comparison of the pointers, and for the pointers

pointing at the same matrix, perform numerical comparison of the row numbers.

27

2.3.3 HIGH-LEVEL ANALYSIS
1

We have four high-level analysis techniques:

1) Data-dependency analysis;

2) Control-flow analysis;

3) Data-transfer analysis;

4) Instruction-flow analysis.

Each analysis technique is applied separately, starting from the oldest entry in the

footprint vectors/matrices until any inconsistency is sighted. Each inconsistency is

represented as a <location, footprint> pair (Sec. 2.3.2.2), where the location element of

the pair dictates the entry point into the decision diagram used for the low-level analysis.

If only one of the analysis techniques identifies an inconsistency, then the corresponding

entry point into the decision diagram is taken. If none of them discovers an inconsistency,

then there is a default entry point into the decision diagram. If multiple of them identify

inconsistencies, then there are two options:

1) Perform low-level analysis from each entry point corresponding to each

inconsistency separately and then combine the results.

2) Since we are interested in the inconsistency that is closest to the electrical bug

manifestation in terms of time, the reported inconsistencies are compared (as

defined in Sec.2.3.2.4) to see which one occurred the earliest. The high-level

analysis technique with the earliest occurring inconsistency then dictates the entry

point into the decision diagram for the low-level analysis.

Our results are reported using the second option. Investigation of the first option is a topic

of future research.

1
 The high-level analysis has been updated from the version shown in [Park 09] so that

the result of the high-level analysis can be directly used by the BLoG framework

presented in Chapter 3.

28

2.3.3.1 Data-dependency Analysis

This analysis technique verifies whether the instruction data dependency order [Shen 05]

is preserved; i.e., the analysis verifies that every committed instruction A is issued only

after all instructions that would produce A‟s operands finish execution. Let B be the

producer instruction without loss of generality. Use the fetch-stage-footprint-vector to

identify vector entries corresponding to A and B and denote them with two pointers Pfa

and Pfb. Then perform follow_link (Pfa, fetch-stage, issue-stage) to obtain Pia to an

issue-stage-footprint-matrix entry. Create new pointers, Pic1…PicN, where each pointer

points to each of the committed footprints that are on the same row as the footprint

pointed by Pia. N is the number of committed footprints on the same row, including the

one pointed by Pia. Perform follow_link (“source pointer”, issue-stage, execution-stage)

by replacing “source pointer” with each of the Pic1…PicN, to obtain Pe1 … PeN. For

each of Pea1 … PeaN, move the pointer by number of rows equal to the latency

associated with the execution unit. For example, for an execution-stage footprint matrix

corresponding to an ALU with 3-cycle latency, the pointer will be moved up by 3 rows.

Then perform follow_link (Pfb, fetch-stage, execution-stage) to obtain Peb. If Peb is in

the row below any of the Pea1 … PeaN, then there is a data dependency violation. A

failed check returns <scheduler‟s issue-ready signal, Pia> as the <location, footprint>

pair.

As an example, consider Fig. 2.12. Since instruction with ID 0 shown in the fetch-stage

footprint vector produces a value on R0, while the instruction with ID 3 consumes a value

from R0, data dependency exists between those two instructions. Instruction with ID 0

enters the ALU while the instruction with ID 3 enters the multiplier (shown in the

execution-stage footprint matrices with single column each). Assume that the two

functional units are in different clock domains, and also assume that the ALU has a

latency of 3 cycles. Since the two dependent instructions are in different clock domains

with a possibility of dynamic frequency scaling, it is not possible to directly check their

relative timing. However, we know that the all the issue-stage recorders must be in a

29

single clock domain (feature 2 of Sec. 2.1), and thus know that the instructions with ID 3

and ID 5 must be issued at the same time (shown in the issue-stage footprint matrix). In

this case, there is only two cycles difference between ID 3 and ID 0, which is shorter than

the 3-cycle latency of the ALU. This implies the consumer instruction with ID 3 was

issued prematurely, before the producer instruction with ID 0 has completed.

Issued same time

ID

0

1

2

3

4

5

6

Fetch-stage

footprint vector
WAY1

ID

0

6

5

-

Issue-stage

footprint matrix

Instruction

R0 = R0 + R0

R1 = R1 x R1

R2 = R2 + R2

R3 = R0 x R0

R4 = R4 x R4

R5 = R5 + R5

R0 = R5 + R5

ID in

ALU

0

-

5

2

-

-

Execution-stage

footprint matrices
ID in

MUL

-

1

6

-

3

-

WAY2

ID

1

-

3

2

tim
e

older

younger

Fig. 2.12. Data-dependency analysis example.

30

2.3.3.2 Control-flow Analysis

In the program control flow analysis, four types of illegal transitions are searched in the

PC sequence of committed instructions in the fetch-stage footprint vector, starting from

the oldest PC:

1) The PC does not increment by +4 except in the presence of a control flow

transition instruction (branch or jump);

2) The PC increments by +4 in the presence of unconditional transition instruction;

3) The PC neither increments by +4 nor jump to the correct target specified as the

immediate in the presence of direct transition instruction (with target address not

dependent on a register value);

4) The PC does not jump to an address that is part of the executable address space

(determined from the program binary) in the presence of register-indirect

transition instructions (with target address that depends on a register value).

With a violation in control flow from instruction A to instruction B, the analysis returns

<Program counter register of branch unit, pointer to A‟s fetch-stage footprint vector

entry> as the <location, footprint> pair.

31

2.3.3.3 Data-transfer Analysis

This technique verifies that a value loaded from a memory address matches with the

value stored at that address. The check is performed on the load-store sequence obtained

from load-store unit footprint matrix. The checks below return six types of

inconsistencies and are performed upon each value stored to an address a, denoted w[a],

and the subsequent (without an intervening store to a) values loaded from a denoted

r[a](1) ... r[a](n).

A violation in Data-transfer analysis returns at least one and up to five of the following

<location, footprint> pairs:

Pair 1) <Address output of store address queue in load-store unit, pointer to w[a] in

load-store unit footprint matrix>;

Pair 2) <Address output of load queue in load-store unit, pointer to r[a](k) in load-

store unit footprint matrix>, where k is determined during the checks;

Pair 3) <Data output of store data queue in load-store unit, pointer to w[a] in load-

store unit footprint matrix>;

Pair 4) <Load data output of load-store unit, pointer to r[a](k) in load-store unit

footprint matrix>, where k is determined during the checks;

Pair 5) <Memory, pointer to w[a] in load-store unit footprint matrix>;

Pair 6) <Memory, pointer to r[a](k) in load-store unit footprint matrix>, where k is

determined during the checks.

There are three checks performed by the data-transfer analysis:

1) If for all i, j, r[a](i) = r[a](j) (i.e., all loads were consistent) and for all i, w[a] ≠

r[a](i), and n > 1 then the multiple consistent loads suggest that the store address

was incorrect. Return pair 1 listed above. In addition, there is possibility that the

memory write/read was incorrect. Since we are only concentrating on processor

bugs, this inconsistency is not passed onto low-level analysis, but is appended on

32

to the list of candidate location-footprint pairs returned by low-level analysis. The

inconsistency location-footprint pair is the pair 5 listed above.

2) If w[a] ≠ r[a](i), and n = 1 then since there is only one load, a bug in the load

cannot be ruled out. Return pair 1 and 5 as was done in the previous check, along

with 2, 4, and 6, where k = 1.

3) If there exists i, j, such that r[a](i) ≠ r[a](j) (i.e., not all loads are consistent) then

for each load r[a](k) ≠ w[a], pair 2, 4 and 6.

33

2.3.3.4 Instruction-flow Analysis

This analysis checks whether instructions are decoded correctly, and whether they pass

through the correct sequence of modules without disappearing or being modified

erroneously in the middle.

The first consistency check is to verify, using the decode-stage bits, that only the recorder

associated with the correct functional unit had recorded the instruction (e.g., an ADD

instruction does not go into a multiplier unit). A failed check returns the footprint of the

incorrectly executed instruction in the execute-stage footprint matrix as the inconsistent

footprint.

The next three checks ensure that footprints contained in earlier pipeline stages should be

a superset of footprints (both committed and uncommitted) contained in later pipeline

stages. For example, a decode-stage footprint vector cannot contain a footprint that is not

present in fetch-stage footprint vector. Due to finite-sized buffers, we do not perform this

check for all footprints. These checks impose an additional requirement of post-trigger

routing: later pipeline stages must be stopped before or at the same time as earlier

pipeline stages. Even if pipeline stages are not in the same clock domain, this can be done

by stopping each stage from commit to fetch in sequence.

Consistency among footprint vectors: Create pointers P1, P2, and P3 to the youngest

footprints of the fetch, decode, and dispatch footprint vectors. If P1 points to an

uncommitted footprint with ID X, verify that if P2 does not point to X, then P3 does not

either. A failure returns an erroneous flush inconsistency whose inconsistent footprint is

the next older flush-causing footprint in the dispatch footprint vector. If P1 points to a

committed footprint X, verify that both P2 and P3 point to X. A failure returns an

inconsistency whose inconsistent footprint is X’s footprint in the footprint vector

associated with the pipeline stage before the stage which was missing X‟s footprint.

Continue this check by incrementing the pointers that point to X to the next older entries

of the respective footprint vectors. If a pointer cannot be incremented, stop.

34

Consistency among footprint matrices: Given the issue-stage matrix and execute-stage

matrix, we use the fact that issue order and execute order for a given functional unit are

the same. Each functional unit is associated with a column in the issue and fetch stage

footprint matrices. The prior check is performed between the two columns associated

with each functional unit.

Consistency along the vector-matrix boundary (dispatch-stage vector and issue-stage

matrix). Algorithms similar to that of Algorithm A in Appendix A are used to perform

the following checks:

For each committed instruction in the issue-stage matrix, the algorithm checks that it

appears in the dispatch-stage footprint vector as well. A failure returns a missing

footprint inconsistency whose inconsistent footprint is X’s footprint in the issue-stage

footprint matrix.

When performing Step 6 of Algorithm A.3 in Appendix A (identifying uncommitted

instructions in the footprint matrix), check that the uncommitted instructions have a one-

to-one mapping to uncommitted instructions in the dispatch-stage footprint vector. More

than one uncommitted footprint indicates a duplicated uncommitted footprint in the

matrix or a missing flush-causing footprint in the matrix. A failure returns an erroneous

flush inconsistency whose inconsistent footprint is the footprint of the flush-causing

instruction in the dispatch-stage footprint matrix.

35

2.3.4 LOW-LEVEL ANALYSIS
2

Given the inconsistency, in the form of a <location, footprint> pair, returned from the

high-level analysis, the low-level analysis asks a series of microarchitecture-specific

questions according to a manually-generated decision diagram (an example of which is

shown in Appendix B). The location-element of the inconsistency decides the entry point

into the decision diagram. While going through the decision diagram, the location and

footprint elements are both updated to find the <location, footprint> pairs associated with

the final bug candidates. The location element of a bug candidate indicates a possible

design block containing the flip-flop that was first affected by an electrical bug, while the

footprint element indicates the cycle in which the event took place.

2.3.5 BUG-EXPOSING STIMULUS

Bug-exposing stimuli are derived from footprint elements of bug candidates. Denote the

footprint pointer of a bug candidate as Pbug and the footprint vector/matrix pointed by

Pbug as Vbug. Performing follow_link (Pbug, Vbug, fetch-stage) returns a pointer

partitioning the fetch-stage footprint vector into two parts. Older footprints correspond to

the bug exposing stimulus, which is a trace of instructions leading up to the cycle in

which the bug first caused an error in a flip-flop. Younger footprints correspond to trace

of instructions responsible for propagating the error to an observable output.

2
 We only briefly mention the low-level analysis here, because Chapter 3 describes a

framework for systematically constructing a low-level analysis decision diagram and a

method for traversing it.

36

2.4 RESULTS

We evaluated IFRA by injecting errors into a microarchitectural simulator [Austin 02]

augmented with IFRA. We used an Alpha 21264 configuration (4-way pipeline, 64

maximum instructions in-flight, 2 ALUs, 2 multipliers, 2 load/store units), which gave

200 different locations (excluding array structures and arithmetic units since errors inside

those structures are immediately detected and localized using parity and residue codes, as

discussed in Sec. 2.2.3). Each location has an average size equivalent of 10K 2-input

NAND gates. Seven benchmarks from the SPECint2000 benchmark suite (bzip2, gcc,

gap, gzip, mcf, parser, vortex) were chosen as validation test programs as they represent

different types of workloads. Each recorder was sized to have 1,024 entries.

