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ABSTRACT  

Ionospheric anomalies, which may occur during severe 
ionospheric storms, could pose integrity threats to 
Ground-based Augmentation System (GBAS) users [1], 
[2], [3]. The ionospheric threat for a Local Area 
Augmentation System (LAAS), a GBAS developed by the 
U.S. Federal Aviation Administration (FAA), was 
modeled as a spatially linear, semi-infinite “front” (like a 
weather front) with constant propagation speed. The 
model is parameterized by the slope (or gradient) of the 
front, its width, and its ground speed. Along with the 
magnitude of ionospheric gradients, the speed of the 
fronts in which these gradients are embedded is an 
important parameter for GBAS integrity analysis. 

This paper proposes an automated velocity estimation 
algorithm for anomalous ionospheric fronts. To examine 
the performance of this automated algorithm, we obtained 
estimation results for the points of the current 
Conterminous U.S (CONUS) threat space and compared 
these estimates to those manually computed previously. 
This new algorithm proposed in this paper is shown to be 
robust to faulty measurement and modeling errors. In 
addition, this algorithm is used to populate the current 
threat space with newly-generated threat points obtained 
from the Long-Term Ionospheric Anomaly Monitoring 
tool [4]. A larger number of velocity estimates helps to 
better understand the motion of ionospheric fronts under 
geomagnetic storm conditions. 

INTRODUCTION

The ionosphere is a region of the atmosphere extending 
from about 50km to about 1000km above the earth’s 
surface. In this region, free electrons and ions generated 
by the sun’s radiation give rise to phase advance and 

group delay of GPS signals [5]. The error introduced by 
the ionosphere to GPS pseudorange measurement can be 
up to tens of meters.  

Local-area Differential GPS (DGPS) can remove almost 
all of ionosphere delay errors in normal condition because 
ionospheric spatial and temporal decorrelation errors are 
negligible between a reference station and users. Local 
Area Augmentation Systems (LAAS), a representative 
system of local area DGPS, supports aircraft precision 
approach and landing by providing differential corrections 
and integrity information to aviation users. However, 
unusual solar activity such as Coronal Mass Ejections 
(CME) or solar flares can cause anomalous ionospheric 
behaviors, as was observed during the November 2003 
ionosphere storms. These ionospheric anomalies, which 
may exhibit large spatial or temporal decorrelation in a 
short baseline, could pose potential integrity threats to 
GBAS users.  

These ionospheric anomalies caused spatial gradient in 
slant (i.e., along the actual path between satellite and 
receiver) ionospheric delays of as large as 413 mm/km 
over baseline of 40-100 km. The residual range error 
suffered by a LAAS user at the CAT I decision height 
(DH) could be as large as 8 meters, if this large gradient 
goes undetected by the LAAS ground facility (LGF) [3]. 
A configuration of the LGF, aircraft impacted by an 
ionospheric front, and a satellite is sketched in Figure 1. 
Thus, the development of the CONUS threat model for 
LAAS were required to simulate worst-case ionospheric 
errors for LAAS users, i.e., to determine their impact on 
LAAS users, and to develop additional mitigation 
strategies [6], [7]. 

However, since the CONUS threat model was based on 
only the last decade of observed anomalies, there is an 
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uncertainty as to whether or not threat-model bounds 
derived from past events are sufficient to bound future 
events. Considering the peak of the next solar cycle is 
expected in around 2013 and system integrity relies on an 
empirically-driven threat model, it is necessary to validate 
and update this threat model over the life cycle of the 
system by monitoring ionospheric behavior continuously 
[4]. In addition, ionospheric threat models must be 
derived for all regions where GBAS will become 
operational. For these reasons, a vast amount of 
ionospheric data should be analyzed continuously going 
forward. However, in an earlier work [1], a large portion 
of analysis on ionospheric storm data was done manually, 
including the estimation of ionospheric wave-front 
propagation velocities. Thus, the vast amount of data to 
be processed motivates the development of an automated 
ionospheric front velocity estimation algorithm. 

Figure 1: Illustration of an LAAS user impacted by an 
ionospheric wave front. 

