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ABSTRACT

GPS alone cannot provide the integrity needed for air
navigation. Several error sources deteriorate the precision
of the position estimate. One of the largest and more
unpredictable sources of error for single frequency users
is the ionosphere. For this reason, ionospheric behavior
drives the performance of the Wide Area Augmentation
System (WAAS). At any given time, the only information
we have of the ionosphere is a limited amount of Total
Electron Content (TEC) measurements. As a
consequence, in order to estimate the ionospheric delay
and get a confidence bound on such an estimate, we need
to understand the spatial structure of the ionosphere over
the region of interest. Using the thin shell model
framework, where each TEC measurement is identified as
a location on the thin shell, labeled the Ionospheric Pierce
Point (IPP), the problem is reduced to a 2-dimensional
problem. Once we have a good description of a nominal
ionosphere, there are two questions that need to be
answered before estimating the delay at a given IPP: Are
the IPP measurements compatible with the assumed
nominal model of the ionosphere? How relevant are the
IPP measurements to the location we need to estimate? To
answer the first one, an accurate characterization of the
ionosphere in nominal conditions is needed. The large
observed stationarity violations make this latter question
very difficult.

A worst case based method to determine the spatial
structure of the nominal ionosphere in terms of the
variogram, or, equivalently, the covariance is presented.
The technique called ‘kriging’ produces at each location
an estimate and a confidence bound on the estimate, the
kriging variance. The particular behavior of the kriging
variance at the edge of coverage allows us to intuitively
define the ‘well sampled’ region. We show that a
carefully designed estimation algorithm based on kriging
could provide confidence bounds on the ionospheric delay
corrections allowing WAAS to meet the GNSS Landing
System requirements.

INTRODUCTION

WAAS corrects, among other sources of error, for the
user’s ionospheric delay errors and places strict
confidences on those corrections under all conditions [1].
The estimation process is simplified by making the thin
shell approximation [2]. Each ray path has a
corresponding Ionospheric Pierce Point (IPP), where that
path intersects the thin shell. Each ionospheric TEC
measurement is transformed in a Vertical Ionospheric
Delay. The WAAS correction message specifies the
vertical delay values as well as the confidence at each
node, labeled σGIVE [3]. The user interpolates these values
to find the ionospheric delays corresponding to its
satellites in view. The current algorithm is described in
[4]. In order to increase the performance of the system, in
particular to be able to meet GNSS Landing System
requirements, the confidence bound on the correction
would need to be reduced by more than a factor of two:
from a σGIVE of 1.5 m to .6 m.

In fact, under nominal conditions, any reasonable
estimation algorithm yields excellent estimates.
Unfortunately, the existence of sudden changes in the
ionosphere, from quiet to stormy conditions [5], [6], [7],
together with the fact that the ionosphere is irregularly
sampled, has forced the system to be overly conservative
most of the time. A storm detector based on the chi-
square test, and a metric measuring the degree of
coverage take care of the irregularity threats [4], [8]. It is
mainly in the characterization of the undersampled
regions that there is room for improvement.

It was shown in [9] that the technique called
kriging –a particular minimum mean-square estimator –
could mitigate the undersampled problem. Kriging has
long been used for mapping purposes, because it provides
a natural interpolation. As such it has been applied to map
TEC measurements as well as other ionospheric
parameters [10], [11]. Kriging has also many attractive
features for WAAS [9], for both the definition of the ‘well
sampled’ region and the confidence bound generation.
However, a critical step in the estimation when using
kriging is the knowledge of the underlying deterministic
and random spatial structure [12].



In this work, we are interested in the limitations
of ionospheric delay estimation due to ionospheric
behavior and due to the location of the IPP measurements.
We will therefore omit the difficulties introduced by the
bandwidth limitation [4] by assuming that the user has the
same information as the master station, that is, all the IPP
locations and measurements. For the validation of the
proposed solutions, we will also consider that the
measurements have very low noise, as it is the case in
WAAS ‘supertruth’ data. In this set of data, the
redundancy of receivers and the post-processing allows
the isolation and removal of faults [5]. However, it will be
explained how to include the higher level of noise that
real time measurements have.

