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ABSTRACT 
 
In safety-of-life applications of satellite navigation, the 
Protection Level (PL) equation translates what is known 
about the pseudorange errors into a reliable limit on the 
positioning error.  The current PL equations for Satellite 
based augmentation systems are based on Gaussian 
statistics: all errors are characterized by a zero mean 
Gaussian distribution which is an upper bound of the true 
distribution in a certain sense. This approach is very 
practical: the calculations are simple and the receiver 
computing load is small.  However, when the true 
distributions are far from Gaussian, such characterization 
forces an inflation of the protection levels that damages 
performance.  This happens in particular with error with 
heavy tail distributions or errors for which there is not 
enough data to evaluate the distribution density up to 
small quantiles.  Because the computing power is 
expected to increase at the receiver level, it is worthwhile 
exploring new ways of computing integrity error bounds. 
 
We present a way of computing the optimal protection 
level when the pseudorange errors are characterized by a 
mixture of Gaussian modes. First, we show that this error 
characterization adds a new flexibility and helps account 
for heavy tails without losing the benefit of tight core 
distributions.  Then, we state the positioning problem 
using a Bayesian approach.  Finally, we apply this method 
to protection level calculations for the Wide Area 
Augmentation System (WAAS) using real data from 
WAAS receivers.  The results are very promising: 
Vertical Protection Levels are reduced by 50% without 
damaging integrity. 
 
 
INTRODUCTION 
 
In the next ten years the number of pseudorange sources 
for satellite navigation and their quality is expected to 
increase dramatically:  The United States is going to add 
two new civil frequencies (L5 and L2C) in the 
modernized GPS, and Europe is planning to launch 
Galileo which should be fully operative before 2015, also 
with multiple frequencies.  By combining two 
frequencies, users will be able to remove the ionospheric 

delay which is currently the largest error, thus reducing 
nominal error bounds by more than 50%.  In particular, 
safety-of-life applications using augmentation systems 
will be greatly enhanced.  However, it will remain a 
challenge to provide small hard error bounds - Protection 
Levels – to meet stringent navigation requirements.  
Airborne multipath, ephemeris error, loss of signal due to 
scintillation (in equatorial regions), are still a challenge in 
the path to provide Cat III GNSS augmentation systems.  
For example, even with dual frequency, it is not obvious 
that the Wide Area Augmentation System (WAAS) with 
GPS alone would meet 100% APV II (20 meters vertical) 
availability over the United States [1]. 

There are many ways to improve the 
performance of an SBAS without changing the message 
standards [2]: by adding satellites, by adding reference 
stations, by improving the algorithms at the master station 
(specially the clock and ephemeris algorithms).  It is 
worthwhile however, now that the new L5 MOPS is being 
developed, to explore possible modifications to the 
message content to improve performance.  The current 
methodologies to provide integrity to augmentation 
system users are based on Gaussian overbounding 
techniques.  For every source of error, the user receives a 
standard deviation that corresponds to the Gaussian 
overbound of the error.  For this reason, every source of 
pseudorange error needs to be overbound, in a certain 
sense, by a gaussian distribution up to very small 
quantiles - on the order of the probability of hazardously 
misdetection (10-7) [3]  

This is a very difficult task: for example, it is not 
possible to have experimental stationary distributions for 
the errors because the conditions and environment are 
always changing.  Also, the errors are all mixed together 
so it is hard to isolate them.  As a result, it is necessary to 
increase the Gaussian overbound to be sure to cover the 
tails of the individual error distributions.  However, by 
doing so, we ignore the fact that the core of the 
distribution is usually much tighter than the overbound 
(by a large factor), thus giving up performance [4], [5]. 
 
In this paper, we present an estimation technique where 
errors are characterized by Gaussian mixtures.  By using a 
bayesian approach, this technique optimally takes 
advantage of the tight core of the error distributions while 
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accounting for the heavy tails.  Although this technique 
could be used in several places at the master station level 
in an SBAS, or more generally to any estimation problem 
with heavy tail errors, we will focus on its application to 
the Protection Level calculation at the receiver.  The 
paper is organized as follows.  First, we will explain how 
the pseudorange error can be characterized by a mixture 
of Gaussian distributions to account for heavy tails while 
preserving a tight core.  Then, we will compute the a 
posteriori error density and the resulting error bound on 
the user position.  Finally, we will present a possible 
application to Protection Level calculation and show its 
results on real data collected by a WAAS receiver.  
 
