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ABSTRACT 

One of the most stringent requirements of positioning 
systems for aviation is integrity.  The provision of 
integrity is the main function of Satellite-based 
Augmentation systems (like the Wide Area Augmentation 
System and EGNOS),   Ground Based Augmentation 
Systems, and Receiver Autonomous Integrity Monitoring 
(RAIM).  All these systems have different threat models, 
different nominal error models, and different constraints, 
but they all attempt to do the same thing: maximize the 
availability while maintaining integrity.  Despite this 
common problem structure, there is a wide variety of 
integrity algorithms, even within the case of RAIM alone.   

In this paper, we focus on the choice of the detection 
statistics, and attempt to determine the optimal statistic 
given a threat model.  There are three contributions in this 
paper.  First, we cast the search of the optimal detection 
region as a mini-max problem.  Second, we use the 
Neyman-Pearson lemma to limit the search of the 
detection regions to a class of regions parameterized by a 
bias.  Finally, we have shown that in the case of one 
threat, even multi-dimensional, the optimal detection 
statistic is the solution separation, that is, the difference 
between the all-in-view solution and the solution obtained 
by assuming that the threat might be present. 

 

INTRODUCTION 

The main task of systems like Augmentation Systems 
(SBAS, GBAS) or Receiver Autonomous Integrity 
Monitoring (RAIM) is to provide guaranteed error bounds 
to the satellite navigation position solution, that is, error 
bounds with integrity. The error bounds must be small 
enough so that the service they aim to provide is 
available.  The monitoring algorithms at the core of these 

systems must therefore attempt to maximize availability 
while maintaining integrity, or at least meet the required 
availability while maintaining integrity.  For this reason, 
the design of the monitoring algorithms is in essence an 
optimization problem (of integrity for example) subject to 
constraints (the availability).  The goal of this paper is to 
make this optimization with constraints problem explicit 
and provide some results on its solution. 

The solution in the case of a fault parameterized by one 
bias is described in [1], [2], in the context of geodetic 
networks.  Again for the one bias case, this result is 
presented in [3] as a direct consequence of the Neyman-
Pearson lemma.  However, the conditions for the 
Neyman-Pearson lemma are not met, as the H1 hypothesis 
(fault) is not well defined.  In these papers, the problem is 
cast in terms of a choice between H0 or H1, which is not 
the correct question in the integrity context.  Although 
these are not the terms employed in these three papers, the 
suggested statistic is the square of the solution separation 
statistic (which coincides with the residual test).  Because 
this result is presented as showing that the optimal 
statistic is a chi-square statistic, it has sometimes been 
misinterpreted as meaning that the optimal statistic is the 
chi-square of the residuals –which is a good detection 
statistics, but not the optimal as will be seen.   

In this paper, we formulate the problem as the search of 
the detection region that minimizes the worst case 
integrity risk. As a consequence, we will generalize the 
results included in [1],[2],[3] in two directions.  First, we 
consider threats that can be multidimensional, like 
simultaneous satellite faults.  Second, we include the 
possibility of having heterogeneous prior probabilities for 
each fault mode, and attempt to define the detection 
region given the whole threat model.   A possible starting 
point is given by the Neyman-Pearson lemma, which 
provides the best test statistic given a known faulted 



distribution of errors.  However, as mentioned earlier, the 
integrity monitoring problem does not in general fulfill 
the conditions of this lemma.  In particular, in the 
integrity context, the faulted distribution is typically not 
completely determined.  Instead, it is parameterized by an 
unknown bias, or vector of biases.  The contribution of 
the fault to the integrity budget is obtained by maximizing 
over all possible biases.  This means that the Neyman 
Pearson lemma cannot be applied directly. 

After introducing our notations, the search of the 
detection region is formulated as a mini-max problem.  
After some manipulations we apply the Neyman-Pearson 
lemma, so that the search is reduced to a class of regions 
for a very wide range of problems.  Then, the exact 
solution is given in the case where the threat model is 
reduced to one (possibly multidimensional) threat, which 
is the solution separation statistic.  Finally, we show that 
while the set of solution separation statistics 
corresponding to each threat is not the optimal statistic in 
the general case, it might be very close to it. 

