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ABSTRACT 

 

In safety-of-life applications of satellite navigation, the Protection Level (PL) equation 

translates what is known about the pseudorange errors into a reliable limit on the 

positioning error.  The current PL equations for Satellite based augmentation systems are 

based on Gaussian statistics: all errors are characterized by a zero mean Gaussian 

distribution which is an upper bound of the true distribution in a certain sense. This 

approach is very practical: the calculations are simple and the receiver computing load is 

small.  However, when the true distributions are far from Gaussian, such characterization 

forces an inflation of the protection levels that damages performance.  This happens for 

example with heavy tail distributions or errors for which there is not enough data to 

evaluate the distribution density up to small quantiles.  Also, in the certification process, 

it is very difficult to agree on a given distribution when the statistics are gathered from a 

multitude of situations (like elevation angle in the case of multipath).  With the 

development of new optimization methods and the increasing computing power, it is 

worthwhile exploring new ways of computing integrity error bounds. 

 

In this paper we present a way of computing the optimal protection level when the 

pseudorange errors are characterized by a mixture of Gaussian modes. First, we will 

show that this error characterization adds a new flexibility and helps account for heavy 

tails without losing the benefit of tight core distributions.  Then, we will state the 

positioning problem using a Bayesian approach.  Finally, we will apply this method to 
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protection level calculations for the Wide Area Augmentation System (WAAS) using real 

data from the National Satellite Test Bed and the WAAS network.  The results are very 

promising: Vertical Protection Levels are almost halved in average without increasing the 

maximum ratio between the actual vertical error and the VPL. 

 

 

INTRODUCTION 

 

In the next ten years the number of pseudorange sources for satellite navigation and their 

quality is expected to increase dramatically:  The United States is going to add two new 

civil frequencies (L5 and L2C) in the modernized GPS, and Europe is planning to launch 

Galileo which should be fully operative before 2015, also with multiple frequencies.  By 

combining two frequencies, users will be able to remove the ionospheric delay which is 

currently the largest error, thus reducing nominal error bounds by more than 50%.  In 

particular, safety-of-life applications using augmentation systems will be greatly 

enhanced.  However, it will remain a challenge to provide small hard error bounds - 

Protection Levels – to meet stringent navigation requirements.  Airborne multipath, 

ephemeris error, loss of signal due to scintillation (in equatorial regions), are still a 

challenge in the path to provide Cat III GNSS augmentation systems.  For example, even 

with dual frequency, it is not obvious that the Wide Area Augmentation System (WAAS) 

with GPS alone would meet 100% APV II (20 meters vertical) availability over the 

United States [1]. 

There are many ways to improve the performance of an SBAS without changing 

the message standards [2]: by adding satellites, by adding reference stations, by 

improving the algorithms at the master station (specially the clock and ephemeris 

algorithms).  It is worthwhile however, now that the new L5 MOPS is being developed, 

to explore possible modifications to the message content to improve performance.  The 

current methodologies to provide integrity to augmentation system users are based on 

Gaussian overbounding techniques.  For every source of error, the user receives a 

standard deviation that corresponds to the Gaussian overbound of the error.  For this 

reason, every source of pseudorange error needs to be overbound, in a certain sense, by a 
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gaussian distribution up to very small quantiles - on the order of the probability of 

hazardously misdetection (10-7) [3]  

This is a very difficult task: for example, it is not possible to have experimental 

stationary distributions for the errors because the conditions and environment are always 

changing.  Also, the errors are all mixed together so it is hard to isolate them.  As a result, 

it is necessary to increase the Gaussian overbound to be sure to cover the tails of the 

individual error distributions.  However, by doing so, we ignore the fact that the core of 

the distribution is usually much tighter than the overbound (by a large factor), thus giving 

up performance [4]. 

 

In this paper, we present an estimation technique where errors are characterized by 

Gaussian mixtures.  By using a bayesian approach, this technique optimally takes 

advantage of the tight core of the error distributions while accounting for the heavy tails.  

Although this technique could be used in several places at the master station level in an 

SBAS, we will focus on its application to the Protection Level calculation at the receiver.  

The paper is organized as follows.  First, we will explain how the pseudorange error can 

be characterized by a mixture of Gaussian distributions to account for heavy tails while 

preserving a tight core.  Then, we will compute the a posteriori error density and the 

resulting error bound on the user position.  Finally, we will present a possible application 

of this technique to Protection Level calculation and show its results on real data 

collected at the WAAS reference stations.  