 
PSEUDORANGE ERROR MODEL 
 
Typically, pseudorange errors look Gaussian at the core 
of the distribution.  At the tails, however, either we do not 
have enough data points to have a good representation of 
the distribution, or the points that we have suggest that the 
tails are worse than Gaussian [6].  To illustrate this point, 
we used data collected at a WAAS receiver in a surveyed 
position during 6 days, which made it possible to estimate 
the pseudorange error for each line of sight (there were 
4.3x106 samples).  Figure 1 shows the quantile-quantile 
plot (qq-plot) of estimated range errors normalized by the 
WAAS sigma error.  For several probabilities, the 
quantile of the sample distribution (of normalized errors) 
is plotted as a function of the corresponding normal 
Gaussian quantile.  This way of plotting the sample was 
chosen because it provides a visual and practical way of 
inspecting the relevant characteristics of the sample.  In a 
qq-plot: 
 

- a sample distributed according to a Gaussian will 
be represented by a straight line whose slope is 
the standard deviation of the sample 

- a distribution overbounding the sample 
distribution in the sense of [3] will appear to be 
above the curve corresponding to the sample for 
positive values, and below for negative values 

 
In this plot, there are several interesting characteristics.  
First, the unit Gaussian appears to be a conservative 
overbound of the sample distribution, which is a proof 
that WAAS is correctly bounding the pseudorange errors.  
Second, the sample distribution appears to be well 
described by a Gaussian distribution between the 
quantiles -3.5 to 3.5 approximately, which corresponds to 
a probability of 10-4.  Third, we can see how the tails of 
the distribution are not as well behaved as the core of the 
distribution, although well covered by the Gaussian 
overbound.  We need to keep in mind that the Gaussian 
overbound is not obtained through inspection of this type 
of plots.  The tails of the distributions are typically 

obtained through analysis and following a worst case 
methodology, that forces the tails of the distribution to be 
very far.  We see that with the Gaussian overbound 
approach, this uncertainty on the tails of the distribution 
forces the overbound to be extremely conservative in the 
core of the distribution. 
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Figure 1.  Quantile-quantile plot of normalized 
pseudorange errors 
 

One way to describe the error distribution more 
accurately is by using a mixture of Gaussian modes.  A 
combination of two Gaussian distributions allows us to 
account both for the tight core of the distribution and the 
heavy tails.  The density of the error distribution for the 
Gaussian overbound can then be written, if z is the 
random variable representing the pseudorange error: 

 
( ) ( )0, ii ip z p zσ=  

 
where the indexes represent the mean and the standard 
deviation.  The index i refers to a given line of sight.  The 
idea is to split this distribution in a mixture of two 
Gaussians: 
 

( ) ( )0, 0,core i tail ii core i tailsp z a p z a pγ σ γ σ= +  
 
In this formula, the standard deviations of the mixture are 
defined as a function of the original WAAS standard 
deviation.  For this paper, we determined the three 
additional parameters arbitrarily but with the following 
requirements: the resulting distribution had to be an 
overbound of the sample distribution, and for large 
quantiles, it had to be an overbound of the original 
overbounding distribution.  With these requirements, we 
chose: 

= 0.975       = .3
= 0.025       = 1.5

core core

tails tails

a
a

γ
γ
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The resulting distribution is plotted in Figure 1 as a red 
line.  One can check that all requirements are met and that 
while we are less conservative at the core of the 
distribution, the new error distribution is an overbound of 
the original overbounding distribution in the tails. 
 
 
POSITION ERROR DISTRIBUTION 
 
Now that we have a statistical description of each 
pseudorange error, in this section we give some elements 
calculation of the position error distribution, (and leave 
the rest for the Appendix). 

In the previous section we have written the 
density for a single pseudorange.  Here we need the 
density of the vector of errors affecting the vector of 
pseudoranges.  After assuming that the errors are 
independent, it is shown in the Appendix that the joint 
distribution is a mixture of multivariate Gaussians.  The 
density of the vector of errors z is given by: 
 

( ) ( )
modes

1
i

N

i C
j

p z p f z
=

= ∑  

 
This is equivalent to saying that the covariance of z is Ci 
with probability pi (we assume that the errors are zero 
mean).  All the parameters of this distribution are derived 
from the individual parameters corresponding to each 
pseudorange (see Appendix). 