All bugs were modeled as single bit-flips at flip-flops to target hard-to-repeat electrical

bugs. This is an effective model because most electrical bugs eventually manifest

themselves as incorrect values arriving at flip-fops for certain input combinations and

operating conditions [McLaughlin 09].

Errors were injected in one of 1,191 flip-flops (Table 2.3). No errors were injected in

structures protected with built-in parities/residues for error detection. Errors were injected

in input / output registers and various control registers controlling the array structures.

Pipeline registers in Table 2.3 include decoded opcode, register specifiers, immediate

data, addresses to arrays, etc. Valid bits indicate whether a given instruction is valid or

not in a pipeline register.

 Table 2.3. Error injection bits.

Description Number of bits

PC, next PC 128

Memory Address used by Load/Store 128

Input/Output latch of Array Structures 82

Pointers to Array structures 23

Control states of Array Structures 4

Pipeline Registers 800

Valid Bits 26

37

Upon error injection, the following scenarios are possible:

Case 1) The error is masked and causes no system-level effect [Wang 04].

Case 2) The error is silent in that it does not cause any post-trigger mechanism to

trigger, but the program output is incorrect [Wang 04].

Case 3) Failure manifestation with short error detection latency, in which case the

recorders successfully capture the history from error to failure manifestation

(including situations where recording is paused upon activation of soft post-

triggers).

Case 4) Failure manifestation with long error latency, where 1024-entry recorders fail

to capture the history from error to failure (including soft triggers).

Cases 1 and 2 are related to coverage of validation test programs and post-triggers, and

are not the focus of this paper. Any error injection runs which does not result in the

activation of any post-trigger within 100,000 cycles from the point of error injection was

repeated with a new error injection run.

When case 3 occurs, IFRA-based post-analysis is performed to obtain a set of bug

candidates in the form of <location, footprint> pairs. Each pair indicates a design block –

which contains the flip-flop that is thought to be flipped in value – together with a cycle

in which the bit-flip is thought to have occurred, relative to the cycle in which the system

failure occurred.

Out of 100,000 error injection runs, 800 of them resulted in Cases 3 and 4. Table 2.4

presents results from these two cases. The “exactly localized” category represents the

cases in which IFRA returned a single and correct <location, footprint> pair. The

“multiple candidates” category represents the cases in which IFRA returned multiple bug

candidates and at least one pair was fully correct in both location and in cycle. The

“completely missed” category represents the cases where none of the returned pairs were

correct. In addition, we pessimistically report all errors that resulted in Case 4 as

“completely missed.”

38

All error injections were performed after a million cycles from the beginning of the

program in order to demonstrate that there is no need to keep track of all the footprints

before the appearance of an error. It is clear from Table 2.4 that a large percentage of

bugs were uniquely located to correct <location, footprint> pair, while very few bugs

were completely missed, demonstrating the effectiveness of IFRA.

For “multiple candidates” cases, Table 2.4 also reports statistics on the number of

possible candidates out of a total of 200,000 possible candidate <location, footprint>

pairs. When IFRA identified multiple candidates, on average, it correctly dismissed

99.8% of the possible bug locations.

Table 2.4. IFRA bug localization summary.

Result category Percentage

Exactly Localized 75%

Correctly Localized with multiple
candidates

21%

min. 2, avg. 6, and max. 34 candidates

Completely Missed 4%

39

2.5 RELATED WORK

Related work on post-silicon validation can be broadly classified into the following

categories: formal methods [De Paula 08], embedded trace buffers for hardware

debugging [Abramovici 06], on-chip program and data tracing [MacNamee 00], clock

manipulation [Josephson 06], scan dump [Caty 05], check-pointing with deterministic

replay [Silas 03][Sarangi 06], and on-line assertion checking [Abramovici 06][Bayazit

05][Chen 08]. Table 2.5 provides a qualitative comparison of IFRA versus existing

techniques.

Most of the techniques require failure reproduction and system-level simulation. If easy

failure reproduction support is present, it will also help IFRA by allowing recorders to

record unlimited lengths of history through repeated sampled recording and dumping.

On-chip storage of program and data traces [MacNamee 00], commonly used in

embedded processors (e.g. ARM, Motorola‟s MPC, Infineon‟s Tricore), have some

similarity with IFRA in that they also store program flow of the executed software. If one

can assume perfect hardware, capturing the signals at the asynchronous interfaces is

sufficient to reconstruct all the internal signals using simulation [Xu 03]. However, such

information is only valid before an error occurs, and no reconstruction is possible beyond

the error. Since bug localization requires information from error to failure, the application

of the technique to hardware debugging is limited.

On-line assertion checking techniques are mostly used for detection and are

complementary to IFRA in that such techniques can be efficiently used to generate post-

triggers and also for fine-grained bug localization together with the post-analysis

techniques supported by IFRA.

40

Table 2.5. IFRA vs. existing techniques.

Techniques Intrusive?
Failure

reproduction?
System-level
simulation?

Area
impact?

Applicability?

Formal
methods

(+) No

(-) Yes

(+) No
(-) Yes

(+) SoC

Trace buffer Depends

(-) Yes

Scan
methods

(-) Yes

(+) No

Clock
manipulation

(-) Yes

Program &

data tracing
Depends

(+) No (-) Processor
Checkpoint

& replay
(-) Yes

Assertion
checking

Depends Depends (+) No (-) Yes (+) SoC

IFRA (+) No (+) No (+) No (-) 1% (-) Processor

41

2.6 CONCLUSIONS

IFRA targets the problem of post-silicon bug localization of electrical bugs in a system

setup, which is a major challenge in processor post-silicon design validation. Two major

novelties of IFRA are:

1) High-level abstraction for bug localization using low-cost hardware recorders that

record semantic information about instruction data and control flows concurrently

in a system setup, eliminating the need for failure reproduction.

2) Special techniques, based on self-consistency, to analyze the recorded data for

localization after failure detection without full system-level simulation.

However, IFRA has its own limitations, opening up several interesting research

directions:

1) The localization takes advantage of the structured architecture of processor

designs, and targets bugs directly related to the core and not the cache logic or

interfaces. Application of IFRA still needs to be extended to homogeneous /

heterogeneous multi-core systems, and system-on-chips (SoCs) consisting of non-

processor designs.

2) IFRA does not currently support simultaneous multi-threaded processors [Shen

05].

3) Bugs that may only cause performance slowdown but not critical for correct

program runs are not targeted.

4) Sensitivity analysis and characterization of the inter-relationships between post-

analysis techniques, architectural features, error detection mechanisms, recorder

sizes, and bug types are yet to be performed.

42

CHAPTER 3. APPLICATION OF IFRA USING BLoG

While the concept of IFRA is applicable to any processor microarchitecture, the manual

effort required to correctly hand-craft a new decision diagram for a new

microarchitecture limits the efficiency of IFRA. This chapter presents the Bug

Localization Graph (BLoG) framework for systematically constructing and automatically

executing IFRA‟s offline microarchitecture-dependent analysis, enabling IFRA to be

applied to new microarchitectures with reduced engineering time and less expert

knowledge.

A BLoG is an abstract graphical representation of a processor that exposes structural

information (i.e., connections between microarchitectural blocks) so that

microarchitecture-dependent self-consistency checks can be performed on scanned-out

footprints (i.e., no system-level simulation) to localize bugs. A BLoG consists of a set of

BLoG nodes and edges, representing various hardware blocks and inter-block

connections, respectively (Sec. 3.1).

Using the BLoG framework, devising the microarchitecture-dependent low-level analysis

is equivalent to constructing (Sec. 3.2) a special directional graph – the BLoG – and

performing the analysis is equivalent to traversing the BLoG using special graph traversal

rules (Sec. 3.3).

Fig. 3.1 shows the bug localization flow using BLoG-assisted IFRA vs. the original IFRA.

After inserting recorders inside the chip, a BLoG is constructed using the chip‟s

microarchitectural description. Then the same flow of the original IFRA is followed until

the high-level analysis performed after a system failure. The high-level analysis returns

an inconsistency (Sec.2.3.3), in the form of a <location, footprint> pair (Sec. 2.3.2.2),

which is used together with the linked footprints (Sec. 2.3.2) to traverse the BLoG to

obtain bug candidates, which is again, in the form of <location, footprint> pairs.

43

Sec. 3.1 introduces the components of BLoG. Sec. 3.2 and Sec. 3.3 describe BLoG

construction and traversal methods respectively. Sec. 3.4 describes construction results

for a complex commercial microarchitecture followed by related work in Sec. 3.5 and

conclusions in Sec. 3.6.

Fig. 3.1. Bug localization flow using BLoG-assisted IFRA vs. original IFRA.

44

3.1 BLOG COMPONENTS

A BLoG consists of a set of BLoG nodes and edges. BLoG nodes are abstract

representation of hardware structures, capturing its functionality for the purpose of

performing microarchitecture-dependent-self-consistency checks. BLoG edges are

directional and are abstract representation of data or control signal values communicated

between the BLoG nodes. The edges themselves do not represent any physical hardware

and has zero delay. Bidirectional communication is modeled using two separate

directional edges. Each node has one or more incoming and outgoing edges (i.e., no sink

or source).

3.1.1 BLOG NODE TYPES

BLoG nodes can be one of eight exclusive types (Fig. 3.2), which can be broadly

classified into storage types (1-3) and non-storage types (4-8). Storage types model

hardware structures having variable propagation delays from data entry and exit, while

non-storage types model hardware structures having fixed delay, between data entry and

exit, known at design time. We provide a brief explanation of each BLoG node type

below.

1) Random-access: Storage with index-based addresses (e.g., register file, register

alias table) for individual entries.

2) Associative: Storage with associative access with explicit tags (e.g., cache,

branch target buffer, reservation station, TLB) for individual entries.

3) Queue: Storage with first-in-first-out entry management (e.g., re-order buffer,

load queue, store data queue, store address queue, instruction queue).

4) Modifying: Non-storage structure that modifies input values, producing different

output values (e.g., decoder, address generator, comparator, ALU).

5) Connection: Non-storage structure that propagates input values to output values

without modification (i.e.., series of pipeline registers).

45

6) Select: Non-storage structure that takes two input values and chooses one as an

output value (e.g., forwarding path, register/immediate select, next-PC select,

instruction select).

7) Protected: Modifying or Connection type with built-in error detection

mechanisms such as parity bits for arrays and residue codes for arithmetic units.

The Protected type is not necessary if such error detection techniques are not

present.

8) Default: Any non-storage structure not included in the aforementioned types (e.g.,

scheduler, load/store snoops, load replay handler).

All three storage types and the Connection type have a Clear input signal, which flushes

the content of the hardware structures upon assertion. Each of the seven non-default types

is associated with special rules that perform microarchitecture-dependent self-consistency

checks, which will be described later in Sec. 3.3.2.

 Fig. 3.2. Eight BLoG node types.

46

3.1.2 BLOG EDGE ATTRIBUTES

A BLoG edge has five attributes:

1) A footprint vector/matrix: specifies which vector/matrix to look up in order to

obtain the data or control signal values on the edge;

2) An auxiliary-information-field selector: specifies which auxiliary information

field (Table 2.1, Table 3.2) in the vector/matrix to look up;

3) A footprint pointer: specifies which entry in the vector/matrix to look up;

4) Set of <edge, edge dependency> pairs: details described in a later paragraph;

5) Data or control signal values.

Fig. 3.3 describes the relationships between the attributes. The first, second and the fourth

attributes are manually specified during BLoG construction. During BLoG traversal,

footprint pointers are automatically obtained using the first, second and the fourth

attributes, while the data or control signal values are automatically obtained using the

first three attributes.

Fig. 3.3. Relationship between BLoG edge attributes.

When obtaining a footprint pointer for an edge during BLoG traversal, we come to a

situation where we are given a footprint pointer for an outgoing edge of a node and have

to derive the footprint pointer for an incoming edge of the same node. For this purpose,

we will be using edge dependencies, which describe relationship between an outgoing

edge of a node and an incoming edge of a node. There are six edge dependency types:

47

1) Same instruction: The data/control signal values on the outgoing and incoming

edges belong to the same instruction (e.g., a multiplexer takes opcode of an

instruction as a control input value and selects either a register value or the

immediate value of the same instruction);

2) Same architectural register name: The data/control signal values on the

outgoing and incoming edges belong to the same architectural register (e.g., a

forwarding path takes a register value produced by one instruction and passes it

on to another instruction that uses the same register name as an operand);

3) Same physical register name: The data/control signal values on the outgoing and

incoming edges use the same physical register name (e.g., ROB uses physical

register name as index to access speculative register states);

4) Same memory address: The data/control signal values on the outgoing and

incoming edges use the same memory address (e.g., a cache uses memory

addresses as tags to perform associative access);

5) Pipeline flush: The data/control signal value on the incoming edge is a pipeline

flush event (e.g., an instruction queue is flushed by a pipeline flush event);

6) Default: Any relationship not included in the aforementioned types, and includes

the case where there are no relationships.