2.0 DATA 

High precision ionospheric measurements are required to 
estimate ionospheric front velocity more accurately. In 
this paper, two types of data were used for ionospheric 
front velocity estimation.  

The current ionospheric threat model for LAAS was 
constructed using high-quality estimates of ionospheric 
delays produced by NASA’s Jet Propulsion Laboratory 
(JPL). GPS data were collected from the network of 
Continuously Operating Reference Stations (CORS) and 
the Wide Area Augmentation Systems (WAAS) and post-
processed by JPL in sophisticated post-processing 
algorithms [8]. The dates on which data were analyzed to 
define the current ionospheric threat model are shown in 
Table 1. These data were used to validate the performance 

of the automated ionospheric front velocity estimation 
algorithm in Section 5.3. 

We also used the ionospheric delay data obtained from 
the Long term Ionospheric Anomaly Monitoring tool 
(LTIAM) [4] as input to generate additional threat points 
using this automated ionospheric front velocity estimation 
algorithm. 

Table 1: Ionospheric storm dates and geomagnetic 
conditions. 

Day 
(UT mm/dd/yy) 

Kp Dst 
Geomagnetic 
Storm Class 

04/06/00 8.3 -287 Severe 
04/07/00 8.7 -288 Extreme 
07/15/00 9.0 -289 Extreme 
07/16/00 7.7 -301 Strong 
09/07/02 7.3 -163 Strong 
10/29/03 9.0 -345 Extreme 
10/30/03 9.0 -401 Extreme 
10/31/03 8.3 -320 Severe 
11/20/03 8.7 -472 Extreme 
07/17/04 6.0 -80 Moderate 

3.0 METHODOLOGY 

3.1 Parameters for the Ionospheric Wave Front Velocity 

Figure 2: Map of vertical ionospheric delays over the 
eastern U.S. on November 20, 2003 20:15 UT. 

An ionospheric wave front is assumed to be a straight and 
semi-infinite line and to move with constant speeds 
relative to the ground [1]. These assumptions are made to 
simplify the analysis of ionospheric wave-front velocities. 
Figure 2 is a snap shot of vertical ionospheric delay map 
on the well-known November 2003 ionospheric storm. As 
presented in Figure 2, the ionospheric wave front 
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observed at the edge of  sharp transitions between red and 
blue regions could be modeled as an approximately linear 
line locally. 

Figure 3 and Table 2 illustrate how we parameterize the 
velocity of the ionospheric wave front. In Figure 3, the 
ionospheric wave front is inclined and moves southwest, 
as indicated by the black arrow. In addition, the GPS 
satellite is moving southeast along the IPP track, as 
indicated by the orange dotted line. To model this 
ionospheric front motion, four parameters are defined: the 
orientation of the ionospheric wave front, the speed of the 
ionospheric wave front, and the direction and speed of 
Ionospheric Pierce Point (IPP). The orientation of the 
front, i, and the direction of IPP, , are the angles between  
the y-axis and the wave front (measured in a 
counterclockwise direction starting the y-axis), the x-axis 
and the IPP moving direction (measured  in  a 
counterclockwise direction starting the x-axis). 

Figure 3: Illustration of the velocity parameters of the 
ionospheric wave front. 

Table 2: Definition of velocity parameters of the 
ionospheric wave front. 

Parameter Definition 

Direction of ionospheric pierce point (IPP) 

Vipp Speed of ionospheric pierce point (IPP) 

i Orientation of ionospheric wave front 

Vn
Speed in normal direction of ionospheric 

wave front 

Note that Vn contains the velocity component resulting 
from the movement of GPS satellite in addition to that of 
the actual ionospheric front motion with respect to the 

ground. Thus, to determine the ionospheric wave-front 
velocity with respect to the ground, it is necessary to 
calculate the speed and direction of the IPP motion caused 
by the motion of GPS satellites. 

3.2 Velocity computation of Ionospheric Pierce Point 
(IPP)

Under nominal conditions, the ionosphere may be thought 
of as a thin shell surrounding the earth with a mean 
ionosphere height, Hiono, of 350 km. The ionosphere 
Pierce Point (IPP) is defined as the point where the line-
of-sight vector and the spherical shell at height Hiono
intersect, as shown in Figure 4 [5]. 