We also need to specify what is meant by the 
measurements y.  The GPS positioning problem is not 
linear; however, if one guesses a solution that is close 
enough to the true solution, the problem is well 
approximated by a linear model.  Here we assume that a 
position fix has been determined, and x is then the 
difference between the true position and the determined 
fix, and y is the vector of residuals.  As a consequence we 
can assume that the linear model for GPS measurement 
holds (G is the geometry matrix): 
 

y Gx z= +  
 
We now evaluate the probability density of the position x 
given the measurements y.  It is rare to consider this 
expression because, when the errors are Gaussian and a 
least squares estimator with the proper covariance is used, 
the error density is given by a multivariate Gaussian 
centered a the estimated position, whose covariance does 
not depend on the measurements (one can compute the 
covariance of the position estimate without knowing the 
actual measurements).  But here the situation is different, 
as the errors are no longer Gaussian. 

The calculation is starts with Bayes formula: 
 

( ) ( )
( )

( ) ( )
( )

, |
|

p x y p y x p x
p x y

p y p y
= =  

 
Here p(x) designates the a priori distribution of the 
position, which is here made to tend to a uniform 
distribution over the whole space, as we assume no a 
priori information on the position.  The expression for 
( )|p y x  is easy to compute, because z is a mixture of 

Gaussian distributions: 
 

( ) ( ) ( )mod 11
22

1
|

T
j

N y Gx W y Gx

j j
j

p y x p W e
− − −

=

= ∑  

 
where Wj is the inverse of the covariance Cj matrix 
corresponding to the jth mode: 
 

1
j jW C −=  

 
After some algebra (see Appendix) we find that : 
 

( ) ( ) ( ) ( )
mod

1
ˆ ,1

|
j T

j

N

j x G W Gj
p x y c p x−

=

= ∑  

 
where: 
 

( ) ( ) 1
ˆ j T T

j jx G W G G W y
−

=  
 
and where the coefficients aj are defined by: 
 

2

2mod

111
222

111
222

1

j

i

T
j j j

j N
T

i i i
i

p W G W G e
c

p W G W G e

χ

χ

−−

−−

=

=

∑
 

 
where: 

( )( )12 T T T
j j j j jy W W G G W G G W yχ

−
= −  

 
This expression gives the a posteriori distribution of the 
position location given the measurements.  This density 
appears as a linear combination of Gaussian densities 
associated with the optimal least square estimate 
corresponding to each mode.  One can see that the 
expression depends heavily on the measurements 
themselves through the chi-square statistic for each of the 
covariances in the mixture, and through each 
corresponding estimate. 
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POSITION ERROR BOUND CALCULATION 
 
Here we explain how to translate the density in an error 
bound for a given probability ε.  Let us suppose that we 
want to compute an error bound in the vertical domain.  
The problem is to find a position estimate 1̂x  and an error 
bound (the Vertical Protection Level (VPL)) such that: 
 

( )1 1̂Prob |x x VPL y ε− > <  
 
From the density of the position, it is easy to derive the 
density for each coordinate: 
 

( ) ( ) ( )
mod

1( )
1 1,1

1 1ˆ ,1
|

j T
j

N

j x G W Gj

p x y a p x−

=

= ∑  

 
To determine 1̂x  and VPL, we need to find an interval I 
such that: 
 

( )
1

1 | 1
x I

p x y ε
∈

≥ −∫  

 
This interval is not unique and can be adapted to different 
requirements.  In this work we chose to determine it by 
setting the probability of being on each side of the interval 
to ε/2.  This can be easily implemented using a slicing 
algorithm (it takes very few iterations) to determine 
independently each bound.  Once we have the upper and 
the lower bound of the interval it is straightforward to 
compute a VPL for any chosen estimate. 
 