An <edge, edge dependency> pair for an edge e, consists of an outgoing edge from the

node for which e act as an incoming edge, and one of the five edge dependency types. An

edge could have multiple pairs. For example, in Fig. 3.4, edge e2 has a single pair (<e3,

c23>), while edge e3 has two pairs (<e4, c34>, <e5, c35>). The Associative-type is the

only non-default node type with multiple outgoing edges. The method for obtaining

footprint pointers using these pairs is described later in Sec. 3.3.1.

N2N1
e3

e1

e2

e4

e5d23 d35

d34
N node

e edge

d edge dependency

Key

Fig. 3.4. Example <edge, edge dependency> pairs.

48

3.2 BLOG CONSTRUCTION

BLoG construction involves defining nodes and edges using the following two inputs:

 Microarchitecture description of a processor: It could be in the form of a

microarchitectural block diagram (e.g., from an architectural manual [Colwell

05]) or a language based specification (e.g., EXPRESSION [Halambi 99],

Generic netlist representation [Gorjiara 06]);

 Recorder field description: It specifies what each on-chip recorder is recording

(e.g., Table 2.1, Table 3.2).

Node Definition: Given chip design is manually decomposed with an objective of having

as many partitions as possible, but with two constraints: (1) Most partitions should fall

under the seven non-default types (Sec.3.1.1); (2) Most resulting inter-partition

connections, which later become BLoG edges, should have at least one <edge, edge

dependency> pair with non-default edge-dependency type (Sec. 3.1.2). More partitions

enable fine-grained localization – but it may not be possible to derive all data or control

signals on the edges due to reduced number of edges having at least one non-default-type

edge dependency, which may reduce bug localization accuracy. After partitioning, each

partition is assigned one of eight exclusive node types. Any partitions with variable

propagation delays from data entry and exit will take one of the three storage types

depending on how the entries are managed. For the rest, partitions with any protection

mechanisms are assigned the Protected type, while partitions that consist of series of

pipeline registers are assigned the Connection type. The Modifying and Select type are

used for the remaining partitions with clear data inputs/outputs defined. All other

partitions will fall under the Default type nodes.

Edge Definition: BLoG edges are defined between partitions according to inter-block

connections. In addition, three out of five edge attributes (Sec. 3.1.2) are manually

assigned in this phase: auxiliary information field selector, footprint vector/matrix and

<edge, edge dependency> pairs.

49

Although the construction is described as an open-loop process, there are several possible

places to introduce feedback. For example, there can be a feedback between BLoG

construction and deciding what to record in each of the on-chip recorders. Selecting more

signals to eliminate some of the default-type edge dependencies will improve bug

localization accuracy at the expense of having more chip area impact. Another feedback

can be introduced between node and edge definitions. Since one of the constraints on the

node definition is that there should be few edges with default-type edge dependencies,

partitioning can be changed so that the default-types go away.

Although hand-crafted new node or edge-dependency types can be used to replace

default-type nodes and edge dependencies, it is still possible to traverse a BLoG without

the aid. Sec.3.3.2 presents the traversal method in the presence of default type nodes and

edge dependencies.

50

3.3 BLOG TRAVERSAL

Traversing a BLoG effectively performs microarchitecture-dependent-self-consistency

checks on the recorded data. The traversal takes three inputs: the BLoG itself, linked

footprints (Sec. 2.3.2), and an inconsistency found during the high-level analysis (Sec.

2.3.3). The inconsistency is in the form of <location, footprint> pair as was mentioned in

Sec.2.3.2.2.

The location element of the pair decides the starting edge, which is an outgoing edge of a

BLoG node, where the traversal begins. For example, consider Fig. 3.5, which shows a

block diagram for a branch unit on the left, and a BLoG equivalent on the right. An

inconsistency found during the control-flow analysis (Sec.2.3.3.2) would return a

program counter register, which is associated with an outgoing edge of a Connection-type

node shown in Fig. 3.5. The footprint element in the inconsistency is used as the footprint

pointer for the starting edge.

Select

Key

SMUX

=

Last

PC

Register

value 4

Current

PC

Predicted

PC

Misprediction?

P

M

uop

4
Register

value

Last

PC uop

Predicted

PCCurrent

PC

Misprediction?

S

ProtectedP

M Modifying

Block diagram

+

BLoG equivalent

REG

C C Connection

<Starting edge>

C

Fig. 3.5. Example starting edge for a control-flow analysis inconsistency.

51

As shown in Fig. 3.6, BLoG traversal begins by placing an error label on the starting

edge. When an error label is placed on an outgoing edge, a node traversal takes place as

summarized in Fig. 3.7. A set of footprint-propagation rules (Sec. 3.3.1) and location-

propagation rules (Sec. 3.3.2) associated with that node are executed. A footprint-

propagation rule, using the footprint pointer of the outgoing edge and <edge, edge-

dependency> pairs associated with each incoming edge, derives the footprint pointers of

all the incoming edges. Using these pointers, the data or control signal values are

obtained by looking up in the footprint vector/matrices specified for each incoming edge.

After which, the location-propagation rule decides one or both of the following:

 Error localization: The error may originate from the node itself. The location-

propagation rules further subdivide each node into one or more localization

regions, each representing different component of the hardware structure modeled

by the node (individual localization regions described in Sec. 3.3.2). If the error is

from a region, it is marked with a candidate label and a footprint pointer,

determined by the rules, is noted on the label.

 Error Propagation: The error may originate from some other predecessor node.

In this case, one or more new error labels are placed on the incoming edges of the

node and a footprint pointer determined by the rules is noted on the label.

New error labels can be created on one or more incoming edges after a node traversal.

The backward traversal continues by performing node traversal from each of the error

labels on the node for which the incoming edges act as outgoing edges. When multiple

error labels are present, breadth-first traversal is performed; error label with the oldest

footprint pointer (as determined using the comparison operator defined in Sec.2.3.2.4) is

propagated first. This algorithm holds even in the situations where multiple error labels

are present across single or multiple outgoing edges of a single node.

A BLoG traversal terminates once one of the two stopping criteria is met:

1) The number of candidate label exceeds a pre-defined candidate limit;

2) The number of error label reaches zero.

52

After a BLoG traversal completes, all the candidate labels are returned to report the set of

bug candidates in the form of <location, footprint> pairs as was done for the original

IFRA.

Fig. 3.6. BLoG traversal flow chart.

Fig. 3.7. Node traversal flow chart.

53

3.3.1 FOOTPRINT-PROPAGATION RULES

Footprint-propagation rules are used to obtain the footprint pointers for all the incoming

edges when an outgoing edge already has a footprint pointer assigned. Each edge has five

attributes (Sec.3.1.2): 1) a footprint vector/matrix; 2) an auxiliary-information-field-

selector; 3) a footprint pointer; 4) set of <edge, edge dependency> pairs; and 5) data or

control signal values. Note that only a single <edge, edge dependency> pair is relevant

because only one of them specifies the edge dependency relationship with the outgoing

edge under consideration. Denote the first and third attributes of an incoming edge as Vi

and Pi, and those of the outgoing edge as Vo and Po. There are six footprint-propagation

rules, each associated with a single edge dependency:

Same instruction: Perform follow_link (Po, Vo, Vi) to obtain Pi.

Same architectural register: Perform follow_link (Po, Vo, fetch-stage) to obtain a new

pointer into a fetch-stage vector entry, Pf. Denote the architectural destination register

used by the instruction pointed by Pf as Rd. Decrement Pf towards older entries until an

instruction that uses Rd as its operand is found. Perform follow_link (Pf, fetch-stage, Vi)

to obtain Pi.

Same physical register: The dispatch and allocation pipeline stages record the residues

of physical register names for Alpha (Table 2.1) and Intel Core i7 microarchitecture

(Table 3.2) respectively. When we are trying to compare residues, there is a possibility of

aliasing. Thus, we return N number of Pi’s, where N can be configured, so that multiple

error labels are created to perform multiple traversals. For our purpose, we used N = 5.

However, storing the entire physical register names, as opposed to residues, will

eliminate this problem, at the expense of increasing the recorder storage requirement by

less than 2%. The footprint-propagation rule starts by performing follow_link (Po, Vo,

Dispatch/Allocation-stage) to obtain a new pointer, Pa. Denote the physical destination

register used by the footprint pointed by Pa as Rd. Decrement Pa towards older entries

until a footprint that use Rd as its operand is found. Perform follow_link(Pa,

54

Dispatch/Allocation-stage, Vi) to obtain the first Pi. Decrement Pa again towards older

entries until a footprint that uses Rd as its operand is found. Perform follow_link again to

obtain the second Pi. Repeat the Pa decrement and follow_link until N number of Pi’s are

found.

Same memory address: The memory-unit (in the execution-stage) footprint matrix

contains the memory addresses as its auxiliary information. The footprint-propagation

rule starts by performing follow_link (Po, Vo, memory-unit) to obtain a new pointer, Pm.

Denote the memory address used by the footprint pointed by Pm as MA. Decrement Pm

until a footprint that uses MA as memory address is found. Perform follow_link (Pm,

memory-unit, Vi) to obtain Pi.

Pipeline flush: Since all the footprints corresponding to flush-causing instructions are

discovered during footprint linking (Sec. 2.3.2), decrement Po until a flush-causing

instruction is found. Perform follow_link (Po, Vo, Vi) to obtain Pi.

Default: Unless customized footprint-propagation rules are designed and used, assign

NULL to Pi and state that no information is available. Methods for handling default-type

edge dependencies are presented in the next section.

In case the end of recorded history is reached (i.e., the footprint the rule is looking for

was overwritten during the test run due to the limited storage) while performing

follow_link() or decrementing pointers, return NULL for Pi and state that the end of

history is reached.

55

3.3.2 LOCATION-PROPAGATION RULES

Given a node with data or control signals on incoming and outgoing edges, location-

propagation rules are responsible for propagating error labels from outgoing to incoming

edge(s) and/or creating candidate labels on one of its localization regions. As a result,

there are two possible scenarios:

 Error Containment: Given enough information, a location-propagation rule can

have high confidence in localizing or propagating errors correctly. When such

situation arises, all error and candidate labels on the BLoG are discarded except

the ones produced by this particular rule.

 Not enough information: For the rest of the situations, we conservatively

continue the node traversal, along with other error labels.

Each rule will require some, if not all, of the incoming edges to have their data or control

signals. However, some incoming edges will not have any data or control signals because

their footprint pointers have a NULL value. There are two possible reasons:

1) The end of recorded history is reached. In this case, any rule using this particular

incoming edge will not produce any error or candidate labels. This scheme allows

the rest of the error labels in the BLoG to complete their traversal while

terminating the current node traversal.

2) Not all the edge attributes are specified or a Default-type edge dependency is used.

In this case, we make a pessimistic decision. Any rule using this particular

incoming edge will produce an error label on this edge with a footprint pointer

obtained by following link from the pointer on the outgoing edge to the footprint

vector/matrix assigned to the incoming edge. In addition, if the rule is capable of

placing a candidate label, then the label is always placed with the pointer on the

outgoing edge.

The set of location-propagation rules associated with each of the node types are presented

next. Since the Protected type only requires small modification from the Connection or

Modifying type, the rules for the Protected type are shown with the two types.

56

3.3.2.1 Connection Type

It has two incoming edges –input data (I), and clear signal (C) – and an outgoing edge,

output data (O). Input and output data edges are assumed to be in a single clock domain.

It models a series of pipeline registers that propagates values on the data input edge to the

data output edge after some fixed number of cycles (D). When a clear signal is asserted,

the contents of the pipeline registers are discarded. The node has a single localization

region, representing the whole node. The location-propagation rules are shown below.

Location-propagation rule outcomes:

Outcome 1) Data output value does not match with data input value. Place a

candidate label on the node with Po (defined later in the algorithm) as the

footprint (Contained error).

Outcome 2) Clear signal did not discard the contents of the pipeline registers. Place a

candidate label on the node with Pc as the footprint (Contained error).

Outcome 3) No error in the node, place an error label on the data input edge.

Location-propagation rule algorithm:

We denote the following:

 Footprint vectors/matrices assigned to C, I, O as Fc, Fi, Fo;

 Footprint pointers on C, I, O as Pc, Pi, Po;

 Data values pointed by Pi, Po as Vi, Vo.

The algorithm for executing the location-update rule is shown below.

