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ABSTRACT 

We describe an estimator that merges two functions that are key in integrity monitoring: fault detection 

and fault exclusion.  One of the main contributions of this work is the derivation of a protection level with 

an analytical proof of both integrity and continuity for the proposed estimator.  This estimator offers a 

new way to implement FDE for integrity monitoring, and it may provide better worst-case performance, 

a simpler logic in the algorithm design, and a smoother behavior of the state estimates than standard 

approaches.  The proposed method is evaluated in an Advanced RAIM scenario. 

 

INTRODUCTION 

Safety-critical applications of GNSS-based navigation require integrity monitoring.  When the monitoring 

is performed by the end-user, the effect of faults in the measurements on the position estimate can be 

mitigated using fault detection and exclusion (FDE).  As indicated by its name, most available FDE 

algorithms are structured so that [1,2,3,4,5]: 

1) Detection and exclusion are two clearly defined steps in the algorithm. 

2) Before detection and after exclusion, a linear unbiased estimator is used. 

This approach makes a lot of sense: once the measurements appear to be inconsistent, we attempt to 

remove the outliers.  In most published algorithms, one solution is chosen after exclusion.  Although this 

algorithm structure appears intuitively the correct one, it is not necessarily the best approach. 

In this paper, we investigate and design an FDE solution that is not designed within this structure.  More 

specifically, we look for an estimator that merges the fault detection and the fault exclusion functions. 

This type of estimator is related to robust estimators.  Robust estimation [6] is a very broad field that 

encompasses techniques which protect the estimate from departures from an assumed error model.  

However, the objective functions of currently available robust estimators (for example M-estimators) do 

not directly address the goal of FDE in navigation, (in particular, Receiver Autonomous Integrity 

Monitoring (RAIM) or Advanced RAIM (ARAIM)), where we have a very specific objective.  This objective 

is twofold: first, to ensure that the probability that the position error exceeds a pre-defined error bound 

and there is no alert is strictly bounded, and second, to ensure that the probability of alert is bounded. 

The purpose of this work it to design an estimator that addresses these objectives directly, without 

splitting the process in two discrete steps. We start by formulating the search as an optimization problem, 

then we describe the proposed estimator as well as the proof of integrity and continuity.  Finally, we 

evaluate the approach by evaluating its effect on the Protection Levels in an ARAIM scenario, and by 

applying it to real GNSS data with both real and artificial faults. 



The key to the proposed approach is that rather than focus on a point estimate, we focus on estimating a 

region.  First, we need to make sure that the region contains the true position with high probability.  This 

is to guarantee integrity.  Then we need to make sure that this region has a predictable size for a given 

probability of alert.  This is to guarantee continuity (or at least an upper limit on the probability of alert).  

It is relatively straightforward to design a region that contains the true position with high probability by 

using the principles of solution separation fault detection algorithms [1,3].  It is however not as easy to 

design it such that it does not grow without limits when a fault is present.  We show that this can be done 

by carefully defining the region shape as a function of the measurement residuals.  A key contribution of 

this paper is the analytical proof of both integrity and continuity (or probability of alert) of the proposed 

estimator. 

We first evaluate the worst-case performance of the proposed estimator analytically and compare it to 

the performance of standard FDE approaches.  We then evaluate its performance in an ARAIM scenario 

using the service volume simulation tool MAAST [8].   

 

PROBLEM STATEMENT AND FRAMEWORK – ARAIM ERROR MODEL 

We will be using the framework used in the design of RAIM and ARAIM algorithms, where the 

measurement model is chosen from a set of hypotheses (a fault free one and a set of faulted ones) 

[2,3,4,5,7].  Each hypothesis has a known prior probability, and each faulted hypothesis corresponds to 

an additional unknown bias that may affect a known set of measurements.  Then, we cast the search of 

the estimator as an optimization problem, where the objective is to minimize the PL.  There are two 

constraints in this problem: the probability that the position error exceeds the PL and there is no alert 

should be below the integrity requirement, and the probability that there is an alert should be below the 

continuity requirement.  Solving this optimization (and therefore finding the optimal estimator) is likely a 

very difficult problem (the unknown is a non -linear function) but formulating it will be helpful in the 

search of a good estimator. 