 
APPLICATION TO SBAS PROTECTION LEVEL 
AND MESSAGE CONTENT 
 
As an example and possible application, we suggest here 
a small modification to the SBAS message content that 
would allow SBAS users to take advantage of this 
technique.  As indicated in the Introduction, the current 
SBAS message (defined in the Minimum Operational 
Performance Standards for SBAS (MOPS)) allows users 
to compute at each time the standard deviation of each 
pseudorange error [6] σi

2.  The user treats the pseudorange 
error as if it was a Gaussian random variable with zero 
mean and standard deviation σi

2.  As explained in the 
section Pseudorange Error Model, we can account for the 
fact that the errors have a tight core and heavy tails by 
splitting this single mode in two modes: one describing 
the core and another one describing the tails.  The random 
error with density ( )20, i

ip z
σ

 is replaced by: 

 
( ) ( ) ( )0, 0,1

core i tails icore i core ia p z a p zγ σ γ σ+ −  

 
To perform this split the user needs three additional 
scalars:  

- the probability of being in the core of the 
distribution acore, 

- the ratio between the standard deviation of the 
core and σi (smaller than one) γcore 

- the ratio between the standard deviation of the 
tails and σi (smaller than one) γtails 

 
The numerical value of these parameters is the one 
determined in the section Pseudorange Error Model.  One 
could choose to make this parameters depend on the 
satellite, but it would be also possible to set a 
conservative set of parameters valid for all satellites, and 
this is the approach that will be taken here.  Such an 
addition to the MOPS [2] would be backwards 
compatible: a user without the capability to apply the new 
algorithm would simply use the current PL equations.   
 
 
EXPERIMENTAL RESULTS 
 
We compared two options to compute the Vertical 
Protection Level: 

- Gaussian overbound: the VPL is computed using 
the current SBAS VPL equation using a model 
for broadcast sigmas (which leads to the 
previous histogram) 

 
- New algorithm: as said before, the pseudorange 

error distribution is derived from the previous 
one by splitting the gaussian mode in a mixture 
of two gaussian modes 

Using pseudorange data collected over a day by a WAAS 
receiver at a surveyed location, we computed every 5 s 
the Vertical Protection Level using both methods.  As 
mentioned in the previous section, it is possible to adjust 
the estimate in the new method to minimize the VPL.  
Here we chose to keep the estimate as the one predicted 
by the current method, and only changing the VPL, so 
there is only one estimation error reported for each fix.  
Figure 2 displays a time series of the VPL as well as the 
error.  Figure 3 shows vertical alert limit as a function of 
unavailability for both methods.  Figure 4 and 5 is the 
triangle chart of the results, where a two dimensional 
histogram is binned by the true vertical error in the x-axis 
and the vertical protection level in the y-axis. 

The VPL is reduced by almost 50% across all 
availability figures, despite the fact that the tails of the 
individual pseudorange distributions are heavier than the 
original Gaussian overbound.  The triangle charts are here 
to show that integrity appears to be preserved (but this is 
not a surprising result given the very large gap between 
the VPL and the actual error always recorded under 
nominal conditions). 
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Figure 2.  VPL and vertical error as a function of time 
 
 

10-3 10-2 10-1 1000

10

20

30

40

50

Unavailability

New VPL

Current VPL

M
et

er
s

10-3 10-2 10-1 1000

10

20

30

40

50

Unavailability

New VPL

Current VPL

M
et

er
s

 
Figure 3.  VPL quantile as a function of unavailability 
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Figure 4.  Triangle chart for the current algorithm 
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Figure 5.  Triangle chart for the new algorithm 
 
The next set of results corresponds to the same data set to 
which simulated noise has been added.  The pseudorange 
was modified by adding a constant random bias per track.  
To match the characteristics of the true error, it was 
generated using a Gaussian mixture.  In Figure 6 we can 
see how the new algorithm reacts to real position errors 
(between 11 and 12 hours).  Figure 7 shows the VAL as a 
function of unavailability, which has gone down for the 
new algorithm but is still well below the current 
algorithm. 
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Figure 6.  VPL and vertical error as a function of time 
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Figure 7.  VPL quantile as a function of unavailability 
 
Figures 8 and 9 show the most interesting result of this 
research: we can see how most of the VPLs have been 
reduced by more than 50%, but only when it was safe to 
do so.  For large position errors, the VPL remains almost 
at the same level as before.  These plots suggest that the 
new algorithm offers a means of drastically reducing the 
Protection Levels without affecting integrity. 
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Figure 8.  Triangle chart for the current algorithm 
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Figure 9.  Triangle chart for the new algorithm 
 
 
COMPUTATIONAL AND INTEGRITY ISSUES 
 
As it has been presented, this algorithm has some 
theoretical weaknesses: 