 

 

PSEUDORANGE ERROR MODEL 

 

Typically, pseudorange errors look Gaussian at the core of the distribution.  At the tails, 

however, either we do not have enough data points to have a good representation of the 

distribution, or the points that we have suggest that the tails are worse than Gaussian [5].  

There are several ways to account for heavy tails in the pseudorange errors.  In this paper, 

we will use multimodal Gaussian distribution to characterize pseudorange error 
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distributions with heavy tails.  Let z be the random variable representing the pseudorange 

error.  The density of z can be written: 

( ) ( ),
1

i i

q

i m
i

p z a f zσ
=

=∑  

In this equation ( ),i imf zσ is the density of a Gaussian with mean mi and standard 

deviation σi.  The only requirements on the coefficients ai are that their sum be one and 

that the density be positive for all z.  Although the equations will be written for more than 

two terms modes, we will mostly work here with bimodal mixtures. 

In the previous paragraph we have written the density for a single pseudorange.  

Here we show how we can derive the model for a set of independent pseudorange errors.  

From now on the random variable z is a vector.  Let us consider n pseudorange sources 

and label zk the error on each of them (now z is a vector).  Each error is characterized by a 

Gaussian mixture: 
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The joint density is given by: 
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If one develops this expression, we see that the joint distribution is a mixture of 

multivariate Gaussians.  The covariance matrices are given by each possible combination 

of the modes in each pseudorange error.  Let us label Cj the covariance for a given mode 

and pj the probability of that mode.  The density of the random variable z is given by: 
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This is equivalent to saying that the covariance of z is Ci with probability pi.   
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ERROR DISTRIBUTION CALCULATION 

 

Now that we have a characterization of the error, we can derive an estimator adapted to it.  

We will start by computing the probability density of the position x given the 

measurements y: 

 

( )|p x y  

 

It is rare to consider this expression because, when the errors are Gaussian and a least 

squares estimator with the proper covariance is used, the error density is given by a 

multivariate Gaussian centered a the estimated position, whose covariance does not 

depend on the measurements (one can compute the covariance of the position estimate 

without knowing the actual measurements).  But now the situation is different, as the 

errors are no longer Gaussian. 

 

It is assumed here that the linear model for GPS measurement holds (G is the geometry 

matrix): 

 

y Gx z= +  

 

We start by writing Bayes formula: 

 

( ) ( )
( )
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|
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p x y
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Now let us develop ( ),p x y : 

 

( ) ( ) ( ), |p x y p y x p x=  
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Here p(x) designates the a priori distribution of the position.  The expression for ( )|p y x  

is easy to compute, because z is a mixture of Gaussian distributions: 
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where Wj is the inverse of the covariance Cj matrix corresponding to the jth mode: 

 
1
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To compute ( )p y , we integrate over all possible positions: 
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Let p(x) tend to a uniform distribution over the whole space in both the numerator and the 

denominator  (it is possible to include an a priori in the position of x, but to be consistent 

with the assumptions of current methods we make the a priori tend to a uniform 

distribution over the whole space).  There is an analytic expression for the integral term: 
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The denominator is then: 
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where we have: 
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Notice that this expression would be chi-square distributed if the measurements followed 

the jth mode.  The numerator can be written (where p(x) is canceled out): 
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where: 
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is the position estimate using a least squares algorithm assuming that the measurements 

have the covariance 1
jW − .  We notice now that the term : 
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is the density of a multivariate Gaussian centered on ( )ˆ jx  and with covariance 

( ) 1T
jG W G

−
which we will note: 

 

( ) ( ) ( )1
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jx G W G
p x−  

 

With these notations, the density of the a posteriori distribution of x is given by: 
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where the coefficient aj is defined by: 
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This expression gives the a posteriori distribution of the position location given the 

measurements.  This density appears as a linear combination of Gaussian densities 

associated with the optimal least square estimate corresponding to each mode.  One can 

see that the expression depends heavily on the measurements themselves through the chi-

square statistic for each of the covariances in the mixture, and through each 

corresponding estimate. 

 

 

ERROR BOUND CALCULATION 

 

In the previous section we determined how to compute the density of the position error.  

Here we explain how to translate the density in an error bound for a given probability ε.  

Let us suppose that we want to compute an error bound in the vertical domain.  The 
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problem is to find a position estimate 1̂x  and an error bound (the Vertical Protection 

Level (VPL)) such that: 

 

( )1 1̂Prob |x x VPL y ε− > <  

 

From the density of the position, it is easy to derive the density for each coordinate: 
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To determine 1̂x  and VPL, we need to find an interval I such that: 

 

( )
1

1 | 1
x I

p x y ε
∈

≥ −∫  

 

This interval is not unique and can be adapted to different requirements.  In this work we 

chose to determine it by setting the probability of being on each side of the interval to ε/2.  