Step 1) If (Vi ≠Vo) then return “Outcome 1”; Halt;

Step 2) If ((follow_link (Pc, Fc, Fo) < Po) and (follow_link (Pc, Fc, Fi) > Pi)) then

return “Outcome 2”; Halt;

Step 3) Return “Outcome 3”; Halt;

A Protected-connection-type node shares the same location-propagation rule as a

Connection-type node, except that Step 1 is skipped, because “Outcome 1” cannot occur.

57

3.3.2.2 Modifying Type

It has an incoming edge – data input (I) – and an outgoing edge, data output (O). All

edges are assumed to be within a single clock domain. It models a hardware structure that

modifies its input data value into a different output data value. The node has a single

localization region, representing the whole node. The location-propagation rules are

shown below.

Location-propagation rule outcomes:

Outcome 1) Data output value was not correctly modified. Place a candidate label on

the node with Po1 (defined in the algorithm shown below) as the footprint

(Contained error).

Outcome 2) Data output value was not correctly modified, but do not know when the

wrong modification happened. Place two candidate labels on the node with Po1

and Po2 (defined in the algorithm shown below) as the footprints (Contained

error).

Outcome 3) No error found in the node, place an error label on the data input edge.

Outcome 4) Not enough information, place an error label on the data input edge and

place a candidate label with Po as the footprint.

Location-propagation rule algorithm:

We denote the following:

 Footprint pointers on I, O as Pi1, Po1;

 New footprint pointers as Pi2, Pi3, Po2, Po3;

 Data values pointed by Pi1, Pi2, Pi3, Po1, Po2, Po3 as Vi1, Vi2, Vi3, Vo1, Vo2,

Vo3.

The algorithm for executing the location-update rule is shown below.

Step 1) Assign Pi1, Po1 to Pi2, Po2 ;

58

Step 2) Decrement Pi2 and Po2, in a circular fashion until Vi2 is not an idle cycle and

belongs to a committed instruction;

Step 3) If (Pi1 = Pi2) then “Outcome 4”; Halt;

Step 4) If (Vi1 = Vi2) and (Vo1 = Vo2) then “Outcome 3”; Halt;

Step 5) If (Vi1 = Vi2) and (Vo1 ≠ Vo2) then Goto Step 7;

Step 6) Goto Step 2;

Step 7) Assign Pi2, Po2 to Pi3, Po3;

Step 8) Decrement Pi3 and Po3, in a circular fashion until Vi3 is not an idle cycle and

belongs to a committed instruction;;

Step 9) If (Pi1 = Pi3) then outcome 4; Halt;

Step 10) If (Vi1 = Vi3) and (Vo1 = Vo3) then assign Po2 to Po1; “Outcome 1”; Halt;

Step 11) If (Vi1 = Vi3) and (Vo1 ≠ Vo3) then “Outcome 1”; Halt;

Step 12) Goto Step 8;

A Protected-Modifying-type node will only have “Outcome 3”, i.e., no error can occur in

the node itself.

59

3.3.2.3 Select Type

A Select-type node consists of a multiplexer with logic driving the select decision (Fig.

3.8). The first rule checks whether the data output value matches any of the data input

values. The second rule checks whether there are multiple instances of current control

input values by searching footprints in the recorder assigned to the control input edge. If

multiple instances are found, the rule checks whether same select decisions were

consistently made at all times. If these two rules do not find a problem, then the error

label is propagated to the control input edge and the selected data input edge (determined

by the output value).

The algorithm is shown below. We denote the two data input edges as X and Y, the data

output edge as Z, and control input edge as C. Denote footprint pointers assigned to C, Z,

X, Y as Pc1, Pz1, Px, Py. Denote temporary footprint pointer variables as Pc2, Pz2, Pz3.

Denote signal values obtained using Pc1, Pc2, Pz1, Pz2, Px and Py as Vc1, Vc2, Vz1,

Vz2, Vx, Vy. Note that the decrement operator moves the pointer towards older entries in

the recorder and then wraps around. There are three outcomes.

Outcome 1) Candidate label on the multiplexer with Pz1 as the footprint.

Outcome 2) Candidate label on the logic driving the select decision. For this case,

there can up to two candidate labels with different footprints. The algorithm

specifies the footprints.

Outcome 3) No error in the node. Create error label on the control input edge and the

selected data input edge with Pc1 and Px as the footprints.

Fig. 3.8. Location-propagation rules for a Select-type node.

60

IF (Vz1≠Vx) AND (Vz1≠Vy) THEN Outcome 1;

ELSE{

 Pc2 = Pc1; Pz2 = Pz1;

 DO{ Decrement Pc2, Pz2, Px, Py;

 IF (Pc1=Pc2) THEN

 Outcome 2 with Pz1 and Outcome 3;

}WHILE (Vc1≠Vc2);

IF (Vz1=Vx AND Vz2=Vy) THEN{

 Pz3 = Pz2;

 DO{ Decrement Pc2, Pz2, Px, Py;

 IF (Pc1=Pc2) THEN

 Outcome 2 with Pz1 and Pz3;

 }WHILE (Vc1≠Vc2);

 IF(Vz1=Vx)AND(Vz2=Vy)THEN

 Outcome 2 with Pz1;

 ELSE outcome 2 with Pz3;}

ELSE Outcome 3;}

61

3.3.2.4 Queue Type

A Queue-type node has two incoming edges – input data (I), clear signal (C) – and an

outgoing edge, output data (O). When a clear signal is asserted, the contents of the queue

are discarded. The contents of the queue are assumed to be protected using parity. The

queue has N entries. The node has three localization regions: enqueue circuitry, dequeue

circuitry and FIFO (first in first out) management. The location-propagation rules are

shown below.

Location-propagation rule outcomes:

Outcome 1) Data output value does not match with data input value. Place a

candidate label on enqueue circuitry and dequeue circuitry, each with Pi and Po

(defined later in the algorithm) as their respective footprints (Contained error).

Outcome 2) Clear signal did not discard the contents of the storage. Place a candidate

label on the FIFO management with Pc (defined later in the algorithm) as the

footprint (Contained error).

Outcome 3) Data entry dropped due to a problem in FIFO management or a buffer

overflow. Place a candidate label on FIFO management with Pi as the footprint

(Contained error).

Outcome 4) Data entry created spontaneously due to a problem in FIFO management.

Place a candidate label on FIFO management with Po as the footprint (Contained

error).

Outcome 5) No error in the node, place an error label on the input data edge.

Location-propagation rule algorithm:

We denote the following:

 Footprint vectors/matrices assigned to C, I, O as Fc, Fi, Fo;

 Footprint pointers on C, I, O as Pc, Pi, Po;

 Data values pointed by Pi, Po as Vi, Vo;

 New integer variable as count.

62

The algorithm for executing the location-update rule is shown below.

Step 1) If (Vi ≠Vo) then return “Outcome 1”; Halt;

Step 2) If ((follow_link (Pc, Fc, Fo) < Po) and (follow_link (Pc, Fc, Fi) > Pi)) then

return “Outcome 2”; Halt;

Step 3) Assign 0 to count;

Step 4) Decrement Po until Vo is not an idle cycle and belongs to a committed

instruction (as determined in Sec. 2.3.2);

Step 5) Decrement Pi until Vi is not an idle cycle and belongs to a committed

instruction;

Step 6) Increment count;

Step 7) If count = N, return “Outcome 5”; Halt;

Step 8) If follow_link (Po, Fo, Fi) = Pi then Goto Step 4;

Step 7) If follow_link (Po, Fo, Fi) < Pi then return “Outcome 3”; Halt;

Step 8) If follow_link(Pi, Fi, Fo)< Po then return “Outcome 4”; Halt;

63

3.3.2.5 Random-access Type:

A Random-access type node has four incoming edges – read address (Ar), write address

(AW), write data (W) and clear signal (C) – and an outgoing edge, read data (R). We

assume Ar and R to be in a single clock domain and Aw and W to be in a single clock

domain. When a clear signal is asserted, the contents of the storage are discarded. The

contents of the storage are assumed to be protected using parity. The node has three

localization regions: read circuitry, write circuitry and clear handler. The location-

propagation rules are shown below.

Location-propagation rule outcomes:

Outcome 1) Either data was written into a wrong address or, a wrong address was

used in the first place. Create error label on Aw with footprint pointer Paw

(Defined later in the algorithm), and create a candidate label on the write circuitry

with footprint pointer Pw (Contained error).

Outcome 2) Either data was read from a wrong address or, a wrong address was used

in the first place. Create error label on Ar with footprint pointer Par (Defined later

in the algorithm), and create a candidate label on the read circuitry with footprint

pointer Pr (Contained error).

Outcome 3) Clear signal did not discard the contents of the storage. Place a candidate

label on the clear handler with Pc (defined later in the algorithm) as the footprint

pointer (Contained error).

Outcome 4) Not enough information. Create error label on both Aw and Ar with

footprint pointers Paw, Par, respectively. In addition, place a candidate labels on

both the read and write circuitry with footprint pointers Pw and Pr as their

respective footprint pointers.

Outcome 5) No problem found in the node. Create error label on W with Pw (defined

later in the algorithm) as the footprint pointer.

64

Location-propagation rule algorithm:

We denote the following:

 Footprint vectors/matrices assigned to C, W, R as Fc, Fw, Fr

 Footprint pointers on W, R, Aw, Ar, as Pw1, Pr1, Paw1, Par1;

 New footprint pointers as Pw2, Pr2, Paw2, Par2;

 Data values pointed by Pw1, Pr1, Par1, Paw1, Pw2, Pr2, Par2, Paw2 as Vw1,

Vr1, Var1, Vaw1, Vw2, Vr2, Var2, Vaw2;

The algorithm for executing the location-update rule is shown below.

Step 1) Assign Par1, Pr1, Paw1 to Par2, Pr2, Paw2;

Step 2) If ((follow_link (Pc, Fc, Fr) < Pr) and (follow_link (Pc, Fc, Fo) > Po)) then

return “Outcome 3”; Halt;

Step 3) Decrement Par2 and Pr2, until Var2 is not an idle cycle and belongs to a

committed instruction;

Step 4) If (Par2 < Paw1) then Goto Step 7;

Step 5) If (Var1 = Var2) then Goto Step 15;

Step 6) Goto Step 3;

Step 7) Increment Paw2, until Vaw2 is not an idle cycle and belongs to a committed

instruction;

Step 8) If (Vaw1 = Vaw2) then Goto Step 11;

Step 9) If Paw2 reaches youngest entry, Goto Step 11;

Step 10) Goto Step 7;

Step 11) Increment Par2 and Pr2, until Var2 is not an idle cycle and belongs to a

committed instruction;

Step 12) If (Par2 > Paw2) then assign NULL to Pa2 and Goto Step 15;

Step 13) If (Var1 = Var2) then Goto Step 15;

Step 14) Goto Step 11;

Step 15) Assign Paw1 to Paw2;

Step 16) Decrement Paw2 and Pw2, until Vaw2 is not an idle cycle and belongs to a

committed instruction;

65

Step 17) If Paw2 reaches oldest entry, then assign NULL to Paw2 and Goto Step 20;

Step 18) If (Vaw1 = Vaw2) then Goto Step 20;

Step 19) Goto Step 16;

Step 20) Execute rules in Table 3.1; Halt;

Table 3.1: Location-propagation rules for a Random-access type.

 Par2 ≠ NULL Par2 = NULL

Paw2 ≠ NULL If (Vw1 = Vr1)
then outcome 5

If (Vw1 ≠ Vr1 = Vr2)
then outcome 1

If (Vr2= Vw1 ≠ Vr1)
then outcome 2

If (Vw1 = Vr1) then outcome 5

If (Vw1 ≠ Vr1=Vw2) then outcome 1

If (Vw1 ≠ Vr1 ≠ Vw2) then outcome 4

Paw2 = NULL If (Vw1= Vr1) then outcome 5

If (Vw1 ≠ Vr1) then outcome 4

3.3.2.6 Associative Type

An Associative-type node has four incoming edges – read address (Ar), write address

(AW), write data (W) and clear signal (C) – and an outgoing edge, read data (R). The node

has four localization regions: write circuitry, read circuitry, clear handler, tag handler.

The location-propagation rules for an Associative-type node are very similar to that of

Random-access type node with a difference. Whenever a candidate label is placed on the

read/write circuitry for the Random-access type, the corresponding rules for Associative

type places an additional candidate label on the tag handler.

66

3.3.2.7 Default Type

A default-type node has little localization capability: i.e., given an error at the node‟s

outgoing edge, the rules declare the node as a candidate by default and propagate the

error to all incoming edges. There are three ways of handling Default-type nodes:

Method 1) Use it as it is;

Method 2) Merge with predecessor/successor nodes so that the merged node is of

non-default type;

Method 3) Handcraft customized location-propagation rules by using parts of the

decision diagram used in Appendix B.