In the first part, we will show a method to refine
the spatial characterization of the ionosphere in nominal
conditions, and come up with a conservative model. In the
second part we will describe the algorithm that is optimal
under the characterization given in the first part; we will
also show how to heuristically generate the ‘well
sampled’ region from the kriging variance. We finally
will present the cross validation results over several days
worth of supertruth data, which includes the most extreme
ionospheric conditions observed during the current solar
cycle [7].

SPATIAL STRUCTURE OF THE VERTICAL
IONOSPHERIC DELAY

A useful and intuitive way of characterizing the spatial
structure of a random field is the variogram [13]. The
variogram measures the loss of confidence of a random
function as we depart from the measurements, assuming
that there is no deterministic underlying trend, and that
the random function is stationary. It is defined as:
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where u is a location, h is a vector and I is the random
function that we want to estimate; in our case, it is the
vertical ionospheric delay. At each epoch the variogram
was estimated by computing all the difference between
pairs of measurements Iv(ui)-Iv(uj) and the corresponding
distance |ui-uj| [5], [9]. The pairs were classified
according to their distance in different categories. In this
study we used the bins [0 300 km], [300 km 600 km] etc.
For each bin we estimated the variance of the resulting
empirical distribution.  Since we wanted to get a
conservative estimate of the variance, we used the
gaussian overbound [14] of the empirical distribution.

Figure 1. Variograms for a quiet day

Figure 1. shows several experimental variograms
for a quiet day. The flat variograms correspond to the
ionosphere during the night, and the more variable
correspond to daytime. In fact, the ionospheric behavior is
well approximated by a planar trend [5]. It is the planar
trend that is responsible for most of the variability, so it
does not correspond to random variability. We can have a
better idea of the range of the trend by examining a
variogram obtained through the classical formula –instead
of computing the gaussian overbound in each bin, we
compute the mean of the squares- [9], [12] which is
smoother than the variogram obtained through the
gaussian overbound. Figure 2 shows such a variogram.

Figure 2. Variogram for a quiet day obtained with the
classical formula.

Although we cannot use this variogram to bound the
ionospheric behavior, we can extract some qualitative
information. The overall shape is determined by the
presence of a trend, which produces the parabolic
behavior from 0 to 2000km. However, we see that for lags
larger than 2500 km, the planar trend is not as clear. The
other very important characteristic of the variogram is the
behavior at the origin [12]. In this variogram, at small lags



we have a non zero derivative. This means that even if we
remove the planar trend there is random spatial structure
left [12], [13]. We can express this idea by writing that,
locally, the vertical ionosphere delay is given by: 

( ) 0 1 2, ( , )vI x y a a x a y R x y= + + + (2)

where the first three terms define the planar trend and
R(x,y) is a random function with zero mean and a given
variogram. Now, we would like to characterize the
random behavior of R, that is, to find a variogram that
describes it conservatively.
 De-trending the data is a classical problem in
spatial statistics [15]. It is problematic to just fit a plane to
the data and compute the variogram of the residuals.
Some measurements might have high leverage on the fit,
either due to their large value or their geometry [16],
contaminating the original data. For example a
measurement that represents an outlier to the plane will be
smoothed if we include it in the planar fit; in our
description of the ionosphere, we want to be aware if such
outliers do exist, and we want to understand their spatial
dependency. We therefore need a method that does not
contaminate the original data, or that contaminates it in a
conservative way. The common practice in spatial
statistics is to compare only the pairs of measurements
that lie in a direction unaffected by the trend [12], [15].
This way we ensure that the original data is not affected
by the fit. For our purposes, there are two problems in this
approach. First, we end up with a very small amount of
measurements, thus getting less statistical significance.
Second, we assume that the variability in the direction of
the trend is the same as in the direction orthogonal to the
trend. These two problems go against our worst case
approach.