This can be easily implemented using a slicing algorithm (it takes very few iterations) to 

determine independently each bound.  Once we have the upper and the lower bound of 

the interval it is easy to compute 1̂x  and VPL. 

 

 

PROTECTION LEVEL EQUATION AND MESSAGE CONTENT 

 

Although there is an analytical expression for the error density position, strictly, there is 

no PL equation.  Instead, there is an algorithm that determines the error bound based on 

the error density.  As an example, we suggest here a small modification to the SBAS 

message content that would allow SBAS users to take advantage of this technique.  The 

current SBAS message (defined in the Minimum Operational Performance Standards for 

SBAS (MOPS)) allows users to compute at each time the standard deviation of each 
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pseudorange error [6] σi
2.  The user treats the pseudorange error as if it was a Gaussian 

random variable with zero mean and standard deviation σi
2.  We can simply account for 

the fact that the errors have a tight core and heavy tails by splitting this single mode in 

two modes: one describing the core and another one describing the tails.  The random 

error with density ( )20, i
ip z

σ
 is replaced by: 

 

( ) ( ) ( )2 20, 0,
1

core i tails i
core i core ia p z a p z

γ σ γ σ
+ −  

 

To perform this split the user needs three additional scalars:  

- the probability of being in the core of the distribution acore, 

- the ratio between the standard deviation of the core and σi
2 (smaller than one) γcore 

- the ratio between the standard deviation of the tails and σi
2 (smaller than one) γtails 

 

One could choose to make this parameters depend on the satellite, but it would be also 

possible to set a conservative set of parameters valid for all satellites, and this is the 

approach that will be taken here.  Such an addition to the MOPS would be backwards 

compatible: a user without the capability to apply the new algorithm would simply use 

the current PL equations.   

 

 

EXPERIMENTAL AND SIMULATION RESULTS 

 

In this section, two types of results are presented.  The first set of results is intended to 

test the integrity of the error bound calculation as well as its general behavior.  The 

second set of results is a simulation intended to evaluate the effect on availability of this 

new technique. 

 

The algorithm was first tested with simulated data by generating errors that were 

distributed as independent Gaussian mixtures matching the theoretical assumptions.  

However, it is the performance under real error distributions that do not match exactly the 
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estimator assumptions that is critical.  For that purpose, we used ionospheric delay 

measurements collected at the WAAS reference stations on October 31st, 2003 – one of 

the worst ionospheric storms observed by the WAAS reference station network.  On that 

day, WAAS service was limited, because the ionospheric disturbance detector had 

triggered in many sectors.  Here, each station was successively treated as a user.  For a 

given station the ionospheric delays were corrected using an algorithm that closely 

mimics the actual WAAS algorithm.  The main differences here were that only the 

ionospheric delay was considered and that the standard deviations of the errors were not 

quantized.  Figure 1 shows the histogram of the 167599 normalized pseudorange errors 

residuals: 

 

pseudorange errornormalized residuals = 
sigma

 

 

 
Figure 1.  Histogram of the normalized pseudorange errors 

 

The above histogram is an extreme example of the kind of error distributions that are 

seen in satellite navigation: the core of the distribution is Gaussian and the rest is worse 
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than Gaussian.  To see that, it is practical to plot the quantile-quantile plot (qq-plot) of the 

histogram: for several percentiles we plot the quantile of the empirical distribution and as 

a function of the quantile of a normal distribution.  Figure 2 shows the qq-plot of the data 

shown in Figure 1. 

 
Figure 2.  qq-plot of the normalized pseudorange errors 

 

If a qq-plot is a straight line, it means that the data is well characterized by a Gaussian.  

In Figure 2, we see that the Gaussian assumption breaks down at the 10-2 quantile.  A 

rough estimate of the Gaussian overbound is given by the slope of a straight line going 

through the origin and a point in the curve.  One can see that there is a large ratio between 

the standard deviation of the core and the Gaussian overbound. 

 

We compared two options to compute the Vertical Protection Level: 

 

- Gaussian overbound: the VPL is computed using the current SBAS VPL equation 

using a model for broadcast sigmas (which leads to the previous histogram) 
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- New algorithm: as said before, the pseudorange error distribution is derived from 

the previous one by splitting the gaussian mode in a mixture of two gaussian 

modes (these parameters were set arbitrarily based on the results of Figure 2): 

 

= 97.5%     = .3
= 2.5%       = 1.5

core core

tails tails

a
a

γ
γ

 

 

Figures 3 and 4 show the vertical position errors divided by the Vertical Protection 

Levels for the Gaussian overbound method and the new algorithm (respectively).  The 

maximum ratios were respectively .62 and .6. 