As an example of a Default-type node with customized rules, consider the alignment

checker mentioned in the decision diagram. It checks whether the load/store address of an

aligned data access instruction is aligned (i.e., whether the addresses are powers of two).

On a failed check, it raises an alignment exception.

A Default-typed node is used to model the alignment checker. It has two incoming edges

– memory address (M), aligned/unaligned access bit (A) – and an outgoing edge, the

alignment exception signal (X). For simplicity, we ignore the incoming edge with the

“size” data. X is assigned the alignment exception field of the commit-stage footprint

vector as edge attributes. A is assigned the aligned/unaligned access bit of instruction

field of the fetch-stage footprint vector as edge attributes. M is assigned the memory

address field of the load-store unit footprint matrix as edge attributes. All three edges

have <X, “same instruction”> as their <edge, edge-dependency> pair. Below shows the

possible outcomes and the customized location-propagation rule.

We denote the following:

 Footprint pointers on M, A, X as Pm, Pa, Px;

 Data values pointed by Pm, Pa as Vm, Va/

67

Location-propagation rule outcomes:

Outcome 1) Alignment exception was generated for an unaligned access. Either the

alignment checker is faulty or the “unaligned” bit was incorrectly decoded into

“aligned” bit. Place a candidate label on the node with Px and an error label on A

with Pa (contained error).

Outcome 2) The alignment check is faulty. Place a candidate label on the node with

Px (contained error).

Outcome 3) Memory address is incorrect. Place an error label on M with Pm

(contained error).

Location-propagation rule algorithm:

Step 1) If (Va = unaligned) then return “Outcome 1”; Halt;

Step 2) If Vm is aligned then return “Outcome 2”; Halt;

Step 3) Return “Outcome 3”; Halt;

The location-propagation rules used for the alignment checker is highly context sensitive,

and it is generally not applicable to other nodes, and hence it is categorized as a Default-

type node. The Modifying type can be used to model the alignment checker, but it suffers

from lower localization accuracy, which is apparent from the comparison of possible rule

outcomes.

68

3.4 EVALUATION ON AN INDUSTRIAL SIMULATOR

We construct a BLoG for the Intel ® Core™ i7 processor, given the recorder field

description shown in Table 3.2, and conduct an error injection campaign on an industrial-

grade microarchitectural simulator to evaluate the bug localization capability of BLoG-

assisted IFRA.

Table 3.2. Auxiliary information for Intel Core i7 microarchitecture.

Pipeline stage

Auxiliary information
Number

of
recorders

Entries
per

Recorder Description
Bits
per

entry

Fetch Instruction pointer (IP) 32 4 512

Decode
Ucode, bom, decoded

results
24 4 1,024

Alloc
3-bit residue of register

name
9 4 1,024

Schedule 4-bit residue of operands 8 4 1,024

IEU 4-bit residue of result 4 3 1,024

AGU/

MEM

4-bit residue of result;

memory address;
36 2 1,024

Commit Exceptions 4 4 1,024

Total storage required for all recorders:
(Each entry has an additional 8-bit ID)

66KBytes

Ucode(microcode), BOM (the beginning of each macroinstruction)

69

3.4.1 SIMULATION FRAMEWORK AND METHODOLOGY

We use an industrial-grade, execution-driven, cycle-accurate IA-32 simulator that models

an Intel® Core™ i7 processor. The simulator executes “Long Instruction Trace (LIT)”s,

which consist of an architectural state snapshot and a list of system interrupts needed to

simulate system events. The LIT includes an entire snapshot of memory and it can be

used to execute down mis-speculated paths. Simulations are performed on a suite of 88

captured LITs sampled across several inputs and program phases of the 12 benchmarks in

the Integer component of SPEC CPU 2006. We modify the original IFRA to use IA-32

in-built exceptions (#OF, #BR, #UD, #SS, #GP, #PF, #AC [Intel 08]).

The error injection campaign is conducted in a similar manner as described in Sec. 2.4.

The only difference is in error injection sites, which are grouped into 32 categories (see

Table 3.3), where each category consists of 1-400 bits that show similar error effects due

to symmetry (e.g., an error injected into the input of an ALU will exhibit identical

behavior as those injected into the input of a multiplier). No errors are injected in array

structures or arithmetic units, since they are assumed to be protected.

There are 160 BLoG nodes in total, of which 86% (83% of the total candidate locations)

were non-Default types. Table 3.4 details the nodes by type and shows the maximum

number of candidates for each node type. The 23 Default-type nodes were manually

augmented with customized error localization/propagation rules adapted from the

decision diagram in Appendix B. Since the Default-type varies from node to node, we

report additional candidate statistics.

70

 Table 3.3: Error injection sites.

Address entering ITLB RAM control write/read circuit

Address entering AGU/DTLB Conflict resolution (e.g., MOB)

Address entering load buffer Eviction handler

Address entering store address
buffer

Replacement handler

Data entering store data buffer Clearing queue

Data between RS output and EU Queue pointer

Data between ROB/RRF and RS Stall to path

Data between EU output and RS Clear to path

Data from EU output to ROB/RRF Decision of mux

Data exiting store data buffer Stall generation

Data entering load buffer Clear generation (ROB/JEU/BAC)

IP from branch predictor unit
output

Cache miss handling 1

IP from instruction fetch output Cache miss handling 2

IP from BAC Updating branch target buffer

IP between JEU and next IP Fetch to external bus

IP from JEU to branch predictor
update

Instruction steering (+MS)

(TLB: translation look ahead buffer; AGU: address generation unit; MOB:
memory order buffer; RRF: real register file; JEU: jump execution unit; BAC:

branch address calculator; MS: microcode sequencer).

71

Table 3.4. BLoG node type distribution for Intel Core i7.

Node type Number of nodes
Number of localization regions

per type

Random-access 6 3

Associative 8 4

Queue 7 3

Modifying 22 1

Connection 46 1

Select 42 2

Protected 6 0

Default 23 Avg(2), min(1), max(4), std(1.1)

Total number of nodes: 160

Maximum number of locations: 269

72

3.4.2 RESULTS

Table 3.5 presents the results from over 30,000 error injection runs, of which 2,560

activated a post-trigger. The exactly localized category occurs when IFRA identifies a

single and correct candidate. The localized with candidates category occurs when IFRA

identifies multiple candidates, one on which is correct. The completely missed category

occurs when IFRA does not identify the correct candidate.

For 56% of injected electrical bugs, IFRA pinpointed their exact <location, footprint>

pair – composed 1 out of 270 localization regions and 1 out of over 1,000 cycles in which

an electrical bug had caused an error in a flip-flop. For 34% of injected bugs, IFRA

correctly identified their <location, footprint> pairs together with 5 other candidates on

average (out of over 270,000 possible pairs). IFRA completely missed for 10% of

injected bugs (i.e., either the location or the footprint or both were incorrect).

The causes of the 10.4% complete misses are reported in Table 3.6. Long latency means

that the 1024-entry recorders fail to capture the history from error to failure. Candidate

limit means that a pre-defined candidate limit of 20 was reached before localizing the bug.

Wrong diagnosis includes all other cases.

Table 3.5. BLoG-assisted IFRA bug localization summary.

Category Total (%)

Exactly localized 55.6

Correctly localized with multiple candidates 34.0 (Avg. 6)

Completely missed 10.4

Table 3.6. Causes of complete miss.

Category Total (%)

Long latency 32.9

Candidate limit (limit = 20) 20.7

Wrong diagnosis 46.8

73

Table 3.7 provides a summary of the manual effort reduced when using BLoG to design

the low-level analysis compared to how it was originally done. The manual effort

required for creating custom propagation rules for Default-type nodes and edge

dependencies can be minimized by eliminating custom rules and pessimistically declaring

an encountered node as candidate and propagating errors to its inputs. “Exactly localized”

cases remain unaffected for errors originating from non-default-type nodes (86% of

nodes). Remaining situations lead to increased candidate count; “completely missed”

cases may increase when candidate count exceeds 20 (out of 200,000+). Alternatively,

default-type node count may be reduced by adding more node and edge dependency

types.

Table 3.7. Summary of manual effort reduced using BLoG.

Tasks
Original

IFRA
BLoG

Node definition Manual Guided by
node types

Edge definition Manual Guided by
edge attributes

Designing location propagation rules for non-
default-type nodes (86%>)

Manual Automatic

Designing footprint propagation rules for non-
default-type edge dependencies (95%>)

Manual Automatic

Designing custom location propagation rules for
default-type nodes (<14%)

Manual Manual

Designing custom footprint propagation rules for
default-type edge dependencies (<5%)

Manual Manual

74

3.5 RELATED WORK

Related work can be largely divided into three categories: high-level test generation [Lee

94][Mishra 08][Tupuri 97][Utamaphethai 00][van Campenhout 99], circuit-level

diagnosis [Caty 05][Tekumalla 01][Venkataraman 96][Yang 09] and fault-tolerant

computing [Carretero 09][Austin 99][Lu 82][Oh 02].

Many BLoG abstraction concepts (e.g., the datapath concept) are borrowed from the

high-level test generation community, whose aim was to obtain architectural-level

constraints for test generation purposes. Because our abstraction is purely for bug

localization using self-consistency checks, our abstraction model (node types) is simpler

and higher-level than the prior art.

Many concepts used for BLoG traversal are borrowed from circuit-level sequential

diagnosis. There are many analogous counterparts. For example, the process of

identifying a flipflop with an incorrect transition/value is akin to performing our high-

level analysis to find the starting edge. Forward propagating known values to find

transitions/values on all wires is analogous to our deriving information on each edge.

Back-propagating transition/value through a netlist is akin to our BLoG traversal.

Finally, the propagation/localization rules for performing self-consistency checks have

borrowed ideas from fault-tolerant computing. The chief difference is that they use self-

consistency checks for the purpose of detection, rather than localization.

75

3.6 CONCLUSIONS

The BLoG framework enables the systematic construction and automatic execution of

IFRA‟s offline analysis for bug localization, easing the application of IFRA to new

microarchitectures. The BLoG framework is highly effective; BLoG used on an industrial

simulator of a state-of-the-art processor yields 90% bug localization accuracy.

This work also introduces several interesting research directions, including:

 Automatically constructing BLoG from a language-based specification or an RTL

description.

 Creating a new language for specifying microarchitecture for the purpose of

BLoG construction.

 Automatically selecting what to record given a BLoG, borrowing concepts from

work done at circuit-level [Ko 08].

 Supporting feedback between construction and traversal so that localization result

can guide new partitioning.

 Introducing more node types to reduce the number of Default-type nodes.

 Combining probabilistic diagnosis to rank candidates.

76

CHAPTER 4. CONCLUDING REMARKS

Post-silicon bug localization of electrical bug is a major bottleneck in today‟s chip

development. This report presents IFRA, a new technique for localizing electrical bugs in

processors that overcomes the existing limitations by not relying on system-level failure

reproduction and system-level simulation. In addition, the report presents BLoG, a new

framework for minimizing the manual effort required to implement IFRA on new

microarchitectures. High bug localization accuracy achieved on both the open-source

simulator (96%) and the industrial-grade simulator (90%) demonstrates the effectiveness

of the two techniques.

This work creates several interesting research directions:

 Application to system-on-chips (SoCs) consisting of non-processor designs. The

footprint linking process, which is the basis for IFRA and BLoG, utilized

instructions that were carrying information regarding their operations and

operands/results along with them from entry to exit. It also used the fact that

processors have a fixed limit on the maximum number of instructions in-flight

and transfer data using register names and memory addresses. Finding similar

features in SoCs may be the first step toward this objective.

 Application to multiple electrical bugs being activated within a small time frame.

Current self-consistency checks assume rare occurrence of electrical bugs. The

first step in the investigation could be to see whether using multiple

inconsistencies discovered by the high-level analysis help in localizing multiple

bugs. The next step could be to perform multiple BLoG traversals, each with

different number of starting edges, and then intersecting the results. Extending

this approach may provide a way to localize logic bugs as well.

77

REFERENCES

[Abramovici 06] Abramovici, M., et al., “A Reconfigurable Design-for-Debug Infrastructure for SoCs,”

Proc. Design Automation Conf. (DAC ’06), pp. 7-12, July 2006.

[Ando 03] Ando, H., et al., “A 1.3-GHz Fifth-Generation SPARC64 Microprocessor,” Proc. Design

Automation Conf. (DAC ’03), pp.702-705, June 2003.

[Agarwal 86] Agarwal, A., R.L. Sites, and M. Horowitz, “ATUM: a new technique for capturing address

traces using microcode,” Proc. Intl. Symp. on Computer Architecture.(ISCA ’86), pp. 119-127, May

1986.

[Austin 99] Austin, T.M., “DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design,”

Proc. Intl. Symp. on Microarchitecture (MICRO ’99), pp. 196-207, Nov. 1999.