Instead, we decided to proceed in the following
way: for each pair of measurements, we did a planar fit on
the remaining measurements (up to a certain radius) and
assumed this planar fit would describe the trend. The
advantage of this approach is that the data used to
generate the pairs will not influence the trend. Also, we
do not limit the number of pairs. The inconvenience is
that we do not take into account the uncertainty that the
plane might have, due to the geometry of the measured
locations, thus not defining correctly the trend. However,
this is likely to bias the variogram in a conservative way.
We mitigated this effect by considering only the densest
regions in terms of IPP measurements.

Figure 3. Experimental residual variograms for a quiet
day.

Figure 3 shows a series of experimental residual
variograms generated using this method. We used only
pairs of measurements with latitudes 30 deg and 45 deg,
and longitudes between  -105 deg and -85 deg. The radius
of search used was 1500 km. The nominal day used was
July 2nd, 2000. If the random function R had no spatial
dependency, we would expect those variograms to be flat.
We see instead that there is a clear spatial structure once
the trend is removed.

Since we are going to be using the variogram for
estimation, we need to find an admissible variogram [11],
[13] that is close enough to the experimental variogram.
The simplest we can find is a linear model with a non zero
intercept at the origin. However, such a model cannot be
described by a covariance, because the variogram has no
finite limit as the separation becomes infinite [12] –we
will see later that we need the covariance. We chose
instead a model variogram with a linear behavior at the
origin and a finite limit at infinity –a sill. An admissible
variogram having these properties is given by:
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This model is called exponential model [13]. For a model
variogram we always have by definition γ(0)=0. So there
is a discontinuity at the origin, which is called the nugget
effect [12]. The different parameters were chosen visually
so that the function given by (3) would approximately
overbound the different experimental variograms for a
nominal day. The parameters retained were: c=1m2,
a=10000km , and  ν=.05 m2 .

Because of the existence of a sill in this
variogram model, it is equivalent to say that the residuals
have the covariance [12], [13]:
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We now have a model of the ionosphere under nominal
conditions.

Figure 4. Model variogram for nominal ionosphere.

If the ionosphere was stationary over the
CONUS region at all times, even in storm conditions, we
would not need any additional characterization –except
for the temporal variability, a problem not treated in this
study. The extreme ionospheric conditions observed
during the current solar cycle show that there can exist
sharp limits between regions of the ionosphere that are
quiet and regions that are stormy [6], [17]. For example,
during the first hours of July 16th, 2000, for the IPPs
above 37 deg latitude, the variance is 10 cm, whereas
below the variance is 100 times larger. There is no
stationary model that can describe this case without being
overly pessimistic in the quiet region. Instead, we need to
evaluate, given a set of IPPs compatible with a spatial
structure, which locations will be well described by the
same spatial structure. In [6] it was suggested that in the
regions well surrounded by IPP measurements, that is,

well inside the convex hull of the measurements, we
could safely assume we had the correct spatial structure.
While being easy to assess visually, this is a difficult
parameter to compute. The uncertainty maps associated
with kriging appear to naturally account for insufficient
sampling [9]. Where the coverage in IPPs is low the
kriging variance is high. We can therefore use these maps
to assess the degree of coverage. We will come back to
this problem after explaining how to generate the map of
variances.

ESTIMATION ALGORITHM

Now that we have a statistical description of the nominal
ionosphere behavior, we can shape the estimation
algorithm. The first step of is to make sure the
measurements are compatible with the assumed model.
The measurements are assumed to be of the form:

( ), 0 1 2, ( , )v meas k k k k k k kI x y a a x a y R x y N= + + + +
(5)

with Nk the measurement noise, for which the covariance
is well known [4]. Now let us assume that both R and N
are multivariate normal, and that R and N are
independent. From the measurements we can form a
quantity that will be chi-square distributed with n-3
degrees of freedom [16]. To do that, we filter the
deterministic component of (5), i.e., we find combinations
of the measurements that will have zero mean. We then
decorrelate those combinations so that we have a sum of
independent gaussian random variables.