 

ERROR MODEL AND DEFINITIONS 

Fault free error model 

The fault free error model is given by the state equation: 

othery Gx Hx ε= + +    (1) 

G is the geometry matrix, y is the set of measurements, 
and ε is the nominal noise. The vector x is the target of the 
integrity bounds, and xother is not. For example,  xother 
could be the clock component in the case of RAIM.  The 
vector ε is a zero mean multivariate normal random 
variable. 

 

Fault error model 

In this paper we are interested in the faults that can be 
described by adding an additional unknown in the state 
equation: 

other iy Gx Hx Ab ε= + + +   (2) 

Ai and b are a matrix and a vector respectively.  Ai is 
known and b is unknown (it is an additional state). 

It is assumed that the measurements follow this fault error 
model with probability pi.  The set of fault error models 
and the fault free error model form a partition, that is, 
there is only one state at a given time. 

For notation purposes, we set: 

0 0A =    (3) 
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Integrity Risk: Probability of exceeding the error bounds 
and passing the test 

The objective of the test is to make sure that the 
probability of exceeding the error bounds (Alert Limits in 
the case of RAIM) is below the allowable integrity risk 
(IR).  We label ΩAL the region within which the 
estimation error must lie with a probability of at least 1 – 
IR.  The region of measurements for which there is no 
alert is labeled Ω.  The test region Ω must be such that: 

( )ˆ ,ALP x x y IR− ∉Ω ∈Ω ≤  (4) 

This expression can be developed as follows: 

( ) ( )
fault modes

0

ˆ ˆ, , |
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AL i AL
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P x x y p P x x y i
=

− ∉Ω ∈Ω = − ∉Ω ∈Ω∑
(5) 

Now we develop each term in this sum: 

( )
( )

( )ˆ ˆ, | max , |
iAL AL

b
P x x y i P x x y i− ∉Ω ∈Ω = − ∉Ω ∈Ω

(6) 

 

 

False Alert 

In addition, there is a false alert requirement: under fault 
free conditions, the probability that the measurements are 
outside of Ω must not exceed the false alert budget Pfa:  

 

( )| 0 faP y i P∉Ω = ≤   (7) 



 

SEARCH OF THE DETECTION REGION AS AN 
OPTIMIZATION PROGRAM  

 

The goal is to obtain a region Ω such that: 

( )ˆ ,ALP x x y IR− ∉Ω ∈Ω ≤   (8) 

( )| 0 faP y i P∉Ω = ≤  

The search for a solution can be cast as the following 
minimization program: 

Minimize ( )ˆ ,ALP x x y− ∉Ω ∈Ω   (9) 

s.t. ( )| 0 faP y i P∉Ω = ≤  

If we develop the above expression, the problem appears 
as a mini-max problem: 

Minimize 
( )

( )
fault modes

0

ˆmax , |
i
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i AL
bi

p P x x y i
=

− ∉Ω ∈Ω∑  (10) 

s.t. ( )| 0meas faP y i P∉Ω = ≤  

The mini-max nature of the problem is more apparent if 
we take the maximum out of the summation: 

Minimize 
( )

( )
fault modes
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ˆmax , |
i

N

i AL
b i

p P x x y i
=

− ∉Ω ∈Ω∑  (11) 

s.t. ( )| 0 faP y i P∉Ω = ≤  

The unknown in this problem is the region Ω.   From this 
point, the paper will examine the case where x is a scalar 
and: 

[ ],AL L LΩ = −   (12) 

CHANGE OF VARIABLES – PROJECTION ON 
PARITY SPACE 

Filtering out the effect of the actual position and 
projecting onto the parity space 

The first step consists on filtering out the effect of the 
position on the measurements.  This is done by projecting 
the measurements on the parity space.  Let P be a matrix 
whose rows form a basis of the kernel of [G H].  After the 
appropriate normalization and orthogonalization, the 
random component can be assumed to be a vector of 
independent zero mean unit Gaussian distributions:

