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Abstract— Advanced RAIM (ARAIM) algorithms developed 

for aviation can be applied in situations where the probabilities of 

fault are arbitrarily high.  However, with large probabilities, the 

user receiver needs to protect against a large number of fault 

modes (which results from the combination of simultaneous 

independent faults).  In baseline ARAIM algorithms, the user 

receiver must compute a fault tolerant position solution for each 

fault mode (computed using the subset of the available 

measurements that would not be affected by the fault mode), or at 

least its error covariance. After showing how to use a solution 

separation algorithm without computing the fault tolerant 

position solutions, we present a technique to obtain upper bounds 

on the subset error covariance for a given subset size.  This upper 

bound does not require the computation of every subset error 

covariance, and can be computed without additional matrix 

inversions.  We evaluate the potential of this technique by 

examining a specific satellite geometry. 

Keywords— Advanced RAIM, fault tolerant filters, integrity, 

radio navigation 

I. INTRODUCTION  

The safe operation of UAVs and autonomous vehicles in 
general is likely to be dependent on an assured navigation 
solution.  That is, the position error in the solution computed 
onboard should be within a known bound (the protection level) 
with very high probability.  In radio-navigation, such position 
error bounds are easy to compute when the error distribution of 
the pseudorange errors is known.  When at most one 
measurement is faulty, Receiver Autonomous Integrity 
Monitoring (RAIM) can be used to compute a guaranteed error 
bound.  RAIM was developed for aviation applications, where 
the probability of fault of more than one measurement can be 
considered negligible.  However, autonomous vehicles will be 
expected to operate in environments where this is no longer true.  
Multipath, erroneous clocks (in the case of terrestrial signals of 
opportunity), or even spoofing, could cause very large delays, 
and with high probability. 

Advanced RAIM (ARAIM) algorithms developed for 
aviation [1] can, in theory, be applied in situations where the 
probabilities of fault are arbitrarily high.  This class of 
algorithms typically forms a list of subsets corresponding to a 
fault mode (a fault mode being a combination of m simultaneous 
measurement faults), and assigns a probability to it.  As the 
probabilities of fault of each measurement increases, more 

subsets need to be characterized.  In order to compute a 
protection level, the receiver must compute the covariance of the 
position error corresponding to each subset.  This is practical 
when no more than two simultaneous faults need to be 
considered, but it becomes impractical when the receiver must 
list all subsets with N-m measurements when m is three or more 
(N being the number of measurements).  For example, for 30 
range measurements, a target integrity of 10-7, and a probability 
of fault of 1%, the receiver would need to form a list of 2 million 
subsets [5].   

Many techniques to reduce the number of subsets have been 
described [2],[3],[4].  In this paper we develop a new technique 
to monitor and account for the subset geometries without having 
to compute, neither the corresponding fault tolerant solution nor 
their covariance explicitly.  The key to this technique is a 
formula that can provide an upper bound on the standard 
deviation of all subsets of a given size.   

We will start by showing how to implement a relaxation of 
solution separation that does not require the explicit 
computation of all the subset position solutions that are 
monitored, but that still requires the computation of their 
standard deviation.  Then we will derive an upper bound on the 
standard deviations that does not require making an exhaustive 
list of all standard deviations.  Finally we show a very 
preliminary evaluation the performance this upper bound by 
comparing it to the actual maximum in one example. 

II. SOLUTION SEPARATION WITHOUT COMPUTING SUBSET 

SOLUTIONS 

In this section we show how we can obtain an upper bound 

on the protection level without computing explicitly the 

solution separation subset solutions.  The notations and results 

used in this section are mostly drawn from [1] and [5].  In order 

to focus on the contribution of this paper, we will assume that 

the nominal biases are zero and that the accuracy error model 

and the integrity error model are the same. 

A. Solution separation test statistic 

The idea of solution separation, as described for example for 
ARAIM in [1], is to compute a fault tolerant position solution 
x(k) for each fault mode k and compare it to the all-in view 
solution.  For each fault mode k and position coordinate position 
q, the consistency test passes if: 
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meet a pre-determined false alert rate under fault free conditions 
[1].  A valid protection level can be output if all consistency tests 
pass. 

B. Protection Level Equation 

The protection level in the coordinate q, PLq, can be 
computed by solving the following equation: 
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where: 

Q is the right hand side normal cdf 

 
1

T TP W WG G WG G W


  is the standard deviation of 

the error of the kth position solution 

pfault,k is the prior probability of fault mode k 

PHMIq is the integrity allocation to the qth coordinate 

As shown in [1], this equation can be solved efficiently using 
a half interval search.  Since the right hand term is the integrity 
risk, it is sufficient to have: 
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C. Solution separation test without evaluating the subset 

solutions  

Now let us assume that for a subset Ω of the fault modes we 
have not computed the subset solutions.  In [5], we showed that 
the chi-square statistic is a bound on the normalized solution 
separation, that is: 
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where y are the linearized measurements, W is the inverse of 
the pseudorange error covariance, and G is the geometry matrix.  
Therefore, if: 
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we have:  
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We can therefore use Equation (3) to compute the protection 
level with: 
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This means that we do not need to evaluate the subset 
position solutions to check the consistency of the measurements.  