We can then design a test, in the same way it was
done in [4]: given the degrees of freedom and an
allowable false alarm rate, Pfa we can calculate a threshold
value for the chi-square using its known distribution.
Using the same failure model as in [4], which is that the
variogram increases uniformly by the same factor, we
obtain that if we pass the chi-square then we need to
increase the final confidence bound by:
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where Pmd is the allowable misdetection rate. The details
of the rationale can be found in [4]. We took Pmd=10-3 and
Pfa=10-3. What is important is that we have a test that
evaluates whether the measurements are compatible with
the assumed model, and that indicates by how much we
need to inflate the confidence bound as a function of the
number of measurements.



Figure 5. Kriging map over CONUS of the vertical
ionospheric delay for July 2nd 2000.

We now need to give the best estimate and
generate the confidence bound on the estimate, given the
assumed model (the model that passed the chi-square
test). We will use here the technique known as kriging
with a trend (KT), or universal kriging [12], [13], which
minimizes the mean-square estimation error given that the
spatial structure is given by (2). In fact, the only change
with respect to ordinary kriging [9],[12] is the addition of
two constraints expressing the fact that there is a
deterministic trend described by two additional
parameters. The equations for KT are:
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where λ is the solution of the equation:
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As in ordinary kriging, the estimation produces a kriging
variance σ2

kriging, and we take the confidence bound to be
the square root of the kriging variance. Figure 6 shows a
map of the confidence bound generated by KT (where we
have not yet multiplied by Rirreg).

Figure 6. Map of kriging variance for July 2nd 2000.

The shape of the kriging confidence bound
suggests a way of generating the stationary region.
Outside the convex hull of the measurements the
confidence bound grows very quickly. We can for
example decide that all the locations that have a kriging
confidence bound above a certain threshold are not
estimable, because we do not have enough confidence on
the underlying structure at that location. If we take for
example a threshold of .30 m, the well sampled region
will be as shown in Figure 7.

 Summarizing, the estimation algorithm does the
following. First, we find all the IPP measurements within
a radius of 2000 km. Then, we check that the
measurements are compatible with the assumed model.
We apply KT to obtain the kriging estimate and the
kriging confidence bound; compare the kriging
confidence bound to the threshold above which we have
decided not to monitor and, if it passes, we multiply the
kriging confidence bound by Rirreg.



Figure 7. Covered region using the kriging variance. The
darker gray indicates that the region is well sampled. 

CROSS-VALIDATION RESULTS

There are two different aspects of the algorithm that need
to be evaluated: the integrity and the availability both in
terms of coverage and level of accuracy. For the
coverage, Figure 7 shows that the metric based on the
kriging variance covers the CONUS region. The most
important is the integrity. We need to make sure that the
true ionospheric delay experienced by the user falls within
the bounds sent. This was checked using cross-validation:
for each measurement we compute the estimate and the
confidence bound produced by the algorithm at the same
location, excluding the test measurement. The normalized
residuals were then formed:
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In the denominator we have the difference between the
predicted vertical ionospheric delay and the true vertical
ionospheric delay. σ2

bound is either the kriging variance or
the kriging variance corrected by R2

irreg (we examined
both) and σ2

meas is the measurement noise, which here is
very low because we are using supertruth data.  If the
predicted delays and bounding variances were safe, the
resulting distribution should be overbounded by a zero
mean unit-variance gaussian, that is, the empirical
probability of having a residual larger than a given
threshold should always be below the probability given by
the normal distribution.

 Figure 8 shows the normalized residuals for July
2nd 2000. Here the residuals were normalized by the
kriging variance only. We can see that the confidence
bound is very conservative, even before taking into
account R2

irreg. Instead of displaying every distribution for
every day we computed some important characteristics.
The most interesting are the maximum residual and the

gaussian overbound. These quantities were computed for
the following days: April 6th-8th 2000, July 15th-16th 2000
for the storm days, February 12th 2001 for a mildly
disturbed day and May 25th 2001, July 2nd 2000 and
March 26th 2000 for nominal days. They include the worst
ionospheric conditions experienced in the current solar
cycle. 

Figure 8. Histogram of results for July 2nd 2000, before
multiplying the confidence bound by Rirreg.