 
 

( )( ) ( )i i
other i i i iPy P Gx Hx Ab PAb P PAb zε ε= + + + = + = +

(13) 

We have: 

( )0,z N I   (14) 

Similarly, we have: 

( )( )ˆ iT T
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i i
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ε

ε

− = − = + + + −

= +
(15) 

We have: 

( )( )0,T Ts N std sε ε   (16) 

We define: 

( )
T

T

s
std s

εη
ε

=    (17) 

Without loss of generality, we can assume that Ai is full 
rank and: 

( )

( )
( )
1

iT
ii

T
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b

std s ε
=   (18) 

This is done by performing the appropriate change of 
variables and parameterization of the bias b. 

To lighten the notations we redefine Ai and L as follows: 

i iA PA→  

( )T

LL
std s ε

→  

y Py→     (19) 



x̂ x x− →  

At the end of this step, and after updating the notations, 
we have reduced the problem to the form: 

Minimize 
( )

( ) ( )( )fault modes

1
0
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N
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i i
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p P b L y z Abη
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+ > = + ∈Ω∑  

(20) 

s.t. ( ) faP y P∉Ω ≤  

Notice that η and z are not necessarily independent.  In the 
above expression, the no fault case has always a zero bias.  
We will therefore assume in the rest of the paper that : 

( )0 0b =  

(The max is to be understood concerning i>0 only). 

NEYMAN-PEARSON LEMMA  

In this section, we consider the following problem: 

( )

( )

minimize 

. . 1 fa

f y dz

s t g y dy P
Ω

Ω

≥ −

∫

∫
  (21) 

The solution to this problem is provided by the Neyman-
Pearson lemma [4].  The optimal region Ω is given by: 

( )
( )

|
f y

y T
g y

  Ω = ≤ 
  

  (22) 

The threshold T is chosen to meet the false alert 
requirement: 

( )
( )
( )

1 fa
f y

T
g y

g y dy P
≤

= −∫   (23) 

Problems (20) and (21) are very similar.  There is 
however a complication in the first one: there is a 
maximum taken across the biases b.  The idea to solve 
(20) consists on switching the min and max, so that we 
can use (22). 

 

SYMMETRIZATION 

The min and the max in (20) cannot be switched without 
manipulation, because there is no set of biases b that 
would produce an optimal region.  In this section we 
show that we can modify the problem to an equivalent 
problem in which we can switch the min and max.  
Specifically, we show that under some conditions the 
following problem is equivalent to the original one: 

Minimize 

( )

( ) ( )( )
( ) ( )( )

fault modes 1
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i
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 + > = + ∈Ω 
 
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 

∑

(24) 

s.t. ( )| no fault faP y P∉Ω ≤  (25) 

We lighten the notations by noting b the vectors b(i) and F 
the function: 

( ) ( ) ( )( )fault modes

1
0

, ,
N

i i
i i

i
F b p P b L z Abη

=

Ω = + > + ∈Ω∑ (26) 

Problem (24) is then written: 

Minimize ( ) ( )( )1max , ,
2b

F b F bΩ + − Ω  (27) 

s.t. ( ) faP z P∉Ω ≤  

Be Ω*the solution to this problem, we will show that the 
solution to this problem is symmetric, such that: 

( ) ( )* *, ,F b F bΩ = − Ω   (28) 

 

By the definition of Ω *, for any other region Ω, there 
exists b such that: 

( ) ( )( )
( ) ( ) ( )( )

* *

'

*

'

1max ', ',
2

1max ', , ,
2

b

b

F b F b

F b F b F b

Ω + − Ω

= Ω ≤ Ω + − Ω
 (29) 

This means that there exits b such that: 

( ) ( )*

'
max ', ,

b
F b F bΩ ≤ Ω   (30) 

As a consequence, we have: 



( ) ( )*

'
max ', max ,

b b
F b F bΩ ≤ Ω  (31) 

Since this is true for any Ω, we have: 

( ) ( )*

'
max ', min max ,

b b
F b F b

Ω
Ω ≤ Ω  (32) 

This shows that if Ω*is symmetric with respect to zero, it 
is a solution of  (20) . 