However, we still need the standard deviations 
 k

q  and  
 

,

k

ss q  

to evaluate the Protection Level. 

 

D. Computing a Protection Level without evaluating all subset 
solutions 

In [5] we showed that when using the all-in-view least 
squares position solution, we have the identity: 
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Now let us assume that that we have an upper bound q 
  of all 

the standard deviations 
 k

q  for all k in Ω: 
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For any value of L and any k in Ω we have: 
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The important feature of this upper bound is that it does not 
depend on the index k.  We can further write: 
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Note that factor is now the same for all fault modes in Ω.  We 
can compute a valid protection level with the following 
equation: 
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However, this equation assumes that we have the upper 

bound q 
.  The purpose of the next section is to obtain such a 

bound. 

This work was funded by the Federal Aviation Administration under the 
memorandum of agreement DTFAWA-16-A-00005. 



III. UPPER BOUND ON THE ERROR COVARIANCES OF SUBSETS 

OF A GIVEN SIZE  

The formula for the standard deviation of the all-in-view 
position solution position error with nominal error is given by: 

    
10 2 T T

q e G WG e
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  (14) 

where the vector e projects the position onto the coordinate of 
interest. For a subset position solution where we have removed 
all the indices j in a set J the standard deviation is given by: 
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where GJ and WJ are respectively the geometry matrix and the 
weighting matrix corresponding to the measurements in the set 
J. (We have changed the notation because we do not need to 
refer to the fault index k). 

The goal of the rest of this section is to obtain an upper bound 

on 
 2J

q    for a fixed size of J, that does not require listing all 

the possible sets and performing the matrix inversion in 
Equation (15). 

A. Matrix inversion lemma 

We start by applying the matrix inversion lemma (also called 
Woodbury matrix identity) [6] to Equation (15).  This step 

allows us to express  
 2J

q   as a function of  
 0 2

q  .  After 

applying the identity, we get: 
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where: 

PJJ is obtained by selecting indices J in the rows and columns 

of the matrix  
1
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eTSJ composed of the indices J of eTS where 
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So even if at first sight Equation (16) seems very convoluted, 
many of the terms are byproducts of the all-in-view position 
solution.  We note that this equation is a generalization of the 
rank one update formula (where the matric PJJ is a scalar). 

However, this form should not be applied directly when |J| 
is larger than four, because it would be more computationally 
intensive than just computing the subset covariance directly.  It 
can however be exploited to find upper bounds on the worst 
covariance. 

We further modify Equation (16) by defining DJ, the matrix 
formed by the diagonal terms of PJJ.  We have:  
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  and snorm,J designates the vector obtained 

extracting the indices J in snorm. 

The matrix Pnorm,JJ  has only ones in the diagonal.  In the case 
where |J|=1, PJJ is equal to the scalar 1, and the equation above 
is simply a rank one update. 

To go further, we use the following inequality [7]: 
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where λ(A) designates the set of eigenvalues of the matrix A.  
We also have:  
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As mentioned above, we want an upper bound valid for any set 
J of a fixed size, so we take the maximum across all subsets of 
size m: 
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An upper bound of the first part of the product can be 
obtained by: first, sorting the squares of the vector s in 
decreasing order, and second, taking the sum of the first m terms. 
To compute the second part, we need a lower bound on 

  ,min norm JJP .  

B. Lower bound the smallest eigenvalue of Pnorm,JJ for any set 

J with m elements 

This lower bound can be computed using the Gershgorin 
circle theorem [8].  This theorem states that each eigenvalue of 
a matrix A lies at least within one of the discs D(aii, Ri) (called 
Gershgorin circles) where:  
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For symmetric matrices, where the eigenvalues are real 
numbers, this result means that for any eigenvalue λ, there exists 
an index i such that:  
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As a consequence, for any eigenvalue λ we have:  
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Let us now apply this lower bound to the matrix Pnorm,JJ. We 
have:  
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We now take the minimum across all sets J of size m: 
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Now let us consider the left hand side term.  We write:  
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Next, we rewrite the minimum by considering all the subsets K 
of size m-1:  
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We can further write it as:  
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This step is very important, because for each index i we can 
compute the inner minimum without listing all the subsets K. 
We can see this by writing:  
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The subset that realizes this maximum is composed of the 

largest m-1 values of the ith row of |Pnorm,ij|, which can be 

obtained by sorting the coefficients in decreasing order and 

taking the first m-1. 