 

 
Figure 3.  Vertical position error normalized by the Protection Level computed using the 

Gaussian overbound method 
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Figure 4.  Vertical position error normalized by the Protection Level computed using the 

new method 

 

One can see that, while the maximum ratios between actual error and Protection Level 

are similar, the residuals for the new algorithm are larger, suggesting that we are being 

less conservative while preserving integrity.  This is made more obvious in the triangle 

charts shown in Figures 5 and 6: the correlation between actual error and PL is larger 

with the new algorithm.  We see that in average, the Protection Level is divided by two, 

and that integrity seems to be preserved. 
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Figure 5.  Triangle chart for the Gaussian overbound method 

 
Figure 6.  Triangle chart for the new algorithm 

 

To evaluate the performance of the new algorithm in terms of VPL, we used the 
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performance of WAAS by computing the protection level for users placed on a regular 

grid over a given period of time [7].  For these simulations we have assumed: 

- a constellation of 24 optimal GPS satellites (which is the constellation specified 

by the MOPS) and 2 Geostationary satellites (POR, AOR-W) 

- that all satellites are dual frequency L1-L5 so there is no ionospheric error other 

than the uncertainty on the ionospheric delay estimate; 

- the current network of 25 WAAS reference stations. 

The purpose of these simulations was to compare the performance of a dual frequency 

WAAS using the current overbounding approach to on using the algorithm proposed in 

this work.  Figure 7 shows the 99% VPL percentile over the course of a day using the 

current approach. 

 
Figure 7.  Dual Frequency WAAS 99% VPL percentile with current overbounding 

approach 

 

To produce the equivalent plot for the new technique it was necessary to simulate 

measurement errors, so a solution could be computed.  Since we wanted to evaluate the 

performance under nominal conditions, the simulated errors were taken to be random 

Gaussian variables with a standard deviation being a fraction (.3) of the WAAS user 
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range error.  Figure 8 shows the 99% VPL percentile over the course of a day using the 

new technique.  One can see that VPL’s are reduced between 40% and 50%, which is a 

very promising figure. 

 
Figure 8.  Dual Frequency WAAS 99% VPL percentile with the new algorithm 
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underestimation of the error (this risk is small, but that needs to be proved) 

The two first points are already present in the current overbounding approach, but 
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measurements, we increase the standard deviation of the outer mode the PL will increase, 

reach a maximum, and decrease again.  As a consequence, using a larger sigma for the 

outer mode is not always a conservative approach.   

 

The computational load comes mainly from the large number of matrix inversions.  The 

number of matrix inversions needed for one position fix is not one, like in the current PL 

equation, but several hundreds or thousands.  This is not an issue for a PC: a position fix 

and PL computation with 10 satellites took .1 s.  This was achieved: 

- by exploiting the fact that one can go from one inverted matrix to another by rank 

one updates, which are far less demanding than full matrix inversions, 

- by excluding terms in the density that are known to be small before computing 

them 

However, even with these improvements, it will be challenging to apply this algorithm in 

a certified airborne receiver. 

 

 

CONCLUSION 

 
We have developed a formula for the a posteriori position distribution when the 

pseudorange errors are distributed according to a mixture of gaussian modes.  This means 

that we can theoretically compute the position distribution for any kind of pseudorange 

error distribution well characterized by a finite mixture of gaussian modes.  The most 

remarkable feature of the formula is its dependence on the actual measurements. 

Before this method can be applied in an actual system it will be necessary to 

better understand its behavior, as the dependence of the error bounds on the 

measurements is more complex than in current methods.  Also, this method has a larger 

computational load.  Future work will need to address these issues.  While systematically 

evaluating the new approach using WAAS NSTB data we will study the possible 

integrity issues and behavior under different error models.  Also, we will try to simplify 

the formula as much as possible in order to reduce its complexity and computational load. 
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The method was applied to compute positions and protection levels in the 

presence of ionospheric delay errors (only as an example of heavy tail distribution).  The 

error bounds appeared to be 50% smaller on average than with the current methods, 

without affecting the maximum ratio between actual error and protection level.  Also, a 

simulation using a service volume analysis tool showed that the VPLs in a dual frequency 

WAAS could be reduced from 40% to 50% during nominal conditions.  It is therefore 

worthwhile studying its application in safety of life positioning systems requiring small 

error bounds. 
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