 

Measurement model 

We consider a linear model: 

y Gx = +  

where 

y is the vector of measurements 

x is the state to be estimated 

ε is the measurement error 

 

Fault model 



We consider the fault model that has been used for the development of ARAIM and that is implicit in 

RAIM.  The errors on the measurements follow one of N hypothesis Hi with probability pi: 

i iAb = +  

where Ai is a known matrix, bi is a vector of unknown biases with arbitrary entries, and η is Gaussian 

bounded, which means we may treat it as: 

( )10,N W −  

The case Ai = 0 is the fault free hypothesis H0.  For all the other hypothesis, it must be stressed that each 

one corresponds to a range of error models spanning all the possible values of the added fault bias. 

 

Probability of loss of integrity 

The probability of loss of integrity can be expressed as the probability that two events happen: the 

receiver determines that the measurements are self-consistent and the position error exceeds a known 

limit L (for example the Alert Limit).  In this paper, we will focus on the error in one coordinate (which we 

note here q, but will drop later to lighten the notations, and whenever there is no ambiguity).  The 

expression is therefore: 

( )( )ˆ ,HMI q qP P x y x L y= −    

where 

( )x̂ y is the estimate of the state as a function of the measurements y. 

 is the region of measurements that are deemed consistent. 

For example, in RAIM,   is the set of measurement vectors that result in the test statistic to be below 

the detection threshold (for any of the possible exclusion options when the algorithm is designed to 

attempt exclusion). 

 

Probability of alert 

With these notations, the probability that the position estimate is flagged is expressed by: 

( )AlertP P y=   

In the case of RAIM, this is the set of measurement vectors that results in an alert because no consistent 

set has been found. 

 

Search of the estimator as an optimization problem 



Although we will not attempt to solve it (or at least not directly), it is useful to formulate the best we can 

achieve as an optimization problem.  We want to minimize the probability of loss of integrity while 

maintaining a limited probability of alert, so the problem is written as: 

 

minimize ( ) ( )( )ˆ ˆ, , ,q q qf x L P x y x L y = −       (1) 

subject to ( ) ,Alert reqP y P   

 

We stress the fact that the variables over which we minimize are the estimator ˆ
qx and the region  .  We 

also note that if we want to compute a protection level L (instead of ensuring that an alert limit is valid), 

we can re-write the optimization as: 

 

minimize L      (2) 

subject to ( ) ,
ˆ , ,q HMI reqf x L P   and ( ) ,Alert reqP y P   

 

Estimator and detection region in the case of some standard RAIM algorithms 

For standard RAIM and ARAIM algorithms (as the ones described in [1], [3], [4], [5]), the estimator is 

piecewise linear ˆ
qx .  That is, we have: 

( ) ( ) ( )ˆ ˆ i
x y x y= if iy  

 

where ( ) ( )ˆ i
x y is a linear estimator that is tolerant to fault Hi (in general, it is a least squares estimator).  

This structure is practical because it leads to both a simple estimator and a practical protection level 

equation (or loss of integrity risk equation).  However, this structure is not a requirement, and it is not 

necessarily optimal (in the sense that of the minimization program described in the previous paragraph). 

Figure 1 shows an example of the behavior of an estimator that follows this structure.  In this example 

(see Results section for the settings), a sinusoidal fault has been injected in one pseudorange.  There are 

times where the algorithm detects the fault and is excluded (minute 180, for example), and other times 

where the test statistic is not exceeded and the faulty satellite is kept in the solution.  In all cases, the 

algorithm maintains integrity since the protection level always bounds the position error. 

 



 

Figure 1.  Position error and corresponding protection level for H-ARAIM with FDE and one injected fault. 