- the theory assumes that errors are independent 
(although correlation could be introduced, if we 
knew what the appropriate correlation is) 

- biases are not accounted (however, very large 
biases would be detected) 
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- using a very spread distribution for the failed 
mode could cause an underestimation of the error 
(this risk is small, but that needs to be proved) 

The two first points are already present in the current 
overbounding approach, but because of the large margin, 
they are not a major concern.  The last point is specific to 
the new algorithm and needs to be well understood and 
accounted for.  By looking at the expression for the a 
posteriori density, one can see that if, for a given set of 
measurements, we increase the standard deviation of the 
outer mode the PL will increase, reach a maximum, and 
decrease again.  As a consequence, using a larger sigma 
for the outer mode is not always a conservative approach 
(although in the current results, this phenomenon was not 
observed). 
 
The computational load comes mainly from the large 
number of matrix inversions.  The number of matrix 
inversions needed for one position fix is not one, like in 
the current PL equation, but several hundreds or 
thousands.  This is not an issue for a PC: a position fix 
and PL computation with 10 satellites took .1 s.  This was 
achieved: 

- by exploiting the fact that one can go from one 
inverted matrix to another by rank one updates, 
which are far less demanding than full matrix 
inversions, 

- by excluding terms in the density that are known 
to be small before computing them 

However, even with these improvements, it will be 
challenging to apply this algorithm in a certified airborne 
receiver. 
 
 
CONCLUSION 
 
We have developed a formula for the a posteriori position 
distribution when the pseudorange errors are distributed 
according to a mixture of gaussian modes.  This means 
that we can theoretically compute the position distribution 
for any kind of pseudorange error distribution well 
characterized by a finite mixture of gaussian modes.  The 
most remarkable feature of the formula is its dependence 
on the actual measurements (via the measurement 
residuals). 

Before this method can be applied in an actual 
system it will be necessary to better understand its 
behavior, as the dependence of the error bounds on the 
measurements is more complex than in current methods.  
Also, this method has a larger computational load.  Future 
work will need to address these issues.  While 
systematically evaluating the new approach using WAAS 
NSTB data we will study the possible integrity issues and 
behavior under different error models.  Also, we will try 
to simplify the formula as much as possible in order to 
reduce its complexity and computational load. 

The method was applied to compute positions 
and protection levels in an actual WAAS receiver.  The 
error bounds appeared to be 50% smaller on average than 
with the current VPL calculation, without affecting 
integrity and across all levels of availability.  It is 
therefore worthwhile studying its application in safety of 
life positioning systems requiring small error bounds - 
like SBAS, GBAS or Galileo – before new message 
standards are decided. 
 
 
APPENDIX 
 
Let z be the random variable representing the pseudorange 
error.  The density of z can be written: 

( ) ( ),
1

i i

q

i m
i

p z a f zσ
=

= ∑  

In this equation ( ),i imf zσ is the density of a Gaussian with 
mean mi and standard deviation σi.  The only requirements 
on the coefficients ai are that their sum be one and that the 
density be positive for all z. 
 
From now on the random variable z is a vector.  Let us 
consider n pseudorange sources and label zk the error on 
each of them (now z is a vector).  Each error is 
characterized by a Gaussian mixture: 
 

( ) ( )
, ,, ,

1

k

i k i k

q

k i k m k
i

p z a f zσ
=

= ∑  

 
The joint density is given by: 
 

( ) ( ) ( )
, ,1 , ,

11 1

,...,
k

i k i k

qn n

n k k i k m k
ik k

p z z p z a f zσ
== =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑∏ ∏  

 
If one develops this expression, we see that the joint 
distribution is a mixture of multivariate Gaussians.  The 
covariance matrices are given by each possible 
combination of the modes in each pseudorange error.  Let 
us label Cj the covariance for a given mode and pj the 
probability of that mode.  The density of the random 
variable z is given by: 
 

( ) ( )
mod

,
1

es

i i

N

i M C
j

p z p f z
=

= ∑  

 
This is equivalent to saying that the covariance of z is Ci 
with probability pi.   
 