 

SWITCHING MIN AND MAX 

In this section, we treat the problem: 

( )

( ) ( )( )
. .

1max min , ,
2

fa

b
s t P z P

F b F b
Ω

∉Ω ≤

Ω + − Ω  (33) 

That is, for each set of biases b, we find the optimal 
detection region Ωb, solution of the problem: 

( )

( ) ( )( )
. .

1min , ,
2

fas t P z P

F b F b
Ω

∉Ω ≤

Ω + − Ω   (34) 

Then, we maximize over the bias b.  We then will 
consider the argument bmax that maximizes the function: 

( ) ( )( )1 , ,
2 b bb F b F bΩ + − Ω   (35) 

We will show that 
maxbΩ  is a solution of (20).  For now, 

we go back to (34) and cast it such that we can use (22).  
We have: 
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(36) 

In these formulas ( ), zφ η is the joint density of the 

random variables η and z. 

We note: 

( )( ) ( ) ( )( )1, ,
i

i i i
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η

φ η η
>

= − −∫ (37) 

And: 

( ) ( )P y y dyϕ
Ω

∈Ω = ∫   (38) 

The function φ is the density of a zero mean unit 
multivariate Gaussian (N(0,I)). 

With these notations, (34) is written: 
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Under this form, we can use (22).  The optimal region Ωb 
is given by: 

( )( ) ( )( )
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Again, the threshold T is chosen to meet the false alert 
requirement. 

 

Symmetry of Ωb 

The functions ( )( ),
i

i
Ag y b  and φ(y) are symmetric with 

respect to zero: 
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 This means that Ωb is symmetric with respect to zero. 

 

 



Convexity of Ωb 

For a fixed η and b, the following function is convex: 

( ) ( )( )
( )

1 ,i i
ib y Ab

y
y

φ η

ϕ

− −
   (42) 

(It is the exponential of a linear function of z).  As a 
consequence, the integral over η is also convex: 
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For the same reason, the function: 
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is convex.  The region Ωb is a sublevel set of this 
function, so it is convex [5]. 

 

Unimodality as a function of b 

We now consider 
maxbΩ as defined in (35) and show that 

the following function is unimodal in a region that will be 
defined below: 

( ) ( )( )max max

1: , ,
2 b bb F b F bΓ Ω + − Ω  (45) 

Since 
maxbΩ is symmetric, we have: 
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We write: 
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We will consider this function for the biases b such that: 

( )
1 0ib ≥    (48) 

At this point, we make an approximation which simplifies 
the derivation (but should not change the conclusions).  
We write that: 
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The idea is here is that the left hand side contribution in 
the integral will not have any effect on the unimodality of 
the function in the domain we are interested in, so that we 
only need to consider the right hand side.  A formal proof 
of this fact is not included here, so we rely on (49).  A 
justification for (49) can be found in [6]. 

The function: 

( ) ( ) ( )( ) ( )max1, , , ,i i i
i bz b b y Ab I L yη φ η η− − > ∈Ω (50) 

is log-concave (it is the product of two log-concave 
functions [5]).  The indicator function is log-concave 
because its support is convex.  According to [5], the 
marginal distribution obtained by integrating over η and y 
is also log-concave.  That is, the following function is log-
concave: 
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As a consequence, it is unimodal: there is only one 
extremum and it is the global maximum.  This means that 
the function: 
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 (52) 



is also unimodal and has only one extremum (Γ is 
separable in each b(i)).  

 

Proof that bmax maximizes Γ 

We have shown that Γ has only one extremum, and it is 
the global maximum.  In this paragraph we show that the 
maximum is reached at bmax.  Let us consider the function: 

( ): , bb F bθ Ω  (53) 

At bmax we have: 

( ) ( ) ( )max maxmax max max, , 0b b
F Fb b b
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θ∂ ∂ ∂Ω ∂

= Ω + Ω =
∂ ∂ ∂ ∂Ω

(54) 

The definition of Ωb guarantees that: 
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As a consequence, we have: 

( )maxmax , 0b
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b

∂
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∂
  (56) 

Or equivalently: 

( )max 0b
b
∂Γ

=
∂

   (57) 

This means that bmax is the only extremum in the domain 
of interest and that therefore, bmax is the global maximum. 