The position of the IPP in the geodetic coordinate frame 
at a particular time can be calculated from the geometric 
relationship (parameterized by , , ) between the 

GPS satellite position and the user position. After two 
coordinate transformations, from geodetic LLA 
coordinates to ECEF coordinates and from ECEF 
coordinates to North-East-Down (NED) local frame 
coordinates, the position of IPP at a specific epoch in the 
NED local frame coordinate is determined. Because those 
geometric information are provided at regular time 
intervals, we can compute the velocity of IPP using the 
location of IPP and the data sampling time. 

Figure 4: Ionosphere thin shell model and definition of 
the Ionosphere Pierce Point (IPP) and angles. 

3.3 Ionospheric Front Velocity Computation Methods 

As shown in Figure 3, after calculating the IPP speed and 
direction, there still are two parameters to be determined: 
the speed in normal direction of ionospheric wave front, 
Vn, and orientation of the ionospheric wave front, i. Note 
that, as mentioned above, IPP velocity 
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Figure 5: The automated ionospheric front velocity estimation algorithm. 

component is included in Vn and thus this IPP velocity 
component will be removed from the normal speed of the 
front (See Subsection 4.7). To solve these two unknowns, 
two methods, a three-station based method and a two-
station-based method, are employed.  

In a previous work [9], an automated ionospheric velocity 
computation algorithm based only on the three-station-
based method was developed to estimate the speed and 
direction of the ionospheric front. In this method, the 
travel time during which the ionospheric wave front swept 
through a pair of stations is measured to compute the 
speed and the third station is used to observe the 
ionospheric wave front direction [1]. However, this 
automated algorithm often returned faulty results 
corrupted by measurement errors and limited by the 
underlying assumptions of the simplified wave front 
threat model (the wave front is assumed to be a straight 
line and to move with a constant speed relative to the 
ground) [1]. While a manual two-station-based method is 
used to compensate for the weakness of this automated 
algorithm, this method was done manually. 

Thus, in this paper, we combine the three-station-based 
method and two-station-based method to utilize 
advantages of each computation method for automation. 
The detailed procedures of those methods used to 
automatically compute the orientation and speed of the 
ionospheric wave front will be described in Subsections 
4.5 and 4.7. 

4.0 AUTOMATED IONOSPHERIC FRONT 
VELOCITY ESTIMATION ALGORITHM 

4.1 Overview 

In this paper, we develop an automated algorithm for 
ionospheric front velocity estimation. This automated 
algorithm is composed of six steps, indicated by the 
yellow boxes shown in Figure 5: Clustering Nearby-
Stations, Grouping Stations by Pattern Recognition, IPP 
Speed and Direction Estimation, Orientation 
Determination, Propagation Direction Determination, and 
Speed Computation. The Green boxes show the 
methodology used in each corresponding step. 
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Two stations between which extremely large ionospheric 
spatial gradients are observed are taken as an input to the 
automated algorithm. Four parameters in blue font, the 
speed and direction of IPP (Vipp, ) and the orientation and 
speed of the front (i, Vn), are automatically computed 
from the six steps of the automated procedure. Once all 
four parameters are determined, the automated algorithm 
finally computes the ionospheric front speed estimates 
relative to the ground. Experimental results will be 
discussed in Section 5, and the details of each step of this 
automated algorithm are described in the following 
subsections. 

4.2 Clustering Nearby Stations 

The automated ionospheric front velocity estimation 
algorithm first searches for nearby reference stations 
whose distances from the two stations (taken as the input 
to this algorithm) are less than a predefined threshold (e.g. 
300 km). The underlying assumption in this step is that of 
the model of a linear, semi-infinite wave front with 
constant speed would be valid in a local area for nearby 
stations.

4.3 Grouping Stations by Pattern Recognition 

The second step selects stations that show a similar 
ionospheric delay pattern from those clustered by the first 
step of the automated algorithm. 

