






















 

 

that the failure probability is in accordance with the 
classification of the failure (Minor, Major, Hazardous, 
Catastrophic). 
 
Due to particular characteristics of SBAS since the system 
is metric and not angular and the sources of malf
cases (ranging source or ground station failures) are 
different compared to ILS, it is thus required to identify 
the SBAS failure effects, potentially by defining their root 
cause, and above all assess their effect (H
Misleading Information or continuity loss) on the 
guidance of the aircraft as well as determine if the safety 
classification is adequate compared to the probability of 
failure.  
 
There might be some cases like in the case of 
anomalies caused by solar storms, that the SBAS is 
affected by large changes in error over relatively short 
baselines. A lack of hindsight and a lack of sufficient 
historical data prohibit using a statistical approach to 
demonstrate airworthiness during large ionospheric 
events.  This phenomenon is obviously not caused by a 
system failure and thus is considered as an environmental 
constraint (i.e. external to the SBAS system including the 
aircraft). Furthermore since it is difficult to predict, it 
could be found adequate, like in the GBAS
consider this phenomenon as a malfunction event from 
the airworthiness point of view like any other S
hardware failures, 
 
During GBAS autoland Category I, two points were 
considered to address the malfunction case. First of all, 
below 200 ft, the crew has external visual cues to detect 
and if needed take over the aircraft under an unsafe 
conditions due to a GBAS error. The autoland can only be 
performed under crew supervision. Secondly, since the 
GBAS signal-in-space was considered valid for Ca
I, which implied a requirement of guaranteed
below 100 ft [ICAO, 2006], GBAS errors could be 
anything whilst staying within the alert limits that are 40 
m in the lateral domain and 10 m in the vertical domain. 
Therefore, the certification requirements consisted in 
assimilating GBAS errors below 200 ft as bias of any size 
up to the alert limits and to demonstrate that the crew 
could detect these errors and take over the aircraft. This 
approach has been adopted by the airworthiness 
authorities and the GBAS autoland Category I was 
granted on Airbus aircraft.  
 
As a consequence, we have two alternatives for the 
malfunction case demonstration with SBAS:
 
• SBAS fault modes can be assimilated as bias of any 

size below 200 ft up to the alert limits. But, these
biases must be limited to 10 m like GBAS where the 
value was directly derived from the Vertical alert 
limit whereas SBAS VAL for LPV200 is
m. 

• SBAS fault modes effects are precisely identified 
with the following characteristics given by figure 17
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is documented in [MURPHY, 2010

 
  

Figure 17: Fault diagram
 
Both approaches require assistance of SBAS 
manufacturers, without infringing proprietary aspects and 
commitments from Air Navigation Service Providers 
customers of SBAS to ensure certification feasibility. 
Anyhow, the best approach would be to document it in 
ICAO SARPS. But one difficulty lies with the first 
approach since the vertical alert limit applied to SBAS to 
support LPV 200 approaches is set to 35 m which seems 
too large to ensure autoland under malfunction case 
demonstration. Therefore, if first approach is adopt
would need to have requirements to ensure failures 
induced errors are closer to 10
GBAS Category I and ILS Category I. This trade
the analysis of the SBAS failure modes will be the subject 
of future work. 
 
CONCLUSIONS 
 
Cat III autoland is a basic functionality on Air Transport 
Aircraft, using ILS with an incredible in service 
experience of nearly 50 years
been certified on Airbus a
model. SBAS NSE show similar errors than G
Category I for the fault free case
have been described and require
 
Unlike GBAS, SBAS errors distributions linked to 
clock/ephemeris and ionosphere are not publicly available 
and are tailored to the compliance 
requirements set in ICAO SARPS.
 
SBAS NSE model thus requires a large amount of real 
data in order to get the confidence in the m
autoland demonstration. 
 
We have derived a WAAS NSE model based on 
simulations using proprietary
coherence with real data observed during 2003
collection campaign. The distributions appears 
with the Category I autoland 
 
We have initiated the identification of receiver filter 
characteristics based on observations of
A 1st order filter reflects the real data response most 
closely. Further investigation is needed to understand this 

This approach was taken for GBAS Cat III R&D and 
in [MURPHY, 2010]: 
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proprietary FAA/Stanford models in 

coherence with real data observed during 2003-2006 data 
collection campaign. The distributions appears compatible 

the Category I autoland average risk demonstration. 

We have initiated the identification of receiver filter 
based on observations of a limited dataset. 

order filter reflects the real data response most 
closely. Further investigation is needed to understand this 



 

 

phenomenon better, compared to GBAS receiver filter 
characteristics which is equivalent to a 2nd order filter. 
 
Finally, we have described the malfunction case 
demonstration requirements and established a path, with 
two alternatives towards defining the SBAS failures 
effects, to be covered during an autoland under Category I 
conditions demonstration, both requiring assistance from 
SBAS manufacturers. 
 
Future works include: 

• To collect data and derive error distributions for 
EGNOS based on the methodology used for 
WAAS and derive a nominal envelope model for 
both WAAS/EGNOS 

• Identify scenarios for step changes in the 
position domain and characterize their size 

• Complete identification of receiver filter 
characteristics 

• Identify fault mode characteristics for each 
SBAS eligible for autoland  

• Perform autoland simulations using SBAS NSE 
model to show autoland Category I feasibility 
with SBAS 
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