 
If this lower bound is negative, it cannot be exploited, but if it is 
positive, we have the upper bound:  
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Although this equation appears to be very complicated, it can 

be evaluated by finding the m larger coefficients (in absolute 

value) in snorm, and the m-1 larger entries (excluding 1) in each 

row of the matrix Pnorm. This is therefore orders of magnitude 

faster than performing an exhaustive search on all subsets of 

size m and computing the corresponding covariance (even if we 

use rank one updates).  We do note that this upper bound can 

only be computed when the denominator in the second term is 

strictly positive. 
 

IV. EVALUATION OF THE UPPER BOUND 

In this section we evaluate the upper bound developed in the 
previous section by comparing it to the actual maximum for a 
given satellite geometry for a range of subset sizes.  We will 
assume that the standard deviation of the measurement noise is 
one (meter, for example) for all measurements, so that the 
weighting matrix W is the identity matrix. 

The geometry used for this example corresponds to a triple 
constellation configuration GPS-Galileo-GLONASS, where the 
clock offsets per constellation are estimated by the receiver.  We 
include the G matrix in the Appendix.  Fig. 1 through 4 show the 
histograms of the standard deviations of the subset position 

solutions 
 k

q  normalized by the all-in-view 
 0

q   for subset 

sizes from n-2 to n-5.   

 

Fig. 1. Histogram of the subset position sigma normalized by the all-in-view 

for m=2 for the example geometry (379 subsets). 



 

Fig. 2. Histogram of the subset position sigma normalized by the all-in-view 

for m=3  for the example geometry (3277 subsets). 

 

Fig. 3. Histogram of the subset position sigma normalized by the all-in-view 

for m=4  for the example geometry (20476 subsets). 

 

Fig. 4. Histogram of the subset position sigma normalized by the all-in-view 

for m=5  for the example geometry (98281 subsets). 

As expected all values are above one.  We also see that 
although there are many subset solutions (from N=379 for m=2 
to N=98281 for m=5) the subset geometries remain very strong.  
It therefore seems a waste of computational power to list and 
compute the error covariance for every single one of them.  It is 
in this type of geometry that the formula developed above 
(Equation (31)) can dramatically lower the amount of 
computations. 

We now compute the upper bound provided by the formula 
given in Equation (31).  Table 1 shows the results compared to 
the actual maximum: 

TABLE I.  TABLE TYPE STYLES 

 
Bounds on the worst subset standard deviation 

Worst case σk/ σ0column subhead 
Upper bound computed 

using Equation (31) 

n-2 1.1830  1.2159 

n-3 1.2690  1.3755  

n-4 1.4076 1.6853  

n-5 1.5967 2.7145 

 

The results in Table 1 are very encouraging, because the 
bound is very tight up to m=4, and it could still be useful for 
m=5.  Considering the savings in computational load, these 
preliminary results are very encouraging.  The utility of the 
upper bound in this paper will be very dependent on the 
application.  In general, it will be valuable in computation 
constrained applications with a large number of measurements 
and high fault rates.  

 

APPENDIX 

 

G = [ -0.0939   -0.6984   -0.7095    1.0000         0         0; 

   -0.7752    0.4972   -0.3897    1.0000         0         0; 

    0.1627   -0.9720   -0.1697    1.0000         0         0; 

   -0.7894   -0.0651   -0.6104    1.0000         0         0; 

    0.0368    0.7023   -0.7109    1.0000         0         0; 

    0.7906   -0.3823   -0.4783    1.0000         0         0; 

    0.8010    0.1143   -0.5877    1.0000         0         0; 

   -0.2378   -0.9627   -0.1294         0    1.0000         0; 

   -0.5876   -0.5164   -0.6230         0    1.0000         0; 

   -0.6473    0.2850   -0.7070         0    1.0000         0; 

   -0.3606    0.8821   -0.3030         0    1.0000         0; 

   -0.5713    0.7573   -0.3165         0    1.0000         0; 

    0.0956    0.6960   -0.7116         0    1.0000         0; 



    0.7527    0.2368   -0.6143         0    1.0000         0; 

    0.9512   -0.2862   -0.1153         0    1.0000         0; 

    0.8716   -0.0631   -0.4862         0    1.0000         0; 

    0.3268   -0.5866   -0.7410         0    1.0000         0; 

   -0.3965   -0.7858   -0.4746         0    1.0000         0; 

   -0.5517   -0.6429   -0.5314         0         0    1.0000; 

   -0.4731   -0.7189   -0.5093         0         0    1.0000; 

   -0.5218    0.1712   -0.8357         0         0    1.0000; 

    0.3261   -0.4333   -0.8402         0         0    1.0000; 

   -0.1731    0.9293   -0.3263         0         0    1.0000; 

    0.6479    0.1610   -0.7445         0         0    1.0000; 

    0.8936   -0.4346   -0.1123         0         0    1.0000; 

    0.9331    0.0734   -0.3521         0         0    1.0000; 

   -0.6882    0.7189   -0.0974         0         0    1.0000; 

   -0.0920    0.6799   -0.7275         0         0    1.0000]; 
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