[Austin 02] Austin, T., et al., “SimpleScalar: An Infrastructure for Computer System Modeling,” Computer,

vol. 35, no. 2, pp 56-67, Feb. 2002.

[Bayazit 05] Bayazit, A.A., and S. Malik, “Complementary Use of Runtime Validation and Model

Checking,” Proc. IEEE/ACM Intl. Conf. on Computer-aided Design (ICCAD ‘05), pp. 1052-1059, Nov.

2005.

[Bentley 01] Bentley, B., “Validating the Intel Pentium 4 Microprocessor”, Proc. Design Automation Conf.

(DAC ’01), pp.244-248, June 2001

[Carretero 09] Carretero J. et al. "End-to-End Register Data-Flow Continuous Self-Test", Proc. Intl. Symp.

on Computer Architecture (ISCA ’09), pp. 105-115, Jun 2009.

[Casazza 09] Casazza J., “First the Tick, Now the Tock: Intel Microarchitecture (Nehalem)”, Intel

Corporation White paper.

[Caty 05] Caty, O., P. Dahlgren, and I. Bayraktaroglu, “Microprocessor Silicon Debug based on Failure

Propagation Tracing,” Proc. Intl. Test Conf., pp. 293-302, Nov. 2005.

[Chang 07] Chang, K., I.L. Markov, and V. Bertacco, “Automating Post-Silicon Debugging and Repair,”

Proc. Intl. Conf. on Computer-Aided Design (ICCAD ’07), pp. 91-98, Nov. 2007.

[Chen 08] Chen, K., S. Malik, and P. Patra. "Runtime Validation of Memory Ordering Using Constraint

Graph Checking". Proc. Intl. Symp. on High-Performance Computer Architecture, pp. 415-426, Feb.

2008.

[Clarke 99] Clarke, E.M., D.A. Peled and O. Grumberg, “Model Checking”, Cambridge, MA[u.a.] MIT

Press 1999, ISBN: 0262032708 9780262032704

[Colwell 05] Colwell, R., et al., “Intel‟s P6 Microarchitecture,” Chapter 7 in Shen and Lipasti, Modern

Processor Design, New York: McGraw-Hill, 2005.

[De Paula 08] De Paula, F.M., et al., “BackSpace: Formal Analysis for Post-Silicon Debug,” Proc. Formal

Methods in Computer-Aided Design, pp.1-10, Nov. 2008.

78

[Digital 99] Digital Equipment Corporation, Alpha 21264 Microprocessor Hardware Reference Manual,

July 1999.

[Dill 98] Dill, D.L., “What‟s between simulation and formal verification? (Extended abstract)”, Proc.

Design Automation Conference (DAC ‘99), pp. 328-329, June 1999.

[Goddard 95] Goddard, M.D., and D.S. Christie, “Microcode Patching Apparatus and Method,” U.S. Patent

5796974, Nov. 1995.

[Gorjiara 07] Gorjiara, B., M. Reshadi, and D. Gajski, "Generic Architecture Description for Retargetable

Compilation and Synthesis of Application-Specific Pipelined IPs," Proc. Intl. Conf. on Computer

Design (ICCD ’07), pp. 356-361, Oct. 2007.

[Halambi 99] Halambi A. et al. “EXPRESSION: A Language for Architecture Exploration through

Compiler/Simulator Retargetability”, Proc. Conf. on Design Automation and Test in Europe (DATE

‘99), pp.485, Mar. 1999.

[Heath 04] Heath, M.W., W.P. Burleson, and I.G. Harris, “Synchro-Tokens: Eliminating Nondeterminism

to Enable Chip-Level Test of Globally-Asynchronous Locally-Synchronous SoC‟s,” Proc. Conf. on

Design, Automation and Test in Europe (DATE ’04), pp. 1532-1546, Feb. 2004.

[ITRS 07] International Technology Roadmap for Semiconductors, 2007 ed.

[Josephson 01] Josephson, D., S. Poehlman, and V. Govan, “Debug Methodology for the McKinley

Processor,” Proc. Intl. Test Conf.(ITC ’01), pp. 451-460, Oct.-Nov. 2001.

[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly of Silicon Debug,” Proc. Design

Automation Conf (DAC ’06), pp. 3-6, July 2006.

[Intel 08] “Intel® 64 and IA-32 Architectures Sfotware Developer‟s Manual Volume 3A: System

Programming Guide, Part 1,” Order number: 253668-027US, Jul 2008.

[Ko 08] Ko, H.F. and N., Nicolici, “Automated trace signals identification and state restoration for

improving observability in post-silicon validation,” Proc. Conf. on Design, Automation and Test in

Europe (DATE ’08), pp. 1298-1303, 2008.

[Krupnova 04] Krupnova, H., “Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and

Experience”, Proc. Conf. on Design, Automation and Test in Europe (DATE ‘04), pp.21236-21243,

Feb. 2004.

[Lee 94] Lee. J and J.H. Patel, "Architectural level Test generation for microprocessors", IEEE Trans. on

Computer-aided Design of Integrated Circuits and Systems, vol. 13, no. 10, pp.1288-1300, Oct. 1994.

[Livengood 99] Livengood, R.H., and D. Medeiros, “Design for (Physical) Debug for Silicon Microsurgery

and Probing of Flip-chip Packaged Integrated Circuits,” Proc. Intl. Test Conf (ITC ’99)., pp. 877-882,

Sept. 1999.

[Lu 82] Lu, D.J., “Watchdog Processors and Structural Integrity Checking,” IEEE Trans. Comput., vol.31,

no.7, pp.681-685, July 1982.

79

[MacNamee 00] MacNamee, C., and D. Heffernan, “Emerging On-chip Debugging Techniques for Real-

time Embedded Systems,” IEE Computing & Control Eng. J., vol.11, no.6, pp. 295-303, Dec. 2000.

[Mahmood 88] Mahmood A., and E.J. McCluskey, “Concurrent error detection using watchdog processors

– a survey,” IEEE Trans. Comput., vol.37, no.2, pp. 160-174, Feb. 1988.

[McLaughlin 09] McLaughlin R., S. Venkataraman, and C. Lim, “Automated Debug of Speed Path

Failures using Functional Tests,” VLSI Test Symp.(VTS ‘09), pp. 91-96, May 2009.

[Mishra 08] Mishra, P. and N. Dutt, “Specification-driven Directed Test Generation for Validation of

Pipelined Processors,” ACM Trans. Des. Autom. Electron. System. (TODAES), vol. 13, no. 3, pp.1-36,

July 2009.

[Nakamura 04] Nakamura, Y., et al., “A Fast Hardware/software Co-verification Method for System-on-a-

chip by Using a C/C++ Simualtor and FPGA Emulator with Shared Register Communication”, Proc.

Design Automation Conference (DAC ’04), pp. 299-304, June 2004.

[Oh 02] Oh, N., P.P. Shirvani, and E.J.McCluskey, “Control-flow Checking by Software Signatures,” IEEE

Trans. Reliability, pp.111-122, Mar. 2002.

[Park 09] Park S., T. Hong and S. Mitra, “Post-Silicon Bug Localization in Processors using Instruction

Footprint Recording and Analysis (IFRA)”, IEEE Trans. on Computer-aided Design of Integrated

Circuits and Systems, vol. 28, no. 10, pp. 1545-1558, Oct. 2009.

[Patra 07] Patra, P., “On the Cusp of a Validation Wall,” IEEE Des. Test Comput., vol.24, no.2, pp.193-196,

Mar. 2007.

[Sanda 08] Sanda P.N., et al., “Soft-error Resilience of the IBM POWER6 Processor,” IBM J. of Res. and

Dev., vol.52, no.3, pp. 275-284, 2008.

[Sarangi 06] Sarangi, S.R., B. Greskamp, and J. Torrellas, “CADRE: Cycle-Accurate Deterministic Replay

for Hardware Debugging,” Intl. Conf. on Dependable Systems and Networks (DSN ’06), pp. 301-312,

June 2006.

[Sarangi 07] Sarangi, S.R., et al., “Patching Processor Design Errors with Programmable Hardware,” IEEE

Micro, pp.12-25, Jan. 2007.

[Schelle 10] Schelle G., et al., “Intel Nehalem Processor Core Made FPGA Synthesizable”, Proc.

ACM/SIGDA Intl. Symp. On Field Programmable Gate Arrays (FPGA ’10), pp. 3-12, Feb. 2010.

[Shen 05] Shen, J.P., and M.H. Lipasti, Modern Processor Design: Fundamentals of Superscalar

Processors, New York: McGraw-Hill, 2005.

[Siewiorek 98] Siewiorek, D.P., and R.S. Swarz, Reliable Computer Systems – Design and Evaluation, 3rd

ed., Natick: A.K. Peters, 1998.

[Silas 03] Silas, I., et al., “System-Level Validation of the Intel Pentium M Processor,” Intel Technology

Journal, vol.7, no.2., pp. 37-43, May 2003.

80

[Tekumalla 01] Tekumalla, R.C., S. Venkataraman, and J.G. Dastodar, “On Diagnosing Path Delay Faults

in an At-Speed Environmetn”, Proc. VLSI Test Symp. (VTS ’01), pp. 28-33, Apr 2001.

[TI 97] Texas Instruments, “IEEE Std 1149.1 (JTAG) Testability Primer”, 1997.

[Tupuri 97] Tupuri R.S., J.A. Abraham, “A Novel Functional Test Generation Method for Processors using

Commercial ATPG”, Proc. Intl. Test Conf. (ITC ’97), Nov. 1997, pp. 743-752

[Utamaphethai 00] Utamaphethai, N., R.D. Blanton and J.P.Shen, “A Buffer-Oriented Methodology for

Microarchitecture Valdiation”, J. Electron. Test. 16, 1-2, Feb. 2000, pp.49-65.

[van Campenhout 99] Van Campenhout D., T. Mudge and J.P.Hayes, "High-Level Test Generation for

Design Verification of Pipelined Microprocessors, " Proc. Design Automation Conf. (DAC ’99), pp.

185-188, June 1999.

[Venkataraman 96] Venkataraman, S., I. Hartanto, and K. Fuchs, “Dynamic diagnosis of sequential circuits

based on stuck-at faults”, Proc VLSI Test Symp. (VTS ’96), pp.198, Apr. 19 96.

[Wagner 06] Wagner, I., V. Bertacco, and T. Austin, “Shielding Against Design Flaws with Field

Repairable Control Logic,” Proc. Design Automation Conf. (DAC ’06), pp. 344-347, July 2006.

[Wang 04] Wang, N.J., et al., “Characterizing the Effects of Transient Faults on a High-Performance

Processor Pipeline,” Proc. Intl. Conf. on Dependable Systems and Networks (DSN ’04), pp. 61-70,

June-July 2004.

[Xu 03] Xu M., R.Bodik, and M.D. Hill, “Flight Data Recorder for Enabling Full-System Multiprocessor

Deterministic Replay,” Proc. Intl. Symp. on Computer Architecture (ISCA ’03), pp. 122-133, May

2003.

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation Challenge: Leverage Validation & Test

Synergy (Invited Address)”, presented at the IEEE Intl. Test Conf (ITC ’06), Oct 25, 2006.

[Yang 09] Yang, Y-S., N. Nicolici, A.G. Veneris, “Automated Data Analysis Solutions to Silicon Debug”,

Proc. Conf. on Design Automation and Test in Europe (DATE ‟09), pp. 982-987, 2009.

[Ying 05] Geoffrey Ying, “Start at the top to reduce re-spins for analog-digital chips”, Chip Design

Magazine, June/July 2005.

81

APPENDIX A: FOOTPRINT LINKING ALGORITHM

Footprint linking analyzes ID sequences to identify which of the footprints, stored across

multiple recorders, belong to the same instruction. Appendix A provides the algorithm for

performing footprint linking. Sec. A.1 elaborates on the features and assumptions on the

target processor model, while Sec. A.2 presents algorithms for distinguishing footprints

with identical IDs. Sec. A.3 presents algorithms for identifying footprints belonging to

flush-causing, flushed, committed and uncommitted instructions.

A.1 ASSUMPTIONS ON THE TARGET PROCESSOR

The following consequences result from having the features and assumptions presented in

Sec. 2.1.

1) Maximum number of instructions in flight: The maximum number of

instructions-in-flight, n, equals the number of ROB entries in a superscalar

processor.

2) Mis-speculation handling: A pipeline flush due to a mis-speculated instruction is

only initiated after the corresponding branch instruction exits the execution stage.