 

Proof that 
maxbΩ is a solution to the original problem  

Be *Ω the solution of (24).  By the definition of 
maxbΩ we 

have: 
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( ) ( ) ( )( )
( ) ( )( )

max

* *
max ,

1, max , ,
2

1min max , ,
2

meas b b

b

F b F b F b

F b F b
Ω

Ω ≤ Ω + − Ω

= Ω + − Ω
(59) 

 

We have shown in the previous paragraph that for any 
bias b: 

( ) ( )max maxmax, ,b bF b F bΩ ≤ Ω  (60) 

As a consequence we have: 

( ) ( )max maxmaxmax , ,b bb
F b F bΩ ≤ Ω  (61) 
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 As a consequence, the region 
maxbΩ is a solution of 

problem (24). Since 
maxbΩ is symmetric with respect to 

zero, it is also a solution of the original problem (20). 

 

Summary 

We have shown that the solution Ωopt of problem (20) is 
such that: 
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(64) 

for a set of biases bmax.  Although this result does not say 
what the biases bmax are, it does show the general shape of 
the optimal detection region.  Figure 1 shows the contours 
of the function defining the region for a two dimensional 
y and assuming that η and z are decorrelated.  Appendix B 
gives more information on the biases bmax in the case 
where η and z are decorrelated. 



 

Figure 1.  Contours of the function defining the region Ωb 
in a two dimensional case 

 

CASE OF ONE THREAT 

In this section, we analyze the case where there is only 
one threat.  The problem can then be written: 

Minimize ( )1max ,
b

P b L y z Abη + > = + ∈Ω  (65) 

s.t. ( )| no fault faP y P∉Ω ≤  

The shape of the solution is given by (64).  There exists 
bmax such that: 
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Let us assume that η and z are decorrelated (which is the 
most common case in RAIM).  We have: 
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Now we perform a change of variables as follows.  We 
define: 

[ ]( ) 1

1 1 0 0T T Th A A A
−
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We perform the following change of variables: 

1

1
1

T

b

h yw
σ

=   (69) 

( )
1

1

1,1

T
b sqrt A Aσ

−
=   (70) 

The purpose of this change of variable is to project the 
measurement y on the best estimate of b1.  The 
normalization is there to keep a unit Gaussian.  We now 
complete h1 into an orthonormal basis by h2 etc and define 
for k>1: 

T
k kw h y=   (71) 

We also redefine bk for k>1 (not for k=1) as: 

' T
k k kb h b=   (72) 

 

After this change of variables (and dropping the prime to 
lighten the notations) we have (φ designates a zero mean 
unit Gaussian of the appropriate dimension): 

( )

( ) ( ) ( )
1

1 1 1 2 2

,

1Prob

A

n n
b

g w b

p b L w b w b w bη ϕ ϕ ϕ
σ

=

 
− ≥ − − −  

 


(73) 

The vector w is also a unit Gaussian with mean: 

( )
1

max,1 max,2 max,
1

T

n
b

q E w b b b
σ

 
= =  

  
 (74) 

 We have: 

( ) ( ) ( ) ( )( )
( )

max,1 max,1
1 Prob Prob
2|

opt

p b L w q p b L w q
z

w
T

η ϕ η ϕ

ϕ

Ω =

 − ≥ − + + ≥ +  
 
 
 ≤ 

(75) 
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It turns out that this region has a much simpler 
expression.  We have: 

( ) ( )1 1Prob Probb L b Lη η− ≥ = + ≥  (76) 

We can redefine the threshold so that: 

( ) ( )
( )

|opt

w q w q
w T

w
ϕ ϕ

ϕ
 − + + Ω = ≤ 
  

 (77) 

We have: 