The top plot in Figure 6 shows time history of ionospheric 
delay measurements observed from five CORS stations, 
and the lower plot illustrates the motion of the 
ionospheric front to the stations (only four stations are 
represented for simplicity). The numbers in red shown to 
the right of the names of the four stations indicate the 
order in which the stations were impacted by the wave 
front. As the ionospheric wave front approaches the 
stations, the ionospheric delays start increasing. When the 
wave front crosses the stations, the ionospheric delays of 
each station reach the local maximum value within the 
arcs. After the ionospheric front has passed by the stations, 
the delay measurements start decreasing. From this 
observation, the peak delay times (indicated in “P”) are 
used to determine the travel time of the front from one 
station to others and the order in which the stations were 
affected by the wave front.  

The patterns of the ionospheric delays observed by the 
stations affected by the same ionospheric front exhibit 
similar tendencies because they experience the same 
ionospheric spatial gradient embedded in the front. In 
previous works, stations whose ionospheric delay patterns 
are similar were selected manually, and thus this was a 
time consuming task. As the data to be processed 
increases, more time and effort, accordingly, are required. 
Thus, it is important to automate the process of 

recognizing which ionospheric delays have a similar 
pattern in developing the automated estimation algorithm. 
In this work, we apply a pattern recognition technique, the 
k-means algorithm, to automatically choose stations that 
have similar ionospheric delay patterns. 

Figure 6: Concept of ionospheric front speed 
computation. 

4.3.1 k-means Algorithm 

The k-means clustering is one of clustering formulation 
the most widely used and studied. Given a set of n-data 
points in real L-dimensional space, LR , and integer k, k-
means clustering is a problem to determine a set of k 
points in LR , which are called centers, to minimize the 
mean squared distance (Euclidean norm) from each data 
point to its nearest center [10]. One of the most widely 
used methods for solving the k-means clustering problem 
is the k-means algorithm, a simple iterative scheme for 
finding a local minimum solution [10].  

The k-means algorithm is based on the simple observation 
that the optimal placement of a center is at the centroid of 
the associated cluster [10], [11]. As illustrated in Figure 7, 
the k-means algorithm can be implemented as follows. 
The first step randomly selects initial k centers (in color) 
from the data set. The second step then creates K-groups 
by associating every individual point with the nearest 
initial randomized center point. Next, the centroid (circled 
in black) points of each of the k clusters become the new 
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center points. The second and third steps are iterated until 
a predefined level of convergence has been met. 

Figure 7: Illustration of principle of the k-means 
algorithm. 

4.3.2 Application of k-means Algorithm  

In pattern recognition, a feature vector indicates a vector 
whose components can represent the numerical features 
of any object, including length, width, color, number, 
shape, and so on. From the point of view of the 
application of the k-means algorithm, a set of n data 
points in real L-dimensional space LR  used in the 
problem of k-means clustering can be considered as a sort 
of feature vector. To classify arbitrary ionospheric delay 
curves into the predefined total number of groups 
according to the type of ionospheric delay patterns, 
selection of the feature vector that can accurately reflect 
the characteristics of the ionospheric delay data is 
required. The better determined the feature vectors, the 
better performance of pattern recognition we can expect. 
Thus, the method to determine the components of the 
feature vector is important.  

In this paper, we use 31 real coefficients obtained from a 
30th-order polynomial curve fitted to ionospheric delay 
data as components of the feature vector. This vector 
becomes an input of the k-means algorithm. In addition, a 
k of 3, which is the other input of the k-means algorithm, 
is chosen to partition ionospheric delays into three 
clusters. This method searches for the optimal order of 
polynomial fit and k in offline analysis.  

The three clusters may contain three different types of 
ionospheric delay patterns. One of the clusters among the 
three consists of the ionospheric delays whose pattern is 
similar to that of the ionospheric delays observed by one 

of the two input stations (see Subsection 4.1). Another 
cluster among the three also contains the ionospheric 
delays whose pattern is similar to the ionospheric delay 
pattern observed by the other station. The remaining 
ionospheric delay patterns that are different from those of 
both two stations are separated into the third cluster. 
Because the distance between the two stations is short and 
the stations track the same satellite at a particular time 
interval where large ionospheric spatial gradients are 
observed, almost all of those ionospheric delay patterns 
might be similar.  