 

DESIGNING AN ESTIMATOR FOR INTEGRITY 

Modifying the search of the estimator 

We now go back to the problems (1) and (2).  As we pointed out, the exact solution to these problems is 

likely to be very difficult to obtain in that formulation.  Here, we propose an approximately equivalent 

formulation.  First, we are going to change variables. Instead of determining the estimator x̂ (note that 

are now going to focus on one coordinate and drop the coordinate index), we are going to determine a 

function: 

( )y y  

where   is a region in the space of position solutions (for the coordinate of interest). (For example, for 

an estimator x̂ and a protection level L, we would have ( )  ˆ ˆ,y x L x L = − + ).  With this new variable, we 

can rewrite our optimization problem as: 

minimize ( )( ) ,HMI reqP x y P       (3) 

subject to ( )( ) ( )( ) ,2 , Alert reqP size y L y P      

Note that in addition to the constraint that the size of does not exceed 2L (so that we can place our 

estimate in the middle), we have added the constraint that the region must be non-empty (otherwise we 

would have no estimate). 

 



Fault tolerant position solutions   

Let us now consider the fault tolerant position estimators ( ) ( )ˆ i
x y  corresponding to each of the fault modes 

Hi (already defined above).  Under fault mode Hi, it is straightforward to design a region such that the 

probability of being outside it is bounded and known.  Specifically, we have for any positive scalar K: 

( ) ( )( ) ( )( ) ( )ˆ ˆ ˆ, | | 2
i i i

i i i i iP x x K x K H P x x K H Q K    − + = −  
 

  (4) 

where: 

i is the standard deviation of the position error associated to the estimator ( ) ( )ˆ i
x y (whose 

expression is known and given in [3],[4], or [7]).  

Q is the tail cdf of a zero mean unit Gaussian. 

Equation (4) is well known and valid in the case that the nominal error model is an overbound of the actual 

nominal error properties [7].  Note that, in this equation, K must be independent of the measurements y. 

 

A naïve approach to the determination of Г 

As a way of introducing the proposed method, we first consider the following naïve way of constructing 

the region Г: 

( ) ( ) ( ) ( ) ( )ˆ ˆ,
i i

i i
i

y x y R x y R  = − +
 

    (5) 

Let us now consider the integrity risk expressed in the minimization problem (3).  We have: 

( )( ) ( )( ) ( ) ( ) ( ) ( )( )ˆ ˆ| , |

2

i i

i i i i i i

i i

i
i

i i

P x y P x y H p P x x y R x y R H p

R
Q p



  =    − +
 

 
  

 

 


 

This equation means that we can control the integrity risk PHMI,req through the size Ri of each of the 

intervals.  Let us now look at the size of this interval: 

( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

,

ˆ ˆmax min

ˆ ˆmax

i i

i i
i

i j

i j
i j

size y x y R x y R

R R x y x y

 = + − −

= + + −
 

We can immediately see that this region Г will not work: in the presence of a fault Hi, the all-in-view 

solution ( ) ( )0
x̂ y will diverge from the fault tolerant solution, such that the size is not bounded (which 

means that there is no protection level L that will meet the constraint in (3). 

 



 

Refining the construction of Г 

We refine the construction of Г as follows: instead of considering a fixed Ri for each of the intervals 

composing it, we consider a size Ri that is dependent on the measurements.   The region has the same 

form as in Equation (5) and its size is written as before, but now with the measurement dependence: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
,

ˆ ˆmax
i j

i j
i j

size y R y R y x y x y = + + −   (6) 

The next step is to find an expression for ( )iR y .We want a dependency such that the region becomes 

smaller as the region becomes less likely: it will therefore be a function of the internal consistency of each 

subset solution.  One good measure of the internal consistency of each solution is given by the solution 

separation statistic within each subset, that is:  
( ) ( )ˆ ˆi ij

x x− , where the subscript ij refers to the two 

simultaneous faults i and j.  A simple form for  ( )iR y is given by: 

( ) ( )ˆ ˆmax
i ij

i
j

R L x x= − −      (7) 

This form has a key property that it results in a bounded size for Г.  Let us consider each of the terms that 

are in the maximum in Equation (6).  We have: 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆi j i ij ij j

i j i jR R x x R R x x x x+ + −  + + − + −  

Now replacing the expression for Ri, we get: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmax max

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2

i j i ik j kj i ij ij j

i j
k k

i ij j ij i ij ij j

R R x x L x x L x x x x x x

L x x L x x x x x x L

+ + −  − − + − − + − + −

 − − + − − + − + − 
 

Therefore, the size of Г is bounded by 2L. 