( ) ( )
( ) ( )Tw q w q

f q w
w

ϕ ϕ
ϕ

− + +
=  (78) 

where f is convex and symmetric, so that the sublevel sets 
are symmetric intervals.  There exists a threshold τ such 
that: 

{ }| T
opt w q w τΩ = ≤   (79) 

Without loss of generality, we can assume that the norm 
of q is one.  The threshold τ is then only a function of the 
false alert requirement.  In what follows, we show that we 
necessarily have: 

0 for 2kq k= ≥  

We note: 

1

1 2
1

T

n
b

b b bβ
σ

 
=  
  

  

( ) ( ) ( )1, Prob
T

opt
q w

F b p b L w dw
τ

η ϕ β
≤

Ω = − ≥ −∫  (80) 

We have: 

( ) ( ) ( )
T

T T

q w

w dw Q q Q q
τ

ϕ β τ β τ β
≤

− = + − − +∫  (81) 

It can be verified that if we had qk or k>1 different than 
zero we would have: 

( ) ( ) ( )max , optb
F b Q Qτ τΩ = − −  (82) 

(b1 can be made to go to infinity while keeping Tq β =0).  

On the other hand, if 0 for 2kq k= ≥ , we have: 

( ) ( )

( ) ( )
1 1

1

1 1

, Prob

1 1

opt

b b

F b p b L

Q b Q b Q Q

η

τ τ τ τ
σ σ

Ω = − ≥

    
 + − − + < − −           

(83) 

We therefore have: 

{ }1|opt w w τΩ = ≤   (84) 

The above equation means that we need to perform a 
threshold test on w1, the best estimate of the error 
(normalized by its standard deviation).  Appendix B 
shows an alternate proof. 

Summary 

We have shown that the best statistic in the case of one 
threat (even multidimensional) is a threshold test on the 
best estimate of the user error given the measurements.  
This result holds when the nominal error is decorrelated 
from the nominal noise on the measurements.  Appendix 
A suggests that the correlated case appears to be more 
complex. 

 

BEST ESTIMATE OF ERROR GIVEN THE 
MEASUREMENTS: SOLUTION SEPARATION 
STATISTIC 

In order to complete the previous result, we show that the 
best estimate of the error given the measurements is the 
solution separation statistic.  The next derivation also 
works in the case where the user error is correlated with 
the measurements.  The notations in this section are 
different than in the previous ones. 

y Gx Ab ε= + +    (85) 

   ( )Tz s Abε= +  

We would like to test y to test whether z exceeds a certain 
limit.  As shown in the previous section, the optimal 
choice for this is the best estimate of z given y. 

We use a Minimum Mean Square [7] approach with: 



( )~ 0, Xx N C    (86) 

( )~ 0, Bb N C  

( )~ 0,N Cεε  

We note: 

( )covYC y=   (87) 

( )cov ,ZYC z y=  

Taking into account that the means are all zero, we have: 

1ˆ ZY Yz C C y−=   (88) 

We now replace the above matrices by their expression as 
a function of the given parameters.  We have: 

( )cov T T
Y X BC y GC G AC A Cε= = + +  (89) 

( ) ( )cov , T T
ZY BC z y s AC A Cε= = + (90) 

Therefore: 

( )( ) 11 T T T T
ZY Y B X BC C s AC A C GC G AC A Cε ε

−− = + + + (91) 

At this point, we would like to make CB and CX go to 
infinity, because we have no prior information on b and x.  
To do this, we change the form of the above formula: 

( )( )
( )

1

1

T T T T
B X B

T T T T T
X X B

s AC A C GC G AC A C

s s GC G GC G AC A C

ε ε

ε

−

−

+ + + =

− + +
(92) 

We now use the following general formula: 

( ) ( )1 11 1 1T T T TR R R R R R
− −− − −Σ Σ + Γ = Γ + Σ Γ  (93) 

With: 

[ ]R G A=   (94) 

0
0

X

B

C
C

 
Σ =  

 
 

CεΓ =  

We get: 

( )

[ ]

1

11
1 1

1

0
0

T
T TX

X BT
B

T T
X

T T
B

C G
GC G AC A C

C A

CG G
C G A C

CA A

ε

ε ε

−

−−
− −

−

 
+ + = 

 