In this procedure, thus, it is desirable to combine two 
types of ionospheric delay patterns that are similar to 
those of the two input stations. Finally, the stations that 
observed the ionospheric delays within the union of the 
two clusters, including the two stations, are used in the 
following procedure. 

4.4 Velocity Estimation of Ionospheric Piece Point 

From Subsection 3.2, it was shown that the velocity of 
IPP can be directly estimated from the information of 
some geometric relations between the user and the GPS 
satellite and steps of coordinate transform. 

4.5 Orientation Determination  

The goal of this step is to determine the orientation 
(represented as i) of the ionospheric front using the three-
station-based method. As shown in Figure 3, the 
ionospheric wave front sweeps through station 1, station 2, 
station 3, and then other stations sequentially. Let t1 be the 
instantaneous epoch at which the wave front crosses 
Station 1. Similarly, t2 and t3 are the times corresponding 
to Stations 2 and 3. The points (x1, y1), (x2, y2), and (x3, y3)
indicate the locations of the first three stations (green 
triangle) that are impacted by the front. Then, the relative 
positions of Stations 2 and 3 to Station 1 can be defined as 
follows: 

1 1; ( 1,2)p p p p p pdx x x dy y y p  (1) 

From all these given values following two equations are 
derived: 

   
1 1 1

2 2 2

(90 )

(90 )
n

n

dy tan i dx V sin (i) dt
V sin (i) dt tan i dx dy

 (2) 

where the orientation, i, is in degrees. Solving these two 
equations simultaneously, two unknowns, Vn and i, are 
obtained. Under the assumption that an ionospheric front 
moves in a constant direction, we fix the orientation 
parameter obtained in this step and solve for a speed using 
the two-station-based method (see Subsection 4.7). 
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4.6 Propagation Direction Determination 

Once the orientation of the ionospheric front is obtained, 
this step determines the forward propagation direction of 
the front by using the order of peak delay times and the 
known locations of the stations. However, the peak delay 
times and locations of the stations do not always agree 
with the wave-front motion under the assumption of 
unvarying velocity. This uncertainty mainly comes from 
measurement errors. Thus, this step applies a linear 
programming method to remove any stations that provide 
faulty measurements. 

Figure 8: Feasible region (gray colored region) and 
non-feasible region are defined by a set of linear 

constraints (represented as gray dotted box) in the 
linear programming method. 

In the linear programming method, a feasible region (gray 
region) is defined by a set of linear constraints 
(represented in a gray dotted box) [12], as shown in 
Figure 8. Figure 9 illustrates how to apply the linear 
programming method in this work. The numbers shown to 
the right of the stations indicate the order in which 
stations are hit by the front. This order is determined 
based on the peak delay times. In this example, we 
assume that the wave-front actually propagates southwest. 
However, according to the order of the hit and the 
location of stations, the wave front appears to propagate 
southwest until the front impacts the third station and then 
moves backward (northeast) until the wave front hits the 
fourth station. This scenario is not feasible under the 
assumption that the ionospheric wave-front moves in an 
unvarying propagation direction in a local area during a 
short period. This implies that the fourth station observed 
faulty measurements, which should be removed to 
correctly estimate the propagation speed of the front. 

Figure 9: Illustration of application of the linear 
programming method to remove any stations that 
do not meet the assumption of linear front line and 

unvarying propagation direction. 

To do this, this step first determines an equation of the 
linear line, i.e., ionospheric wave front, based on given 
orientation calculated from the three-station-based 
method. The equation of the linear line is defined in a 
local frame coordinate that takes location of the first 
swept station as the origin of the coordinate and is as 
follows: 

(90 ) 0y tan i x  (3)   

If the substitution of the position of a station (relative 
position to the first station) makes the left side of 
Equation (3) greater than zero, a plus sign will be given to 
that station. In this way, the one region (gray colored) in 
Figure 9 where the order based on the peak delay time 
and the location of the stations agree well can be defined 
by substituting each position of the stations for Equation 
(3) and assigning a plus or minus sign to each station. 
Finally, the fourth station to which a minus sign is given, 
due to its location being opposite from the other stations, 
will be removed. 