 

Evaluating the integrity risk and setting the protection level 

Because the parameter Ri is now variable, we cannot use Equation (4) to evaluate the integrity risk.  We 

must therefore develop another expression.  We want to evaluate: 

( ) ( ) ( )( ) ( ) ( ) ( )
,

ˆ ˆ ˆ ˆ ˆ ˆmax , max |
i i ij i i ij

md i i
j j

P P x x L x x x L x x H
  =  − − − + − −    

  (8) 

As before, all the estimates in this equation are not affected by fault i (as evidenced by the presence of 

the index i), we can therefore assume that the measurement noise is nominal.   The condition in Equation 

(8) can be rewritten as: 



( ) ( ) ( )( ),
ˆ ˆ ˆfor any  

i i ij

md iP P j x x L x x= −  − −  

This expression can be further bounded by: 

( ) ( ) ( )( ),
ˆ ˆ ˆi i ij

md i

j

P P x x L x x −  − −  

We now bound the probability of each of the terms in this sum.   We have: 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ or 2
i i ij ij i ij

x x L x x x x L x x x L−  − −  −  − +   

as a consequence: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ 2   
i i ij ij i ij

P x x L x x P x x L P x x x L−  − −  −  + − +   

For the first term in the upper bound, it is straightforward that we have: 

( )( )ˆ  2
ij

ij

L
P x x L Q



 
−     

 

 

For the second term, it turns out that ( ) ( )ˆ ˆ2
i ij

x x+ is a linear unbiased estimator of x that also has the 

standard deviation 
ij , so we have: 

( ) ( )( )ˆ ˆ2  2
i ij

ij

L
P x x x L Q



 
− +     

 

 

So we finally have: 

( )( ) 4 i

i j ij

L
P x y p Q



 
    

 
      (9) 

Equation (9) is the equation that provides the protection level equation.  To find a suitable L, we set it 

such that: 

, 4HMI req i

i j ij

L
P p Q



 
=   

 
      (10) 

 

Probability of Alert requirement 

As defined above, we are guaranteed that the design of Г will meet the integrity requirement.  We also 

need to make sure that is meets the probability of alert requirement.  With this approach, an alert would 

occur if no estimate can be provided, which can only happen if Г is empty.  We have: 



( )( ) ( )( )|i i

i

P y p P y H = =   =  

We now bound each of the terms, by noticing that: 

( )( ) ( ) ( )( )ˆ ˆ| max 0
i ij

i
j

P y H P L x x =  − −   

Now let us note 
, ,ss ij i the standard deviation of the solution separation ( ) ( )ˆ ˆi ij

x x− (as given in [3] or [7], 

for example).  We have: 

( ) ( )( ) ( ) ( )( )
, ,

ˆ ˆ ˆ ˆmax 2
i ij i ij

j
j j ss ij i

L
P L x x P L x x Q



 
 −   − =   

 
   

The probability of alert is therefore bounded by: 

, ,

2alert i

i j ss ij i

L
P p Q



 
   

 
       (11) 

The protection level therefore must be such that: 

,

, ,

2 i alert req

i j ss ij i

L
p Q P



 
  

 
       (12) 

 

Summary of method to compute the protection level L and the estimate x̂  

1. Compute subset solutions and sub-subset solutions ( ) ( )ˆ ˆ,
i ij

x x and their associated standard 

deviations (as well as solution separation deviations) 

2. Determine L as the maximum of the solutions to Equations (10) and (12): this is the protection 

level 

3. Determine Ri as determined by Equation (7) 

4. Find the center of Г (as defined in Equation (5): this is the estimator ( )x̂ y  

 

List of exclusion candidates and list of fault modes 

The above equations are well adapted to the situation where the list of exclusion candidates coincides 

with the list of fault hypothesis.  There are however scenarios where the list of exclusion candidates is a 

subset of the fault hypotheses that need to be monitored.  This is typically the case when the probability 

of alert requirements is less stringent than the integrity risk requirement.  In this paragraph, we generalize 

the approach to include this case.   