3) D-TLB miss handling: An instruction with a D-TLB miss causes a pipeline flush

only when the instruction reaches the head of the ROB. For the purpose of

footprint linking, we consider the instruction to have committed, where in reality,

it is discarded. As a consequence, if the instruction causing the DTLB-miss is

assigned ID Y, the first instruction fetched after the resumption of IFRA

recording will be assigned ID Y+2n+1 (mod 4n), similar to speculation handling.

IFRA recording pauses between Y and Y+2n+1 because D-TLB miss is one of

IFRA‟s soft-triggers.

4) External interrupts and I-TLB miss handling: Both external interrupts (an

asynchronous signal indicating a need for a program flow change – e.g., process

context switch) and I-TLB misses are associated with the instruction at the tail of

the ROB at the time of occurrence. After this, the processor stops fetching new

82

instructions and allows the instructions that are already in the pipeline to commit,

before it pauses IFRA recording and invokes the handler for the interrupt or the I-

TLB miss. Thus, neither interrupts nor I-TLB misses cause pipeline flushes.

IFRA recording is resumed after the handler returns.

5) Fatal exception handling: Once an instruction with a fatal exception reaches the

head of the ROB, the post-trigger generator halts the processor. Thus, fatal

exceptions do not cause pipeline flushes.

A.2 DISTINGUISHING FOOTPRINTS WITH IDENTICAL IDS

Due to out-of-order execution, different recorders may record instruction footprints in

different orders. Furthermore, this ordering may differ from program order: the order in

which instructions in the binary would be executed, if executed sequentially one at a time

[Shen 05]. Ordering or determining the relative timing information of

instructions/footprints across multiple pipeline stages is split into two steps. The first

step, identifying whether a footprint corresponds to a committed or uncommitted

instruction, is described in Sec. A.3. The second step, described in this section, uses this

information to order and link committed instructions in program order.

Algorithm A: Top-Level Footprint Linking

Step 1) Scan out and format recorder contents for in-order stages (fetch, decode,

dispatch, commit) into footprint vectors and out-of-order stages (issue, execute)

into footprint matrices.

Step 2) For each vector/matrix, identify and label footprints corresponding to

committed and uncommitted instructions.

Step 3) For each committed instruction, link its footprints.

83

Algorithm A.1: Linking - Steps 3 of Algorithm A Detailed

Given: Footprint vectors and matrices with footprints labeled according to whether

they correspond to committed or uncommitted instructions.

Step 1): For each footprint vector and matrix, setup a pointer to the youngest entry.

Step 2): While the fetch-stage footprint vector pointer P does not point to a footprint

marked as committed, decrement P. If P cannot be decremented, stop. This is the

next youngest instruction in program order (Theorem 1).

Step 3): Let W = ID of the footprint pointed to by P.

Step 4): For each of the other footprint vectors and matrices, decrement their pointers

until a footprint with ID W is found. If ID W cannot be found in all the footprint

vectors and matrices, stop.

Step 5): The order of instructions with the same ID cannot differ from program order

(Theorems 1 and 2). Thus, these footprints correspond to a single instruction.

Link these footprints.

Step 6): Decrement P and go to step 2 (if not possible, stop).

Theorem 1: The relative order in which two committed instructions appear in any

footprint vector never differs from their relative program order.

In other words, if instruction X appears before instruction Y in program order, then X will

always occupy an older entry than Y in any footprint vector. This is true because

instructions enter the in-order pipeline stages in program order.

Theorem 2: The relative order in which two committed instructions with the same ID

appear in any footprint vector or footprint matrix never differs from their relative

program order.

In other words, if there are two instructions X and Y that have the same ID, and X appears

before Y in program order, then X will always occupy an older row than Y. The proof

follows from Lemmas 2.1-2.5.

84

Lemma 2.1: If a ROB entry is occupied by an instruction with ID X, the instruction in the

k
th

 younger entry either has the ID X+k (mod 4n) or X+k+2n (mod 4n), k∊ ℤ+
, i.e., k is a

positive integer, at any given time.

Proof: Base case of k=1. If X caused a flush, the newly fetched instruction, Y, after the

flush would have an ID of X+2n+1 (mod 4n), as described in Sec.2.2.2; since everything

between X and Y is flushed, Y would be in the next entry. If X did not cause a pipeline

flush, then the next entry would be assigned ID X+1 (mod 4n), and would correspond to

the next instruction in program order.

Inductive case: Suppose that Lemma 2.1 is true for the k
th

 younger entry; thus, the k
th

younger entry contains an instruction with ID X+k+2nm (mod 4n), m∊{0,1}. Hence, the

(k+1)
th

 younger entry has ID X+k+2nm+1+2nm' (mod 4n) = X+k+1+2nm'' (mod 4n),

m',m''∊{0,1}. It follows that Lemma 2.1 holds for all k∊ℤ+
.

Lemma 2.2: If a ROB entry is occupied by an instruction with ID X, the instruction in the

k
th

 younger entry has an ID distinct from X, at any given time, where 1<=k<n.

Proof: From Lemma 2.1, the k
th

 younger entry has an ID X+k+2nm (mod 4n), m∊{0,1}.

To prove X+k+2nm (mod 4n) ≠ X (mod 4n), it is sufficient to prove that X+k+2nm ≠ X

(mod 2n) or k ≠ 0 (mod 2n).

Lemma 2.3: All instructions in an n-entry ROB have distinct IDs at any given time.

Lemma 2.3 is a corollary of Lemma 2.2.

Lemma 2.4: The relative issue/execution order of two instructions with the same ID will

never differ from the fetch order of the two instructions.

Proof: From Lemma 2.3, no two instructions with the same ID ever coexist in the ROB at

any given time. Since only instructions that coexist in the ROB can switch their relative

issue/execution orders from their fetched order [Shen 05], two instructions with the same

ID cannot be issued /executed in an order different from their fetch order.

85

Lemma 2.5: The relative issue/execution order of two committed instructions with the

same ID will never differ from the relative program order of the two instructions.

Lemma 2.5 is a corollary of Lemma 2.4.

A.3 IDENTIFICATION OF UNCOMMITTED INSTRUCTIONS

Sections A.3.1 and A.3.2 detail the procedures to identify whether a footprint corresponds

to a committed instruction or uncommitted one for in-order and out-of-order pipeline

stages respectively. For each of the cases, two categories of uncommitted instructions are

addressed: 1) instructions that were fetched after the last committed instruction, that were

not committed due to a hard post-trigger activation; and 2) instructions that were flushed

from the pipeline.

A.3.1 UNCOMMITTED INSTRUCTIONS IN IN-ORDER PIPELINE STAGES

Given a footprint vector, the following algorithm labels each vector entry with two fields:

whether the footprint corresponds to a committed instruction and whether it corresponds

to a flush-causing instruction. Note that, since a hard post-trigger does not allow

instructions after the youngest committed instruction to commit, the youngest committed

instruction is always labeled as flush-causing. The algorithm is illustrated by an example

in Fig. A.1. Proofs for Theorem 3-5 that are behind the algorithm are presented

afterwards.

ID

:

3

4

5

20

21

22

Footprint

Vector

Oldest entry

Youngest entry

Committed
Flush-

causing

1

0

0

1

1

0

1

X

X

0

1

X
Step 3

Step 4

Step 5

Fig. A.1. Example footprint vector with labels (n=8).

86

Algorithm A.2: Labeling of a footprint vector

Step 1) Let X = ID of the youngest committed instruction obtained from the commit-

stage recorder.

Step 2) Setup a pointer P to the youngest entry of the footprint vector.

Step 3) While X is not encountered, label the footprint pointed to by P as

uncommitted (the flush-causing field is labeled a don‟t care) and decrement P to

the next older entry. When X is encountered, label it as committed and flush-

causing (Theorem 3). Before decrementing P, if P is pointing at the oldest entry

of the vector, stop.

Step 4) While a break in consecutive assignment is not observed, label the footprint

pointed to by P as committed and non-flush causing and decrement P. a break in

consecutive assignment is observed when the ID pointed to by P minus the ID of

the entry pointed to by P-1 (i.e. the next entry older than P) is not +1 (mod 4n).

The ID-jump indicates a pipeline flush (Theorem 4). Before decrementing P, if P

is pointing at the oldest entry of the vector, stop.

Step 5) Let W = ID of the flush-causing instruction, obtained by subtracting 2n+1

from the ID pointed to by P. While W is not encountered, label footprint pointed

to by P as uncommitted (the flush-causing field is labeled a don‟t care), and

decrement P. When W is encountered, label it as committed and flush-causing

(Theorem 5). Before decrementing P, if P is pointing at the oldest entry of the

vector, stop

Step 6) Go to Step 4.

Theorem 3: Let X be the ID of the youngest committed instruction. The youngest entry in

a footprint vector with ID X belongs to that youngest committed instruction.

Furthermore, all younger entries correspond to uncommitted instructions.

Proof: Suppose there is an footprint vector entry with ID X that is younger than the entry

corresponding to the youngest committed instruction denoted X'. Since footprint vectors

correspond to in-order stage recorders, the only instructions that would have left a

87

footprint after X' would be those fetched after X'. Under the ID assignment scheme, the

instruction fetched next after X' will have ID S=X+1+2m (mod 4n) (mod 4n) m∊{0,1}. As

X' is the last committed instruction, S does not commit and will occupy the head of the

ROB. According to Lemma 2.1, the instructions fetched after S would be assigned IDs

X+1+k'+2nm (mod 4n), m∊{0,1}, 1 <= k' < n. Since all IDs in the ROB are of the form

X+k+2nm (mod 4n), 1<=k<=n and none are equal to X, there cannot exist a footprint with

ID X younger than the footprint corresponding to X', a contradiction. Thus, the youngest

entry with ID X corresponds to the youngest committed instruction. Since the

instructions fetched after X' are uncommitted, footprints younger than the footprint of X'

correspond to uncommitted instructions.

Theorem 4: Let X be the ID for a footprint vector entry and W be the ID of the next older

entry. Then X-W≠+1 (mod 4n) iff X’s entry corresponds to the newly fetched instruction

after a flush.

Proof: (only if) Since footprint vectors correspond to in-order stage recorders, the order in

which IDs appear in the vector is the same as their ID assignment order. Thus, if X-

W≠+1 (mod 4n), then Rule 3 of the ID assignment scheme (Sec. 2.2.2) must have

modified the ID register between W and X. Since modification occurs only after a flush

has happened and since W and X are successive entries, X corresponds to the newly

fetched instruction after the flush.

(if) Let W be the ID of a flush-causing instruction. The newly fetched instruction after

W‟s flush would be assigned ID X=W+2n+1 (mod 4n). Since footprint vectors

correspond to in-order stage recorders, only instructions fetched after W and before the

newly fetched instruction would have left a footprint. The first of these uncommitted

instructions would be assigned ID S=W+1 (mod 4n). According to Lemma 2.1,

instructions fetched after S would be assigned IDs W+1+k'+2nm (mod 4n) m∊{0,1}, 1

<= k' < n; including S, these IDs are of the form W+k+2nm m∊{0,1}, 1 <= k <= n. We

prove that W+2n+1 - W+k+2nm ≠ 1 (mod 4n) for all k between 1 and n:

88

2nm≠ k (mod 4n), m∊{0,1} as 1<=k<=n

2n+1-k-2n(1-m) ≠ 1 (mod 4n)

2n+1-k-2nm' ≠ 1 (mod 4n), m'∊{0,1}

W+2n+1 - (W+k+2nm') ≠ 1 (mod 4n)

Also, X=W+2n+1 (mod 4n) so X-W ≠ 1 (mod 4n). Thus, the difference between the X (ID

of the footprint entry corresponding to the newly fetched instruction after a flush) and the

ID of the next older entry would not be +1.

Theorem 5: If an instruction with ID X commits and is the newly fetched instruction after

a flush, then the corresponding flush-causing instruction has ID W=X-2n-1 (mod 4n).

The flush-causing instruction must have committed, and it appears in the footprint

vectors as the youngest ID W older than X; all entries between W and X correspond to

flushed instructions.

Proof: Due to the ID assignment scheme, a flush causing instruction and the newly

fetched instruction after a flush has a difference in IDs of 2n+1; since we assume that an

instruction can only flush once (assumptions 1-3 of Sec. 2.1), W=X-2n-1 (mod 4n).

Denote the instructions with ID W and X by W and X, respectively. Now, since X

commits, W must also commit. This is true because if W did not commit, it must have

been flushed. Thus, because X is younger than W and on the same execution path as W, X

must also have been flushed, a contradiction. Finally, because W is the instruction that

commits just before X commits, it is the youngest instruction with ID W that is older than

X. By Theorem 1, instructions are recorded in program order; thus the first instruction

with ID W older than X is X‟s corresponding flush causing instruction.