4.7 Wave Front Speed Estimates 

From the previous steps of the automated algorithm, three 
out of the four velocity parameters are determined. In this 
step, the final speed estimates of the wave front are 
obtained.  

As described in Subsection 4.5, once the orientation 
parameter i is computed by the three-station-based 
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Figure 10: Results from the ‘Grouping Stations by Pattern Recognition’ of the automated algorithm. The left plot 
shows the ionospheric delay patterns, which are similar to those of GARF and WOOS stations, and the right plot 

shows ionospheric delays whose patterns are different from those of the two station, GARF and WOOS. 

method, a range of the front speed in normal direction is 
estimated by constructing all feasible pairs of stations and 
computing speeds for the given front orientation using the 
two-station-based method. This procedure is as follows: 
Equation (1) indicates the relative position of the stations 
to the first impacted (by the front) station. Thus, in the 
two-station-based method, p can be from 1 to the value 
that is less than the total number of the stations (m) by one. 
Changing Equation (2), following equation can be 
derived: 

( (90 ) ) (90 )

( 1, 2, , 1)

p p
n

p

dy tan i dx cos i
V

dt
p m

 (4) 

Because the front orientation is given, only Vn (the speed 
in normal direction of the front) is unknown. In Equation 
(4), upper part indicates the distance between two stations 
projected onto the line perpendicular to the wave front 
and lower indicates the travel time of the front that is 
determined based on the peak delay times. As mentioned 
above, this speed estimate contains the velocity 
component resulting from the movement of the GPS 
satellite in addition to that from wave front motion with 
respect to the ground. Thus, after taking the mean of the 
range of speeds, which is computed by solving Eq. (4) 
over all feasible pairs of stations, and removing the 
component of the IPP speeds from the mean value, as 
shown in Equation (5), the speed estimate (relative to the 

ground) of the ionospheric wave front, Viono, is finally 
obtained. 

   ( )iono n ippV V V cos i  (5) 

where the last term, ( )ippV cos i , indicates the IPP 

speed projected into the normal direction of the front 
speed. 

5.0 RESULTS 

5.1 Results from Station-Grouping by Pattern Recognition 

This section shows results from the step of ‘Grouping 
Stations by Pattern Recognition’ to confirm that the 
algorithm performs well in selecting stations that show a 
similar trend of ionospheric delays. Ionospheric delay 
estimates observed from stations in northern 
Ohio/Michigan on November 20, 2003 were processed by 
the k-means algorithm. The input stations, WOOS and 
GARF, which track PRN 8 were used in this example. 

The left plot in Figure 10 shows ionospheric delay 
estimates observed by a group of CORS stations that 
show similar delay patterns to those of two stations, 
WOOS and GARF. The remaining stations that show 
different ionospheric delay patterns are well excluded by 
this algorithm, as shown in the right plot in Figure 10. 

International Technical Meeting (ITM) of The Institute of Navigation,  
Newport Beach, CA, January 30  February 1, 2012 1577



5.2 Results from case study 

To examine the performance of the automated algorithm, 
the automated data processing was conducted for the 
November 20, 2003 ionospheric storm observed at 20:30 
UT. This section shows example results from the test.  

Figure 11 shows a map of the five CORS stations (in 
blue) in the state of Ohio used to form pairs of stations for 
speed computation. The blue bar represents the 
ionospheric wave front. The numbers shown to the right 
of the names of the station indicate the order in which the 
stations were impacted by the wave front. The four 
velocity parameters are shown in red. The final numerical 
result for the parameters defined in the front velocity 
model is presented in Table 3.The negative sign for  and 
Viono means that the GPS satellite moves southeast and the 
actual wave front moves southwest. 

Table 3: Result from automated procedures for Nov. 
20, 2003 ionospheric storm observed at 20:30 UT. 