Mean of
σbound 

Gauss.
overbound

Max. norm.
residual

July 15th -16th .28 m 1.25 5.13

April 6th-8th .28 m 1.22 4.63
February 12th .27 m 1.2 4.9
May 25th .27 m 1.05 4.45
Mar 26th .27 m 1.05 4.38
July 2nd .27 m .74 3.18

Table 1. Result of the cross-validation for several quiet
days, before multiplying by Rirreg

In Tables 1 and 2, the first column represents the mean of
the confidence bounds, the second column gives the



standard deviation of the gaussian overbound -of the
normalized residual distribution-, and the third gives the
magnitude of the maximum residual.

Table 1 shows the results using only the kriging
variance. While being enough on July 2nd, there is not
enough protection against irregularities in storm days: the
gaussian overbounds are larger than 1. This is due to the
fact that our confidence on the model depends on the
number of measurements. The loss of confidence is taken
into account by Rirreg.. 

Mean of
σbound 

Gauss.
overbound

Max
 norm. res.

July 15th –16th .46 m .74 3.07
April 6th-8th .46 m .73 2.77
February 12th .47 m .74 3.08
May 25th .46 m .65 2.78
Mar 26th .45 m .63 2.63
July 2nd .45 m .50 2.07

Table 2. Result of the cross-validation for several quiet
days, after multiplying by Rirreg

Table 2 shows how we are protecting against
irregularities: the gaussian overbound is always well
below one and the residuals are never above 3.08. We
also should point out that most of the time the ionosphere
behaves as in July 2nd 2000. The level of accuracy is
below .5 m.

Integrity failures are more likely to happen when
there are few measurements. We tested the algorithm
under two different data deprivation schemes that
correspond to two generic threats [5]: an isolated
irregularity in an otherwise quiet region, and an
irregularity coming from the edge of coverage. For both
deprivation schemes we used a quiet day, July 2nd 2000,
and a storm day July 16th 2000. In the first one, we
implemented a disk data deprivation scheme: in the
estimation process we used only the measurements that
are at a distance larger than a given radius. The cross-
validation process was carried out for radii going from 0
to 600 km. Figure 9 shows the gaussian overbound both
for a quiet day and a storm day as a function of the
excluded disk radius. When the gaussian overbound is 0,
it means that under this deprivation scheme, all kriging
confidence bounds were above .3 m, i.e., the IPP was not
well sampled. The fact that the gaussian overbound does
not grow, means that we are correctly taking into account
the loss of information as we have less IPP measurements. 

Figure 9. Gaussian overbound of the normalized
residuals as a function of excluded disk radius, for a quiet
day and for a storm day.

In the second deprivation scheme, all IPPs that
where under an East West line at a distance D from the
location to be estimated were excluded. This deprivation
scheme was designed to put the algorithm under severe
undetected gradients, like the one observed on July 16th,
2000 [6], [7]. We varied D from –200 km to 800 km. For
negative distances we are in fact out of the convex hull of
the IPP measurements. For this reason, at –200 km, there
are no points for which the kriging confidence bound is
under .3 m.



Figure 10. Gaussian overbound of the normalized
residuals as a function of the distance to the uncovered
region.
The worst case corresponds to –100 km, where the
overbound is above 1. This is due to the huge gradient
experienced on July 16th 2000 mentioned above. We
notice however that the effect is small, and there is no real
integrity threat: the maximum residual was 4.5. We can
conclude that, together, the chi-square test and the kriging
variance protect efficiently against irregularities. 

The algorithm presented here can be modified in
several ways. The most obvious is to have several models
of the ionosphere describing different ionosphere
conditions instead of one. For example, if the tightest
model did not pass the chi-square test, we could test a
covariance structure representing a more disturbed
ionosphere. It would be specially useful on mildly
disturbed days.

CONCLUSION

We have refined the characterization of the nominal
ionosphere over the CONUS region within the thin shell
model. We have designed an algorithm that is optimal in
the least squares sense under the given characterization. A
storm detector makes sure the measurements are

compatible with the model, and the kriging variance
metric defines the coverage through a threshold. The
results show that it is possible to design an ionosphere
estimation algorithm for WAAS providing safe
confidence bounds under .5 m.
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