We first define J the set of indices corresponding to the subsets that are in the list of exclusion candidates 

[9].  The size of the boxes in Equation (7) is now given by: 



( ) ( )ˆ ˆmax
i ij

i i
j

R L x x= − −  if i J      

( ) ( )ˆ ˆmax
i ij

i i
j J

R L x x


= − −  if i J                 (13) 

The only change with respect to (7) is that the maximum is taken only over the set J and the fact that the 

parameter Li has now an index.  The integrity risk expression (10) becomes: 

, 4 4i i
HMI req i i

i J j i J j Jij ij

L L
P p Q p Q

   

   
= +      

   
        (14) 

We now bound the size of the region Г.  More precisely, we want to determine L such that:  

( ) ( ) ( ) ,
,

ˆ ˆmax 2
i j

i j alert req
i j

P R R x x L P+ + −      (15) 

Let us first look at each pair of indices (i,j).  For the case where one of the indices is in J, (i for example) 

we have as before: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmax max

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i j i ik j kj i ij ij j

i j i j
k k J

i ij j ij i ij ij j

i j

R R x x L x x L x x x x x x

L x x L x x x x x x L L


+ + −  − − + − − + − + −

 − − + − − + − + −  +
 (16) 

Now we look at the pairs where none belong to J.  In this case, we have, for any k in J: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆmax max

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i j i ik j kj i ik

i j i j
k J k J

kj j kj ik kj ik kj k k ik

i j i j

R R x x L x x L x x x x

x x x x L L x x L L x x x x

 
+ + −  − − + − − + − +

− + −  + + −  + + − + −
 (17) 

 

From these two inequalities, we deduce that: 

( ) ( ) ( ) ( ) ( ) ( )
,

ˆ ˆ ˆ ˆmax 2 max || max max
i j kj k

i j i i
i j i J i J k J

P R R x x L P L L L x x L
  

+ + −    + −   (18) 

 

This inequality shows that a good choice for Li is: 

iL L=  if i J  

i iL L T= −  if i J      (19) 

The integrity risk (Equation (14))  becomes: 

, 4 4 i
HMI req i i

i J j i J j Jij ij

L TL
P p Q p Q

   

   −
= +      

   
       (20) 



The continuity requirement (which before only involved the existence of Г) is now: 

,

, , , , , ,

2 2 2i i
Alert req i i i

i J j i J j J i J j J i Jss i ij ss i ij ss i ij

L T TL
P p Q p Q Q p

       

     −
= + + +          

     
       (21) 

A practical way of solving this equation is to allocate a fraction of the continuity budget to the term 

, ,

2 i

i J j J ss i ij

T
Q

 

 
  
 

  and solve for Ti, for example by allocating the continuity budget equally among all 

terms.  Once we have Ti, Equations (20) and (21) are straightforward. 

We note: 

- that both the integrity and continuity equations are at this point preliminary and may very well 

be improved. 

- it is straightforward to include nominal biases in the protection level equation (we did not include 

them to lighten the notations) 

 

 

 

QUALITATIVE EVALUATION OF THE PROTECTION LEVELS  

Before applying this method to real data, here we present a coarse evaluation of the expected 

performance.  In standard approaches, the worst-case protection level (the one resulting from the worst- 

case fault) is approximately given by: 

( ), ,
,

max FA ss j ij HMI ij
i j

PL K K +     (22) 

Note that the factors KFA and KHMI are notional (they correspond to the quantiles required for the false 

alert requirement and the integrity requirement, respectively).  In this equation, we can see the 

contribution to the PL of both the solution separation and the containment that is required for integrity 

under each of the exclusion options [9]. 