89

A.3.2 UNCOMMITTED INSTRUCTIONS IN OUT-OF-ORDER PIPELINE STAGES

Given a footprint matrix associated with an out-of-order pipeline stage, the following

algorithms label each entry with whether the footprint belongs to a committed instruction.

There is no need to label entries as flush-causing or not.

Algorithm A.3: Labeling of footprint matrices entries

Given: Fetch-stage footprint vector labeled with committed and flush-causing bits

(Section A.3.1).

Step 1) Setup a pointer F to the youngest entry in the fetch-stage footprint vector.

Create an empty array U.

Step 2) Label all entries in the footprint matrix as uncommitted and unvisited.

Step 3) While F does not point to a committed entry, add the entry‟s ID to array U

and increment F (i.e. select the next older entry). If F cannot be incremented,

stop.

Step 4) Let W = ID of the entry pointed to by F.

Step 5) Pass ID W, and array U to Algorithm A.4 to label the footprint matrix entries

corresponding to the committed instruction (W) as committed and uncommitted

instructions (U) as uncommitted. If U is not empty, W can be considered the ID

of a flush causing instruction that flushes instructions with IDs in U.

Step 6) Clear array U and Go to Step 3.

90

Algorithm A.4: Labeling of footprint matrices entries

Given (Alg. A.3): W, the ID of the youngest unvisited committed instruction, and an

array of uncommitted IDs U flushed by W.

Step 1) Setup a pointer P to the first entry of the youngest row of the footprint matrix.

Step 2) While P does not point to an unvisited entry with ID W, decrement P, If an

entry with ID W is not found, stop.

Step 3) P and F (Alg. A.3) point to entries corresponding to the same instruction

(Theorem 2). Label P‟s entry as committed and visited.

For each X∊U

Step 4) Setup a pointer Y=P, increment Y until an entry with ID=W+2n+1 (mod 4n) is

found. The row of Y is the younger isolating row (Theorem 6). Decrement Y to

the first entry of the next row. If the ID is not found, Y = first entry of the

youngest row.

Step 5) Setup a pointer E=P, decrement E until an entry with ID X-n (mod 4n) or X-

3n (mod 4n) is found. This is the older isolating row (Theorem 7). Increment E

until the end of the prior row. If the ID is not found, E = last entry of the oldest

row.

Step 6) For all unvisited entries between Y and E (inclusive), if the ID equals X, then

label the entry as uncommitted and visited.

In order to determine whether the flushed instruction reached and left the stage, we only

need to check for the presence of ID X in certain consecutive rows of the footprint matrix.

The rows are bounded by a younger isolating row at the bottom and an older isolating

row at the top. The older isolating row is always above the row that contains the flushed

ID X, if there is any, and always below the row that contains another instance of ID X that

is the youngest among the ID Xs dispatched before the flushed ID X. Similarly, the

younger isolating row is always below the row that contains the flushed ID X, if there is

any, and always above the row that contains another instance of ID X that is the oldest

among the ID Xs dispatched after the flushed ID X. If one has the ability to find the older

and the younger isolating row for a particular flushed ID, then it is trivial to find out

91

whether the flushed instruction left the considered stage; if there is an ID X in the rows

bounded by the isolating rows, then that is the flushed ID X we were looking for, if there

is not any, we can conclude that the flushed instruction did not leave the issue stage.

For the rest of this section, let‟s denote W to be the ID of the identified flush-causing

instruction and denote X to be the ID of an instruction that is flushed by ID W. The

relationship between X and W is given by X = W+k (mod 4n), where 1<=k <=n-1 (Lemma

2.1).

A.3.2.1 Identification of Younger-isolating Row

Theorem 6: Suppose there is a flush-causing instruction W with ID W which flushes an

instruction X with ID X. Then the younger isolating row for X is the oldest row younger

than W that contains an entry with ID W+2n+1 (mod 4n).

Proof: In the ID assignment scheme, W+2n+1 (mod 4n) is assigned to the newly fetched

instruction after the flush completes. Thus, by definition, ID W+2n+1 (mod 4n) must have

entered the recorders strictly after all the previously flushed instructions. There will not

be another instruction with the ID because flush-causing instructions can only cause a

single flush.

If the ID cannot be found because the recording stopped before fetching a new instruction

after the flush, then an imaginary row above the bottom row acts as the younger isolating

row.

A.3.2.2 Identification of Older-isolating Row

Theorem 7: Suppose the algorithm has identified a flush-causing instruction W with ID W

that flushes instruction X with ID X. Then the older isolating row for X is the youngest

row older than W that contains an entry with ID X-n (mod 4n) or X-3n (mod 4n).

92

We use Lemmas 7.1-7.5 to prove the theorem. If the ID X-n (mod 4n) or X-3n (mod 4n)

cannot be found, an imaginary row above the top row acts as the older isolating row. If

the recorders were large enough, the ID would have been found in an older row.

Lemma 7.1: If an instruction with ID X is occupying a ROB entry, then the instruction in

the k
th

 older entry, k∊ ℤ+
, either has the ID X-k (mod 4n) or X-k-2n (mod 4n).

Proof omitted due to similarity with Lemma 2.1.

Lemma 7.2: If an instruction with ID W commits, then the kth older committed instruction,

k∊ ℤ+
, has either ID W-k (mod 4n) or W-k-2n (mod 4n).

Take the state of an infinite sized ROB – one that does not remove committed

instructions, but behaves as a size n ROB in only allowing a maximum of n instructions

in-flight – once the instruction with ID W commits. Then all entries in the ROB older

than W are committed instructions. The k
th

 older entry represents the k
th

 older committed

instruction and, by Lemma 7.1, either has ID W-k (mod 4n) or W-k-2n (mod 4n).

Lemma 7.3: Before the instruction with ID X enters the re-order buffer of size n, an

instruction with ID X-n (mod 4n) or X-3n (mod 4n) must have existed and committed.

Proof: Let W be the identified flush causing instruction that flushes X; W commits

because only flush causing instructions that commit are identified and passed to the

algorithm (see Algs. A.3 and A.4). Consider the state just before X enters the ROB. W is

present in the ROB so X = W+j (mod 4n) or W+j+2n (mod 4n) for some j, 1<=j<=n-1

(Lemma 2.1 and a size-n ROB). By Lemma 7.2, with k=n-j, an instruction with ID W-k=

W-n+j= X-n+2nm (mod 4n) or W-k-2n=W-n+j+2n=X-n+2nm (mod 4n) exists and

commits before W commits, m∊{0,1}. Since X can enter the ROB at this time, there must

be at most n-1 entries in the size-n ROB. By Lemma 7.1, the 1st through (n-1)
th

 older

entries to X have IDs X-j+2nm' (mod 4n) where 1<=j<=n-1 and m'∊{0,1}. None of these

IDs are equal to the ID X-n+2nm (mod 4n), whose corresponding instruction must have

93

committed before this time. Thus, there exists an instruction with ID X-n (mod 4n) or X-

3n (mod 4n) that commits before ID X enters the ROB.

Lemma 7.4: The flushed instruction with ID X, if it exists, cannot co-exist with any of ID

X-n (mod 4n) and X-3n (mod 4n) in the ROB at any given time. The consequence is that

ID X will always be in a row above the row that contains either X-n (mod 4n) or X-3n

(mod 4n).

Proof: Suppose X-n (mod 4n), rather than X-3n (mod 4n) is the committed one that is first

encountered below the younger isolating row. Then Lemma 2.2 tells us that the following

IDs can be present in the ROB at the same time as X-n (mod 4n): X-n+j (mod 4n), or X-

n+2n+j (mod 4n), where 1<=j<=n-1. However, none of them equal X. Now suppose X-3n

(mod 4n) is the one of the two IDs that is first encountered below the younger isolating

row. Lemma 2.2 tells us that the following IDs can be present in the ROB at the same

time as X-3n (mod 4n): X-3n+j (mod 4n), X-3n+2n+j (mod 4n), where 1<=j<=n-1. Again,

none of them equal X.

Lemma 7.5: Another instance of ID X that is the youngest among the ID Xs dispatched

before the flushed ID X, does not coexist with any of X-n (mod 4n) and X-3n (mod 4n) in

the ROB. Consequence is that the other instance of ID X will always occur in a row

below the row containing either X-n (mod 4n) or X-3n (mod 4n).

Proof: Suppose X-4n (mod 4n) is in the ROB. Then Lemma 2.2 tells us that the following

IDs can be present in the ROB at the same time as X-4n (mod 4n): X-4n+j (mod 4n), X-

4n+2n+j (mod 4n), where 1<=j<=n-1. However, none them equal X-n (mod 4n) or X-3n

(mod 4n).

94

APPENDIX B: LOW-LEVEL ANALYSIS DECISION

DIAGRAM FOR IFRA

This section provides a brief description of the decision diagram used for the low-level

analysis. The first eleven questions describe entry points into the decision diagram, and

the rest describe the decision diagram proper. Note that the decision does not follow a

single path (multiple candidate errors are possible); “OR” denotes when such a split

should occur.

IF array error (1)

IF arithmetic error (2)

IF alignment exception (10)

IF unimplemented instruction exception (11)

IF integer overflow exception (12)

IF deadlock (21)

IF instruction access segfault (13)

IF data access segfault (14)

IF control-flow analysis violation (13)

IF data-dependency analysis violation (20)

IF data-transfer analysis violation (21)

1) Error in array element OR (3)

2) Error in arithmetic unit OR (3)

3) Error in exception generation unit

4) Error in register value at the output of execution stage

(6) OR

IF using arithmetic unit (2)

IF using load/store unit (21)

IF using complex ALU, then error in complex ALU

95

IF using branch unit (2)

5) Error in speculative register alias table

(16) OR (15) OR (18)

Similar analysis to data-transfer analysis, but address is architectural register names and

data is physical register names.

6) Error in register value at the input of execution stage

Displacement selection multiplexor (7) OR forwarding path (8)

7) Displacement selection multiplexor

 IF instruction is supposed to take immediate

 IF operand residue doesn‟t match immediate residue

 IF repeated inputs don‟t match output,

 THEN error in multiplexor

 ELSE Error in opcode or immediate (17)

 ELSE

 IF immediate has been obtained from non-immediate field of the kn instruction

 THEN opcode or immediate (17)

 ELSE physical register file (5)

8) Forwarding path

IF data dependency analysis violation

 THEN muxes + select signals

 ELSE (4) OR (9)

9) Error in physical register file

(4) OR wrong physical register name from RAT (5) OR

Similar analysis to 5 except use register value instead of physical register name and

use physical register name instead of architectural register name

10) Error in decoder part 1

(6) OR (3) OR

 (Size bits flipped between output of decode to input of address generator) OR

IF instruction is unaligned access

96

(Wrong decode: unaligned decoded to aligned) OR

(Unaligned access bit flipped between output of decode and input of address

generator)

11) Error in decoder part 2

(3) OR

IF exception at decode stage

Wrong instruction written from icache (parity protection) OR (13) OR

IF fetched instruction doesn‟t match with instructions in binary

THEN error in fetch queue OR alignment&rotate unit

ELSE instruction word flip between fetch queue and input of decode stage OR

wrong opcode decode OR wrong instruction written in fetch queue

 ELSE IF exception at execution stage

 Do the same check as above but the following is in addition:

Bitflip in decoded opcode from output of decode to input of execute stage

12) Integer overflow

(2) OR (3) OR (4)

13) Error in PC

IF control flow violation case 1

 IF instruction went to branch unit

 THEN opcode corruption (17)

 ELSE faulty nextPC select mux

IF control flow violation case 2

 IF instruction went to non-branch unit

 THEN opcode corruption (17)

 ELSE faulty nextPC select mux

IF control flow violation case 3,4

 THEN (4)

14) Error in address generator

(6) OR (2)

97

15) Error in architectural register name

 Wrong decode or wrong decoded bits propagation (16)

16) Wrong physical register name from register free list

17) Error in decoded bit propagation

IF decoded bits differ with re-simulated result THEN error

18) Speculation recovery

IF after flush, results of flushed instruction are used rather than results prior to flush

 THEN incorrectly not initiated recovery

IF latest results are not seen but older results are seen

 THEN incorrectly initiated recovery

19) Error in architectural register alias table

Similar analysis to 5 but physical register name and architectural register names come

from output of ROB

20) Error in scheduler

 Scheduler array OR

 IF ID duplication (from Instruction-flow analysis)

 Incorrectly cleared issued bits in the array OR Queue pointer flip

 IF ID disappearance (from Instruction-flow analysis)

 Incorrectly cleared valid bit in array OR queue pointer flip

 IF deadlocked

 IF ID disappearance then valid bit flip from issue until execution

 ELSE incorrectly setting valid bit in array

21) Error in load/store unit (Data-transfer analysis)