Parameter Value 

(deg) -2.49 

Vipp (m/sec) 92.61 

i (deg) 43.53 

Vn (m/sec) -648.78 

Viono (m/sec) -578.9 

   

Figure 11: A map of the five CORS stations (in blue), 
the order in which the stations were impacted by the 
front (shown to the right of stations marks) and four 

velocity parameters 

Figure 12 presents the time history of the ionospheric 
delay measurements observed from the five CORS 
stations. The points represented by the capital “P” 
indicate the peak delay times used in the automated 
algorithm to compute the speed and direction of the wave 
front. As shown in Figure 11, 12, the order of peak delay 
times and the location of stations agree well under the 
assumption of unvarying propagation direction. 
Accordingly, the orientation and forward propagation 
direction of the wave front are well estimated. 

Figure 12: Time history of the ionospheric delay 
measurements observed from five CORS stations and 

peak delay times (indicated by capital P). 

5.3 Performance Validation of the Automated Front 
Speed Estimation Algorithm 

To validate the performance of the automated algorithm, 
we compared the estimation results for the points of the 
current CONUS threat space [1] to those computed 
manually from the previous study. In Figure 13, the 
ionospheric front speeds, estimated using the automated 
algorithm (blue dots), are compared to those manually 
estimated (red dots). Error bars are shown to represent the 
uncertainty in speed estimates due to measurement errors 
and inconsistencies between an actual ionospheric wave-
front and the model of the front used in this study. From 
prior work, the speeds were manually estimated by 
carefully considering errors caused by faulty 
measurement and violation of assumptions made, i.e., the 
front is a straight line, semi-infinite and moves with 
constant speed. Almost all of speed estimates from the 

automated algorithm fall within error bars of 30 percent 
of the manually-estimated speeds. Furthermore, the mean 
of the deviation of automatically estimated speeds relative 
to manually-estimated speeds is 19.9 percent of the 
manually-estimated speeds, and this value is much less 
than the 30 percent. Thus, this new algorithm proposed in 
this paper is shown to be robust to faulty measurement 
and modeling errors. 
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Figure 13: Comparison between the front speed estimates obtained from the automated algorithm and those manually 
estimated for performance validation of the automated ionospheric front speed estimation algorithm. 

5.4 Newly-generated Threat Points 

Figure 14 shows 58 additional threat points (represented 
as red squares) generated from the automated front 
velocity estimation algorithm and the threat points of the 
current CONUS threat space (represented as blue 
diamonds) are shown. Those additional threat points are 
identified by processing ionospheric delay data obtained 
from the LTIAM tool. 

Table 4: Ionospheric storm dates investigated for 
additional data process 

Day 
(UT dd/mm/yy) 

10/29/03 
10/30/03 
10/31/03 
11/20/03 

Number of 
the newly generated points 

using the automated algorithm 
58 points 

Number of 
threat points in 

the current threat space 
34 points 

Table 4 lists the ionospheric storm dates investigated in 
this study. The estimated speeds are all within the bound 
of the current threat space. Previously, it took 

considerable effort and time to identify one threat point. 
However, this automated ionospheric front velocity 
estimation algorithm enable us to populate the threat 
space with additional threat points with relatively little 
effort and time. 

Figure 14: Additional threat points (red squares) 
generated from the automated ionospheric front 

velocity estimation algorithm by processing 
ionospheric data on the four storm days (shown in 

Table 4).  
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6.0 CONCLUSION 

This study developed an automated algorithm for the 
velocity estimation of the anomalous ionospheric front. 
The current CONUS threat model has limitations due to 
the lack of sufficient data (uncertainty as to whether or 
not the existing model bounds could bound future events). 
Thus, it is not acceptable to rely upon the existing model 
indefinitely. In this circumstance, since the maximum of 
the next solar cycle is expected to occur in around 2013, 
ionospheric data should be monitored continuously going 
forward. Thus, the necessity of the development of this 
automated algorithm comes from the vast amount of data 
that should be processed. 

This paper examines the performance of this automated 
algorithm by comparing automatically estimated speeds 
(parameterized by front speed, orientation, and 
propagation direction) to those manually estimated in 
previous work. This automated estimation algorithm 
proved to be robust to faulty measurements and 
uncertainties in modeling the threat model geometry. 

A larger number of velocity estimates, to be produced by 
the automated data processing, would help to better 
understand the behavior of ionospheric wave fronts under 
geomagnetic storm condition. It will further benefit the 
GBAS design by understanding the full range of 
anomalous events. 
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