Let us now estimate the magnitude of the PL when using Equation (10).  If we assume that one of the 

terms dominate the equation, we have the approximation: 

max HMI ij
ij

PL K       (23) 

If we compare (22) to (23), we see that the new PL does not have the solution separation contribution, 

and is therefore potentially much smaller. One can explain this difference by noticing that the new 

estimator will not decide between two discrete exclusion options when there is ambiguity as to which 

solution is the best one.  Instead, it will maintain both options and provide an estimate that is somewhere 

in between.   

 



RESULTS 

In this section we provide preliminary results of this method corresponding to an ARAIM scenario.  The 

conditions for the simulation were as follows: 

• 8 hours of data 

• 1 Hz 

• GPS- Galileo L1-L5 

• December 13, 2020 

• Fault injected on one satellite (sinusoidal fault) during the 8 hours 

• Pconst,GPS = 10-8, Pconst, GAL = 10-4 Psat = 10-5 

Figure 1 above already showed the results corresponding to a standard ARAIM algorithm [9].  We now 

examine the behavior of the proposed approach in a few examples. 

  

Figure 2. VPL for the standard algorithm (left) and for the proposed method (right) with an injected fault 

in Galileo SVN 09 

  



Figure 3. VPL for the standard algorithm (left) and for the proposed method (right) with an injected fault 

in Galileo SVN 05 

 

  

Figure 4. VPL for the standard algorithm (left) and for the proposed method (right) with an injected fault 

in Galileo SVN 31 

In all three examples, we can see that the protection level is smaller than the standard protection level 

when there is a detection in the standard algorithm (instances where the position error is small because 

the fault has been excluded).  This was the original intent of this work.  However, we also see that this 

holds even when there is no detection (this is somewhat unexpected, but can also be explained by 

examining the simplified Equations (22) and (23)).  Finally, we see that the position error behaves in a 

much smoother way for the proposed method (and is also generally much smaller): instead of the large 

discrete jumps due to the switch between linear estimators on the left, we have a continuous estimate 

that excludes the error progressively. 

 

Coverage results  

In this section we look at the effect that this algorithm would have on H-ARAIM coverage.  Using a 

modified MAAST [10], we computed the HPL obtained taking the maximum of the solutions to Equation 

(10) and Equation (11) (although this last one was never the critical one).  The HPLs were compared to a 

case representing a standard H-ARAIM algorithm, for which we took the algorithm described in [9].  The 

ARAIM parameters were set as above.  Users were simulated for a 24 h period every 10 minutes over a 

10 by 10 degree grid.  The baseline constellations used in [9] (GPS-24 and Galileo-24) were used.  The 

resulting 99.9% HPL containments are shown in Figure 5.  A histogram of the ratio between the proposed 

HPL and the standard HPL is shown in Figure 6.  The reduction in HPL, which ranges from 35% to 50% is 

consistent with the qualitative comparison shown above. 

 



  

Figure 5. 99.9% HPL for a standard H-ARAIM algorithm (left) and for the proposed approach (right) 

 

Figure 6. Histogram of the ratio of the proposed approach to the standard H-ARAIM algorithm 

 

 

 

SUMMARY 

We have described an estimator and its associated protection level that merge two functions that are key 

in integrity monitoring: fault detection and fault exclusion.  A key contribution of this work is the 

derivation of a protection level with an analytical proof of both integrity and continuity (or probability of 

alert) for the proposed estimator, which is non-linear.  The estimator was applied to GNSS data collected 

on the ground with artificial faults and evaluated using a service volume model.  Preliminary results 

suggest that this approach may improve upon the classical paradigm of FDE in at least three ways:  it 

provides a better worst case performance (in terms of protection level), it has a simpler logic, and the 

position solution tends to be smoother over time. 
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