     
+           

(95) 

( )
( )

1

1

11 1 11

1 1 11

0
0

T T T
X X B

T T T
B X B

T T T
X

T T T
B

C G GC G AC A C

C A GC G AC A C

G C G G C A G CC
A C G A C A A CC

ε

ε

ε ε ε

ε ε ε

−

−

−− − −−

− − −−

 + +
  = + +  

     
+           

 

 

We can now make CB and CX go to infinity, so that we 
get: 

( )
( )

1

1

11 1 1

1 1 1

T T T
X X B

T T T
B X B

T T T

T T T

C G GC G AC A C

C A GC G AC A C

G C G G C A G C
A C G A C A A C

ε

ε

ε ε ε

ε ε ε

−

−

−− − −

− − −

 + +
  = + +  

    
         

 (96) 

The right hand term is the matrix giving the least squares 
estimate of x (in the presence of the fault Ab) and b as a 
function of y.  That is, we have: 

ˆ
ˆ
A

A

x
H y

b

 
= 

 
  (97) 

11 1 1

1 1 1

T T T

A T T T

G C G G C A G C
H

A C G A C A A C
ε ε ε

ε ε ε

−− − −

− − −

    
=          

 (98) 

This means that the best estimate of z is given by: 

1 ˆ ˆˆ T T T v
ZY Y A Az C C y s y s Gx s y x−= = − = −  (99) 

This last equation shows that is coincides with the 
solution separation of the all-in-view solution and the 
solution assuming the presence of the fault. 

 

 



COMMENTS ON THE GENERAL SOLUTION 

The general solution as illustrated in Figure 1 appears to 
be very close to the intersection of half-spaces defined by 
the solution separation statistics.  Appendix B shows that 
in the case where the user error and the nominal 
measurement error are decorrelated the optimal detection 
region is actually a function of the solution separation 
statistic for each threat.  Each term in the function 
defining the detection region is akin to the term in the 
single threat case. 

 

CONCLUSION 

There are three contributions in this paper.  First, we cast 
the search of the optimal detection region as a mini-max 
problem.  Second, we have used the Neyman-Pearson 
lemma to limit the search of the detection regions to a 
class of regions parameterized by a bias.  Finally, we have 
shown that in the case of one threat, even multi-
dimensional, the optimal detection statistic is the solution 
separation, that is, the difference between the all-in-view 
solution and the solution obtained by assuming that the 
threat might be present.  The one threat case shows that 
the multiple threat case might be very well approximated 
by the solution separation statistics corresponding to each 
possible threat. 
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APPENDIX A 

Be c the correlation between η and w. We have: 

( )
( )( ) ( )( )( )

( ) ( ) ( )( )
1 1

2

, constant

1exp
2

A

T T

T T

g w b

Q L b c w b Q L b c w b

w b w b c w

=

− + − + + − −

 − − − − 
 

 

Taking Equation (66) we can see that the detection region 
in the correlated case will depend bTw but also on the 
projection cTw.  

APPENDIX B 

In the decorrelated case and after the appropriate change 
of variables (Fi being the contribution of each term in the 
sum (39)), we have: 

( )( ) ( )( ) ( )( )( )
( )( ) ( )( )
1 1,

1 1exp
22

i i i
i

Ti i

F b Q L b Q L b

w b w b dw
πΩ

Ω = − + +

 − − − 
 ∫

 (100) 

Because of the symmetry of Ω, we have:  

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2, ,i i i i i i
i n i nF b b b F b b b   Ω = − − Ω    

 

Using the same argument as above, Fi is log concave in 

the variable ( ) ( )
2
i i

nb b 
  .  Since it is also symmetric it 

means that the maximum is attained at  

( ) ( )
2 0i i

nb b  =   

According to (56) this means that we have  

( ) ( )
max,2 max, 0i i

nb b  =   

(In the coordinate frame where (100) can be written).  
This means that each term in the definition of the 
detection region is a function of the solution separation 
statistic. 
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