Now that we have a characterization of the error, we can 
derive an estimator adapted to it.  We will start by 
computing the probability density of the position x given 
the measurements y: 



 8

( )|p x y  
 
It is assumed here that the linear model for GPS 
measurement holds (G is the geometry matrix): 
 

y Gx z= +  
 
We start by writing Bayes formula: 
 

( ) ( )
( )
,

|
p x y

p x y
p y

=  

 
Now let us develop ( ),p x y : 
 

( ) ( ) ( ), |p x y p y x p x=  
 
Here p(x) designates the a priori distribution of the 
position.  The expression for ( )|p y x  is easy to compute, 
because z is a mixture of Gaussian distributions: 
 

( ) ( ) ( )mod 11
22

1
|

T
j

N y Gx W y Gx

j j
j

p y x p W e
− − −

=

= ∑  

 
where Wj is the inverse of the covariance Cj matrix 
corresponding to the jth mode: 
 

1
j jW C −=  

 
To compute ( )p y , we integrate over all possible 
positions: 
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )
( )

mod

mod

1
mod

1 1

11
22

1

11
22

1

11
22

1

1
2

|

T
j

T
j

T T T
j j j j

T
T T T T T

j j j j j

x

N y Gx W y Gx

j j
jx

N y Gx W y Gx

j j
j x

N y W W G G W G G W y

j j
j

x G W G G W y G W G x G W G G W y

x

p y p y x p x dx

p W e p x dx

p W e p x dx

p W e

e p x dx

−

− −

− − −

=

− − −

=

⎛ ⎞− −⎜ ⎟
⎝ ⎠

=

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

=

=

=

∫

∑∫

∑ ∫

∑

∫

 

 
Let p(x) tend to a uniform distribution over the whole 
space in both the numerator and the denominator  (it is 
possible to include an a priori in the position of x, but to 
be consistent with the assumptions of current methods we 
make the a priori tend to a uniform distribution over the 

whole space).  There is an analytic expression for the 
integral term: 
 

( ) ( ) ( )1 11
2

1
22

T
T T T T T

j j j j jx G W G G W y G W G x G W G G W y

x

T
j

e dx

G W Gπ

− −⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

∫
 

 
The denominator is then: 
 

( )
2mod 111

222

1

2 j
N

T
j j j

j

p y p W G W G e
χ

π
−−

=

= ∑  

 
where we have: 
 

( )( )12 T T T
j j j j jy W W G G W G G W yχ

−
= −  

 
Notice that this expression would be chi-square 
distributed if the measurements followed the jth mode.  
The numerator can be written (where p(x) is canceled 
out): 
 

( ) ( ) ( )

( )

( ) ( ) ( )

( )( ) ( ) ( )( )

mod

1
mod

1 1

2mod

11
22

1

11
22

1

1
2

111
222

1

11 ˆ ˆ
22

|

2

1
2

T
j

T T T
j j j j

T
T T T T T

j j j j j

j

Tj jT
j

N y Gx W y Gx

j j
j

N y W W G G W G G W y

j j
j

x G W G G W y G W G x G W G G W y

N
T

j j j
j

x x G W G x xT
j

p y x p W e

p W e

e

p W G W G e

G W G e

χ
π

π

−

− −

− − −

=

⎛ ⎞− −⎜ ⎟
⎝ ⎠

=

⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−−

=

− − −

=

=

=

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪⎩ ⎭

∑

∑

∑

⎪

 

 
where: 
 

( ) ( ) 1
ˆ j T T

j jx G W G G W y
−

=  
 
is the position estimate using a least squares algorithm 
assuming that the measurements have the covariance 

1
jW − .  We notice now that the term : 

( )( ) ( ) ( )( )11 ˆ ˆ
221

2

Tj jT
jx x G W G x xT

jG W G e
π

− − −⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 

 
is the density of a multivariate Gaussian centered on ( )ˆ jx  

and with covariance ( ) 1T
jG W G

−
which we will note: 
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( ) ( ) ( )1
ˆ ,j T

jx G W G
p x−  

 
With these notations, the density of the a posteriori 
distribution of x is given by: 
 

( ) ( ) ( ) ( )
mod

1
ˆ ,1

|
j T

j

N

j x G W Gj

p x y c p x−

=

= ∑  

 
where the coefficient aj is defined by: 
 

2

2mod

111
222

111
222

1

j

i

T
j j j

j N
T

i i i
i

p W G W G e
c

p W G W G e

χ

χ

−−

−−

=

=

∑
 

 
This expression gives the a posteriori distribution of the 
position location given the measurements. 
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